151
|
Jacobs RA, Lundby C. Contextualizing the biological relevance of standardized high-resolution respirometry to assess mitochondrial function in permeabilized human skeletal muscle. Acta Physiol (Oxf) 2021; 231:e13625. [PMID: 33570804 PMCID: PMC8047922 DOI: 10.1111/apha.13625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Aim This study sought to provide a statistically robust reference for measures of mitochondrial function from standardized high‐resolution respirometry with permeabilized human skeletal muscle (ex vivo), compare analogous values obtained via indirect calorimetry, arterial‐venous O2 differences and 31P magnetic resonance spectroscopy (in vivo) and attempt to resolve differences across complementary methodologies as necessary. Methods Data derived from 831 study participants across research published throughout March 2009 to November 2019 were amassed to examine the biological relevance of ex vivo assessments under standard conditions, ie physiological temperatures of 37°C and respiratory chamber oxygen concentrations of ~250 to 500 μmol/L. Results Standard ex vivo‐derived measures are lower (Z ≥ 3.01, P ≤ .0258) en masse than corresponding in vivo‐derived values. Correcting respiratory values to account for mitochondrial temperatures 10°C higher than skeletal muscle temperatures at maximal exercise (~50°C): (i) transforms data to resemble (Z ≤ 0.8, P > .9999) analogous yet context‐specific in vivo measures, eg data collected during maximal 1‐leg knee extension exercise; and (ii) supports the position that maximal skeletal muscle respiratory rates exceed (Z ≥ 13.2, P < .0001) those achieved during maximal whole‐body exercise, e.g. maximal cycling efforts. Conclusion This study outlines and demonstrates necessary considerations when actualizing the biological relevance of human skeletal muscle respiratory control, metabolic flexibility and bioenergetics from standard ex vivo‐derived assessments using permeabilized human muscle. These findings detail how cross‐procedural comparisons of human skeletal muscle mitochondrial function may be collectively scrutinized in their relationship to human health and lifespan.
Collapse
Affiliation(s)
- Robert A. Jacobs
- Department of Human Physiology & Nutrition University of Colorado Colorado Springs (UCCS) Colorado Springs CO USA
| | - Carsten Lundby
- Innland University of Applied Sciences Lillehammer Norway
| |
Collapse
|
152
|
Samra K, Kuganesan M, Smith W, Kleyman A, Tidswell R, Arulkumaran N, Singer M, Dyson A. The Pharmacology and Therapeutic Utility of Sodium Hydroselenide. Int J Mol Sci 2021; 22:3258. [PMID: 33806825 PMCID: PMC8005069 DOI: 10.3390/ijms22063258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/05/2023] Open
Abstract
Metabolically active gasotransmitters (nitric oxide, carbon monoxide and hydrogen sulfide) are important signalling molecules that show therapeutic utility in oxidative pathologies. The reduced form of selenium, hydrogen selenide (HSe-/H2Se), shares some characteristics with these molecules. The simple selenide salt, sodium hydroselenide (NaHSe) showed significant metabolic activity, dose-dependently decreasing ex vivo O2 consumption (rat soleus muscle, liver) and transiently inhibiting mitochondrial cytochrome C oxidase (liver, heart). Pharmacological manipulation of selenoprotein expression in HepG2 human hepatocytes revealed that the oxidation status of selenium impacts on protein expression; reduced selenide (NaHSe) increased, whereas (oxidized) sodium selenite decreased the abundance of two ubiquitous selenoproteins. An inhibitor of endogenous sulfide production (DL-propargylglycine; PAG) also reduced selenoprotein expression; this was reversed by exogenous NaHSe, but not sodium hydrosulfide (NaHS). NaHSe also conferred cytoprotection against an oxidative challenge (H2O2), and this was associated with an increase in mitochondrial membrane potential. Anesthetized Wistar rats receiving intravenous NaHSe exhibited significant bradycardia, metabolic acidosis and hyperlactataemia. In summary, NaHSe modulates metabolism by inhibition of cytochrome C oxidase. Modification of selenoprotein expression revealed the importance of oxidation status of selenium therapies, with implications for current clinical practice. The utility of NaHSe as a research tool and putative therapeutic is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, Gower Street, London WC1E 6BT, UK; (K.S.); (M.K.); (W.S.); (A.K.); (R.T.); (N.A.); (M.S.)
| |
Collapse
|
153
|
Farhat E, Cheng H, Romestaing C, Pamenter M, Weber JM. Goldfish Response to Chronic Hypoxia: Mitochondrial Respiration, Fuel Preference and Energy Metabolism. Metabolites 2021; 11:187. [PMID: 33809959 PMCID: PMC8004290 DOI: 10.3390/metabo11030187] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Hypometabolism is a hallmark strategy of hypoxia tolerance. To identify potential mechanisms of metabolic suppression, we have used the goldfish to quantify the effects of chronically low oxygen (4 weeks; 10% air saturation) on mitochondrial respiration capacity and fuel preference. The responses of key enzymes from glycolysis, β-oxidation and the tricarboxylic acid (TCA) cycle, and Na+/K+-ATPase were also monitored in various tissues of this champion of hypoxia tolerance. Results show that mitochondrial respiration of individual tissues depends on oxygen availability as well as metabolic fuel oxidized. All the respiration parameters measured in this study (LEAK, OXPHOS, Respiratory Control Ratio, CCCP-uncoupled, and COX) are affected by hypoxia, at least for one of the metabolic fuels. However, no common pattern of changes in respiration states is observed across tissues, except for the general downregulation of COX that may help metabolic suppression. Hypoxia causes the brain to switch from carbohydrates to lipids, with no clear fuel preference in other tissues. It also downregulates brain Na+/K+-ATPase (40%) and causes widespread tissue-specific effects on glycolysis and beta-oxidation. This study shows that hypoxia-acclimated goldfish mainly promote metabolic suppression by adjusting the glycolytic supply of pyruvate, reducing brain Na+/K+-ATPase, and downregulating COX, most likely decreasing mitochondrial density.
Collapse
Affiliation(s)
- Elie Farhat
- Biology Department, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.F.); (H.C.); (C.R.); (M.P.)
| | - Hang Cheng
- Biology Department, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.F.); (H.C.); (C.R.); (M.P.)
| | - Caroline Romestaing
- Biology Department, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.F.); (H.C.); (C.R.); (M.P.)
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, ENTPE, UMR 5023, LEHNA, F 69622 Villeurbanne, France
| | - Matthew Pamenter
- Biology Department, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.F.); (H.C.); (C.R.); (M.P.)
- Faculty of Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Michel Weber
- Biology Department, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.F.); (H.C.); (C.R.); (M.P.)
| |
Collapse
|
154
|
Jørgensen LB, Overgaard J, Hunter-Manseau F, Pichaud N. Dramatic changes in mitochondrial substrate use at critically high temperatures: a comparative study using Drosophila. J Exp Biol 2021; 224:jeb.240960. [PMID: 33563650 DOI: 10.1242/jeb.240960] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
Ectotherm thermal tolerance is critical to species distribution, but at present the physiological underpinnings of heat tolerance remain poorly understood. Mitochondrial function is perturbed at critically high temperatures in some ectotherms, including insects, suggesting that heat tolerance of these animals is linked to failure of oxidative phosphorylation (OXPHOS) and/or ATP production. To test this hypothesis, we measured mitochondrial oxygen consumption rate in six Drosophila species with different heat tolerance using high-resolution respirometry. Using a substrate-uncoupler-inhibitor titration protocol, we examined specific steps of the electron transport system to study how temperatures below, bracketing and above organismal heat limits affect mitochondrial function and substrate oxidation. At benign temperatures (19 and 30°C), complex I-supported respiration (CI-OXPHOS) was the most significant contributor to maximal OXPHOS. At higher temperatures (34, 38, 42 and 46°C), CI-OXPHOS decreased considerably, ultimately to very low levels at 42 and 46°C. The enzymatic catalytic capacity of complex I was intact across all temperatures and accordingly the decreased CI-OXPHOS is unlikely to be caused directly by hyperthermic denaturation/inactivation of complex I. Despite the reduction in CI-OXPHOS, maximal OXPHOS capacity was maintained in all species, through oxidation of alternative substrates - proline, succinate and, particularly, glycerol-3-phosphate - suggesting important mitochondrial flexibility at temperatures exceeding the organismal heat limit. Interestingly, this failure of CI-OXPHOS and compensatory oxidation of alternative substrates occurred at temperatures that correlated with species heat tolerance, such that heat-tolerant species could defend 'normal' mitochondrial function at higher temperatures than sensitive species. Future studies should investigate why CI-OXPHOS is perturbed and how this potentially affects ATP production rates.
Collapse
Affiliation(s)
| | - Johannes Overgaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Florence Hunter-Manseau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| |
Collapse
|
155
|
Berg OK, Kwon OS, Hureau TJ, Clifton HL, Thurston TS, Le Fur Y, Jeong EK, Trinity JD, Richardson RS, Wang E, Layec G. Skeletal Muscle Mitochondrial Adaptations to Maximal Strength Training in Older Adults. J Gerontol A Biol Sci Med Sci 2021; 75:2269-2277. [PMID: 32253421 DOI: 10.1093/gerona/glaa082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Maximal strength training (MST) results in robust improvements in skeletal muscle force production, efficiency, and mass. However, the effects of MST on muscle mitochondria are still unknown. Accordingly, the purpose of this study was to examine, from the molecular level to whole-muscle, mitochondrial adaptations induced by 8 weeks of knee-extension MST in the quadriceps of 10 older adults using immunoblotting, spectrophotometry, high-resolution respirometry in permeabilized muscle fibers, in vivo 31P magnetic resonance spectroscopy (31P-MRS), and gas exchange. As anticipated, MST resulted in an increased isometric knee-extensor force from 133 ± 36 to 147 ± 49 Nm (p < .05) and quadriceps muscle volume from 1,410 ± 103 to 1,555 ± 455 cm3 (p < .05). Mitochondrial complex (I-V) protein abundance and citrate synthase activity were not significantly altered by MST. Assessed ex vivo, maximal ADP-stimulated respiration (state 3CI+CII, PRE: 23 ± 6 and POST: 14 ± 5 ρM·mg-1·s-1, p < .05), was decreased by MST, predominantly, as a result of a decline in complex I-linked respiration (p < .05). Additionally, state 3 free-fatty acid linked respiration was decreased following MST (PRE: 19 ± 5 and POST: 14 ± 3 ρM·mg-1·s-1, p < .05). Assessed in vivo, MST slowed the PCr recovery time constant (PRE: 49 ± 13 and POST: 57 ± 16 seconds, p < .05) and lowered, by ~20% (p = .055), the quadriceps peak rate of oxidative ATP synthesis, but did not significantly alter the oxidation of lipid. Although these, likely qualitative, mitochondrial adaptations are potentially negative in terms of skeletal muscle energetic capacity, they need to be considered in light of the many improvements in muscle function that MST affords older adults.
Collapse
Affiliation(s)
- Ole Kristian Berg
- Faculty of Health and Social Sciences, Molde University College, Norway
| | - Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs
| | - Thomas J Hureau
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
| | - Heather L Clifton
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
| | - Taylor S Thurston
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City
| | - Yann Le Fur
- CRMBM, Aix-Marseille Universite, CNRS 7339, France
| | - Eun-Kee Jeong
- Department of Radiology, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City
| | - Joel D Trinity
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City
| | - Russell S Richardson
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City
| | - Eivind Wang
- Faculty of Health and Social Sciences, Molde University College, Norway.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City.,Department of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gwenael Layec
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City.,Department of Kinesiology, University of Massachusetts, Amherst.,Institute for Applied Life Sciences, University of Massachusetts, Amherst
| |
Collapse
|
156
|
McKenna HT, O'Brien KA, Fernandez BO, Minnion M, Tod A, McNally BD, West JA, Griffin JL, Grocott MP, Mythen MG, Feelisch M, Murray AJ, Martin DS. Divergent trajectories of cellular bioenergetics, intermediary metabolism and systemic redox status in survivors and non-survivors of critical illness. Redox Biol 2021; 41:101907. [PMID: 33667994 PMCID: PMC7937570 DOI: 10.1016/j.redox.2021.101907] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/06/2021] [Accepted: 02/16/2021] [Indexed: 02/01/2023] Open
Abstract
Background Numerous pathologies result in multiple-organ failure, which is thought to be a direct consequence of compromised cellular bioenergetic status. Neither the nature of this phenotype nor its relevance to survival are well understood, limiting the efficacy of modern life-support. Methods To explore the hypothesis that survival from critical illness relates to changes in cellular bioenergetics, we combined assessment of mitochondrial respiration with metabolomic, lipidomic and redox profiling in skeletal muscle and blood, at multiple timepoints, in 21 critically ill patients and 12 reference patients. Results We demonstrate an end-organ cellular phenotype in critical illness, characterized by preserved total energetic capacity, greater coupling efficiency and selectively lower capacity for complex I and fatty acid oxidation (FAO)-supported respiration in skeletal muscle, compared to health. In survivors, complex I capacity at 48 h was 27% lower than in non-survivors (p = 0.01), but tended to increase by day 7, with no such recovery observed in non-survivors. By day 7, survivors’ FAO enzyme activity was double that of non-survivors (p = 0.048), in whom plasma triacylglycerol accumulated. Increases in both cellular oxidative stress and reductive drive were evident in early critical illness compared to health. Initially, non-survivors demonstrated greater plasma total antioxidant capacity but ultimately higher lipid peroxidation compared to survivors. These alterations were mirrored by greater levels of circulating total free thiol and nitrosated species, consistent with greater reductive stress and vascular inflammation, in non-survivors compared to survivors. In contrast, no clear differences in systemic inflammatory markers were observed between the two groups. Conclusion Critical illness is associated with rapid, specific and coordinated alterations in the cellular respiratory machinery, intermediary metabolism and redox response, with different trajectories in survivors and non-survivors. Unravelling the cellular and molecular foundation of human resilience may enable the development of more effective life-support strategies.
Collapse
Affiliation(s)
- Helen T McKenna
- Division of Surgery and Interventional Science, University College London, Royal Free Hospital, London, NW3 2QG, UK; Intensive Care Unit, Royal Free Hospital, London, NW3 2QG, UK; Peninsula Medical School, University of Plymouth, John Bull Building, Derriford, Plymouth, PL6 8BU, UK
| | - Katie A O'Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Bernadette O Fernandez
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Magdalena Minnion
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Adam Tod
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ben D McNally
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, CB2 1GA, UK
| | - James A West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0RE, UK
| | - Julian L Griffin
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, CB2 1GA, UK; Section of Biomolecular Medicine, Department of Digestion, Metabolism and Reproduction, Imperial College London, SW7 2AZ, UK
| | - Michael P Grocott
- Anaesthesia Perioperative and Critical Care Research Group, Southampton National Institute of Health Research Biomedical Research Centre, University Hospital Southampton, SO16 6YD, UK
| | - Michael G Mythen
- University College London Hospitals and Great Ormond Street, National Institute of Health Research Biomedical Research Centres, London, WC1N 1EH, UK
| | - Martin Feelisch
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK; Anaesthesia Perioperative and Critical Care Research Group, Southampton National Institute of Health Research Biomedical Research Centre, University Hospital Southampton, SO16 6YD, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Daniel S Martin
- Division of Surgery and Interventional Science, University College London, Royal Free Hospital, London, NW3 2QG, UK; Intensive Care Unit, Royal Free Hospital, London, NW3 2QG, UK; Peninsula Medical School, University of Plymouth, John Bull Building, Derriford, Plymouth, PL6 8BU, UK
| |
Collapse
|
157
|
Curcumin induces mitochondrial biogenesis by increasing cyclic AMP levels via phosphodiesterase 4A inhibition in skeletal muscle. Br J Nutr 2021; 126:1642-1650. [PMID: 33551001 DOI: 10.1017/s0007114521000490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Previous research has suggested that curcumin potentially induces mitochondrial biogenesis in skeletal muscle via increasing cyclic AMP (cAMP) levels. However, the regulatory mechanisms for this phenomenon remain unknown. The purpose of the present study was to clarify the mechanism by which curcumin activates cAMP-related signalling pathways that upregulate mitochondrial biogenesis and respiration in skeletal muscle. METHODS The effect of curcumin treatment (i.p., 100 mg/kg-BW/d for 28 d) on mitochondrial biogenesis was determined in rats. The effects of curcumin and exercise (swimming for 2 h/d for 3 d) on the cAMP signalling pathway were determined in the absence and presence of phosphodiesterase (PDE) or protein kinase A (PKA) inhibitors. Mitochondrial respiration, citrate synthase (CS) activity, cAMP content and protein expression of cAMP/PKA signalling molecules were analysed. RESULTS Curcumin administration increased cytochrome c oxidase subunit (COX-IV) protein expression, and CS and complex I activity, consistent with the induction of mitochondrial biogenesis by curcumin. Mitochondrial respiration was not altered by curcumin treatment. Curcumin and PDE inhibition tended to increase cAMP levels with or without exercise. In addition, exercise increased the phosphorylation of phosphodiesterase 4A (PDE4A), whereas curcumin treatment strongly inhibited PDE4A phosphorylation regardless of exercise. Furthermore, curcumin promoted AMP-activated protein kinase (AMPK) phosphorylation and PPAR gamma coactivator (PGC-1α) deacetylation. Inhibition of PKA abolished the phosphorylation of AMPK. CONCLUSION The present results suggest that curcumin increases cAMP levels via inhibition of PDE4A phosphorylation, which induces mitochondrial biogenesis through a cAMP/PKA/AMPK signalling pathway. Our data also suggest the possibility that curcumin utilises a regulatory mechanism for mitochondrial biogenesis that is distinct from the exercise-induced mechanism in skeletal muscle.
Collapse
|
158
|
Kuznetsov AV, Javadov S, Margreiter R, Grimm M, Hagenbuchner J, Ausserlechner MJ. Structural and functional remodeling of mitochondria as an adaptive response to energy deprivation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148393. [PMID: 33549532 DOI: 10.1016/j.bbabio.2021.148393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/21/2021] [Accepted: 01/31/2021] [Indexed: 01/23/2023]
Abstract
Cancer cells bioenergetics is more dependent on glycolysis than mitochondrial oxidative phosphorylation, a phenomenon known as the Warburg Effect. It has been proposed that inhibition of glycolysis may selectively affect cancer cells. However, the effects of glycolysis inhibition on mitochondrial function and structure in cancer cells are not completely understood. Here, we investigated the comparative effects of 2-deoxy-d-glucose (2-DG, a glucose analogue, which suppresses cellular glycolysis) on cellular bioenergetics in human colon cancer DLD-1 cells, smooth muscle cells, human umbilical vein endothelial cells and HL-1 cardiomyocytes. In all cells, 2-DG treatment resulted in significant ATP depletion, however, the cell viability remained unchanged. Also, we did not observe the synergistic effects of 2-DG with anticancer drugs doxorubicin and 5-fluorouracil. Instead, after 2-DG treatment and ATP depletion, mitochondrial respiration and membrane potential were significantly enhanced and mitochondrial morphology changed in the direction of more network organization. Analysis of protein expression demonstrated that 2-DG treatment induced an activation of AMPK (elevated pAMPK/AMPK ratio), increased mitochondrial fusion (mitofusins 1 and 2) and decreased fission (Drp1) proteins. In conclusion, this study suggests a strong link between respiratory function and structural organization of mitochondria in the cell. We propose that the functionality of the mitochondrial network is enhanced compared to disconnected mitochondria.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria; Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA.
| | - Raimund Margreiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria.
| | - Michael Grimm
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria.
| | - Judith Hagenbuchner
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
159
|
Touron J, Costes F, Coudeyre E, Perrault H, Richard R. Aerobic Metabolic Adaptations in Endurance Eccentric Exercise and Training: From Whole Body to Mitochondria. Front Physiol 2021; 11:596351. [PMID: 33584331 PMCID: PMC7873519 DOI: 10.3389/fphys.2020.596351] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
A characteristic feature of eccentric as compared with concentric exercise is the ability to generate greater mechanical loads for lower cardiopulmonary demands. Current evidence concurs to show that eccentric training translates into considerable gains in muscle mass and strength. Less is known, however, regarding its impact on oxygen transport and on factors to be considered for optimizing its prescription and monitoring. This article reviews the existing evidence for endurance eccentric exercise effects on the components of the oxygen transport system from systemic to mitochondria in both humans and animals. In the studies reviewed, specially designed cycle-ergometers or downhill treadmill running were used to generate eccentric contractions. Observations to date indicate that overall, the aerobic demand associated with the eccentric training load was too low to significantly increase peak maximal oxygen consumption. By extension, it can be inferred that the very high eccentric power output that would have been required to solicit a metabolic demand sufficient to enhance peak aerobic power could not be tolerated or sustained by participants. The impact of endurance eccentric training on peripheral flow distribution remains largely undocumented. Given the high damage susceptibility of eccentric exercise, the extent to which skeletal muscle oxygen utilization adaptations would be seen depends on the balance of adverse and positive signals on mitochondrial integrity. The article examines the protection provided by repeated bouts of acute eccentric exercise and reports on the impact of eccentric cycling and downhill running training programs on markers of mitochondrial function and of mitochondrial biogenesis using mostly from animal studies. The summary of findings does not reveal an impact of training on skeletal muscle mitochondrial respiration nor on selected mitochondrial messenger RNA transcripts. The implications of observations to date are discussed within future perspectives for advancing research on endurance eccentric exercise physiological impacts and using a combined eccentric and concentric exercise approach to optimize functional capacity.
Collapse
Affiliation(s)
- Julianne Touron
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
| | - Frédéric Costes
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
- Service de Médecine du Sport et des Explorations Fonctionnelles, CHU Gabriel Montpied, Clermont-Ferrand, France
| | - Emmanuel Coudeyre
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
- Service de Médecine Physique et de Réadaptation, CHU Gabriel Montpied/CHU Louise Michel, Clermont-Ferrand, France
| | - Hélène Perrault
- Respiratory Division, McGill University Health Center, Montreal, QC, Canada
| | - Ruddy Richard
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
- Service de Médecine du Sport et des Explorations Fonctionnelles, CHU Gabriel Montpied, Clermont-Ferrand, France
- Unité d’Exploration en Nutrition (UEN), CRNH Auvergne, Clermont-Ferrand, France
| |
Collapse
|
160
|
Frantz NL, Brakoniecki G, Chen D, Proshlyakov DA. Assessment of the Maximal Activity of Complex IV in the Inner Mitochondrial Membrane by Tandem Electrochemistry and Respirometry. Anal Chem 2021; 93:1360-1368. [PMID: 33319559 PMCID: PMC8772154 DOI: 10.1021/acs.analchem.0c02910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Assessment of activities of mitochondrial electron transport enzymes is important for understanding mechanisms of metabolic diseases, but structural organization of mitochondria and low sample availability pose distinctive challenges for in situ functional studies. We report the development of a tandem microfluidic respirometer that simultaneously tracks both the reduction of mediators on the electrode and the ensuing reduction of O2 by complex IV in the inner mitochondrial membrane. The response time of O2 consumption to multiple alternating potential steps is of approximately 10 s for a 150 μm-thick sample. Steady O2 depletion shows good quantitative correlation with the supplied electric charge, Pearson's r = 0.994. Reduction of mediators on biocompatible gold electrodes modified with carbon ink or fumed silica can compete with the oxidation of mediators by mitochondria, yielding an overall respiratory activity comparable to that upon chemical reduction by ascorbate. The dependence of O2 consumption on mediator and mitochondrial suspension concentrations shows that mass transport between the electrode and mitochondria does not limit biological activity of the latter. The mediated electrochemical approach is validated by the radiometric measurements of simulated changes in the intrinsic mitochondrial activity upon partial inhibition of complex IV by NaN3. This approach enables the development of O2-independent, biomimetic electrochemical assays narrowly targeting components of the electron transport chains in their native environments.
Collapse
Affiliation(s)
- Nathan L Frantz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Gabrielle Brakoniecki
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Dawei Chen
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Denis A Proshlyakov
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
- Department of Physiology, Michigan State University, 567 Wilson Rd, East Lansing, Michigan 48824-6405, United States
| |
Collapse
|
161
|
Christiansen LB, Dohlmann TL, Ludvigsen TP, Parfieniuk E, Ciborowski M, Szczerbinski L, Kretowski A, Desler C, Tiano L, Orlando P, Martinussen T, Olsen LH, Larsen S. Atorvastatin impairs liver mitochondrial function in obese Göttingen Minipigs but heart and skeletal muscle are not affected. Sci Rep 2021; 11:2167. [PMID: 33500513 PMCID: PMC7838180 DOI: 10.1038/s41598-021-81846-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Statins lower the risk of cardiovascular events but have been associated with mitochondrial functional changes in a tissue-dependent manner. We investigated tissue-specific modifications of mitochondrial function in liver, heart and skeletal muscle mediated by chronic statin therapy in a Göttingen Minipig model. We hypothesized that statins enhance the mitochondrial function in heart but impair skeletal muscle and liver mitochondria. Mitochondrial respiratory capacities, citrate synthase activity, coenzyme Q10 concentrations and protein carbonyl content (PCC) were analyzed in samples of liver, heart and skeletal muscle from three groups of Göttingen Minipigs: a lean control group (CON, n = 6), an obese group (HFD, n = 7) and an obese group treated with atorvastatin for 28 weeks (HFD + ATO, n = 7). Atorvastatin concentrations were analyzed in each of the three tissues and in plasma from the Göttingen Minipigs. In treated minipigs, atorvastatin was detected in the liver and in plasma. A significant reduction in complex I + II-supported mitochondrial respiratory capacity was seen in liver of HFD + ATO compared to HFD (P = 0.022). Opposite directed but insignificant modifications of mitochondrial respiratory capacity were seen in heart versus skeletal muscle in HFD + ATO compared to the HFD group. In heart muscle, the HFD + ATO had significantly higher PCC compared to the HFD group (P = 0.0323). In the HFD group relative to CON, liver mitochondrial respiration decreased whereas in skeletal muscle, respiration increased but these changes were insignificant when normalizing for mitochondrial content. Oral atorvastatin treatment in Göttingen Minipigs is associated with a reduced mitochondrial respiratory capacity in the liver that may be linked to increased content of atorvastatin in this organ.
Collapse
Affiliation(s)
- Liselotte Bruun Christiansen
- The LIFEPHARM Centre, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg, Denmark.
| | - Tine Lovsø Dohlmann
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Trine Pagh Ludvigsen
- Global Drug Development, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Ewa Parfieniuk
- Clinical Research Centre, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Lukasz Szczerbinski
- Clinical Research Centre, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Luca Tiano
- Department of Life and Environmental Sciences (DISVA), Polytechnic University of Marche, via Brecce Bianche, Ancona, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences (DISVA), Polytechnic University of Marche, via Brecce Bianche, Ancona, Italy
| | - Torben Martinussen
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1014, Copenhagen, Denmark
| | - Lisbeth Høier Olsen
- The LIFEPHARM Centre, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
- Clinical Research Centre, Medical University of Bialystok, 15-089, Białystok, Poland.
| |
Collapse
|
162
|
Debska-Vielhaber G, Miller I, Peeva V, Zuschratter W, Walczak J, Schreiber S, Petri S, Machts J, Vogt S, Szczepanowska J, Gellerich FN, Hermann A, Vielhaber S, Kunz WS. Impairment of mitochondrial oxidative phosphorylation in skin fibroblasts of SALS and FALS patients is rescued by in vitro treatment with ROS scavengers. Exp Neurol 2021; 339:113620. [PMID: 33497646 DOI: 10.1016/j.expneurol.2021.113620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 11/19/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive, neurodegenerative disorder affecting upper and lower motor neurons. Approximately 10% of patients suffer from familial ALS (FALS) with mutations in different ubiquitously expressed genes including SOD1, C9ORF72, TARDBP, and FUS. There is compelling evidence for mitochondrial involvement in the pathogenic mechanisms of FALS and sporadic ALS (SALS), which is believed to be relevant for disease. Owing to the ubiquitous expression of relevant disease-associated genes, mitochondrial dysfunction is also detectable in peripheral patient tissue. We here report results of a detailed investigation of the functional impairment of mitochondrial oxidative phosphorylation (OXPHOS) in cultured skin fibroblasts from 23 SALS and 17 FALS patients, harboring pathogenic mutations in SOD1, C9ORF72, TARDBP and FUS. A considerable functional and structural mitochondrial impairment was detectable in fibroblasts from patients with SALS. Similarly, fibroblasts from patients with FALS, harboring pathogenic mutations in TARDBP, FUS and SOD1, showed mitochondrial defects, while fibroblasts from C9ORF72 associated FALS showed a very mild impairment detectable in mitochondrial ATP production rates only. While we could not detect alterations in the mtDNA copy number in the SALS or FALS fibroblast cultures, the impairment of OXPHOS in SALS fibroblasts and SOD1 or TARDBP FALS could be rescued by in vitro treatments with CoQ10 (5 μM for 3 weeks) or Trolox (300 μM for 5 days). This underlines the role of elevated oxidative stress as a potential cause for the observed functional effects on mitochondria, which might be relevant disease modifying factors.
Collapse
Affiliation(s)
- Grazyna Debska-Vielhaber
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Irina Miller
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Department of Neurosurgery, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Viktoriya Peeva
- Institute of Experimental Epileptology and Cognition Research, Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Werner Zuschratter
- Leibniz Institute for Neurobiology, Laboratory for Electron- and Laserscanning- Microscopy, Brenneckestr.6, 39118 Magdeburg, Germany
| | - Jaroslaw Walczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-993 Warsaw, Poland; Institute of Fundamental Technological Research, Polish Academy of Sciences, 5b Pawińskiego St, 02-106 Warsaw, Poland
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; German Centre for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str.44, 39120 Magdeburg, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Judith Machts
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; German Centre for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str.44, 39120 Magdeburg, Germany
| | - Susanne Vogt
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Joanna Szczepanowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-993 Warsaw, Poland
| | - Frank N Gellerich
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany; German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; German Centre for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str.44, 39120 Magdeburg, Germany.
| | - Wolfram S Kunz
- Institute of Experimental Epileptology and Cognition Research, Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| |
Collapse
|
163
|
Schirris TJJ, Rossell S, de Haas R, Frambach SJCM, Hoogstraten CA, Renkema GH, Beyrath JD, Willems PHGM, Huynen MA, Smeitink JAM, Russel FGM, Notebaart RA. Stimulation of cholesterol biosynthesis in mitochondrial complex I-deficiency lowers reductive stress and improves motor function and survival in mice. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166062. [PMID: 33385517 DOI: 10.1016/j.bbadis.2020.166062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022]
Abstract
The majority of cellular energy is produced by the mitochondrial oxidative phosphorylation (OXPHOS) system. Failure of the first OXPHOS enzyme complex, NADH:ubiquinone oxidoreductase or complex I (CI), is associated with multiple signs and symptoms presenting at variable ages of onset. There is no approved drug treatment yet to slow or reverse the progression of CI-deficient disorders. Here, we present a comprehensive human metabolic network model of genetically characterized CI-deficient patient-derived fibroblasts. Model calculations predicted that increased cholesterol production, export, and utilization can counterbalance the surplus of reducing equivalents in patient-derived fibroblasts, as these pathways consume considerable amounts of NAD(P)H. We show that fibrates attenuated increased NAD(P)H levels and improved CI-deficient fibroblast growth by stimulating the production of cholesterol via enhancement of its cellular efflux. In CI-deficient (Ndufs4-/-) mice, fibrate treatment resulted in prolonged survival and improved motor function, which was accompanied by an increased cholesterol efflux from peritoneal macrophages. Our results shine a new light on the use of compensatory biological pathways in mitochondrial dysfunction, which may lead to novel therapeutic interventions for mitochondrial diseases for which currently no cure exists.
Collapse
Affiliation(s)
- Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Sergio Rossell
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Ria de Haas
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Department of Pediatrics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Charlotte A Hoogstraten
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - G Herma Renkema
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Department of Pediatrics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Julien D Beyrath
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Peter H G M Willems
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Department of Biochemistry, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Martijn A Huynen
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Jan A M Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Department of Pediatrics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands.
| | - Richard A Notebaart
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands; Food Microbiology, Wageningen University & Research, 6708WG Wageningen, the Netherlands.
| |
Collapse
|
164
|
Gueguen N, Lenaers G, Reynier P, Weissig V, Edeas M. Mitochondrial Dysfunction in Mitochondrial Medicine: Current Limitations, Pitfalls, and Tomorrow. Methods Mol Biol 2021; 2276:1-29. [PMID: 34060029 DOI: 10.1007/978-1-0716-1266-8_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Until recently restricted to hereditary mitochondrial diseases, mitochondrial dysfunction is now recognized as a key player and strategic factor in the pathophysiological of many human diseases, ranging from the metabolism, vascular, cardiac, and neurodegenerative diseases to cancer. Because of their participation in a myriad of cellular functions and signaling pathways, precisely identifying the cause of mitochondrial "dysfunctions" can be challenging and requires robust and controlled techniques. Initially limited to the analysis of the respiratory chain functioning, these analytical techniques now enlarge to the analyses of mitochondrial and cellular metabolism, based on metabolomic approaches.Here, we address the methods used to assay mitochondrial dysfunction, with a highlight on the techniques used in diagnosis on tissues and cells derived from patients, the information they provide, and their strength and weakness.Targeting mitochondrial dysfunction by various strategies is a huge challenge, requires robust methods of evaluation, and should be able to take into consideration the mitochondria dynamics and localization. The future of mitochondrial medicine is strongly related to a perfect comprehension of its dysfunction.
Collapse
Affiliation(s)
- Naig Gueguen
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, University of Angers, Angers, France.,Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Guy Lenaers
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, University of Angers, Angers, France
| | - Pascal Reynier
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, University of Angers, Angers, France.,Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Volkmar Weissig
- Department of Pharmaceutical Sciences and Nanocenter of Excellence, Midwestern University College of Pharmacy at Glendale, Glendale, AZ, USA
| | - Marvin Edeas
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
165
|
Prola A, Blondelle J, Vandestienne A, Piquereau J, Denis RGP, Guyot S, Chauvin H, Mourier A, Maurer M, Henry C, Khadhraoui N, Gallerne C, Molinié T, Courtin G, Guillaud L, Gressette M, Solgadi A, Dumont F, Castel J, Ternacle J, Demarquoy J, Malgoyre A, Koulmann N, Derumeaux G, Giraud MF, Joubert F, Veksler V, Luquet S, Relaix F, Tiret L, Pilot-Storck F. Cardiolipin content controls mitochondrial coupling and energetic efficiency in muscle. SCIENCE ADVANCES 2021; 7:7/1/eabd6322. [PMID: 33523852 PMCID: PMC7775760 DOI: 10.1126/sciadv.abd6322] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/04/2020] [Indexed: 05/11/2023]
Abstract
Unbalanced energy partitioning participates in the rise of obesity, a major public health concern in many countries. Increasing basal energy expenditure has been proposed as a strategy to fight obesity yet raises efficiency and safety concerns. Here, we show that mice deficient for a muscle-specific enzyme of very-long-chain fatty acid synthesis display increased basal energy expenditure and protection against high-fat diet-induced obesity. Mechanistically, muscle-specific modulation of the very-long-chain fatty acid pathway was associated with a reduced content of the inner mitochondrial membrane phospholipid cardiolipin and a blunted coupling efficiency between the respiratory chain and adenosine 5'-triphosphate (ATP) synthase, which was restored by cardiolipin enrichment. Our study reveals that selective increase of lipid oxidative capacities in skeletal muscle, through the cardiolipin-dependent lowering of mitochondrial ATP production, provides an effective option against obesity at the whole-body level.
Collapse
Affiliation(s)
- Alexandre Prola
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Jordan Blondelle
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Aymeline Vandestienne
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Jérôme Piquereau
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | | | - Stéphane Guyot
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Hadrien Chauvin
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Arnaud Mourier
- Université Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Marie Maurer
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Céline Henry
- PAPPSO, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350 Jouy-en-Josas, France
| | - Nahed Khadhraoui
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Cindy Gallerne
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Thibaut Molinié
- Université Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Guillaume Courtin
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Laurent Guillaud
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Mélanie Gressette
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Audrey Solgadi
- UMS IPSIT, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Florent Dumont
- UMS IPSIT, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Julien Castel
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France
| | - Julien Ternacle
- Université Paris-Est Créteil, INSERM, IMRB, Team Derumeaux, F-94010 Creteil, France
| | - Jean Demarquoy
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Alexandra Malgoyre
- Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-Sur-Orge, France
- LBEPS, Université Evry, IRBA, Université Paris-Saclay, F-91025 Evry, France
| | - Nathalie Koulmann
- Département Environnements Opérationnels, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-Sur-Orge, France
- LBEPS, Université Evry, IRBA, Université Paris-Saclay, F-91025 Evry, France
- École du Val de Grâce, Place Alphonse Laveran, F-75005 Paris, France
| | - Geneviève Derumeaux
- Université Paris-Est Créteil, INSERM, IMRB, Team Derumeaux, F-94010 Creteil, France
| | | | - Frédéric Joubert
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, Paris, F-75005, France
| | - Vladimir Veksler
- UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France
| | - Frédéric Relaix
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France.
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Laurent Tiret
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France.
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| | - Fanny Pilot-Storck
- Université Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France.
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, IMRB, F-94010 Créteil, France
| |
Collapse
|
166
|
Azevedo RDS, Falcão KVG, Assis CRD, Martins RMG, Araújo MC, Yogui GT, Neves JL, Seabra GM, Maia MBS, Amaral IPG, Leite ACR, Bezerra RS. Effects of pyriproxyfen on zebrafish brain mitochondria and acetylcholinesterase. CHEMOSPHERE 2021; 263:128029. [PMID: 33297050 DOI: 10.1016/j.chemosphere.2020.128029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
Pyriproxyfen is an insecticide used worldwide that acts as a biomimetic of juvenile hormone. This study investigated metabolic and synaptic impairments triggered by pyriproxyfen using zebrafish acetylcholinesterase (zbAChE) and mitochondria as markers. A brain zbAChE assay was performed in vitro and in vivo covering a range of pyriproxyfen concentrations (0.001-10 μmol/L) to assess inhibition kinetics. Docking simulations were performed to characterize inhibitory interactions. Zebrafish male adults were acutely exposed to 0.001, 0.01 and 0.1 μg/mL pyriproxyfen for 16 h. Mitochondrial respiration of brain tissues was assessed. ROS generation was estimated using H2DCF-DA and MitoSOX. Calcium transport was monitored by Calcium Green™ 5 N. NO synthesis activity was estimated using DAF-FM-DA. Brain acetylcholinesterase showed an in vivo IC20 of 0.30 μmol/L pyriproxyfen, and an IC50 of 92.5 μmol/L. The inhibitory effect on zbAChE activity was competitive-like. Respiratory control of Complex I/II decreased significantly after insecticide exposure. The MitoSOX test showed that O2- generation had a pyriproxyfen dose-dependent effect. Brain tissue lost 50% of Ca2+ uptake capacity at 0.1 μg/mL pyriproxyfen. Ca2+ release showed a clear mitochondrial impairment at lower pyriproxyfen exposures. Thus, Ca2+ transport imbalance caused by pyriproxyfen may be a novel deleterious mechanism of action. Overall, the results showed that pyriproxyfen can compromise multiple and interconnected pathways: (1) zbAChE impairment and (2) the functioning of the electron transport chain, ROS generation and calcium homeostasis in zebrafish brain mitochondria. Considering the many similarities between zebrafish and human, more caution is needed when pyriproxyfen is used in both urban and agricultural pest control.
Collapse
Affiliation(s)
- Rafael D S Azevedo
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Kivia V G Falcão
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Caio R D Assis
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brazil; Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos - OrganoMAR, Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | | | - Marlyete C Araújo
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Gilvan T Yogui
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos - OrganoMAR, Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Jorge L Neves
- Laboratório de Química Biológica - LQB, Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Gustavo M Seabra
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), School of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Maria B S Maia
- Laboratório de Farmacologia de Produtos Bioativos, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Ian P G Amaral
- Centro de Biotecnologia, Universidade Federal da Paraiba (UFPB), Campus I, Cidade Universitária, João Pessoa, PB, Brazil.
| | - Ana C R Leite
- Laboratório de Bioenergética Prof. Aníbal Vercesi, Departamento de Química e Biotecnologia, Universidade Federal de Alagoas (UFAL), Maceió, AL, Brazil.
| | - Ranilson S Bezerra
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
167
|
MacCannell ADV, Futers TS, Whitehead A, Moran A, Witte KK, Roberts LD. Sexual dimorphism in adipose tissue mitochondrial function and metabolic flexibility in obesity. Int J Obes (Lond) 2021; 45:1773-1781. [PMID: 34002038 PMCID: PMC8310795 DOI: 10.1038/s41366-021-00843-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The prevalence of obesity is growing globally. Adiposity increases the risk for metabolic syndrome, type 2 diabetes and cardiovascular disease. Adipose tissue distribution influences systemic metabolism and impacts metabolic disease risk. The link between sexual dimorphisms of adiposity and metabolism is poorly defined. We hypothesise that depot-specific adipose tissue mitochondrial function contributes to the sexual dimorphism of metabolic flexibility in obesity. METHODS Male and female mice fed high fat diet (HFD) or standard diet (STD) from 8-18 weeks of age underwent whole animal calorimetry and high-resolution mitochondrial respirometry analysis on adipose tissue depots. To determine translatability we used RT-qPCR to examine key brown adipocyte-associated gene expression: peroxisome proliferator-activated receptor co-activator 1α, Uncoupling protein 1 and cell death inducing DFFA like effector a in brown adipose tissue (BAT) and subcutaneous adipose tissue (sWAT) of 18-week-old mice and sWAT from human volunteers. RESULTS Male mice exhibited greater weight gain compared to female mice when challenged with HFD. Relative to increased body mass, the adipose to body weight ratio for BAT and sWAT depots was increased in HFD-fed males compared to female HFD-fed mice. Oxygen consumption, energy expenditure, respiratory exchange ratio and food consumption did not differ between males and females fed HFD. BAT mitochondria from obese females showed increased Complex I & II respiration and maximal respiration compared to lean females whereas obese males did not exhibit adaptive mitochondrial BAT respiration. Sexual dimorphism in BAT-associated gene expression in sWAT was also associated with Body Mass Index in humans. CONCLUSIONS We show that sexual dimorphism of weight gain is reflected in mitochondrial respiration analysis. Female mice have increased metabolic flexibility to adapt to changes in energy intake by regulating energy expenditure through increased complex II and maximal mitochondrial respiration within BAT when HFD challenged and increased proton leak in sWAT mitochondria.
Collapse
Affiliation(s)
- Amanda D. V. MacCannell
- grid.9909.90000 0004 1936 8403Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS29JT UK
| | - T. Simon Futers
- grid.9909.90000 0004 1936 8403Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS29JT UK
| | - Anna Whitehead
- grid.9909.90000 0004 1936 8403Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS29JT UK
| | - Amy Moran
- grid.9909.90000 0004 1936 8403Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS29JT UK
| | - Klaus K. Witte
- grid.9909.90000 0004 1936 8403Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS29JT UK
| | - Lee D. Roberts
- grid.9909.90000 0004 1936 8403Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS29JT UK
| |
Collapse
|
168
|
Gaviraghi A, Aveiro Y, Carvalho SS, Rosa RS, Oliveira MP, Oliveira MF. Mechanical Permeabilization as a New Method for Assessment of Mitochondrial Function in Insect Tissues. Methods Mol Biol 2021; 2276:67-85. [PMID: 34060033 DOI: 10.1007/978-1-0716-1266-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Respirometry analysis is an effective technique to assess mitochondrial physiology. Insects are valuable biochemical models to understand metabolism and human diseases. Insect flight muscle and brain have been extensively used to explore mitochondrial function due to dissection feasibility and the low sample effort to allow oxygen consumption measurements. However, adequate plasma membrane permeabilization is required for substrates/modulators to reach mitochondria. Here, we describe a new method for study of mitochondrial physiology in insect tissues based on mechanical permeabilization as a fast and reliable method that do not require the use of detergents for chemical permeabilization of plasma membrane, while preserves mitochondrial integrity.
Collapse
Affiliation(s)
- Alessandro Gaviraghi
- Federal University of Rio de Janeiro, Institute of Medical Biochemistry Leopoldo de Meis, Rio De Janeiro, RJ, Brazil
| | - Yan Aveiro
- Federal University of Rio de Janeiro, Institute of Medical Biochemistry Leopoldo de Meis, Rio De Janeiro, RJ, Brazil
| | - Stephanie S Carvalho
- Federal University of Rio de Janeiro, Institute of Medical Biochemistry Leopoldo de Meis, Rio De Janeiro, RJ, Brazil
| | - Rodiesley S Rosa
- Federal University of Rio de Janeiro, Institute of Medical Biochemistry Leopoldo de Meis, Rio De Janeiro, RJ, Brazil
| | - Matheus P Oliveira
- Federal University of Rio de Janeiro, Institute of Medical Biochemistry Leopoldo de Meis, Rio De Janeiro, RJ, Brazil
| | - Marcus F Oliveira
- Federal University of Rio de Janeiro, Institute of Medical Biochemistry Leopoldo de Meis, Rio De Janeiro, RJ, Brazil.
| |
Collapse
|
169
|
McNally LA, Altamimi TR, Fulghum K, Hill BG. Considerations for using isolated cell systems to understand cardiac metabolism and biology. J Mol Cell Cardiol 2020; 153:26-41. [PMID: 33359038 DOI: 10.1016/j.yjmcc.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Changes in myocardial metabolic activity are fundamentally linked to cardiac health and remodeling. Primary cardiomyocytes, induced pluripotent stem cell-derived cardiomyocytes, and transformed cardiomyocyte cell lines are common models used to understand how (patho)physiological conditions or stimuli contribute to changes in cardiac metabolism. These cell models are helpful also for defining metabolic mechanisms of cardiac dysfunction and remodeling. Although technical advances have improved our capacity to measure cardiomyocyte metabolism, there is often heterogeneity in metabolic assay protocols and cell models, which could hinder data interpretation and discernment of the mechanisms of cardiac (patho)physiology. In this review, we discuss considerations for integrating cardiomyocyte cell models with techniques that have become relatively common in the field, such as respirometry and extracellular flux analysis. Furthermore, we provide overviews of metabolic assays that complement XF analyses and that provide information on not only catabolic pathway activity, but biosynthetic pathway activity and redox status as well. Cultivating a more widespread understanding of the advantages and limitations of metabolic measurements in cardiomyocyte cell models will continue to be essential for the development of coherent metabolic mechanisms of cardiac health and pathophysiology.
Collapse
Affiliation(s)
- Lindsey A McNally
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Tariq R Altamimi
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Kyle Fulghum
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Bradford G Hill
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
170
|
Cheng TC, Philip JL, Tabima DM, Kumari S, Yakubov B, Frump AL, Hacker TA, Bellofiore A, Li R, Sun X, Goss KN, Lahm T, Chesler NC. Estrogen receptor-α prevents right ventricular diastolic dysfunction and fibrosis in female rats. Am J Physiol Heart Circ Physiol 2020; 319:H1459-H1473. [PMID: 33064565 PMCID: PMC7792707 DOI: 10.1152/ajpheart.00247.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022]
Abstract
Although women are more susceptible to pulmonary arterial hypertension (PAH) than men, their right ventricular (RV) function is better preserved. Estrogen receptor-α (ERα) has been identified as a likely mediator for estrogen protection in the RV. However, the role of ERα in preserving RV function and remodeling during pressure overload remains poorly understood. We hypothesized that loss of functional ERα removes female protection from adverse remodeling and is permissive for the development of a maladapted RV phenotype. Male and female rats with a loss-of-function mutation in ERα (ERαMut) and wild-type (WT) littermates underwent RV pressure overload by pulmonary artery banding (PAB). At 10 wk post-PAB, WT and ERαMut demonstrated RV hypertrophy. Analysis of RV pressure waveforms demonstrated RV-pulmonary vascular uncoupling and diastolic dysfunction in female, but not male, ERαMut PAB rats. Similarly, female, but not male, ERαMut exhibited increased RV fibrosis, comprised primarily of thick collagen fibers. There was an increased protein expression ratio of TIMP metallopeptidase inhibitor 1 (Timp1) to matrix metalloproteinase 9 (Mmp9) in female ERαMut compared with WT PAB rats, suggesting less collagen degradation. RNA-sequencing in female WT and ERαMut RV revealed kallikrein-related peptidase 10 (Klk10) and Jun Proto-Oncogene (Jun) as possible mediators of female RV protection during PAB. In summary, ERα in females is protective against RV-pulmonary vascular uncoupling, diastolic dysfunction, and fibrosis in response to pressure overload. ERα appears to be dispensable for RV adaptation in males. ERα may be a mediator of superior RV adaptation in female patients with PAH.NEW & NOTEWORTHY Using a novel loss-of-function mutation in estrogen receptor-α (ERα), we demonstrate that female, but not male, ERα mutant rats display right ventricular (RV)-vascular uncoupling, diastolic dysfunction, and fibrosis following pressure overload, indicating a sex-dependent role of ERα in protecting against adverse RV remodeling. TIMP metallopeptidase inhibitor 1 (Timp1), matrix metalloproteinase 9 (Mmp9), kallikrein-related peptidase 10 (Klk10), and Jun Proto-Oncogene (Jun) were identified as potential mediators in ERα-regulated pathways in RV pressure overload.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Fibrillar Collagens/metabolism
- Fibrosis
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Kallikreins/genetics
- Kallikreins/metabolism
- Male
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mutation
- Myocardium/metabolism
- Myocardium/pathology
- Proto-Oncogene Proteins c-jun/genetics
- Proto-Oncogene Proteins c-jun/metabolism
- Rats, Mutant Strains
- Rats, Sprague-Dawley
- Sex Factors
- Signal Transduction
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/prevention & control
- Ventricular Function, Right
- Ventricular Remodeling
Collapse
Affiliation(s)
- Tik-Chee Cheng
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jennifer L Philip
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin
| | - Diana M Tabima
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Santosh Kumari
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Bakhtiyor Yakubov
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrea L Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alessandro Bellofiore
- Department of Biomedical, Chemical and Materials Engineering, San Jose State University, San Jose, California
| | - Rongbo Li
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Xin Sun
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Kara N Goss
- Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Tim Lahm
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
171
|
Charles C, Cohen-Erez I, Kazaoka B, Melnikov O, Stein DE, Sensenig R, Rapaport H, Orynbayeva Z. Mitochondrial responses to organelle-specific drug delivering nanoparticles composed of polypeptide and peptide complexes. Nanomedicine (Lond) 2020; 15:2917-2932. [PMID: 33241963 DOI: 10.2217/nnm-2020-0266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: The mechanistic study of the drug carrier-target interactions of mitochondria-unique nanoparticles composed of polypeptide-peptide complexes (mPoP-NPs). Materials & methods: The isolated organelles were employed to address the direct effects of mPoP-NPs on dynamic structure and functional wellbeing of mitochondria. Mitochondria morphology, respiration, membrane potential, reactive oxygen species generation, were examined by confocal microscopy, flow cytometry and oxygraphy. Lonidamine-encapsulated formulation was assessed to evaluate the drug delivery capacity of the naive nanoparticles. Results: The mPoP-NPs do not alter mitochondria structure and performance upon docking to organelles, while successfully delivering drug that causes organelle dysfunction. Conclusion: The study gives insight into interactions of mPoP-NPs with mitochondria and provides substantial support for consideration of designed nanoparticles as biocompatible and efficient mitochondria-targeted platforms.
Collapse
Affiliation(s)
- Carleigh Charles
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Ifat Cohen-Erez
- Avram & Stella Goldstein-Goren Department of Biotechnology Engineering & Ilse Katz Institute for Nanoscience & technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Blake Kazaoka
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Olga Melnikov
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - David E Stein
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Richard Sensenig
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, USA
| | - Hanna Rapaport
- Avram & Stella Goldstein-Goren Department of Biotechnology Engineering & Ilse Katz Institute for Nanoscience & technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Zulfiya Orynbayeva
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
172
|
Ji K, Lin Y, Xu X, Wang W, Wang D, Zhang C, Li W, Zhao Y, Yan C. MELAS-associated m.5541C>T mutation caused instability of mitochondrial tRNA Trp and remarkable mitochondrial dysfunction. J Med Genet 2020; 59:79-87. [PMID: 33208382 DOI: 10.1136/jmedgenet-2020-107323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episode (MELAS) is a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA. The causative mutations of MELAS have drawn much attention, among them, mutations in mitochondrial tRNA genes possessing prominent status. However, the detailed molecular pathogenesis of these tRNA gene mutations remains unclear and there are very few effective therapies available to date. METHODS We performed muscle histochemistry, genetic analysis, molecular dynamic stimulation and measurement of oxygen consumption rate and respiratory chain complex activities to demonstrate the molecular pathomechanisms of m.5541C>T mutation. Moreover, we use cybrid cells to investigate the potential of taurine to rescue mitochondrial dysfunction caused by this mutation. RESULTS We found a pathogenic m.5541C>T mutation in the tRNATrp gene in a large MELAS family. This mutation first affected the maturation and stability of tRNATrp and impaired mitochondrial respiratory chain complex activities, followed by remarkable mitochondrial dysfunction. Surprisingly, we identified that the supplementation of taurine almost completely restored mitochondrial tRNATrp levels and mitochondrial respiration deficiency at the in vitro cell level. CONCLUSION The m.5541C>T mutation disturbed the translation machinery of mitochondrial tRNATrp and taurine supplementation may be a potential treatment for patients with m.5541C>T mutation. Further studies are needed to explore the full potential of taurine supplementation as therapy for patients with this mutation.
Collapse
Affiliation(s)
- Kunqian Ji
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases of Shandong University, Jinan, China
| | - Yan Lin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xuebi Xu
- Department of Neurology, Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China
| | - Wei Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dongdong Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chen Zhang
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingda, China
| | - Wei Li
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuying Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China .,Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases of Shandong University, Jinan, China.,Brain Science Research Institute of Shandong University, Jinan, China
| |
Collapse
|
173
|
Anand CR, Bhavya B, Jayakumar K, Harikrishnan VS, Gopala S. Inorganic nitrite alters mitochondrial dynamics without overt changes in cell death and mitochondrial respiration in cardiomyoblasts under hyperglycemia. Toxicol In Vitro 2020; 70:105048. [PMID: 33161133 DOI: 10.1016/j.tiv.2020.105048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
Inorganic nitrate or nitrite supplementation has been reported to demonstrate positive outcomes in rodent models of obesity and diabetes as well as in type 2 diabetic humans and even included in clinical trials pertaining to cardiovascular diseases in the recent decade. However, there are contrasting data regarding the useful and toxic effects of the anions. The primary scope of this study was to analyze the beneficial/detrimental alterations in redox status, mitochondrial dynamics and function, and cellular fitness in cardiomyoblasts inflicted by nitrite under hyperglycemic conditions compared with normoglycemia. Nitrite supplementation in H9c2 myoblasts under high glucose diminishes the Bcl-xL expression and mitochondrial ROS levels without significant initiation of cell death or decline in total ROS levels. Concomitantly, there are tendencies towards lowering of mitochondrial membrane potential, but without noteworthy changes in mitochondrial biogenesis and respiration. The study also revealed that under high glucose stress, nitrite may alter mitochondrial dynamics by Drp1 activation possibly via Akt1-Pim1 axis. Moreover, the study revealed differential effects of Drp1 silencing and/or nitrite under the above glycemic conditions. Overall, the study warrants more research regarding the effects of nitrite therapy in cardiac cells exposed to hyperglycemia.
Collapse
Affiliation(s)
- C R Anand
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Bharathan Bhavya
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - K Jayakumar
- Department of Cardiovascular and Thoracic Surgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India.
| | - V S Harikrishnan
- Division of Laboratory Animal Sciences, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India.
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India.
| |
Collapse
|
174
|
Ives SJ, Zaleski KS, Slocum C, Escudero D, Sheridan C, Legesse S, Vidal K, Lagalwar S, Reynolds TH. The effect of succinic acid on the metabolic profile in high-fat diet-induced obesity and insulin resistance. Physiol Rep 2020; 8:e14630. [PMID: 33185326 PMCID: PMC7663994 DOI: 10.14814/phy2.14630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity, insulin resistance, and poor metabolic profile are hallmarks of a high-fat diet (HFD), highlighting the need to understand underlying mechanisms. Therefore, we sought to determine the effect of succinic acid (SA) on metabolism in high-fat diet (HFD)-induced obesity. Animals were randomly assigned to either low-fat diet (LFD) or a high-fat diet (HFD). Mice consumed their respective diets for 4.5 months and then assigned to the following groups: (LFD)+vehicle, LFD + SA (0.75 mg/ml), HFD + vehicle, or HFD + SA. Body weight (BW), food, and water intake, were tracked weekly. After 6 weeks, insulin, glucose, and pyruvate tolerance tests were completed, and spontaneous physical activity was assessed. Epididymal white adipose tissue (EWAT) mass and in vitro measurements of oxidative skeletal muscle (soleus) respiration were obtained. Expectedly, the HFD increased BW and EWAT mass, and reduced glucose and insulin tolerance. SA significantly reduced EWAT mass, more so in HFD (p < .05), but had no effect on any in vivo measurements (BW, insulin, glucose, or pyruvate tolerance, nor physical activity, all p > .05). A significant (p < .05) interaction was observed between mitochondrial respiration and treatment, where SA increased respiration, likely owed to greater mitochondrial content, as assessed by complex IV activity in both LFD and HFD. In HFD-induced obesity, coupled with insulin desensitization, we found no favorable effect of succinic acid on glucose regulation, though adiposity was attenuated. In oxidative skeletal muscle, there was a tendency for increased respiratory capacity, likely owed to greater mitochondrial content, suggestive of a succinic acid-induced mitochondrial biogenesis.
Collapse
Affiliation(s)
- Stephen J. Ives
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Kendall S. Zaleski
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Cheyanne Slocum
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Daniela Escudero
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Caty Sheridan
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Saada Legesse
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Kavey Vidal
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Sarita Lagalwar
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Thomas H. Reynolds
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| |
Collapse
|
175
|
Role of the Mitochondrial Pyruvate Carrier in the Occurrence of Metabolic Inflexibility in Drosophila melanogaster Exposed to Dietary Sucrose. Metabolites 2020; 10:metabo10100411. [PMID: 33066485 PMCID: PMC7602203 DOI: 10.3390/metabo10100411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 01/12/2023] Open
Abstract
Excess dietary carbohydrates are linked to dysregulation of metabolic pathways converging to mitochondria and metabolic inflexibility. Here, we determined the role of the mitochondrial pyruvate carrier (MPC) in the occurrence of this metabolic inflexibility in wild-type (WT) and MPC1-deficient (MPC1def) flies that were exposed to diets with different sucrose concentrations for 15–25 days (Standard Diet: SD, Medium-Sucrose Diet: MSD, and High-Sucrose Diet: HSD). Our results showed that MPC1def flies had lower mitochondrial respiration rates than WT flies on the SD and MSD. However, when exposed to the HSD, WT flies displayed decreased mitochondrial respiration rates compared to MPC1def flies. WT flies exposed to the HSD also displayed increased proline contribution and slightly decreased MPC1 expression. Surprisingly, when fed the MSD and the HSD, few metabolites were altered in WT flies whereas MPC1def flies display significant accumulation of glycogen, glucose, fructose, lactate, and glycerol. Overall, this suggests that metabolic inflexibility starts to occur in WT flies after 15–25 days of exposure to the HSD whereas the MPC1def flies display metabolic inflexibility independently of the diet provided. This study thus highlights the involvement of MPC as an essential protein in Drosophila to maintain proper metabolic homeostasis during changes in dietary resources.
Collapse
|
176
|
Sellin J, Fülle JB, Thiele C, Bauer R, Bülow MH. Free fatty acid determination as a tool for modeling metabolic diseases in Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104090. [PMID: 32730782 DOI: 10.1016/j.jinsphys.2020.104090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Free or non-esterified fatty acids are the product of lipolysis of storage fat, i.e. triacylglyceroles. When the amount of fat exceeds the capacity of lipid-storing organs, free fatty acids affect and damage other non-lipid-storing organs. This process is termed lipotoxicity. Within a cell, free fatty acids can damage mitochondria, and lipotoxicity-induced mitochondrial damage has been associated recently with Peroxisomal Biogenesis Disorders. Drosophila melanogaster has a rising popularity as a model organism for metabolic diseases, but an optimized assay for measuring free fatty acids in Drosophila tissue samples is missing. Here we present a detailed protocol highlighting technical requirements and pitfalls to determine free fatty acids in samples of Drosophila tissue. The colorimetric assay allows the reproducible and cost-efficient measurement of free fatty acids in a 96 well plate format. We used our assay to determine changes in free fatty acid levels in different developmental stages and feeding conditions, and found that larvae and adults have different patterns of free fatty acid formation during starvation. Our assay is a valuable tool in the modeling of metabolic diseases with Drosophila melanogaster.
Collapse
Affiliation(s)
- Julia Sellin
- University of Bonn, Life & Medical Sciences Institute (LIMES), Molecular Developmental Biology, Carl-Troll-Straße 31, 53115 Bonn, Germany.
| | - Judith B Fülle
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK; Skin Research Institute of Singapore, A*STAR, 8A Biomedical Grove, Immunos #06-06, Singapore, Singapore
| | - Christoph Thiele
- University of Bonn, Life & Medical Sciences Institute (LIMES), Biochemistry & Cell Biology of Lipids, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Reinhard Bauer
- University of Bonn, Life & Medical Sciences Institute (LIMES), Molecular Developmental Biology, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Margret H Bülow
- University of Bonn, Life & Medical Sciences Institute (LIMES), Molecular Developmental Biology, Carl-Troll-Straße 31, 53115 Bonn, Germany.
| |
Collapse
|
177
|
Nicolaisen TS, Klein AB, Dmytriyeva O, Lund J, Ingerslev LR, Fritzen AM, Carl CS, Lundsgaard AM, Frost M, Ma T, Schjerling P, Gerhart-Hines Z, Flamant F, Gauthier K, Larsen S, Richter EA, Kiens B, Clemmensen C. Thyroid hormone receptor α in skeletal muscle is essential for T3-mediated increase in energy expenditure. FASEB J 2020; 34:15480-15491. [PMID: 32969079 PMCID: PMC7702122 DOI: 10.1096/fj.202001258rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022]
Abstract
Thyroid hormones are important for homeostatic control of energy metabolism and body temperature. Although skeletal muscle is considered a key site for thyroid action, the contribution of thyroid hormone receptor signaling in muscle to whole‐body energy metabolism and body temperature has not been resolved. Here, we show that T3‐induced increase in energy expenditure requires thyroid hormone receptor alpha 1 (TRα1) in skeletal muscle, but that T3‐mediated elevation in body temperature is achieved in the absence of muscle‐TRα1. In slow‐twitch soleus muscle, loss‐of‐function of TRα1 (TRαHSACre) alters the fiber‐type composition toward a more oxidative phenotype. The change in fiber‐type composition, however, does not influence the running capacity or motivation to run. RNA‐sequencing of soleus muscle from WT mice and TRαHSACre mice revealed differentiated transcriptional regulation of genes associated with muscle thermogenesis, such as sarcolipin and UCP3, providing molecular clues pertaining to the mechanistic underpinnings of TRα1‐linked control of whole‐body metabolic rate. Together, this work establishes a fundamental role for skeletal muscle in T3‐stimulated increase in whole‐body energy expenditure.
Collapse
Affiliation(s)
- Trine S Nicolaisen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Klein
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars R Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian S Carl
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Frost
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederic Flamant
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
178
|
Gao M, Li A, Qin Y, Liu B, Gong G. Protocol for Measurement of Oxygen Consumption Rate In Situ in Permeabilized Cardiomyocytes. STAR Protoc 2020; 1:100072. [PMID: 33111108 PMCID: PMC7580108 DOI: 10.1016/j.xpro.2020.100072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Analysis of mitochondrial respiration function represented by the oxygen consumption rate is necessary for assessing mitochondrial respiration function. This protocol describes steps to evaluate the respiration function of mitochondria in situ in saponin-permeabilized cardiomyocytes. In permeabilized cells, mitochondria are in a relatively integrated cellular system, and mitochondrial respiration is more physiologically relevant than isolated mitochondria. For complete details on the use and execution of this protocol, please refer to Gong et al. (2015a) and Gong et al. (2015b).
Collapse
Affiliation(s)
- Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
179
|
Simard C, Lebel A, Allain EP, Touaibia M, Hebert-Chatelain E, Pichaud N. Metabolic Characterization and Consequences of Mitochondrial Pyruvate Carrier Deficiency in Drosophila melanogaster. Metabolites 2020; 10:metabo10090363. [PMID: 32899962 PMCID: PMC7570025 DOI: 10.3390/metabo10090363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 01/31/2023] Open
Abstract
In insect, pyruvate is generally the predominant oxidative substrate for mitochondria. This metabolite is transported inside mitochondria via the mitochondrial pyruvate carrier (MPC), but whether and how this transporter controls mitochondrial oxidative capacities in insects is still relatively unknown. Here, we characterize the importance of pyruvate transport as a metabolic control point for mitochondrial substrate oxidation in two genotypes of an insect model, Drosophila melanogaster, differently expressing MPC1, an essential protein for the MPC function. We evaluated the kinetics of pyruvate oxidation, mitochondrial oxygen consumption, metabolic profile, activities of metabolic enzymes, and climbing abilities of wild-type (WT) flies and flies harboring a deficiency in MPC1 (MPC1def). We hypothesized that MPC1 deficiency would cause a metabolic reprogramming that would favor the oxidation of alternative substrates. Our results show that the MPC1def flies display significantly reduced climbing capacity, pyruvate-induced oxygen consumption, and enzymatic activities of pyruvate kinase, alanine aminotransferase, and citrate synthase. Moreover, increased proline oxidation capacity was detected in MPC1def flies, which was associated with generally lower levels of several metabolites, and particularly those involved in amino acid catabolism such as ornithine, citrulline, and arginosuccinate. This study therefore reveals the flexibility of mitochondrial substrate oxidation allowing Drosophila to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Chloé Simard
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (C.S.); (A.L.); (M.T.)
| | - Andréa Lebel
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (C.S.); (A.L.); (M.T.)
| | | | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (C.S.); (A.L.); (M.T.)
| | - Etienne Hebert-Chatelain
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada;
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Moncton, NB E1A 3E9, Canada
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada; (C.S.); (A.L.); (M.T.)
- Correspondence:
| |
Collapse
|
180
|
Assessment of fish freshness based on fluorescence measurement of mitochondrial membrane potential. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
181
|
Ogneva IV, Usik MA, Burtseva MV, Biryukov NS, Zhdankina YS, Sychev VN, Orlov OI. Drosophila melanogaster Sperm under Simulated Microgravity and a Hypomagnetic Field: Motility and Cell Respiration. Int J Mol Sci 2020; 21:ijms21175985. [PMID: 32825268 PMCID: PMC7503777 DOI: 10.3390/ijms21175985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/25/2023] Open
Abstract
The role of the Earth's gravitational and magnetic fields in the evolution and maintenance of normal processes of various animal species remains unclear. The aim of this work was to determine the effect of simulated microgravity and hypomagnetic conditions for 1, 3, and 6 h on the sperm motility of the fruit fly Drosophila melanogaster. In addition to the usual diet, the groups were administered oral essential phospholipids at a dosage of 500 mg/kg in medium. The speed of the sperm tails was determined by video recording and analysis of the obtained video files, protein content by western blotting, and cell respiration by polarography. The results indicated an increase in the speed of movement of the sperm tails after 6 h in simulated microgravity. The levels of proteins that form the axoneme of the sperm tail did not change, but cellular respiration was altered. A similar effect occurred with the administration of essential phospholipids. These results may be due to a change in the level of phosphorylation of motor proteins. Exposure to hypomagnetic conditions led to a decrease in motility after 6 h against a background of a decrease in the rate of cellular respiration due to complex I of the respiratory chain. This effect was not observed in the flies that received essential phospholipids. However, after 1 h under hypomagnetic conditions, the rate of cellular respiration also increased due to complex I, including that in the sperm of flies receiving essential phospholipids.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
- Department of Medical and Biological Physics, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-4991956398; Fax: +7-4991952253
| | - Maria A. Usik
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
- Department of Medical and Biological Physics, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Maria V. Burtseva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
| | - Nikolay S. Biryukov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
- Department of Medical and Biological Physics, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Yuliya S. Zhdankina
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
- Department of Medical and Biological Physics, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Vladimir N. Sychev
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
| | - Oleg I. Orlov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
| |
Collapse
|
182
|
Brum EDS, Fialho MFP, Fischer SPM, Hartmann DD, Gonçalves DF, Scussel R, Machado-de-Ávila RA, Dalla Corte CL, Soares FAA, Oliveira SM. Relevance of Mitochondrial Dysfunction in the Reserpine-Induced Experimental Fibromyalgia Model. Mol Neurobiol 2020; 57:4202-4217. [PMID: 32685997 DOI: 10.1007/s12035-020-01996-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022]
Abstract
Fibromyalgia (FM) is one of the most common musculoskeletal pain conditions. Although the aetiology of FM is still unknown, mitochondrial dysfunction and the overproduction of reactive oxygen intermediates (ROI) are common characteristics in its pathogenesis. The reserpine experimental model can induce FM-related symptoms in rodents by depleting biogenic amines. However, it is unclear whether reserpine causes other pathophysiologic characteristics of FM. So far, no one has investigated the relevance of mitochondrial dysfunction in the reserpine-induced experimental FM model using protection- and insult-based mitochondrial modulators. Reserpine (1 mg/kg) was subcutaneously injected once daily for three consecutive days in male Swiss mice. We carried out analyses of reserpine-induced FM-related symptoms, and their modulation by using mitochondrial insult on ATP synthesis (oligomycin; 1 mg/kg, intraperitoneally) or mitochondrial protection (coenzyme Q10; 150 mg/kg/5 days, orally). We also evaluated the effect of reserpine on mitochondrial function using high-resolution respirometry and oxidative status. Reserpine caused nociception, loss in muscle strength, and anxiety- and depressive-like behaviours in mice that were consistent with clinical symptoms of FM, without inducing body weight and temperature alterations or motor impairment. Reserpine-induced FM-related symptoms were increased by oligomycin and reduced by coenzyme Q10 treatment. Reserpine caused mitochondrial dysfunction by negatively modulating the electron transport system and mitochondrial respiration (ATP synthesis) mainly in oxidative muscles and the spinal cord. These results support the role of mitochondria in mediating oxidative stress and FM symptoms in this model. In this way, reserpine-inducing mitochondrial dysfunction and increased production of ROI contribute to the development and maintenance of nociceptive, fatigue, and depressive-like behaviours.
Collapse
Affiliation(s)
- Evelyne da Silva Brum
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Susana Paula Moreira Fischer
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Diane Duarte Hartmann
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Débora Farina Gonçalves
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Rahisa Scussel
- Graduate Program in Health Sciences, University of Extreme South Catarinense, Criciúma, SC, Brazil
| | | | - Cristiane Lenz Dalla Corte
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.,Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Félix Alexandre Antunes Soares
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.,Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil. .,Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
183
|
Sperm Motility of Mice under Simulated Microgravity and Hypergravity. Int J Mol Sci 2020; 21:ijms21145054. [PMID: 32709012 PMCID: PMC7404272 DOI: 10.3390/ijms21145054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 01/03/2023] Open
Abstract
For deep space exploration, reproductive health must be maintained to preserve the species. However, the mechanisms underlying the effect of changes in gravity on male germ cells remain poorly understood. The aim of this study was to determine the effect of simulated micro- and hypergravity on mouse sperm motility and the mechanisms of this change. For 1, 3 and 6 h, mouse sperm samples isolated from the caudal epididymis were subjected to simulated microgravity using a random position machine and 2g hypergravity using a centrifuge. The experimental samples were compared with static and dynamic controls. The sperm motility and the percentage of motile sperm were determined using microscopy and video analysis, cell respiration was determined by polarography, the protein content was assessed by Western blotting and the mRNA levels were determined using qRT-PCR. The results indicated that hypergravity conditions led to more significant changes than simulated microgravity conditions: after 1 h, the speed of sperm movement decreased, and after 3 h, the number of motile cells began to decrease. Under the microgravity model, the speed of movement did not change, but the motile spermatozoa decreased after 6 h of exposure. These changes are likely associated with a change in the structure of the microtubule cytoskeleton, and changes in the energy supply are an adaptive reaction to changes in sperm motility.
Collapse
|
184
|
Mitochondrial bioenergetics, glial reactivity, and pain-related behavior can be restored by dichloroacetate treatment in rodent pain models. Pain 2020; 161:2786-2797. [PMID: 32658145 DOI: 10.1097/j.pain.0000000000001992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glial reactivity in the dorsal horn of the spinal cord is a hallmark in most chronic pain conditions. Neuroinflammation-associated reactive glia, in particular astrocytes, have been shown to exhibit reduced mitochondrial respiratory function. Here, we studied the mitochondrial function at the lumbar spinal cord tissue from complete Freund's adjuvant-induced inflammatory pain rat and chronic constriction injury mouse models by high-resolution respirometry. A significant decrease in mitochondrial bioenergetic parameters at the injury-related spinal cord level coincided with highest astrocytosis. Oral administration of dichloroacetate (DCA) significantly increased mitochondrial respiratory function by inhibiting pyruvate dehydrogenase kinase and decreased glial fibrillary acidic protein and Iba-1 immunoreactivity in spinal cord. Importantly, DCA treatment significantly reduced the ipsilateral pain-related behavior without affecting contralateral sensitivity in both pain models. Our results indicate that mitochondrial metabolic modulation with DCA may offer an alternative therapeutic strategy to alleviate chronic and persistent inflammatory pain.
Collapse
|
185
|
Koit A, Timohhina N, Truu L, Chekulayev V, Gudlawar S, Shevchuk I, Lepik K, Mallo L, Kutner R, Valvere V, Kaambre T. Metabolic and OXPHOS Activities Quantified by Temporal ex vivo Analysis Display Patient-Specific Metabolic Vulnerabilities in Human Breast Cancers. Front Oncol 2020; 10:1053. [PMID: 32695682 PMCID: PMC7339107 DOI: 10.3389/fonc.2020.01053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
Research on mitochondrial metabolism and respiration are rapidly developing areas, however, efficient and widely accepted methods for studying these in solid tumors are still missing. Here, we developed a new method without isotope tracing to quantitate time dependent mitochondrial citrate efflux in cell lines and human breast cancer samples. In addition, we studied ADP-activated respiration in both of the sample types using selective permeabilization and showed that metabolic activity and respiration are not equally linked. Three times lower amount of mitochondria in scarcely respiring MDA-MB-231 cells convert pyruvate and glutamate into citrate efflux at 20% higher rate than highly respiring MCF-7 mitochondria do. Surprisingly, analysis of 59 human breast cancers revealed the opposite in clinical samples as aggressive breast cancer subtypes, in comparison to less aggressive subtypes, presented with both higher mitochondrial citrate efflux and higher respiration rate. Additionally, comparison of substrate preference (pyruvate or glutamate) for both mitochondrial citrate efflux and respiration in triple negative breast cancers revealed probable causes for high glutamine dependence in this subtype and reasons why some of these tumors are able to overcome glutaminase inhibition. Our research concludes that the two widely used breast cancer cell lines fail to replicate mitochondrial function as seen in respective human samples. And finally, the easy method described here, where time dependent small molecule metabolism and ADP-activated respiration in solid human cancers are analyzed together, can increase success of translational research and ultimately benefit patients with cancer.
Collapse
Affiliation(s)
- Andre Koit
- Chemical Biology Laboratory, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Natalja Timohhina
- Chemical Biology Laboratory, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Laura Truu
- Chemical Biology Laboratory, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Vladimir Chekulayev
- Chemical Biology Laboratory, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Shivakumar Gudlawar
- Chemical Biology Laboratory, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Igor Shevchuk
- Chemical Biology Laboratory, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Katrin Lepik
- Oncology and Hematology Clinic at the North Estonia Medical Centre, Tallinn, Estonia
| | - Lea Mallo
- Oncology and Hematology Clinic at the North Estonia Medical Centre, Tallinn, Estonia
| | - Riina Kutner
- Oncology and Hematology Clinic at the North Estonia Medical Centre, Tallinn, Estonia
| | - Vahur Valvere
- Oncology and Hematology Clinic at the North Estonia Medical Centre, Tallinn, Estonia
| | - Tuuli Kaambre
- Chemical Biology Laboratory, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| |
Collapse
|
186
|
Dawid C, Weber D, Musiol E, Janas V, Baur S, Lang R, Fromme T. Comparative assessment of purified saponins as permeabilization agents during respirometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148251. [PMID: 32598881 DOI: 10.1016/j.bbabio.2020.148251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/26/2020] [Accepted: 06/12/2020] [Indexed: 01/15/2023]
Abstract
Saponins are a diverse group of secondary plant metabolites, some of which display hemolytic toxicity due to plasma membrane permeabilization. This feature is employed in biological applications for transferring hydrophilic molecules through cell membranes. Widely used commercial saponins include digitonin and saponins from soap tree bark, both of which constitute complex mixtures of little definition. We assessed the permeabilization power of pure saponins towards cellular membranes in an effort to detect novel properties and to improve existing applications. In a respirometric assay, we characterized half-maximal permeabilization of the plasma membrane for different metabolites, of the mitochondrial outer membrane for cytochrome C and the full solubilization of mitochondrial inner membrane protein complexes. Beyond the complete list as repository for the field, we highlight several findings with direct applicability. First, we identified and validated α-chaconine as alternative permeabilization agent in respirometric assays of cultured cells and isolated synaptosomes, superior to digitonin in its tolerability for mitochondria. Second, we identified glycyrrhizic acid to form exceptionally small pores impermeable for adenosine diphosphate. Third, in a concentration dependent manner, tomatine proved to be able to selectively permeabilize the mitochondrial outer, but not inner membrane, allowing for novel states in which to determine cytochrome C oxidase activity. In summary, we provide a list of the permeabilization properties of 18 pure saponins. The identification of two saponins, namely tomatine and chaconine, with direct usability in improved or novel cell biological applications within this small subgroup demonstrates the tremendous potential for further functional screening of pure saponins.
Collapse
Affiliation(s)
- Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Freising, Germany
| | - Daniela Weber
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Eva Musiol
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Vanessa Janas
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Sebastian Baur
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Freising, Germany
| | - Roman Lang
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.
| |
Collapse
|
187
|
Irion CI, Martins EL, Christie MLA, de Andrade CBV, de Moraes ACN, Ferreira RP, Pimentel CF, Suhett GD, de Carvalho ACC, Lindoso RS, Vieyra A, Galina A, Goldenberg RCS. Acute Myocardial Infarction Reduces Respiration in Rat Cardiac Fibers, despite Adipose Tissue Mesenchymal Stromal Cell Transplant. Stem Cells Int 2020; 2020:4327965. [PMID: 32655647 PMCID: PMC7322589 DOI: 10.1155/2020/4327965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/02/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023] Open
Abstract
Adipose-derived mesenchymal stromal cell (AD-MSC) administration improves cardiac function after acute myocardial infarction (AMI). Although the mechanisms underlying this effect remain to be elucidated, the reversal of the mitochondrial dysfunction may be associated with AMI recovery. Here, we analyzed the alterations in the respiratory capacity of cardiomyocytes in the infarcted zone (IZ) and the border zone (BZ) and evaluated if mitochondrial function improved in cardiomyocytes after AD-MSC transplantation. Female rats were subjected to AMI by permanent left anterior descending coronary (LAD) ligation and were then treated with AD-MSCs or PBS in the border zone (BZ). Cardiac fibers were analyzed 24 hours (necrotic phase) and 8 days (fibrotic phase) after AMI for mitochondrial respiration, citrate synthase (CS) activity, F0F1-ATPase activity, and transmission electron microscopy (TEM). High-resolution respirometry of permeabilized cardiac fibers showed that AMI reduced numerous mitochondrial respiration parameters in cardiac tissue, including phosphorylating and nonphosphorylating conditions, respiration coupled to ATP synthesis, and maximal respiratory capacity. CS decreased in IZ and BZ at the necrotic phase, whereas it recovered in BZ and continued to drop in IZ over time when compared to Sham. Exogenous cytochrome c doubled respiration at the necrotic phase in IZ. F0F1-ATPase activity decreased in the BZ and, to more extent, in IZ in both phases. Transmission electron microscopy showed disorganized mitochondrial cristae structure, which was more accentuated in IZ but also important in BZ. All these alterations in mitochondrial respiration were still present in the group treated with AD-MSC. In conclusion, AMI led to mitochondrial dysfunction with oxidative phosphorylation disorders, and AD-MSC improved CS temporarily but was not able to avoid alterations in mitochondria function over time.
Collapse
Affiliation(s)
- Camila I. Irion
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eduarda L. Martins
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, 21941-902, Brazil
| | - Michelle L. A. Christie
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Cherley B. V. de Andrade
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Alan C. N. de Moraes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Raphaela P. Ferreira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Cibele F. Pimentel
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Grazielle D. Suhett
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Antonio Carlos C. de Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael S. Lindoso
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Regenerative Medicine Program, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Antonio Galina
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, 21941-902, Brazil
| | - Regina C. S. Goldenberg
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
188
|
Prado-Garcia H, Campa-Higareda A, Romero-Garcia S. Lactic Acidosis in the Presence of Glucose Diminishes Warburg Effect in Lung Adenocarcinoma Cells. Front Oncol 2020; 10:807. [PMID: 32596143 PMCID: PMC7303336 DOI: 10.3389/fonc.2020.00807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/24/2020] [Indexed: 11/15/2022] Open
Abstract
Lactic acidosis (3 to 40 mM, pH < 6.9) is a condition found in solid tumors because tumor cells have a high rate of glucose consumption and lactate production even in the presence of oxygen; nevertheless, the microenvironment might still provide a sufficient glucose supply. Lactic acidosis has been proposed to shift metabolism from aerobic glycolysis toward oxidative phosphorylation (OXPHOS). We tested if lung tumor cells cultured under lactic acidosis shift their metabolism from glycolysis to OXPHOS by consuming extracellular lactate, increasing growth rate. We analyzed lung adenocarcinoma (A-549, A-427) cell lines and non-transformed fibroblast cells (MRC-5), which were cultured using RPMI-1640 medium initially containing lactate (2 mM) and glucose (10 mM), at pH 7.2 or 6.2 and oxygen tension 21% O2 (normoxia) or 2% O2 (hypoxia). We obtained growth curves, as well as glucose consumption and lactate production rates (measured during exponential growth) for each cell line. HIF-1α (Hypoxia-inducible factor 1 α), CS (citrate synthase) and AMPK (AMP-activated protein kinase) transcript levels were analyzed using RT-qPCR. By flow cytometry, we determined: (a) expression of glucose transporters (GLUT)1 and 4; (b) lactate transporters (MCT)1 and 4; (c) cell cycle profile, and (d) protein levels of HIF-1α, total and phosphorylated AMPK (pAMPK). Mitochondrial functionality was evaluated by measuring O2 consumption in tumor cells using polarography and a Clark-type electrode. Tumor and non-transformed cells used both aerobic glycolysis and OXPHOS for obtaining energy. As of 48 h of culture, lactate levels ranged from (4.5–14 mM), thus forming a lactic environment. Lactic acidosis diminished GLUT1/GLUT4 expression and glucose consumption in A-549, but not in A-427 cells, and induced differential expression of HIF-1α, AMPK, and CS transcripts. A-427 cells increased pAMPK and HIF-1α levels and shifted their metabolism increasing OXPHOS; thus supporting cell growth. Conversely, A-549 cells increased HIF-1α protein levels, but did not activate AMPK and diminished OXPHOS. A-549 cells survived by arresting cells in G1-phase. Our findings show that lactic acidosis diminishes Warburg effect in tumor cells, but this change does not necessarily promote a shift to OXPHOS. Hence, lung adenocarcinomas show a differential metabolic response even when they are under the same microenvironmental conditions.
Collapse
Affiliation(s)
- Heriberto Prado-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Andrea Campa-Higareda
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
189
|
(-)-Epicatechin Modulates Mitochondrial Redox in Vascular Cell Models of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6392629. [PMID: 32587663 PMCID: PMC7301192 DOI: 10.1155/2020/6392629] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/20/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus affects 451 million people worldwide, and people with diabetes are 3-5 times more likely to develop cardiovascular disease. In vascular tissue, mitochondrial function is important for vasoreactivity. Diabetes-mediated generation of excess reactive oxygen species (ROS) may contribute to vascular dysfunction via damage to mitochondria and regulation of endothelial nitric oxide synthase (eNOS). We have identified (–)-epicatechin (EPICAT), a plant compound and known vasodilator, as a potential therapy. We hypothesized that mitochondrial ROS in cells treated with antimycin A (AA, a compound targeting mitochondrial complex III) or high glucose (HG, global perturbation) could be normalized by EPICAT, and correlate with improved mitochondrial dynamics and cellular signaling. Human umbilical vein endothelial cells (HUVEC) were treated with HG, AA, and/or 0.1 or 1.0 μM of EPICAT. Mitochondrial and cellular superoxide, mitochondrial respiration, and cellular signaling upstream of mitochondrial function were assessed. EPICAT at 1.0 μM significantly attenuated mitochondrial superoxide in HG-treated cells. At 0.1 μM, EPICAT nonsignificantly increased mitochondrial respiration, agreeing with previous reports. EPICAT significantly increased complex I expression in AA-treated cells, and 1.0 μM EPICAT significantly decreased mitochondrial complex V expression in HG-treated cells. No significant effects were seen on either AMPK or eNOS expression. Our study suggests that EPICAT is useful in mitigating moderate ROS concentrations from a global perturbation and may modulate mitochondrial complex activity. Our data illustrate that EPICAT acts in the cell in a dose-dependent manner, demonstrating hormesis.
Collapse
|
190
|
Zhang Y, Li Y, Feng Q, Shao M, Yuan F, Liu F. Polydatin attenuates cadmium-induced oxidative stress via stimulating SOD activity and regulating mitochondrial function in Musca domestica larvae. CHEMOSPHERE 2020; 248:126009. [PMID: 32000039 DOI: 10.1016/j.chemosphere.2020.126009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a widespread environment contaminant due to the development of electroplating and metallurgical industry. Cd can be enriched by organisms via food chain, causing the enlarged environmental problems and posing threats to the health of humans. Polydatin (PD), a natural stilbenoid compound derived from Polygonum cuspidatum, shows pronouncedly curative effect on oxidative damage. In this work, the protective effects of PD on oxidative damage induced by Cd in Musca domestica (housefly) larvae were evaluated. The larvae were exposed to Cd and/or PD, subsequently, the oxidative stress status, mitochondria activity, oxidative phosphorylation efficiency, and survival rate were assessed. Cd exposure generated significant increases of malondialdehyde (MDA), reactive oxygen species (ROS) and 8-hydroxy-2-deoxyguanosine (8-oxoG) in the housefly larvae, causing mitochondrial dysfunction and survival rate decline. Interestingly, pretreatment with PD exhibited obviously mitochondrial protective effects in the Cd-exposed larvae, as evidenced by reduced MDA, ROS and 8-oxoG levels, and increased activities of superoxide dismutase (SOD), mitochondrial electron transfer chain, and mitochondrial membrane potential, as well as respiratory control ratio. These results suggested that PD could attenuate Cd-induced damage via maintaining redox balance, stimulating SOD activity, and regulating mitochondria activity in housefly larvae. As a natural polyphenolic chemical, PD can act as a potential candidate compounds to relieve Cd injury.
Collapse
Affiliation(s)
- Yuming Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yajing Li
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Qin Feng
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Menghua Shao
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fengyu Yuan
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fengsong Liu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
191
|
Functional changes induced by caloric restriction in cardiac and skeletal muscle mitochondria. J Bioenerg Biomembr 2020; 52:269-277. [PMID: 32462240 DOI: 10.1007/s10863-020-09838-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
Abstract
Caloric restriction (CR) is widely known to increase life span and resistance to different types of injuries in several organisms. We have previously shown that mitochondria from livers or brains of CR animals exhibit higher calcium uptake rates and lower sensitivity to calcium-induced mitochondrial permeability transition (mPT), an event related to the resilient phenotype exhibited by these organs. Given the importance of calcium in metabolic control and cell homeostasis, we aimed here to uncover possible changes in mitochondrial calcium handling, redox balance and bioenergetics in cardiac and skeletal muscle mitochondria in response to six months of CR. Unexpectedly, we found that CR does not alter the susceptibility to mPT in muscle (cardiac or skeletal), nor calcium uptake rates. Despite the lack in changes in calcium transport properties, CR consistently decreased respiration in the presence of ATP synthesis in heart and soleus muscle. In heart, such changes were accompanied by a decrease in respiration in the absence of ATP synthesis, lower maximal respiratory rates and a reduced rate of hydrogen peroxide release. Hydrogen peroxide release was unaltered by CR in skeletal muscle. No changes were observed in inner membrane potentials and respiratory control ratios. Together, these results highlight the tissue-specific bioenergetic and ion transport effects induced by CR, demonstrating that resilience against calcium-induced mPT is not present in all tissues.
Collapse
|
192
|
Dawson N, Salmón P. Age-related increase in mitochondrial quantity may mitigate a decline in mitochondrial quality in red blood cells from zebra finches (Taeniopygia guttata). Exp Gerontol 2020; 133:110883. [DOI: 10.1016/j.exger.2020.110883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
|
193
|
Lerchundi R, Huang N, Rose CR. Quantitative Imaging of Changes in Astrocytic and Neuronal Adenosine Triphosphate Using Two Different Variants of ATeam. Front Cell Neurosci 2020; 14:80. [PMID: 32372916 PMCID: PMC7186936 DOI: 10.3389/fncel.2020.00080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
Genetically encoded nanosensors such as the FRET-based adenosine triphosphate (ATP) sensor ATeam enable the measurement of changes in ATP levels inside cells, promoting our understanding of metabolic interactions between astrocytes and neurons. The sensors are usually well characterized in vitro but display altered properties when expressed inside cells, precluding a meaningful conversion of changes in FRET ratios into changes in intracellular ATP concentrations ([ATP]) on the basis of their in vitro properties. Here, we present an experimental strategy for the intracellular calibration of two different variants of ATeam in organotypic tissue slice culture of the mouse brain. After cell-type-specific expression of the sensors in astrocytes or neurons, slices were first perfused with a saline containing the saponin β-escin to permeabilize plasma membranes for ATP. Next, cells were depleted of ATP by perfusion with ATP-free saline containing metabolic inhibitors. Finally, ATP was re-added at defined concentrations and resulting changes in the FRET ratio recorded. When employing this protocol, ATeam1.03 expressed in astrocytes reliably responds to changes in [ATP], exhibiting an apparent KD of 9.4 mM. The high-affinity sensor ATeam1.03YEMK displayed a significantly lower intracellular KD of 2.7 mM. On the basis of these calibrations, we found that induction of a recurrent neuronal network activity resulted in an initial transient increase in astrocytic [ATP] by ~0.12 mM as detected by ATeam1.03YEMK, a result confirmed using ATeam1.03. In neurons, in contrast, [ATP] immediately started to decline upon initiation of a network activity, amounting to a decrease by an average of 0.29 mM after 2 min. Taken together, our results demonstrate that ATeam1.03YEMK and ATeam1.03 display a significant increase in their apparent KD when expressed inside cells as compared with in vitro. Moreover, they show that both ATeam variants enable the quantitative detection of changes of astrocytic and neuronal [ATP] in the physiological range. ATeam1.03YEMK, however, seems preferable because its KD is close to baseline ATP levels. Finally, our data support the idea that synchronized neuronal activity initially stimulates the generation of ATP in astrocytes, presumably through increased glycolysis, whereas ATP levels in neurons decline.
Collapse
Affiliation(s)
- Rodrigo Lerchundi
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Na Huang
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
194
|
Kawamura E, Maruyama M, Abe J, Sudo A, Takeda A, Takada S, Yokota T, Kinugawa S, Harashima H, Yamada Y. Validation of Gene Therapy for Mutant Mitochondria by Delivering Mitochondrial RNA Using a MITO-Porter. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:687-698. [PMID: 32388194 PMCID: PMC7210581 DOI: 10.1016/j.omtn.2020.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 10/29/2022]
Abstract
Here, we report on validating a mitochondrial gene therapy by delivering nucleic acids to mitochondria of diseased cells by a MITO-Porter, a liposome-based carrier for mitochondrial delivery. We used cells derived from a patient with a mitochondrial disease with a G625A heteroplasmic mutation in the tRNAPhe of the mitochondrial DNA (mtDNA). It has been reported that some mitochondrial gene diseases are caused by heteroplasmic mutations, in which both mutated and wild-type (WT) genes are present, and the accumulation of pathological mutations leads to serious, intractable, multi-organ diseases. Therefore, the decrease of the mutated gene rate is considered to be a useful gene therapy strategy. To accomplish this, wild-type mitochondrial pre-tRNAPhe (pre-WT-tRNAPhe), prepared by in vitro transcription, was encapsulated in the MITO-Porter. The pre-WT-tRNAPhe encapsulated in the MITO-Porter was transfected into diseased mitochondrial cells, and the resulting mutant levels were examined by an amplification refractory mutation system (ARMS)-quantitative PCR. The mutation rate of tRNAPhe was decreased, and this therapeutic effect was sustained even on the 8th day after transfection. Furthermore, mitochondrial respiratory activity of the disease cells was increased after the transfection of therapeutic pre-WT-tRNAPhe. These results support the conclusion that the mitochondrial delivery of therapeutic nucleic acids represents a viable strategy for mitochondrial gene therapy.
Collapse
Affiliation(s)
- Eriko Kawamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Minako Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Jiro Abe
- Department of Pediatrics, Hokkaido University Hospital, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Akira Sudo
- Nire-no-kai Children's Clinic, Atsubetsu-cho Shimonopporo-49, Atsubetsu-ku, Sapporo 004-0007, Japan; Department of Pediatrics, Sapporo City General Hospital, Kita-11, Nishi-13, Chuo-ku, Sapporo 060-8604, Japan
| | - Atsuhito Takeda
- Department of Pediatrics, Hokkaido University Hospital, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
195
|
Panajatovic MV, Singh F, Roos NJ, Duthaler U, Handschin C, Krähenbühl S, Bouitbir J. PGC-1α plays a pivotal role in simvastatin-induced exercise impairment in mice. Acta Physiol (Oxf) 2020; 228:e13402. [PMID: 31605661 DOI: 10.1111/apha.13402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
Abstract
AIM Statins decrease cardiovascular complications, but can induce myopathy. Here, we explored the implication of PGC-1α in statin-associated myotoxicity. METHODS We treated PGC-1α knockout (KO), PGC-1α overexpression (OE) and wild-type (WT) mice orally with 5 mg simvastatin kg-1 day-1 for 3 weeks and assessed muscle function and metabolism. RESULTS In WT and KO mice, but not in OE mice, simvastatin decreased grip strength, maximal running distance and vertical power assessed by ergometry. Post-exercise plasma lactate concentrations were higher in WT and KO compared to OE mice. In glycolytic gastrocnemius, simvastatin decreased mitochondrial respiration, increased mitochondrial ROS production and free radical leak in WT and KO, but not in OE mice. Simvastatin increased mRNA expression of Sod1 and Sod2 in glycolytic and oxidative gastrocnemius of WT, but decreased it in KO mice. OE mice had a higher mitochondrial DNA content in both gastrocnemius than WT or KO mice and simvastatin exhibited a trend to decrease the citrate synthase activity in white and red gastrocnemius in all treatment groups. Simvastatin showed a trend to decrease the mitochondrial volume fraction in both muscle types of all treatment groups. Mitochondria were smaller in WT and KO compared to OE mice and simvastatin further reduced the mitochondrial size in WT and KO mice, but not in OE mice. CONCLUSIONS Simvastatin impairs skeletal muscle function, muscle oxidative metabolism and mitochondrial morphology preferentially in WT and KO mice, whereas OE mice appear to be protected, suggesting a role of PGC-1α in preventing simvastatin-associated myotoxicity.
Collapse
Affiliation(s)
- Miljenko Valentin Panajatovic
- Division of Clinical Pharmacology & Toxicology University Hospital Basel Switzerland
- Department of Biomedicine University of Basel Basel Switzerland
| | - François Singh
- Division of Clinical Pharmacology & Toxicology University Hospital Basel Switzerland
- Department of Biomedicine University of Basel Basel Switzerland
| | - Noëmi Johanna Roos
- Division of Clinical Pharmacology & Toxicology University Hospital Basel Switzerland
- Department of Biomedicine University of Basel Basel Switzerland
| | - Urs Duthaler
- Division of Clinical Pharmacology & Toxicology University Hospital Basel Switzerland
- Department of Biomedicine University of Basel Basel Switzerland
| | | | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology University Hospital Basel Switzerland
- Department of Biomedicine University of Basel Basel Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT) Basel Switzerland
| | - Jamal Bouitbir
- Division of Clinical Pharmacology & Toxicology University Hospital Basel Switzerland
- Department of Biomedicine University of Basel Basel Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT) Basel Switzerland
| |
Collapse
|
196
|
Rebane-Klemm E, Truu L, Reinsalu L, Puurand M, Shevchuk I, Chekulayev V, Timohhina N, Tepp K, Bogovskaja J, Afanasjev V, Suurmaa K, Valvere V, Kaambre T. Mitochondrial Respiration in KRAS and BRAF Mutated Colorectal Tumors and Polyps. Cancers (Basel) 2020; 12:cancers12040815. [PMID: 32231083 PMCID: PMC7226330 DOI: 10.3390/cancers12040815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
This study aimed to characterize the ATP-synthesis by oxidative phosphorylation in colorectal cancer (CRC) and premalignant colon polyps in relation to molecular biomarkers KRAS and BRAF. This prospective study included 48 patients. Resected colorectal polyps and postoperative CRC tissue with adjacent normal tissue (control) were collected. Patients with polyps and CRC were divided into three molecular groups: KRAS mutated, BRAF mutated and KRAS/BRAF wild-type. Mitochondrial respiration in permeabilized tissue samples was observed using high resolution respirometry. ADP-activated respiration rate (Vmax) and an apparent affinity of mitochondria to ADP, which is related to mitochondrial outer membrane (MOM) permeability, were determined. Clear differences were present between molecular groups. KRAS mutated CRC group had lower Vmax values compared to wild-type; however, the Vmax value was higher than in the control group, while MOM permeability did not change. This suggests that KRAS mutation status might be involved in acquiring oxidative phenotype. KRAS mutated polyps had higher Vmax values and elevated MOM permeability as compared to the control. BRAF mutated CRC and polyps had reduced respiration and altered MOM permeability, indicating a glycolytic phenotype. To conclude, prognostic biomarkers KRAS and BRAF are likely related to the metabolic phenotype in CRC and polyps. Assessment of the tumor mitochondrial ATP synthesis could be a potential component of patient risk stratification.
Collapse
Affiliation(s)
- Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Ehitajate tee 5, 12618 Tallinn, Estonia
- Correspondence:
| | - Laura Truu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Ehitajate tee 5, 12618 Tallinn, Estonia
| | - Leenu Reinsalu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Ehitajate tee 5, 12618 Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| | - Natalja Timohhina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| | - Jelena Bogovskaja
- Clinic of Diagnostics at the North Estonia Medical Centre, J. Sütiste tee 19, 13419 Tallinn, Estonia;
| | - Vladimir Afanasjev
- Clinic of Surgery at the North Estonia Medical Centre, J. Sütiste tee 19, 13419 Tallinn, Estonia;
| | - Külliki Suurmaa
- Department of Gastroenterology, the West Tallinn Central Hospital, Paldiski mnt 68, 10617 Tallinn, Estonia;
| | - Vahur Valvere
- Oncology and Haematology Clinic at the North Estonia Medical Centre, J. Sütiste tee 19, 13419 Tallinn, Estonia;
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| |
Collapse
|
197
|
Davies KL, Camm EJ, Atkinson EV, Lopez T, Forhead AJ, Murray AJ, Fowden AL. Development and thyroid hormone dependence of skeletal muscle mitochondrial function towards birth. J Physiol 2020; 598:2453-2468. [PMID: 32087026 PMCID: PMC7317365 DOI: 10.1113/jp279194] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Key points Skeletal muscle energy requirements increase at birth but little is known regarding the development of mitochondria that provide most of the cellular energy as ATP. Thyroid hormones are known regulators of adult metabolism and are important in driving several aspects of fetal development, including muscle fibre differentiation. Mitochondrial density and the abundance of mitochondrial membrane proteins in skeletal muscle increased during late gestation. However, mitochondrial functional capacity, measured as oxygen consumption rate, increased primarily after birth. Fetal hypothyroidism resulted in significant reductions in mitochondrial function and density in skeletal muscle before birth. Mitochondrial function matures towards birth and is dependent on the presence of thyroid hormones, with potential implications for the health of pre‐term and hypothyroid infants.
Abstract Birth is a significant metabolic challenge with exposure to a pro‐oxidant environment and the increased energy demands for neonatal survival. This study investigated the development of mitochondrial density and activity in ovine biceps femoris skeletal muscle during the perinatal period and examined the role of thyroid hormones in these processes. Muscle capacity for oxidative phosphorylation increased primarily after birth but was accompanied by prepartum increases in mitochondrial density and the abundance of electron transfer system (ETS) complexes I–IV and ATP‐synthase as well as by neonatal upregulation of uncoupling proteins. This temporal disparity between prepartum maturation and neonatal upregulation of mitochondrial oxidative capacity may protect against oxidative stress associated with birth while ensuring energy availability to the neonate. Fetal thyroid hormone deficiency reduced oxidative phosphorylation and prevented the prepartum upregulation of mitochondrial density and ETS proteins in fetal skeletal muscle. Overall, the data show that mitochondrial function matures over the perinatal period and is dependent on thyroid hormones, with potential consequences for neonatal viability and adult metabolic health. Skeletal muscle energy requirements increase at birth but little is known regarding the development of mitochondria that provide most of the cellular energy as ATP. Thyroid hormones are known regulators of adult metabolism and are important in driving several aspects of fetal development, including muscle fibre differentiation. Mitochondrial density and the abundance of mitochondrial membrane proteins in skeletal muscle increased during late gestation. However, mitochondrial functional capacity, measured as oxygen consumption rate, increased primarily after birth. Fetal hypothyroidism resulted in significant reductions in mitochondrial function and density in skeletal muscle before birth. Mitochondrial function matures towards birth and is dependent on the presence of thyroid hormones, with potential implications for the health of pre‐term and hypothyroid infants.
Collapse
Affiliation(s)
- K L Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - E J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - E V Atkinson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - T Lopez
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - A J Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.,Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - A J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - A L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
198
|
Szibor M, Schreckenberg R, Gizatullina Z, Dufour E, Wiesnet M, Dhandapani PK, Debska‐Vielhaber G, Heidler J, Wittig I, Nyman TA, Gärtner U, Hall AR, Pell V, Viscomi C, Krieg T, Murphy MP, Braun T, Gellerich FN, Schlüter K, Jacobs HT. Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia. J Cell Mol Med 2020; 24:3534-3548. [PMID: 32040259 PMCID: PMC7131948 DOI: 10.1111/jcmm.15043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cardiac ischaemia-reperfusion (I/R) injury has been attributed to stress signals arising from an impaired mitochondrial electron transport chain (ETC), which include redox imbalance, metabolic stalling and excessive production of reactive oxygen species (ROS). The alternative oxidase (AOX) is a respiratory enzyme, absent in mammals, that accepts electrons from a reduced quinone pool to reduce oxygen to water, thereby restoring electron flux when impaired and, in the process, blunting ROS production. Hence, AOX represents a natural rescue mechanism from respiratory stress. This study aimed to determine how respiratory restoration through xenotopically expressed AOX affects the re-perfused post-ischaemic mouse heart. As expected, AOX supports ETC function and attenuates the ROS load in post-anoxic heart mitochondria. However, post-ischaemic cardiac remodelling over 3 and 9 weeks was not improved. AOX blunted transcript levels of factors known to be up-regulated upon I/R such as the atrial natriuretic peptide (Anp) whilst expression of pro-fibrotic and pro-apoptotic transcripts were increased. Ex vivo analysis revealed contractile failure at nine but not 3 weeks after ischaemia whilst label-free quantitative proteomics identified an increase in proteins promoting adverse extracellular matrix remodelling. Together, this indicates an essential role for ETC-derived signals during cardiac adaptive remodelling and identified ROS as a possible effector.
Collapse
Affiliation(s)
- Marten Szibor
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Department of Cardiothoracic SurgeryJena University HospitalJenaGermany
| | | | | | - Eric Dufour
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Marion Wiesnet
- Department Cardiac Development and RemodellingMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Praveen K. Dhandapani
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | | | - Juliana Heidler
- Functional ProteomicsFaculty of MedicineGoethe UniversityFrankfurt am MainGermany
| | - Ilka Wittig
- Functional ProteomicsFaculty of MedicineGoethe UniversityFrankfurt am MainGermany
| | - Tuula A. Nyman
- Department of ImmunologyInstitute of Clinical MedicineOslo University HospitalUniversity of OsloOsloNorway
| | - Ulrich Gärtner
- Institute of Anatomy and Cell BiologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Andrew R. Hall
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Victoria Pell
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Carlo Viscomi
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Thomas Krieg
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Michael P. Murphy
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Thomas Braun
- Department Cardiac Development and RemodellingMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | | | | | - Howard T. Jacobs
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
199
|
Ramos PM, Li C, Elzo MA, Wohlgemuth SE, Scheffler TL. Mitochondrial oxygen consumption in early postmortem permeabilized skeletal muscle fibers is influenced by cattle breed. J Anim Sci 2020; 98:skaa044. [PMID: 32171017 PMCID: PMC7071943 DOI: 10.1093/jas/skaa044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Functional properties and integrity of skeletal muscle mitochondria (mt) during the early postmortem period may influence energy metabolism and pH decline, thereby impacting meat quality development. Angus typically produce more tender beef than Brahman, a Bos indicus breed known for heat tolerance. Thus, our objectives were to compare mt respiratory function in muscle collected early postmortem (1 h) from Angus and Brahman steers (n = 26); and to evaluate the effect of normal and elevated temperature on mt function ex vivo. We measured mt oxygen consumption rate (OCR) in fresh-permeabilized muscle fibers from Longissimus lumborum (LL) at 2 temperatures (38.5 and 40.0 °C) and determined citrate synthase (CS) activity and expression of several mt proteins. The main effects of breed, temperature, and their interaction were tested for mt respiration, and breed effect was tested for CS activity and protein expression. Breed, but not temperature (P > 0.40), influenced mt OCR (per tissue weight), with Brahman exhibiting greater complex I+II-mediated oxidative phosphorylation capacity (P = 0.05). Complex I- and complex II-mediated OCR also tended to be greater in Brahman (P = 0.07 and P = 0.09, respectively). Activity of CS was higher in LL from Brahman compared to Angus (P = 0.05). Expression of specific mt proteins did not differ between breeds, except for higher expression of adenosine triphosphate (ATP) synthase subunit 5 alpha in Brahman muscle (P = 0.04). Coupling control ratio differed between breeds (P = 0.05), revealing greater coupling between oxygen consumption and phosphorylation in Brahman. Our data demonstrate that both Angus and Brahman mt retained functional capacity and integrity 1-h postmortem; greater oxidative phosphorylation capacity and coupling in Brahman mt could be related to heat tolerance and impact early postmortem metabolism.
Collapse
Affiliation(s)
- Patricia M Ramos
- Department of Animal Sciences, “Luiz de Queiroz” College of Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Chengcheng Li
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Mauricio A Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | | | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL
| |
Collapse
|
200
|
Kammoun M, Piquereau J, Nadal‐Desbarats L, Même S, Beuvin M, Bonne G, Veksler V, Le Fur Y, Pouletaut P, Même W, Szeremeta F, Constans J, Bruinsma ES, Nelson Holte MH, Najafova Z, Johnsen SA, Subramaniam M, Hawse JR, Bensamoun SF. Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities. Acta Physiol (Oxf) 2020; 228:e13394. [PMID: 31560161 DOI: 10.1111/apha.13394] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022]
Abstract
AIM Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. METHODS We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. RESULTS Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1 H-NMR spectra revealed no significant metabolic difference between wild-type and KO muscles. However, 31 P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. CONCLUSION Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.
Collapse
Affiliation(s)
- Malek Kammoun
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| | - Jerome Piquereau
- Signalling and Cardiovascular Pathophysiology ‐ UMR‐S 1180 Université Paris‐Sud INSERM Université Paris‐Saclay Châtenay‐Malabry France
| | | | - Sandra Même
- CNRS UPR4301 Centre de Biophysique Moléculaire Orléans France
| | - Maud Beuvin
- Inserm U974 Centre de Recherche en Myologie Sorbonne Université Paris France
| | - Gisèle Bonne
- Inserm U974 Centre de Recherche en Myologie Sorbonne Université Paris France
| | - Vladimir Veksler
- Signalling and Cardiovascular Pathophysiology ‐ UMR‐S 1180 Université Paris‐Sud INSERM Université Paris‐Saclay Châtenay‐Malabry France
| | - Yann Le Fur
- Aix‐Marseille University CNRS CRMBM Marseille France
| | - Philippe Pouletaut
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| | - William Même
- CNRS UPR4301 Centre de Biophysique Moléculaire Orléans France
| | | | - Jean‐Marc Constans
- Institut Faire Faces EA Chimère Imagerie et Radiologie Médicale CHU Amiens Amiens France
| | | | | | - Zeynab Najafova
- Department of General, Visceral and Pediatric Surgery University Medical Center Göttingen Göttingen Germany
| | - Steven A. Johnsen
- Department of General, Visceral and Pediatric Surgery University Medical Center Göttingen Göttingen Germany
| | | | - John R. Hawse
- Department of Biochemistry and Molecular Biology Mayo Clinic Rochester MN USA
| | - Sabine F. Bensamoun
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| |
Collapse
|