151
|
Guo W, Stoklund Dittlau K, Van Den Bosch L. Axonal transport defects and neurodegeneration: Molecular mechanisms and therapeutic implications. Semin Cell Dev Biol 2019; 99:133-150. [PMID: 31542222 DOI: 10.1016/j.semcdb.2019.07.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Because of the extremely polarized morphology, the proper functioning of neurons largely relies on the efficient cargo transport along the axon. Axonal transport defects have been reported in multiple neurodegenerative diseases as an early pathological feature. The discovery of mutations in human genes involved in the transport machinery provide a direct causative relationship between axonal transport defects and neurodegeneration. Here, we summarize the current genetic findings related to axonal transport in neurodegenerative diseases, and we discuss the relationship between axonal transport defects and other pathological changes observed in neurodegeneration. In addition, we summarize the therapeutic approaches targeting the axonal transport machinery in studies of neurodegenerative diseases. Finally, we review the technical advances in tracking axonal transport both in vivo and in vitro.
Collapse
Affiliation(s)
- Wenting Guo
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; KU Leuven-Stem Cell Institute (SCIL), Leuven, Belgium
| | - Katarina Stoklund Dittlau
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
152
|
Ivanova MV, Chekanova EO, Belugin BV, Tutykhina IL, Dolzhikova IV, Zakroishchikova IV, Vasil’ev AV, Zakharova MN. Exosomal Transport and Progression of Neurodegeneration in Amyotrophic Lateral Sclerosis. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
153
|
Anthocyanins and Their Metabolites as Therapeutic Agents for Neurodegenerative Disease. Antioxidants (Basel) 2019; 8:antiox8090333. [PMID: 31443476 PMCID: PMC6770078 DOI: 10.3390/antiox8090333] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS), are characterized by the death of neurons within specific regions of the brain or spinal cord. While the etiology of many neurodegenerative diseases remains elusive, several factors are thought to contribute to the neurodegenerative process, such as oxidative and nitrosative stress, excitotoxicity, endoplasmic reticulum stress, protein aggregation, and neuroinflammation. These processes culminate in the death of vulnerable neuronal populations, which manifests symptomatically as cognitive and/or motor impairments. Until recently, most treatments for these disorders have targeted single aspects of disease pathology; however, this strategy has proved largely ineffective, and focus has now turned towards therapeutics which target multiple aspects underlying neurodegeneration. Anthocyanins are unique flavonoid compounds that have been shown to modulate several of the factors contributing to neuronal death, and interest in their use as therapeutics for neurodegeneration has grown in recent years. Additionally, due to observations that the bioavailability of anthocyanins is low relative to that of their metabolites, it has been proposed that anthocyanin metabolites may play a significant part in mediating the beneficial effects of an anthocyanin-rich diet. Thus, in this review, we will explore the evidence evaluating the neuroprotective and therapeutic potential of anthocyanins and their common metabolites for treating neurodegenerative diseases.
Collapse
|
154
|
Moldogazieva NT, Mokhosoev IM, Mel'nikova TI, Porozov YB, Terentiev AA. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3085756. [PMID: 31485289 PMCID: PMC6710759 DOI: 10.1155/2019/3085756] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/27/2019] [Indexed: 01/24/2023]
Abstract
Oxidative stress is a consequence of the use of oxygen in aerobic respiration by living organisms and is denoted as a persistent condition of an imbalance between the generation of reactive oxygen species (ROS) and the ability of the endogenous antioxidant system (AOS) to detoxify them. The oxidative stress theory has been confirmed in many animal studies, which demonstrated that the maintenance of cellular homeostasis and biomolecular stability and integrity is crucial for cellular longevity and successful aging. Mitochondrial dysfunction, impaired protein homeostasis (proteostasis) network, alteration in the activities of transcription factors such as Nrf2 and NF-κB, and disturbances in the protein quality control machinery that includes molecular chaperones, ubiquitin-proteasome system (UPS), and autophagy/lysosome pathway have been observed during aging and age-related chronic diseases. The accumulation of ROS under oxidative stress conditions results in the induction of lipid peroxidation and glycoxidation reactions, which leads to the elevated endogenous production of reactive aldehydes and their derivatives such as glyoxal, methylglyoxal (MG), malonic dialdehyde (MDA), and 4-hydroxy-2-nonenal (HNE) giving rise to advanced lipoxidation and glycation end products (ALEs and AGEs, respectively). Both ALEs and AGEs play key roles in cellular response to oxidative stress stimuli through the regulation of a variety of cell signaling pathways. However, elevated ALE and AGE production leads to protein cross-linking and aggregation resulting in an alteration in cell signaling and functioning which causes cell damage and death. This is implicated in aging and various age-related chronic pathologies such as inflammation, neurodegenerative diseases, atherosclerosis, and vascular complications of diabetes mellitus. In the present review, we discuss experimental data evidencing the impairment in cellular functions caused by AGE/ALE accumulation under oxidative stress conditions. We focused on the implications of ALEs/AGEs in aging and age-related diseases to demonstrate that the identification of cellular dysfunctions involved in disease initiation and progression can serve as a basis for the discovery of relevant therapeutic agents.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya Street, Moscow, 119991, Russia
| | - Innokenty M. Mokhosoev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya Street, Moscow, 119991, Russia
- N.I. Pirogov Russian National Research Medical University, 1 Ostrovityanov Street, Moscow, 117997, Russia
| | - Tatiana I. Mel'nikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya Street, Moscow, 119991, Russia
| | - Yuri B. Porozov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya Street, Moscow, 119991, Russia
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, 49 Kronverksky Prospect, St. Petersburg, 197101, Russia
| | - Alexander A. Terentiev
- N.I. Pirogov Russian National Research Medical University, 1 Ostrovityanov Street, Moscow, 117997, Russia
| |
Collapse
|
155
|
Shteinfer-Kuzmine A, Argueti S, Gupta R, Shvil N, Abu-Hamad S, Gropper Y, Hoeber J, Magrì A, Messina A, Kozlova EN, Shoshan-Barmatz V, Israelson A. A VDAC1-Derived N-Terminal Peptide Inhibits Mutant SOD1-VDAC1 Interactions and Toxicity in the SOD1 Model of ALS. Front Cell Neurosci 2019; 13:346. [PMID: 31474832 PMCID: PMC6702328 DOI: 10.3389/fncel.2019.00346] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in superoxide dismutase (SOD1) are the second most common cause of familial amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease caused by the death of motor neurons in the brain and spinal cord. SOD1 neurotoxicity has been attributed to aberrant accumulation of misfolded SOD1, which in its soluble form binds to intracellular organelles, such as mitochondria and ER, disrupting their functions. Here, we demonstrate that mutant SOD1 binds specifically to the N-terminal domain of the voltage-dependent anion channel (VDAC1), an outer mitochondrial membrane protein controlling cell energy, metabolic and survival pathways. Mutant SOD1G93A and SOD1G85R, but not wild type SOD1, directly interact with VDAC1 and reduce its channel conductance. No such interaction with N-terminal-truncated VDAC1 occurs. Moreover, a VDAC1-derived N-terminal peptide inhibited mutant SOD1-induced toxicity. Incubation of motor neuron-like NSC-34 cells expressing mutant SOD1 or mouse embryonic stem cell-derived motor neurons with different VDAC1 N-terminal peptides resulted in enhanced cell survival. Taken together, our results establish a direct link between mutant SOD1 toxicity and the VDAC1 N-terminal domain and suggest that VDAC1 N-terminal peptides targeting mutant SOD1 provide potential new therapeutic strategies for ALS.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Shirel Argueti
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Rajeev Gupta
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Neta Shvil
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Salah Abu-Hamad
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Yael Gropper
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Jan Hoeber
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Elena N Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
156
|
Halpern M, Brennand KJ, Gregory J. Examining the relationship between astrocyte dysfunction and neurodegeneration in ALS using hiPSCs. Neurobiol Dis 2019; 132:104562. [PMID: 31381978 DOI: 10.1016/j.nbd.2019.104562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex and fatal neurodegenerative disease for which the causes of disease onset and progression remain unclear. Recent advances in human induced pluripotent stem cell (hiPSC)-based models permit the study of the genetic factors associated with ALS in patient-derived neural cell types, including motor neurons and glia. While astrocyte dysfunction has traditionally been thought to exacerbate disease progression, astrocytic dysfunction may play a more direct role in disease initiation and progression. Such non-cell autonomous mechanisms expand the potential targets of therapeutic intervention, but only a handful of ALS risk-associated genes have been examined for their impact on astrocyte dysfunction and neurodegeneration. This review summarizes what is currently known about astrocyte function in ALS and suggests ways in which hiPSC-based models can be used to more effectively study the role of astrocytes in neurodegenerative disease.
Collapse
Affiliation(s)
- Madeline Halpern
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| | - James Gregory
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, United States of America.
| |
Collapse
|
157
|
Forsberg K, Graffmo K, Pakkenberg B, Weber M, Nielsen M, Marklund S, Brännström T, Andersen PM. Misfolded SOD1 inclusions in patients with mutations in C9orf72 and other ALS/FTD-associated genes. J Neurol Neurosurg Psychiatry 2019; 90:861-869. [PMID: 30992335 PMCID: PMC6691870 DOI: 10.1136/jnnp-2018-319386] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/24/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE A hallmark of amyotrophic lateral sclerosis (ALS) caused by mutations in superoxide dismutase-1 (SOD1) are inclusions containing SOD1 in motor neurons. Here, we searched for SOD1-positive inclusions in 29 patients carrying ALS-linked mutations in six other genes. METHODS A panel of antibodies that specifically recognise misfolded SOD1 species were used for immunohistochemical investigations of autopsy tissue. RESULTS The 18 patients with hexanucleotide-repeat-expansions in C9orf72 had inclusions of misfolded wild type (WT) SOD1WT in spinal motor neurons. Similar inclusions were occasionally observed in medulla oblongata and in the motor cortex and frontal lobe. Patients with mutations in FUS, KIF5A, NEK1, ALSIN or VAPB, carried similar SOD1WT inclusions. Minute amounts of misSOD1WT inclusions were detected in 2 of 20 patients deceased from non-neurological causes and in 4 of 10 patients with other neurodegenerative diseases. Comparison was made with 17 patients with 9 different SOD1 mutations. Morphologically, the inclusions in patients with mutations in C9orf72HRE, FUS, KIF5A, NEK1, VAPB and ALSIN resembled inclusions in patients carrying the wildtype-like SOD1D90A mutation, whereas patients carrying unstable SOD1 mutations (A4V, V5M, D76Y, D83G, D101G, G114A, G127X, L144F) had larger skein-like SOD1-positive inclusions. CONCLUSIONS AND RELEVANCE Abundant inclusions containing misfolded SOD1WT are found in spinal and cortical motor neurons in patients carrying mutations in six ALS-causing genes other than SOD1. This suggests that misfolding of SOD1WT can be part of a common downstream event that may be pathogenic. The new anti-SOD1 therapeutics in development may have applications for a broader range of patients.
Collapse
Affiliation(s)
- Karin Forsberg
- Medical Biosciences, Umeå University, Umeå, Sweden.,Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | | | - Bente Pakkenberg
- Institute of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Markus Weber
- Neuromuscular Diseases Unit, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | | | | | | |
Collapse
|
158
|
Cu/Zn-superoxide dismutase and wild-type like fALS SOD1 mutants produce cytotoxic quantities of H 2O 2 via cysteine-dependent redox short-circuit. Sci Rep 2019; 9:10826. [PMID: 31346243 PMCID: PMC6658568 DOI: 10.1038/s41598-019-47326-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
The Cu/Zn−superoxide dismutase (SOD1) is a ubiquitous enzyme that catalyzes the dismutation of superoxide radicals to oxygen and hydrogen peroxide. In addition to this principal reaction, the enzyme is known to catalyze, with various efficiencies, several redox side-reactions using alternative substrates, including biological thiols, all involving the catalytic copper in the enzyme’s active-site, which is relatively surface exposed. The accessibility and reactivity of the catalytic copper is known to increase upon SOD1 misfolding, structural alterations caused by a mutation or environmental stresses. These competing side-reactions can lead to the formation of particularly toxic ROS, which have been proposed to contribute to oxidative damage in amyotrophic lateral sclerosis (ALS), a neurodegenerative disease that affects motor neurons. Here, we demonstrated that metal-saturated SOD1WT (holo-SOD1WT) and a familial ALS (fALS) catalytically active SOD1 mutant, SOD1G93A, are capable, under defined metabolic circumstances, to generate cytotoxic quantities of H2O2 through cysteine (CSH)/glutathione (GSH) redox short-circuit. Such activity may drain GSH stores, therefore discharging cellular antioxidant potential. By analyzing the distribution of thiol compounds throughout the CNS, the location of potential hot-spots of ROS production can be deduced. These hot-spots may constitute the origin of oxidative damage to neurons in ALS.
Collapse
|
159
|
The activation of Mucolipin TRP channel 1 (TRPML1) protects motor neurons from L-BMAA neurotoxicity by promoting autophagic clearance. Sci Rep 2019; 9:10743. [PMID: 31341250 PMCID: PMC6656764 DOI: 10.1038/s41598-019-46708-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular clearance mechanisms including the autophagy-lysosome pathway are impaired in amyotrophic lateral sclerosis (ALS). One of the most important proteins involved in the regulation of autophagy is the lysosomal Ca2+ channel Mucolipin TRP channel 1 (TRPML1). Therefore, we investigated the role of TRPML1 in a neuronal model of ALS/Parkinson-dementia complex reproduced by the exposure of motor neurons to the cyanobacterial neurotoxin beta-methylamino-L-alanine (L-BMAA). Under these conditions, L-BMAA induces a dysfunction of the endoplasmic reticulum (ER) leading to ER stress and cell death. Therefore we hypothesized a dysfunctional coupling between lysosomes and ER in L-BMAA-treated motor neurons. Here, we showed that in motor neuronal cells TRPML1 as well as the lysosomal protein LAMP1 co-localized with ER. In addition, TRPML1 co-immunoprecipitated with the ER Ca2+ sensor STIM1. Functionally, the TRPML1 agonist ML-SA1 induced lysosomal Ca2+ release in a dose-dependent way in motor neuronal cells. The SERCA inhibitor thapsigargin increased the fluorescent signal associated with lysosomal Ca2+ efflux in the cells transfected with the genetically encoded Ca2+ indicator GCaMP3-ML1, thus suggesting an interplay between the two organelles. Moreover, chronic exposure to L-BMAA reduced TRPML1 protein expression and produced an impairment of both lysosomal and ER Ca2+ homeostasis in primary motor neurons. Interestingly, the preincubation of ML-SA1, by an early activation of AMPK and beclin 1, rescued motor neurons from L-BMAA-induced cell death and reduced the expression of the ER stress marker GRP78. Finally, ML-SA1 reduced the accumulation of the autophagy-related proteins p62/SQSTM1 and LC3-II in L-BMAA-treated motor neurons. Collectively, we propose that the pharmacological stimulation of TRPML1 can rescue motor neurons from L-BMAA-induced toxicity by boosting autophagy and reducing ER stress.
Collapse
|
160
|
Banks CJ, Andersen JL. Mechanisms of SOD1 regulation by post-translational modifications. Redox Biol 2019; 26:101270. [PMID: 31344643 PMCID: PMC6658992 DOI: 10.1016/j.redox.2019.101270] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
SOD1 is commonly known for its ROS scavenging activity, but recent work has uncovered additional roles in modulating metabolism, maintaining redox balance, and regulating transcription. This new paradigm of expanded SOD1 function raises questions regarding the regulation of SOD1 and the cellular partitioning of its biological roles. Despite decades of research on SOD1, much of which focuses on its pathogenic role in amyotrophic lateral sclerosis, relatively little is known about its regulation by post-translational modifications (PTMs). However, over the last decade, advancements in mass spectrometry have led to a boom in PTM discovery across the proteome, which has also revealed new mechanisms of SOD1 regulation by PTMs and an array of SOD1 PTMs with high likelihood of biological function. In this review, we address emerging mechanisms of SOD1 regulation by post-translational modifications, many of which begin to shed light on how the various functions of SOD1 are regulated within the cell.
Collapse
Affiliation(s)
- C J Banks
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - J L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
161
|
Keskin I, Forsgren E, Lehmann M, Andersen PM, Brännström T, Lange DJ, Synofzik M, Nordström U, Zetterström P, Marklund SL, Gilthorpe JD. The molecular pathogenesis of superoxide dismutase 1-linked ALS is promoted by low oxygen tension. Acta Neuropathol 2019; 138:85-101. [PMID: 30863976 PMCID: PMC6570705 DOI: 10.1007/s00401-019-01986-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
Mutations in superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS). Disease pathogenesis is linked to destabilization, disorder and aggregation of the SOD1 protein. However, the non-genetic factors that promote disorder and the subsequent aggregation of SOD1 have not been studied. Mainly located to the reducing cytosol, mature SOD1 contains an oxidized disulfide bond that is important for its stability. Since O2 is required for formation of the bond, we reasoned that low O2 tension might be a risk factor for the pathological changes associated with ALS development. By combining biochemical approaches in an extensive range of genetically distinct patient-derived cell lines, we show that the disulfide bond is an Achilles heel of the SOD1 protein. Culture of patient-derived fibroblasts, astrocytes, and induced pluripotent stem cell-derived mixed motor neuron and astrocyte cultures (MNACs) under low O2 tensions caused reductive bond cleavage and increases in disordered SOD1. The effects were greatest in cells derived from patients carrying ALS-linked mutations in SOD1. However, significant increases also occurred in wild-type SOD1 in cultures derived from non-disease controls, and patients carrying mutations in other common ALS-linked genes. Compared to fibroblasts, MNACs showed far greater increases in SOD1 disorder and even aggregation of mutant SOD1s, in line with the vulnerability of the motor system to SOD1-mediated neurotoxicity. Our results show for the first time that O2 tension is a principal determinant of SOD1 stability in human patient-derived cells. Furthermore, we provide a mechanism by which non-genetic risk factors for ALS, such as aging and other conditions causing reduced vascular perfusion, could promote disease initiation and progression.
Collapse
Affiliation(s)
- Isil Keskin
- Department of Medical Biosciences, Pathology, Umeå University, 90185, Umeå, Sweden
| | - Elin Forsgren
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Manuela Lehmann
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Thomas Brännström
- Department of Medical Biosciences, Pathology, Umeå University, 90185, Umeå, Sweden
| | - Dale J Lange
- Department of Neurology, Hospital for Special Surgery and Weill Cornell Medical Center, New York, NY, 10021, USA
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Research Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Ulrika Nordström
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Per Zetterström
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 90185, Umeå, Sweden
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 90185, Umeå, Sweden.
| | - Jonathan D Gilthorpe
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
162
|
AAV2/9-mediated overexpression of MIF inhibits SOD1 misfolding, delays disease onset, and extends survival in mouse models of ALS. Proc Natl Acad Sci U S A 2019; 116:14755-14760. [PMID: 31262807 DOI: 10.1073/pnas.1904665116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by the loss of upper and lower motor neurons. Transgenic mice that overexpress mutant SOD1 develop paralysis and accumulate misfolded SOD1 onto the cytoplasmic faces of intracellular organelles, including mitochondria and endoplasmic reticulum (ER). Recently, macrophage migration inhibitory factor (MIF) was shown to directly inhibit mutant SOD1 misfolding and binding to intracellular membranes. In addition, complete elimination of endogenous MIF accelerated disease onset and late disease progression, as well as shortened the lifespan of mutant SOD1 mice with higher amounts of misfolded SOD1 detected within the spinal cord. Based on these findings, we used adeno-associated viral (AAV) vectors to overexpress MIF in the spinal cord of mutant SOD1G93A and loxSOD1G37R mice. Our data show that MIF mRNA and protein levels were increased in the spinal cords of AAV2/9-MIF-injected mice. Furthermore, mutant SOD1G93A and loxSOD1G37R mice injected with AAV2/9-MIF demonstrated a significant delay in disease onset and prolonged survival compared with their AAV2/9-GFP-injected or noninjected littermates. Moreover, these mice accumulated reduced amounts of misfolded SOD1 in their spinal cords, with no observed effect on glial overactivation as a result of MIF up-regulation. Our findings indicate that MIF plays a significant role in SOD1 folding and misfolding mechanisms and strengthen the hypothesis that MIF acts as a chaperone for misfolded SOD1 in vivo and may have further implications regarding the therapeutic potential role of up-regulation of MIF in modulating the specific accumulation of misfolded SOD1.
Collapse
|
163
|
Klotho Is Neuroprotective in the Superoxide Dismutase (SOD1 G93A) Mouse Model of ALS. J Mol Neurosci 2019; 69:264-285. [PMID: 31250273 DOI: 10.1007/s12031-019-01356-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of motor neurons in the brain and spinal cord. ALS neuropathology is associated with increased oxidative stress, excitotoxicity, and inflammation. We and others reported that the anti-aging and cognition-enhancing protein Klotho is a neuroprotective, antioxidative, anti-inflammatory, and promyelinating protein. In mice, its absence leads to an extremely shortened life span and to multiple phenotypes resembling human aging, including motor and hippocampal neurodegeneration and cognitive impairment. In contrast, its overexpression extends life span, enhances cognition, and confers resistance against oxidative stress; it also reduces premature mortality and cognitive and behavioral abnormalities in an animal model for Alzheimer's disease (AD). These pleiotropic beneficial properties of Klotho suggest that Klotho could be a potent therapeutic target for preventing neurodegeneration in ALS. Klotho overexpression in the SOD1 mouse model of ALS resulted in delayed onset and progression of the disease and extended survival that was more prominent in females than in males. Klotho reduced the expression of neuroinflammatory markers and prevented neuronal loss with the more profound effect in the spinal cord than in the motor cortex. The effect of Klotho was accompanied by reduced expression of proinflammatory cytokines and enhanced the expression of antioxidative and promyelinating factors in the motor cortex and spinal cord of Klotho × SOD1 compared to SOD1 mice. Our study provides evidence that increased levels of Klotho alleviate ALS-associated pathology in the SOD1 mouse model and may serve as a basis for developing Klotho-based therapeutic strategies for ALS.
Collapse
|
164
|
Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD. Motor Neuron Susceptibility in ALS/FTD. Front Neurosci 2019; 13:532. [PMID: 31316328 PMCID: PMC6610326 DOI: 10.3389/fnins.2019.00532] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of both upper and lower motor neurons (MNs) in the brain, brainstem and spinal cord. The neurodegenerative mechanisms leading to MN loss in ALS are not fully understood. Importantly, the reasons why MNs are specifically targeted in this disorder are unclear, when the proteins associated genetically or pathologically with ALS are expressed ubiquitously. Furthermore, MNs themselves are not affected equally; specific MNs subpopulations are more susceptible than others in both animal models and human patients. Corticospinal MNs and lower somatic MNs, which innervate voluntary muscles, degenerate more readily than specific subgroups of lower MNs, which remain resistant to degeneration, reflecting the clinical manifestations of ALS. In this review, we discuss the possible factors intrinsic to MNs that render them uniquely susceptible to neurodegeneration in ALS. We also speculate why some MN subpopulations are more vulnerable than others, focusing on both their molecular and physiological properties. Finally, we review the anatomical network and neuronal microenvironment as determinants of MN subtype vulnerability and hence the progression of ALS.
Collapse
Affiliation(s)
- Audrey M G Ragagnin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sina Shadfar
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Marta Vidal
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
165
|
Ueda T, Ito T, Kurita H, Inden M, Hozumi I. p-Coumaric Acid Has Protective Effects against Mutant Copper-Zinc Superoxide Dismutase 1 via the Activation of Autophagy in N2a Cells. Int J Mol Sci 2019; 20:ijms20122942. [PMID: 31208129 PMCID: PMC6628046 DOI: 10.3390/ijms20122942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 01/13/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motor neurons. In previous our study, an ethanol extract of Brazilian green propolis (EBGP) prevented mutant copper-zinc superoxide dismutase 1 (SOD1mut)-induced neurotoxicity. This paper aims to reveal the effects of p-coumaric acid (p-CA), an active ingredient contained in EBGP, against SOD1mut-induced neurotoxicity. We found that p-CA reduced the accumulation of SOD1mut subcellular aggregation and prevented SOD1mut-associated neurotoxicity. Moreover, p-CA attenuated SOD1mut-induced oxidative stress and endoplasmic reticulum stress, which are significant features in ALS pathology. To examine the mechanism of neuroprotective effects, we focused on autophagy, and we found that p-CA induced autophagy. Additionally, the neuroprotective effects of p-CA were inhibited by chloroquine, an autophagy inhibiter. Therefore, these results obtained in this paper suggest that p-CA prevents SOD1mut-induced neurotoxicity through the activation of autophagy and provides a potential therapeutic approach for ALS.
Collapse
Affiliation(s)
- Tomoyuki Ueda
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Taisei Ito
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| |
Collapse
|
166
|
Li X, Qiu S, Shi J, Wang S, Wang M, Xu Y, Nie Z, Liu C, Liu C. A new function of copper zinc superoxide dismutase: as a regulatory DNA-binding protein in gene expression in response to intracellular hydrogen peroxide. Nucleic Acids Res 2019; 47:5074-5085. [PMID: 31162603 PMCID: PMC6547762 DOI: 10.1093/nar/gkz256] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/28/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
In microorganisms, a number of metalloproteins including PerR are found to regulate gene expression in response to environmental reactive oxygen species (ROS) changes. However, discovery of similar regulatory mechanisms remains elusive within mammalian cells. As an antioxidant metalloenzyme that maintains intracellular ROS homeostasis, copper zinc superoxide dismutase (SOD1) has high affinity for DNA in solution and in cells. Here, we explored the regulatory roles of SOD1 in the expression of genes in response to ROS changes within mammalian cells. SOD1-occupied DNA sites with distinct sequence preference were identified. Changing ROS levels both were found to impact DNA-SOD1 interactions in solution and within HeLa cells. GGA was one of the base triplets that had direct contact with SOD1. DNA-SOD1 interactions were observed to regulate the ROS-responsive expression of functional genes including oncogenes and amyotrophic lateral sclerosis-linked genes in transcriptional phases. Our results confirm another function of SOD1, acting as a H2O2-responsive regulatory protein in the expression of numerous mammalian genes.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Shuang Qiu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Jiayuan Shi
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Shanshan Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Mingfang Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Yulin Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Zefeng Nie
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Changlin Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| |
Collapse
|
167
|
An D, Fujiki R, Iannitelli DE, Smerdon JW, Maity S, Rose MF, Gelber A, Wanaselja EK, Yagudayeva I, Lee JY, Vogel C, Wichterle H, Engle EC, Mazzoni EO. Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons. eLife 2019; 8:44423. [PMID: 31157617 PMCID: PMC6594754 DOI: 10.7554/elife.44423] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/02/2019] [Indexed: 12/14/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS) spinal motor neurons (SpMN) progressively degenerate while a subset of cranial motor neurons (CrMN) are spared until late stages of the disease. Using a rapid and efficient protocol to differentiate mouse embryonic stem cells (ESC) to SpMNs and CrMNs, we now report that ESC-derived CrMNs accumulate less human (h)SOD1 and insoluble p62 than SpMNs over time. ESC-derived CrMNs have higher proteasome activity to degrade misfolded proteins and are intrinsically more resistant to chemically-induced proteostatic stress than SpMNs. Chemical and genetic activation of the proteasome rescues SpMN sensitivity to proteostatic stress. In agreement, the hSOD1 G93A mouse model reveals that ALS-resistant CrMNs accumulate less insoluble hSOD1 and p62-containing inclusions than SpMNs. Primary-derived ALS-resistant CrMNs are also more resistant than SpMNs to proteostatic stress. Thus, an ESC-based platform has identified a superior capacity to maintain a healthy proteome as a possible mechanism to resist ALS-induced neurodegeneration.
Collapse
Affiliation(s)
- Disi An
- Department of Biology, New York University, New York, United States
| | - Ryosuke Fujiki
- Department of Neurology, Boston Children's Hospital, Boston, United States.,FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States.,Department of Neurology, Harvard Medical School, Boston, United States.,Medical Genetics Training Program, Harvard Medical School, Boston, United States
| | | | - John W Smerdon
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Shuvadeep Maity
- Department of Biology, New York University, New York, United States.,Center for Genomics and Systems Biology, New York University, New York, United States
| | - Matthew F Rose
- Department of Neurology, Boston Children's Hospital, Boston, United States.,FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States.,Medical Genetics Training Program, Harvard Medical School, Boston, United States.,Department of Pathology, Brigham and Women's Hospital, Boston, United States.,Department of Pathology, Boston Children's Hospital, Boston, United States.,Department of Pathology, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Alon Gelber
- Department of Neurology, Boston Children's Hospital, Boston, United States.,FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | | | - Ilona Yagudayeva
- Department of Biology, New York University, New York, United States
| | - Joun Y Lee
- Department of Neurology, Boston Children's Hospital, Boston, United States.,FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Christine Vogel
- Department of Biology, New York University, New York, United States.,Center for Genomics and Systems Biology, New York University, New York, United States
| | - Hynek Wichterle
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital, Boston, United States.,FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States.,Department of Neurology, Harvard Medical School, Boston, United States.,Medical Genetics Training Program, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,Department of Ophthalmology, Boston Children's Hospital, Boston, United States.,Department of Ophthalmology, Harvard Medical School, Boston, United States
| | - Esteban Orlando Mazzoni
- Department of Biology, New York University, New York, United States.,NYU Neuroscience Institute, NYU Langone Medical Center, New York, United States
| |
Collapse
|
168
|
Burk K, Pasterkamp RJ. Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathol 2019; 137:859-877. [PMID: 30721407 PMCID: PMC6531423 DOI: 10.1007/s00401-019-01964-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, adult-onset neurodegenerative disease caused by degeneration of motor neurons in the brain and spinal cord leading to muscle weakness. Median survival after symptom onset in patients is 3-5 years and no effective therapies are available to treat or cure ALS. Therefore, further insight is needed into the molecular and cellular mechanisms that cause motor neuron degeneration and ALS. Different ALS disease mechanisms have been identified and recent evidence supports a prominent role for defects in intracellular transport. Several different ALS-causing gene mutations (e.g., in FUS, TDP-43, or C9ORF72) have been linked to defects in neuronal trafficking and a picture is emerging on how these defects may trigger disease. This review summarizes and discusses these recent findings. An overview of how endosomal and receptor trafficking are affected in ALS is followed by a description on dysregulated autophagy and ER/Golgi trafficking. Finally, changes in axonal transport and nucleocytoplasmic transport are discussed. Further insight into intracellular trafficking defects in ALS will deepen our understanding of ALS pathogenesis and will provide novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Katja Burk
- Department of Neurologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Str. 3A, 37075, Göttingen, Germany.
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
169
|
Huai J, Zhang Z. Structural Properties and Interaction Partners of Familial ALS-Associated SOD1 Mutants. Front Neurol 2019; 10:527. [PMID: 31164862 PMCID: PMC6536575 DOI: 10.3389/fneur.2019.00527] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron degenerative disease in adults and has also been proven to be a type of conformational disease associated with protein misfolding and dysfunction. To date, more than 150 distinct genes have been found to be associated with ALS, among which Superoxide Dismutase 1 (SOD1) is the first and the most extensively studied gene. It has been well-established that SOD1 mutants-mediated toxicity is caused by a gain-of-function rather than the loss of the detoxifying activity of SOD1. Compared with the clear autosomal dominant inheritance of SOD1 mutants in ALS, the potential toxic mechanisms of SOD1 mutants in motor neurons remain incompletely understood. A large body of evidence has shown that SOD1 mutants may adopt a complex profile of conformations and interact with a wide range of client proteins. Here, in this review, we summarize the fundamental conformational properties and the gained interaction partners of the soluble forms of the SOD1 mutants which have been published in the past decades. Our goal is to find clues to the possible internal links between structural and functional anomalies of SOD1 mutants, as well as the relationships between their exposed epitopes and interaction partners, in order to help reveal and determine potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Jisen Huai
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
170
|
L3MBTL1 regulates ALS/FTD-associated proteotoxicity and quality control. Nat Neurosci 2019; 22:875-886. [PMID: 31061493 PMCID: PMC6588399 DOI: 10.1038/s41593-019-0384-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Misfolded protein toxicity and failure of protein quality control
underlie neurodegenerative diseases including amyotrophic lateral sclerosis
(ALS) and frontotemporal dementia (FTD). Here, we identified Lethal(3)malignant
brain tumor-like protein 1 (L3MBTL1) as a previously unknown regulator of
protein quality control, the loss of which protected against the proteotoxicity
of mutant SOD1 or C9orf72 dipeptide repeat proteins. L3MBTL1 acts by regulating
p53-dependent quality control systems that degrade misfolded proteins. SET
domain-containing protein 8 (SETD8), a L3MBTL1-associatd p53-binding protein,
also regulated clearance of misfolded proteins and was increased by
proteotoxicity-associated stresses in mammalian cells. Both L3MBTL1 and SETD8
were up-regulated in the central nervous systems of mouse models of ALS and
human ALS/FTD patients. The role of L3MBTL1 in protein quality control is
conserved from C. elegans to mammalian neurons. These results
indicate a previously unrecognized pathway in both normal stress response and
proteotoxicity-associated neurodegenerative diseases.
Collapse
|
171
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
172
|
Garcia‐Seisdedos H, Villegas JA, Levy ED. Infinite Ansammlungen gefalteter Proteine im Kontext von Evolution, Krankheiten und Proteinentwicklung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - José A. Villegas
- Department of Structural BiologyWeizmann Institute of Science Rehovot 7610001 Israel
| | - Emmanuel D. Levy
- Department of Structural BiologyWeizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
173
|
Garcia‐Seisdedos H, Villegas JA, Levy ED. Infinite Assembly of Folded Proteins in Evolution, Disease, and Engineering. Angew Chem Int Ed Engl 2019; 58:5514-5531. [PMID: 30133878 PMCID: PMC6471489 DOI: 10.1002/anie.201806092] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/06/2018] [Indexed: 12/14/2022]
Abstract
Mutations and changes in a protein's environment are well known for their potential to induce misfolding and aggregation, including amyloid formation. Alternatively, such perturbations can trigger new interactions that lead to the polymerization of folded proteins. In contrast to aggregation, this process does not require misfolding and, to highlight this difference, we refer to it as agglomeration. This term encompasses the amorphous assembly of folded proteins as well as the polymerization in one, two, or three dimensions. We stress the remarkable potential of symmetric homo-oligomers to agglomerate even by single surface point mutations, and we review the double-edged nature of this potential: how aberrant assemblies resulting from agglomeration can lead to disease, but also how agglomeration can serve in cellular adaptation and be exploited for the rational design of novel biomaterials.
Collapse
Affiliation(s)
| | - José A. Villegas
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Emmanuel D. Levy
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
174
|
Nguyen DKH, Thombre R, Wang J. Autophagy as a common pathway in amyotrophic lateral sclerosis. Neurosci Lett 2019; 697:34-48. [PMID: 29626651 PMCID: PMC6170747 DOI: 10.1016/j.neulet.2018.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
Age-dependent neurodegenerative diseases are associated with a decline in protein quality control systems including autophagy. Amyotrophic lateral sclerosis (ALS) is a motor neuron degenerative disease of complex etiology with increasing connections to other neurodegenerative conditions such as frontotemporal dementia. Among the diverse genetic causes for ALS, a striking feature is the common connection to autophagy and its associated pathways. There is a recurring theme of protein misfolding as in other neurodegenerative diseases, but importantly there is a distinct common thread among ALS genes that connects them to the cascade of autophagy. However, the roles of autophagy in ALS remain enigmatic and it is still unclear whether activation or inhibition of autophagy would be a reliable avenue to ameliorate the disease. The main evidence that links autophagy to different genetic forms of ALS is discussed.
Collapse
Affiliation(s)
- Dao K H Nguyen
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ravi Thombre
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
175
|
Beltran S, Nassif M, Vicencio E, Arcos J, Labrador L, Cortes BI, Cortez C, Bergmann CA, Espinoza S, Hernandez MF, Matamala JM, Bargsted L, Matus S, Rojas-Rivera D, Bertrand MJM, Medinas DB, Hetz C, Manque PA, Woehlbier U. Network approach identifies Pacer as an autophagy protein involved in ALS pathogenesis. Mol Neurodegener 2019; 14:14. [PMID: 30917850 PMCID: PMC6437924 DOI: 10.1186/s13024-019-0313-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a multifactorial fatal motoneuron disease without a cure. Ten percent of ALS cases can be pointed to a clear genetic cause, while the remaining 90% is classified as sporadic. Our study was aimed to uncover new connections within the ALS network through a bioinformatic approach, by which we identified C13orf18, recently named Pacer, as a new component of the autophagic machinery and potentially involved in ALS pathogenesis. METHODS Initially, we identified Pacer using a network-based bioinformatic analysis. Expression of Pacer was then investigated in vivo using spinal cord tissue from two ALS mouse models (SOD1G93A and TDP43A315T) and sporadic ALS patients. Mechanistic studies were performed in cell culture using the mouse motoneuron cell line NSC34. Loss of function of Pacer was achieved by knockdown using short-hairpin constructs. The effect of Pacer repression was investigated in the context of autophagy, SOD1 aggregation, and neuronal death. RESULTS Using an unbiased network-based approach, we integrated all available ALS data to identify new functional interactions involved in ALS pathogenesis. We found that Pacer associates to an ALS-specific subnetwork composed of components of the autophagy pathway, one of the main cellular processes affected in the disease. Interestingly, we found that Pacer levels are significantly reduced in spinal cord tissue from sporadic ALS patients and in tissues from two ALS mouse models. In vitro, Pacer deficiency lead to impaired autophagy and accumulation of ALS-associated protein aggregates, which correlated with the induction of cell death. CONCLUSIONS This study, therefore, identifies Pacer as a new regulator of proteostasis associated with ALS pathology.
Collapse
Affiliation(s)
- S Beltran
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - M Nassif
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - E Vicencio
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - J Arcos
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - L Labrador
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - B I Cortes
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - C Cortez
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - C A Bergmann
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - S Espinoza
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile
| | - M F Hernandez
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile
| | - J M Matamala
- Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile
| | - L Bargsted
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile
| | - S Matus
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile.,Fundación Ciencia & Vida, Zañartu 1482, 7780272, Santiago, Chile.,Neurounion Biomedical Foundation, 7780272, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
| | - D Rojas-Rivera
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile.,VIB Center for Inflammation Research, Technologiepark 927, Zwijnaarde, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde, 9052, Ghent, Belgium
| | - M J M Bertrand
- VIB Center for Inflammation Research, Technologiepark 927, Zwijnaarde, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde, 9052, Ghent, Belgium
| | - D B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Independencia, 1027, Santiago, Chile
| | - C Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, 94945, USA.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Independencia, 1027, Santiago, Chile.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, 02115, USA
| | - P A Manque
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile. .,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile. .,Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - U Woehlbier
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, P.O.BOX 70086, Santiago, Chile. .,Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide, 5750, Santiago, Chile.
| |
Collapse
|
176
|
Experimental Mutations in Superoxide Dismutase 1 Provide Insight into Potential Mechanisms Involved in Aberrant Aggregation in Familial Amyotrophic Lateral Sclerosis. G3-GENES GENOMES GENETICS 2019; 9:719-728. [PMID: 30622123 PMCID: PMC6404617 DOI: 10.1534/g3.118.200787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations in more than 80 different positions in superoxide dismutase 1 (SOD1) have been associated with amyotrophic lateral sclerosis (fALS). There is substantial evidence that a common consequence of these mutations is to induce the protein to misfold and aggregate. How these mutations perturb native structure to heighten the propensity to misfold and aggregate is unclear. In the present study, we have mutagenized Glu residues at positions 40 and 133 that are involved in stabilizing the β-barrel structure of the native protein and a critical Zn binding domain, respectively, to examine how specific mutations may cause SOD1 misfolding and aggregation. Mutations associated with ALS as well as experimental mutations were introduced into these positions. We used an assay in which mutant SOD1 was fused to yellow fluorescent protein (SOD1:YFP) to visualize the formation of cytosolic inclusions by mutant SOD1. We then used existing structural data on SOD1, to predict how different mutations might alter local 3D conformation. Our findings reveal an association between mutant SOD1 aggregation and amino acid substitutions that are predicted to introduce steric strain, sometimes subtly, in the 3D conformation of the peptide backbone.
Collapse
|
177
|
Agnew HD, Coppock MB, Idso MN, Lai BT, Liang J, McCarthy-Torrens AM, Warren CM, Heath JR. Protein-Catalyzed Capture Agents. Chem Rev 2019; 119:9950-9970. [PMID: 30838853 DOI: 10.1021/acs.chemrev.8b00660] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-catalyzed capture agents (PCCs) are synthetic and modular peptide-based affinity agents that are developed through the use of single-generation in situ click chemistry screens against large peptide libraries. In such screens, the target protein, or a synthetic epitope fragment of that protein, provides a template for selectively promoting the noncopper catalyzed azide-alkyne dipolar cycloaddition click reaction between either a library peptide and a known ligand or a library peptide and the synthetic epitope. The development of epitope-targeted PCCs was motivated by the desire to fully generalize pioneering work from the Sharpless and Finn groups in which in situ click screens were used to develop potent, divalent enzymatic inhibitors. In fact, a large degree of generality has now been achieved. Various PCCs have demonstrated utility for selective protein detection, as allosteric or direct inhibitors, as modulators of protein folding, and as tools for in vivo tumor imaging. We provide a historical context for PCCs and place them within the broader scope of biological and synthetic aptamers. The development of PCCs is presented as (i) Generation I PCCs, which are branched ligands engineered through an iterative, nonepitope-targeted process, and (ii) Generation II PCCs, which are typically developed from macrocyclic peptide libraries and are precisely epitope-targeted. We provide statistical comparisons of Generation II PCCs relative to monoclonal antibodies in which the protein target is the same. Finally, we discuss current challenges and future opportunities of PCCs.
Collapse
Affiliation(s)
- Heather D Agnew
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - Matthew B Coppock
- Sensors and Electron Devices Directorate , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States
| | - Matthew N Idso
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Bert T Lai
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - JingXin Liang
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Amy M McCarthy-Torrens
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Carmen M Warren
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - James R Heath
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| |
Collapse
|
178
|
Korhonen P, Pollari E, Kanninen KM, Savchenko E, Lehtonen Š, Wojciechowski S, Pomeshchik Y, Van Den Bosch L, Goldsteins G, Koistinaho J, Malm T. Long-term interleukin-33 treatment delays disease onset and alleviates astrocytic activation in a transgenic mouse model of amyotrophic lateral sclerosis. IBRO Rep 2019; 6:74-86. [PMID: 30705990 PMCID: PMC6348738 DOI: 10.1016/j.ibror.2019.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Th2-type cytokine IL-33 delayed the disease onset of female SOD1-G93 A transgenic ALS mice. IL-33 decreased the proportion of T cells in the spleens and lymph nodes of female mice. IL-33 decreased astrocytic activation in the spinal cord of female mice. Male mice were unresponsive to the treatment.
Inflammation is a prominent feature of the neuropathology of amyotrophic lateral sclerosis (ALS). Emerging evidence suggests that inflammatory cascades contributing to the disease progression are not restricted to the central nervous system (CNS) but also occur peripherally. Indeed, alterations in T cell responses and their secreted cytokines have been detected in ALS patients and in animal models of ALS. One key cytokine responsible for the shift in T cell responses is interleukin-33 (IL-33), which stimulates innate type 2 immune cells to produce a large amount of Th2 cytokines that are possibly beneficial in the recovery processes of CNS injuries. Since the levels of IL-33 have been shown to be decreased in patients affected with ALS, we sought to determine whether a long-term recombinant IL-33 treatment of a transgenic mouse model of ALS expressing G93A-superoxide dismutase 1 (SOD1-G93A) alters the disease progression and ameliorates the ALS-like disease pathology. SOD1-G93A mice were treated with intraperitoneal injections of IL-33 and effects on disease onset and inflammatory status were determined. Spinal cord (SC) neurons, astrocytes and T-cells were exposed to IL-33 to evaluate the cell specific responses to IL-33. Treatment of SOD1-G93A mice with IL-33 delayed the disease onset in female mice, decreased the proportion of CD4+ and CD8 + T cell populations in the spleen and lymph nodes, and alleviated astrocytic activation in the ventral horn of the lumbar SC. Male SOD1-G93A mice were unresponsive to the treatment. In vitro studies showed that IL-33 is most likely not acting directly on neurons and astrocytes, but rather conveying its effects through peripheral T-cells. Our results suggest that strategies directed to the peripheral immune system may have therapeutic potential in ALS. The effect of gender dimorphisms to the treatment efficacy needs to be taken into consideration when designing new therapeutic strategies for CNS diseases.
Collapse
Key Words
- ALS
- ALS, amyotrophic lateral sclerosis
- ANOVA, analysis of variance
- Arg-1, arginine-1
- Astrocyte
- CM, conditioned medium
- CNS, central nervous system
- Cytokine
- DMEM, Dulbecco’s minimum essential medium
- EAE, experimental autoimmune encephalomyelitis
- GFAP, glial fibrillary acidic protein
- HO-1, hemeoxygenase-1
- IFN-γ, interferon gamma
- IL-10, interleukin-10
- IL-1RAcP, interleukin-1 receptor accessory protein
- IL-33, interleukin-33
- IL-33R, interleukin-33 receptor
- IL-6, interleukin-6
- Iba-1, ionized calcium binding adaptor molecule-1
- Inflammation
- Interleukin-33
- MCP-1, monocyte chemoattractant protein-1
- Microglia
- NFE2L2, the gene encoding Nrf2
- Nrf2, nuclear factor (erythroid-derived 2)-like 2
- PBS, phosphate buffered saline
- RT, room temperature
- SC, spinal cord
- SD, standard deviation
- SOD1, superoxide dismutase 1
- Spinal cord
- T cell
- TG, transgenic
- TNF, tumor necrosis factor
- WT, wildtype
- fALS, familial ALS
- sALS, sporadic ALS
Collapse
Affiliation(s)
- Paula Korhonen
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Eveliina Pollari
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology, VIB Center for Brain & Disease Research, Box 912, B-3000 Leuven, Belgium
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ekaterina Savchenko
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Šárka Lehtonen
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Sara Wojciechowski
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Yuriy Pomeshchik
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ludo Van Den Bosch
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology, VIB Center for Brain & Disease Research, Box 912, B-3000 Leuven, Belgium
| | - Gundars Goldsteins
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
179
|
Thams S, Lowry ER, Larraufie MH, Spiller KJ, Li H, Williams DJ, Hoang P, Jiang E, Williams LA, Sandoe J, Eggan K, Lieberam I, Kanning KC, Stockwell BR, Henderson CE, Wichterle H. A Stem Cell-Based Screening Platform Identifies Compounds that Desensitize Motor Neurons to Endoplasmic Reticulum Stress. Mol Ther 2019; 27:87-101. [PMID: 30446391 PMCID: PMC6318783 DOI: 10.1016/j.ymthe.2018.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/07/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease selectively targeting motor neurons in the brain and spinal cord. The reasons for differential motor neuron susceptibility remain elusive. We developed a stem cell-based motor neuron assay to study cell-autonomous mechanisms causing motor neuron degeneration, with implications for ALS. A small-molecule screen identified cyclopiazonic acid (CPA) as a stressor to which stem cell-derived motor neurons were more sensitive than interneurons. CPA induced endoplasmic reticulum stress and the unfolded protein response. Furthermore, CPA resulted in an accelerated degeneration of motor neurons expressing human superoxide dismutase 1 (hSOD1) carrying the ALS-causing G93A mutation, compared to motor neurons expressing wild-type hSOD1. A secondary screen identified compounds that alleviated CPA-mediated motor neuron degeneration: three kinase inhibitors and tauroursodeoxycholic acid (TUDCA), a bile acid derivative. The neuroprotective effects of these compounds were validated in human stem cell-derived motor neurons carrying a mutated SOD1 allele (hSOD1A4V). Moreover, we found that the administration of TUDCA in an hSOD1G93A mouse model of ALS reduced muscle denervation. Jointly, these results provide insights into the mechanisms contributing to the preferential susceptibility of ALS motor neurons, and they demonstrate the utility of stem cell-derived motor neurons for the discovery of new neuroprotective compounds.
Collapse
Affiliation(s)
- Sebastian Thams
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA.
| | - Emily Rhodes Lowry
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Marie-Hélène Larraufie
- Department of Biological Sciences and Department of Chemistry, Columbia University, Northwest Corner Building, MC4846, 550 West 120th Street, New York, NY 10027, USA
| | - Krista J Spiller
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Hai Li
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Damian J Williams
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, 650 West 168th Street, New York, NY, USA
| | - Phuong Hoang
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Elise Jiang
- Department of Biological Sciences and Department of Chemistry, Columbia University, Northwest Corner Building, MC4846, 550 West 120th Street, New York, NY 10027, USA
| | - Luis A Williams
- Department of Stem Cell and Regenerative Biology, Harvard University, MA 02138, USA
| | - Jackson Sandoe
- Department of Stem Cell and Regenerative Biology, Harvard University, MA 02138, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, MA 02138, USA
| | - Ivo Lieberam
- Centre for Stem Cells and Regenerative Medicine and MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 9RT, UK
| | - Kevin C Kanning
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, Northwest Corner Building, MC4846, 550 West 120th Street, New York, NY 10027, USA
| | - Christopher E Henderson
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; Departments of Neuroscience, Rehabilitation and Regenerative Medicine, and Neurology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
180
|
Malik R, Meng H, Wongkongkathep P, Corrales CI, Sepanj N, Atlasi RS, Klärner FG, Schrader T, Spencer MJ, Loo JA, Wiedau M, Bitan G. The molecular tweezer CLR01 inhibits aberrant superoxide dismutase 1 (SOD1) self-assembly in vitro and in the G93A-SOD1 mouse model of ALS. J Biol Chem 2019; 294:3501-3513. [PMID: 30602569 DOI: 10.1074/jbc.ra118.005940] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/01/2019] [Indexed: 12/13/2022] Open
Abstract
Mutations in superoxide dismutase 1 (SOD1) cause 15-20% of familial amyotrophic lateral sclerosis (fALS) cases. The resulting amino acid substitutions destabilize SOD1's protein structure, leading to its self-assembly into neurotoxic oligomers and aggregates, a process hypothesized to cause the characteristic motor-neuron degeneration in affected individuals. Currently, effective disease-modifying therapy is not available for ALS. Molecular tweezers prevent formation of toxic protein assemblies, yet their protective action has not been tested previously on SOD1 or in the context of ALS. Here, we tested the molecular tweezer CLR01-a broad-spectrum inhibitor of the self-assembly and toxicity of amyloid proteins-as a potential therapeutic agent for ALS. Using recombinant WT and mutant SOD1, we found that CLR01 inhibited the aggregation of all tested SOD1 forms in vitro Next, we examined whether CLR01 could prevent the formation of misfolded SOD1 in the G93A-SOD1 mouse model of ALS and whether such inhibition would have a beneficial therapeutic effect. CLR01 treatment decreased misfolded SOD1 in the spinal cord significantly. However, these histological findings did not correlate with improvement of the disease phenotype. A small, dose-dependent decrease in disease duration was found in CLR01-treated mice, relative to vehicle-treated animals, yet motor function did not improve in any of the treatment groups. These results demonstrate that CLR01 can inhibit SOD1 misfolding and aggregation both in vitro and in vivo, but raise the question whether such inhibition is sufficient for achieving a therapeutic effect. Additional studies in other less aggressive ALS models may be needed to determine the therapeutic potential of this approach.
Collapse
Affiliation(s)
- Ravinder Malik
- From the Department of Neurology, David Geffen School of Medicine, and
| | - Helen Meng
- From the Department of Neurology, David Geffen School of Medicine, and
| | | | | | - Niki Sepanj
- From the Department of Neurology, David Geffen School of Medicine, and
| | - Ryan S Atlasi
- From the Department of Neurology, David Geffen School of Medicine, and
| | | | - Thomas Schrader
- the Faculty of Chemistry, University of Duisburg-Essen, 47057 Essen, Germany
| | - Melissa J Spencer
- From the Department of Neurology, David Geffen School of Medicine, and.,Brain Research Institute, and
| | - Joseph A Loo
- Departments of Chemistry and Biochemistry and.,Biological Chemistry.,Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | - Martina Wiedau
- From the Department of Neurology, David Geffen School of Medicine, and .,Brain Research Institute, and
| | - Gal Bitan
- From the Department of Neurology, David Geffen School of Medicine, and .,Brain Research Institute, and.,Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| |
Collapse
|
181
|
Wells C, Brennan SE, Keon M, Saksena NK. Prionoid Proteins in the Pathogenesis of Neurodegenerative Diseases. Front Mol Neurosci 2019; 12:271. [PMID: 31780895 PMCID: PMC6861308 DOI: 10.3389/fnmol.2019.00271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
There is a growing body of evidence that prionoid protein behaviors are a core element of neurodegenerative diseases (NDs) that afflict humans. Common elements in pathogenesis, pathological effects and protein-level behaviors exist between Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). These extend beyond the affected neurons to glial cells and processes. This results in a complicated system of disease progression, which often takes advantage of protective processes to promote the propagation of pathological protein aggregates. This review article provides a current snapshot of knowledge on these proteins and their intrinsic role in the pathogenesis and disease progression seen across NDs.
Collapse
|
182
|
Riancho J, Gonzalo I, Ruiz-Soto M, Berciano J. Why do motor neurons degenerate? Actualisation in the pathogenesis of amyotrophic lateral sclerosis. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2015.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
183
|
Riancho J, Gonzalo I, Ruiz-Soto M, Berciano J. ¿Por qué degeneran las motoneuronas? Actualización en la patogenia de la esclerosis lateral amiotrófica. Neurologia 2019; 34:27-37. [DOI: 10.1016/j.nrl.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022] Open
|
184
|
García JC, Bustos RH. The Genetic Diagnosis of Neurodegenerative Diseases and Therapeutic Perspectives. Brain Sci 2018; 8:brainsci8120222. [PMID: 30551598 PMCID: PMC6316116 DOI: 10.3390/brainsci8120222] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/26/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Genetics has led to a new focus regarding approaches to the most prevalent diseases today. Ascertaining the molecular secrets of neurodegenerative diseases will lead to developing drugs that will change natural history, thereby affecting the quality of life and mortality of patients. The sequencing of candidate genes in patients suffering neurodegenerative pathologies is faster, more accurate, and has a lower cost, thereby enabling algorithms to be proposed regarding the risk of neurodegeneration onset in healthy persons including the year of onset and neurodegeneration severity. Next generation sequencing has resulted in an explosion of articles regarding the diagnosis of neurodegenerative diseases involving exome sequencing or sequencing a whole gene for correlating phenotypical expression with genetic mutations in proteins having key functions. Many of them occur in neuronal glia, which can trigger a proinflammatory effect leading to defective proteins causing sporadic or familial mutations. This article reviews the genetic diagnosis techniques and the importance of bioinformatics in interpreting results from neurodegenerative diseases. Risk scores must be established in the near future regarding diseases with a high incidence in healthy people for defining prevention strategies or an early start for giving drugs in the absence of symptoms.
Collapse
Affiliation(s)
- Julio-César García
- Evidence-Based Therapeutics Group, Department of Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia.
- Department of Clinical Pharmacology, Clínica Universidad de La Sabana, Chía 140013, Colombia.
| | - Rosa-Helena Bustos
- Evidence-Based Therapeutics Group, Department of Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia.
| |
Collapse
|
185
|
Maier M, Welt T, Wirth F, Montrasio F, Preisig D, McAfoose J, Vieira FG, Kulic L, Späni C, Stehle T, Perrin S, Weber M, Hock C, Nitsch RM, Grimm J. A human-derived antibody targets misfolded SOD1 and ameliorates motor symptoms in mouse models of amyotrophic lateral sclerosis. Sci Transl Med 2018; 10:10/470/eaah3924. [DOI: 10.1126/scitranslmed.aah3924] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/15/2017] [Accepted: 05/16/2018] [Indexed: 12/13/2022]
Abstract
Mutations in the gene encoding superoxide dismutase 1 (SOD1) lead to misfolding and aggregation of SOD1 and cause familial amyotrophic lateral sclerosis (FALS). However, the implications of wild-type SOD1 misfolding in sporadic forms of ALS (SALS) remain unclear. By screening human memory B cells from a large cohort of healthy elderly subjects, we generated a recombinant human monoclonal antibody (α-miSOD1) that selectively bound to misfolded SOD1, but not to physiological SOD1 dimers. On postmortem spinal cord sections from 121 patients with ALS, α-miSOD1 antibody identified misfolded SOD1 in a majority of cases, regardless of their SOD1 genotype. In contrast, the α-miSOD1 antibody did not bind to its epitope in most of the 41 postmortem spinal cord sections from non-neurological control (NNC) patients. In transgenic mice overexpressing disease-causing human SOD1G37R or SOD1G93A mutations, treatment with the α-miSOD1 antibody delayed the onset of motor symptoms, extended survival by up to 2 months, and reduced aggregation of misfolded SOD1 and motor neuron degeneration. These effects were obtained whether α-miSOD1 antibody treatment was administered by direct brain infusion or peripheral administration. These results support the further development of α-miSOD1 antibody as a candidate treatment for ALS involving misfolding of SOD1.
Collapse
|
186
|
Theme 7 Pre-clinical therapeutic strategies. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:217-239. [DOI: 10.1080/21678421.2018.1510574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
187
|
Aggregated SOD1 causes selective death of cultured human motor neurons. Sci Rep 2018; 8:16393. [PMID: 30401824 PMCID: PMC6219543 DOI: 10.1038/s41598-018-34759-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Most human neurodegenerative diseases share a phenotype of neuronal protein aggregation. In Amyotrophic Lateral Sclerosis (ALS), the abundant protein superoxide dismutase (SOD1) or the TAR-DNA binding protein TDP-43 can aggregate in motor neurons. Recently, numerous studies have highlighted the ability of aggregates to spread from neuron to neuron in a prion-like fashion. These studies have typically focused on the use of neuron-like cell lines or neurons that are not normally affected by the specific aggregated protein being studied. Here, we have investigated the uptake of pre-formed SOD1 aggregates by cultures containing pluripotent stem cell-derived human motor neurons. We found that all cells take up aggregates by a process resembling fluid-phase endocytosis, just as found in earlier studies. However, motor neurons, despite taking up smaller amounts of SOD1, were much more vulnerable to the accumulating aggregates. Thus, the propagation of disease pathology depends less on selective uptake than on selective response to intracellular aggregates. We further demonstrate that anti-SOD1 antibodies, being considered as ALS therapeutics, can act by blocking the uptake of SOD1, but also by blocking the toxic effects of intracellular SOD1. This work demonstrates the importance of using disease relevant cells even in studying phenomena such as aggregate propagation.
Collapse
|
188
|
Crosby K, Crown AM, Roberts BL, Brown H, Ayers JI, Borchelt DR. Loss of charge mutations in solvent exposed Lys residues of superoxide dismutase 1 do not induce inclusion formation in cultured cell models. PLoS One 2018; 13:e0206751. [PMID: 30399166 PMCID: PMC6219784 DOI: 10.1371/journal.pone.0206751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Mutations in superoxide dismutase 1 (SOD1) associated with familial amyotrophic lateral sclerosis (fALS) induce the protein to misfold and aggregate. Missense mutations at more than 80 different amino acid positions have been associated with disease. How these mutations heighten the propensity of SOD1 to misfold and aggregate is unclear. With so many mutations, it is possible that more than one mechanism of aggregation may be involved. Of many possible mechanisms to explain heightened aggregation, one that has been suggested is that mutations that eliminate charged amino acids could diminish repulsive forces that would inhibit aberrant protein:protein interactions. Mutations at twenty-one charged residues in SOD1 have been associated with fALS, but of the 11 Lys residues in the protein, only 1 has been identified as mutated in ALS patients. Here, we examined whether loss of positively charged surface Lys residues in SOD1 would induce misfolding and formation of intracellular inclusions. We mutated four different Lys residues (K30, K36, K75, K91) in SOD1 that are not particularly well conserved, and expressed these variants as fusion proteins with yellow fluorescent protein (YFP) to assess inclusion formation. We also assessed whether these mutations induced binding to a conformation-restricted SOD1 antibody, designated C4F6, which recognizes non-natively folded protein. Although we observed some mutations to cause enhanced C4F6 binding, we did not observe that mutations that reduce charge at these positions caused the protein to form intracellular inclusions. Our findings may have implications for the low frequency of mutations at Lys residues SOD1 in ALS patients.
Collapse
Affiliation(s)
- Keith Crosby
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
| | - Anthony M. Crown
- College of Arts and Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Brittany L. Roberts
- College of Arts and Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Hilda Brown
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
- SantaFe HealthCare Alzheimer’s Disease Research Center, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jacob I. Ayers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
| | - David R. Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
- College of Arts and Sciences, University of Florida, Gainesville, Florida, United States of America
- SantaFe HealthCare Alzheimer’s Disease Research Center, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
189
|
Lyon MS, Wosiski-Kuhn M, Gillespie R, Caress J, Milligan C. Inflammation, Immunity, and amyotrophic lateral sclerosis: I. Etiology and pathology. Muscle Nerve 2018; 59:10-22. [DOI: 10.1002/mus.26289] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Miles S. Lyon
- Department of Neurobiology and Anatomy; Wake Forest School of Medicine, Medical Center Boulevard; Winston-Salem North Carolina 27157 USA
| | - Marlena Wosiski-Kuhn
- Department of Neurobiology and Anatomy; Wake Forest School of Medicine, Medical Center Boulevard; Winston-Salem North Carolina 27157 USA
| | - Rachel Gillespie
- Department of Neurobiology and Anatomy; Wake Forest School of Medicine, Medical Center Boulevard; Winston-Salem North Carolina 27157 USA
| | - James Caress
- Department of Neurology, Wake Forest School of Medicine; Winston-Salem North Carolina USA
| | - Carol Milligan
- Department of Neurobiology and Anatomy; Wake Forest School of Medicine, Medical Center Boulevard; Winston-Salem North Carolina 27157 USA
| |
Collapse
|
190
|
Massenzio F, Peña-Altamira E, Petralla S, Virgili M, Zuccheri G, Miti A, Polazzi E, Mengoni I, Piffaretti D, Monti B. Microglial overexpression of fALS-linked mutant SOD1 induces SOD1 processing impairment, activation and neurotoxicity and is counteracted by the autophagy inducer trehalose. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3771-3785. [PMID: 30315929 DOI: 10.1016/j.bbadis.2018.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Mutations in the gene encoding copper/zinc superoxide dismutase-1 (SOD1) are responsible for most familiar cases, but the role of mutant SOD1 protein dysfunction in non-cell autonomous neurodegeneration, especially in relation to microglial activation, is still unclear. Here, we focused our study on microglial cells, which release SOD1 also through exosomes. We observed that in rat primary microglia the overexpression of the most-common SOD1 mutations linked to fALS (G93A and A4V) leads to SOD1 intracellular accumulation, which correlates to autophagy dysfunction and microglial activation. In primary contact co-cultures, fALS mutant SOD1 overexpression by microglial cells appears to be neurotoxic by itself. Treatment with the autophagy-inducer trehalose reduced mutant SOD1 accumulation in microglial cells, decreased microglial activation and abrogated neurotoxicity in the co-culture model. These data suggest that i) the alteration of the autophagic pathway due to mutant SOD1 overexpression is involved in microglial activation and neurotoxicity; ii) the induction of autophagy with trehalose reduces microglial SOD1 accumulation through proteasome degradation and activation, leading to neuroprotection. Our results provide a novel contribution towards better understanding key cellular mechanisms in non-cell autonomous ALS neurodegeneration.
Collapse
Affiliation(s)
- Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Virgili
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; Interdepartmental Center for Industrial Research on Life and Health Sciences at the University of Bologna, Italy; S3 Center of the Institute of Nanoscience of the National Research Council (C.N.R.), Italy
| | - Andrea Miti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elisabetta Polazzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Ilaria Mengoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Deborah Piffaretti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
191
|
Atlasi RS, Malik R, Corrales CI, Tzeplaeff L, Whitelegge JP, Cashman NR, Bitan G. Investigation of Anti-SOD1 Antibodies Yields New Structural Insight into SOD1 Misfolding and Surprising Behavior of the Antibodies Themselves. ACS Chem Biol 2018; 13:2794-2807. [PMID: 30110532 DOI: 10.1021/acschembio.8b00729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations in Cu/Zn-superoxide dismutase (SOD1) gene are linked to 10-20% of familial amyotrophic lateral sclerosis (fALS) cases. The mutations cause misfolding and self-assembly of SOD1 into toxic oligomers and aggregates, resulting in motor neuron degeneration. The molecular mechanisms underlying SOD1 aggregation and toxicity are unclear. Characterization of misfolded SOD1 is particularly challenging because of its metastable nature. Antibodies against misfolded SOD1 are useful tools for this purpose, provided their specificity and selectivity are well-characterized. Here, we characterized three recently introduced antimisfolded SOD1 antibodies and compared them with two commercial, antimisfolded SOD1 antibodies raised against the fALS-linked variant G93A-SOD1. As controls, we compared the reactivity of these antibodies to two polyclonal anti-SOD1 antibodies expected to be insensitive to misfolding. We asked to what extent the antibodies could distinguish between WT and variant SOD1 and between native and misfolded conformations. WT, G93A-SOD1, or E100K-SOD1 were incubated under aggregation-promoting conditions and monitored using thioflavin-T fluorescence, electron microscopy, and dot blots. WT and G93A-SOD1 also were analyzed using native-PAGE/Western blot. The new antimisfolded SOD1 and the commercial antibody B8H10 showed variable reactivity using dot blots but generally showed maximum reactivity at the time misfolded SOD1 oligomers were expected to be most abundant. In contrast, only B8H10 and the control antibodies were reactive in Western blots. Unexpectedly, the polyclonal antibodies showed strong preference for the misfolded form of G93A-SOD1 in dot blots. Surprisingly, antimisfolded SOD1 antibody C4F6 was specific for the apo form of G93A-SOD1 but insensitive to misfolding. Antibody 10C12 showed preference for early misfolded structures, whereas 3H1 bound preferentially to late structures. These new antibodies allow distinction between putative early- and late-forming prefibrillar SOD1 oligomers.
Collapse
Affiliation(s)
| | | | | | | | | | - Neil R. Cashman
- Department of Neurology, University of British Columbia (UBC), Vancouver, British Columbia V6T 2B5, Canada
| | | |
Collapse
|
192
|
Paré B, Lehmann M, Beaudin M, Nordström U, Saikali S, Julien JP, Gilthorpe JD, Marklund SL, Cashman NR, Andersen PM, Forsberg K, Dupré N, Gould P, Brännström T, Gros-Louis F. Misfolded SOD1 pathology in sporadic Amyotrophic Lateral Sclerosis. Sci Rep 2018; 8:14223. [PMID: 30242181 PMCID: PMC6155098 DOI: 10.1038/s41598-018-31773-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/15/2018] [Indexed: 11/30/2022] Open
Abstract
Aggregation of mutant superoxide dismutase 1 (SOD1) is a pathological hallmark of a subset of familial ALS patients. However, the possible role of misfolded wild type SOD1 in human ALS is highly debated. To ascertain whether or not misfolded SOD1 is a common pathological feature in non-SOD1 ALS, we performed a blinded histological and biochemical analysis of post mortem brain and spinal cord tissues from 19 sporadic ALS, compared with a SOD1 A4V patient as well as Alzheimer’s disease (AD) and non-neurological controls. Multiple conformation- or misfolded-specific antibodies for human SOD1 were compared. These were generated independently by different research groups and were compared using standardized conditions. Five different misSOD1 staining patterns were found consistently in tissue sections from SALS cases and the SOD1 A4V patient, but were essentially absent in AD and non-neurological controls. We have established clear experimental protocols and provide specific guidelines for working, with conformational/misfolded SOD1-specific antibodies. Adherence to these guidelines will aid in the comparison of the results of future studies and better interpretation of staining patterns. This blinded, standardized and unbiased approach provides further support for a possible pathological role of misSOD1 in SALS.
Collapse
Affiliation(s)
- Bastien Paré
- Laval University Experimental Organogenesis Research Center/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center - Enfant-Jésus Hospital, Québec, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada
| | - Manuela Lehmann
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Marie Beaudin
- Neuroscience Division of the CHU de Québec and Department of Medicine of the Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Ulrika Nordström
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Stephan Saikali
- Department of Medical Biology, Division of Anatomic Pathology and Neuropathology, CHU de Québec, Hôpital de l'Enfant-Jésus, Québec, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, Laval University, Québec City, Québec, Canada.,Centre de Recherche CERVO, Québec City, Québec, Canada
| | - Jonathan D Gilthorpe
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Neil R Cashman
- Department of Medicine (Neurology), Brain Research Center, University of British Columbia, Vancouver, BC, Canada
| | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Karin Forsberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Nicolas Dupré
- Neuroscience Division of the CHU de Québec and Department of Medicine of the Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Peter Gould
- Department of Medical Biology, Division of Anatomic Pathology and Neuropathology, CHU de Québec, Hôpital de l'Enfant-Jésus, Québec, Canada
| | - Thomas Brännström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - François Gros-Louis
- Laval University Experimental Organogenesis Research Center/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center - Enfant-Jésus Hospital, Québec, Canada. .,Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada.
| |
Collapse
|
193
|
Effects of gem-dihydroperoxides against mutant copper‑zinc superoxide dismutase-mediated neurotoxicity. Mol Cell Neurosci 2018; 92:177-184. [PMID: 30193933 DOI: 10.1016/j.mcn.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/21/2018] [Accepted: 09/03/2018] [Indexed: 01/31/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive muscle weakness, paralysis, and death. Although its neuropathology is well investigated, currently, effective treatments are unavailable. The mechanism of ALS involves the aggregation and accumulation of several mutant proteins, including mutant copper‑zinc superoxide dismutase (SOD1), TAR DNA binding protein 43 kDa (TDP-43) and fused in sarcoma (FUS) proteins. Previous reports have shown that excessive oxidative stress, associated with mitochondrial dysfunction and mutant protein accumulation, contributes to ALS pathology. The present study focuses on the promotion of SOD1 misfolding and aggregation by oxidative stress. Having recently synthesized novel organic gem-dihydroperoxides (DHPs) with high anti-oxidant activity, we now examined whether DHPs reduce the mutant SOD1-induced intracellular aggregates involved in oxidative stress. We found that, among DHPs, 12AC2O significantly inhibited mutant SOD1-induced cell death and reduced the intracellular mutant SOD1 aggregates. Moreover, immunofluorescence staining with redox-sensitive dyes showed that 12AC2O reduced the excessive level of intracellular mutant SOD1-induced reactive oxygen species (ROS). Additionally, ESR analysis showed that 12AC2O exerts a direct scavenging effect against the hydroxyl radical (OH) and the superoxide anion (O2-). These results suggest that 12AC2O is a very useful agent in combination with other agents against ALS.
Collapse
|
194
|
Chung CG, Lee H, Lee SB. Mechanisms of protein toxicity in neurodegenerative diseases. Cell Mol Life Sci 2018; 75:3159-3180. [PMID: 29947927 PMCID: PMC6063327 DOI: 10.1007/s00018-018-2854-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
Abstract
Protein toxicity can be defined as all the pathological changes that ensue from accumulation, mis-localization, and/or multimerization of disease-specific proteins. Most neurodegenerative diseases manifest protein toxicity as one of their key pathogenic mechanisms, the details of which remain unclear. By systematically deconstructing the nature of toxic proteins, we aim to elucidate and illuminate some of the key mechanisms of protein toxicity from which therapeutic insights may be drawn. In this review, we focus specifically on protein toxicity from the point of view of various cellular compartments such as the nucleus and the mitochondria. We also discuss the cell-to-cell propagation of toxic disease proteins that complicates the mechanistic understanding of the disease progression as well as the spatiotemporal point at which to therapeutically intervene. Finally, we discuss selective neuronal vulnerability, which still remains largely enigmatic.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea.
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
195
|
Commisso B, Ding L, Varadi K, Gorges M, Bayer D, Boeckers TM, Ludolph AC, Kassubek J, Müller OJ, Roselli F. Stage-dependent remodeling of projections to motor cortex in ALS mouse model revealed by a new variant retrograde-AAV9. eLife 2018; 7:36892. [PMID: 30136928 PMCID: PMC6125125 DOI: 10.7554/elife.36892] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/21/2018] [Indexed: 01/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of motoneurons in the primary motor cortex (pMO) and in spinal cord. However, the pathogenic process involves multiple subnetworks in the brain and functional MRI studies demonstrate an increase in functional connectivity in areas connected to pMO despite the ongoing neurodegeneration. The extent and the structural basis of the motor subnetwork remodeling in experimentally tractable models remain unclear. We have developed a new retrograde AAV9 to quantitatively map the projections to pMO in the SOD1(G93A) ALS mouse model. We show an increase in the number of neurons projecting from somatosensory cortex to pMO at presymptomatic stages, followed by an increase in projections from thalamus, auditory cortex and contralateral MO (inputs from 20 other structures remains unchanged) as disease advances. The stage- and structure-dependent remodeling of projection to pMO in ALS may provide insights into the hyperconnectivity observed in ALS patients.
Collapse
Affiliation(s)
| | - Lingjun Ding
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Karl Varadi
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Gorges
- Department of Neurology, University of Ulm, Ulm, Germany
| | - David Bayer
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Tobias M Boeckers
- Department of Anatomy and Cell biology, University of Ulm, Ulm, Germany
| | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Oliver J Müller
- Department of Internal Medicine, University of Kiel, Kiel, Germany
| | - Francesco Roselli
- Department of Neurology, University of Ulm, Ulm, Germany.,Department of Anatomy and Cell biology, University of Ulm, Ulm, Germany
| |
Collapse
|
196
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
197
|
Medinas DB, Rozas P, Martínez Traub F, Woehlbier U, Brown RH, Bosco DA, Hetz C. Endoplasmic reticulum stress leads to accumulation of wild-type SOD1 aggregates associated with sporadic amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2018; 115:8209-8214. [PMID: 30038021 PMCID: PMC6094144 DOI: 10.1073/pnas.1801109115] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abnormal modifications to mutant superoxide dismutase 1 (SOD1) are linked to familial amyotrophic lateral sclerosis (fALS). Misfolding of wild-type SOD1 (SOD1WT) is also observed in postmortem tissue of a subset of sporadic ALS (sALS) cases, but cellular and molecular mechanisms generating abnormal SOD1WT species are unknown. We analyzed aberrant human SOD1WT species over the lifetime of transgenic mice and found the accumulation of disulfide-cross-linked high-molecular-weight SOD1WT aggregates during aging. Subcellular fractionation of spinal cord tissue and protein overexpression in NSC-34 motoneuron-like cells revealed that endoplasmic reticulum (ER) localization favors oxidation and disulfide-dependent aggregation of SOD1WT We established a pharmacological paradigm of chronic ER stress in vivo, which recapitulated SOD1WTaggregation in young transgenic mice. These species were soluble in nondenaturing detergents and did not react with a SOD1 conformation-specific antibody. Interestingly, SOD1WT aggregation under ER stress correlated with astrocyte activation in the spinal cord of transgenic mice. Finally, the disulfide-cross-linked SOD1WT species were also found augmented in spinal cord tissue of sALS patients, correlating with the presence of ER stress markers. Overall, this study suggests that ER stress increases the susceptibility of SOD1WT to aggregate during aging, operating as a possible risk factor for developing ALS.
Collapse
Affiliation(s)
- Danilo B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile 8380453;
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile 7800003
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile 8380453
| | - Pablo Rozas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile 8380453
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile 7800003
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile 8380453
| | - Francisca Martínez Traub
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile 8380453
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile 7800003
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile 8380453
| | - Ute Woehlbier
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile 8380453
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile 8380453
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile 8580745
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile 8380453;
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile 7800003
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile 8380453
- Buck Institute for Research on Aging, Novato, CA 94945
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115
| |
Collapse
|
198
|
Davis AA, Leyns CEG, Holtzman DM. Intercellular Spread of Protein Aggregates in Neurodegenerative Disease. Annu Rev Cell Dev Biol 2018; 34:545-568. [PMID: 30044648 DOI: 10.1146/annurev-cellbio-100617-062636] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most neurodegenerative diseases are characterized by the accumulation of protein aggregates, some of which are toxic to cells. Mounting evidence demonstrates that in several diseases, protein aggregates can pass from neuron to neuron along connected networks, although the role of this spreading phenomenon in disease pathogenesis is not completely understood. Here we briefly review the molecular and histopathological features of protein aggregation in neurodegenerative disease, we summarize the evidence for release of proteins from donor cells into the extracellular space, and we highlight some other mechanisms by which protein aggregates might be transmitted to recipient cells. We also discuss the evidence that supports a role for spreading of protein aggregates in neurodegenerative disease pathogenesis and some limitations of this model. Finally, we consider potential therapeutic strategies to target spreading of protein aggregates in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Albert A Davis
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Cheryl E G Leyns
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
199
|
McCampbell A, Cole T, Wegener AJ, Tomassy GS, Setnicka A, Farley BJ, Schoch KM, Hoye ML, Shabsovich M, Sun L, Luo Y, Zhang M, Comfort N, Wang B, Amacker J, Thankamony S, Salzman DW, Cudkowicz M, Graham DL, Bennett CF, Kordasiewicz HB, Swayze EE, Miller TM. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J Clin Invest 2018; 128:3558-3567. [PMID: 30010620 DOI: 10.1172/jci99081] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
Mutations in superoxide dismutase 1 (SOD1) are responsible for 20% of familial ALS. Given the gain of toxic function in this dominantly inherited disease, lowering SOD1 mRNA and protein is predicted to provide therapeutic benefit. An early generation antisense oligonucleotide (ASO) targeting SOD1 was identified and tested in a phase I human clinical trial, based on modest protection in animal models of SOD1 ALS. Although the clinical trial provided encouraging safety data, the drug was not advanced because there was progress in designing other, more potent ASOs for CNS application. We have developed next-generation SOD1 ASOs that more potently reduce SOD1 mRNA and protein and extend survival by more than 50 days in SOD1G93A rats and by almost 40 days in SOD1G93A mice. We demonstrated that the initial loss of compound muscle action potential in SOD1G93A mice is reversed after a single dose of SOD1 ASO. Furthermore, increases in serum phospho-neurofilament heavy chain levels, a promising biomarker for ALS, are stopped by SOD1 ASO therapy. These results define a highly potent, new SOD1 ASO ready for human clinical trial and suggest that at least some components of muscle response can be reversed by therapy.
Collapse
Affiliation(s)
| | - Tracy Cole
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Amy J Wegener
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Amy Setnicka
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Kathleen M Schoch
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mariah L Hoye
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mark Shabsovich
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Yi Luo
- Biogen, Inc., Cambridge, Massachusetts, USA
| | | | | | - Bin Wang
- Biogen, Inc., Cambridge, Massachusetts, USA
| | | | | | | | - Merit Cudkowicz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | - Timothy M Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
200
|
A small-molecule inhibitor of SOD1-Derlin-1 interaction ameliorates pathology in an ALS mouse model. Nat Commun 2018; 9:2668. [PMID: 29991716 PMCID: PMC6039432 DOI: 10.1038/s41467-018-05127-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder. Despite its severity, there are no effective treatments because of the complexity of its pathogenesis. As one of the underlying mechanisms of Cu, Zn superoxide dismutase (SOD1) gene mutation-induced ALS, SOD1 mutants (SOD1mut) commonly interact with an endoplasmic reticulum-resident membrane protein Derlin-1, triggering motoneuron death. However, the importance of SOD1-Derlin-1 interaction in in vitro human model and in vivo mouse model remains to be elucidated. Here, we identify small-molecular-weight compounds that inhibit the SOD1-Derlin-1 interaction by screening approximately 160,000 compounds. The inhibitor prevents 122 types of SOD1mut from interacting with Derlin-1, and significantly ameliorates the ALS pathology both in motoneurons derived from patient induced pluripotent stem cells and in model mice. Our data suggest that the SOD1-Derlin-1 interaction contributes to the pathogenesis of ALS and is a promising drug target for ALS treatment. Amyotrophic lateral sclerosis (ALS) is a neurological disease that leads to loss of voluntary muscle movement. Here, the authors screen for molecules that disrupt interaction between SOD1, a protein linked to ALS, and Derlin-1, and find an inhibitor that reduces pathology in an ALS mouse model.
Collapse
|