151
|
Xiao L, Zhou Y, Friis T, Beagley K, Xiao Y. S1P-S1PR1 Signaling: the "Sphinx" in Osteoimmunology. Front Immunol 2019; 10:1409. [PMID: 31293578 PMCID: PMC6603153 DOI: 10.3389/fimmu.2019.01409] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
The fundamental interaction between the immune and skeletal systems, termed as osteoimmunology, has been demonstrated to play indispensable roles in the maintenance of balance between bone resorption and formation. The pleiotropic sphingolipid metabolite, sphingosine 1-phosphate (S1P), together with its cognate receptor, sphingosine-1-phosphate receptor-1 (S1PR1), are known as key players in osteoimmunology due to the regulation on both immune system and bone remodeling. The role of S1P-S1PR1 signaling in bone remodeling can be directly targeting both osteoclastogenesis and osteogenesis. Meanwhile, inflammatory cell function and polarization in both adaptive immune (T cell subsets) and innate immune cells (macrophages) are also regulated by this signaling axis, suggesting that S1P-S1PR1 signaling could aslo indirectly regulate bone remodeling via modulating the immune system. Therefore, it could be likely that S1P-S1PR1 signaling might take part in the maintenance of continuous bone turnover under physiological conditions, while lead to the pathogenesis of bone deformities during inflammation. In this review, we summarized the immunological regulation of S1P-S1PR1 signal axis during bone remodeling with an emphasis on how osteo-immune regulators are affected by inflammation, an issue with relevance to chronical bone disorders such as rheumatoid arthritis, spondyloarthritis and periodontitis.
Collapse
Affiliation(s)
- Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Thor Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
152
|
Jena PK, Sheng L, Mcneil K, Chau TQ, Yu S, Kiuru M, Fung MA, Hwang ST, Wan YJY. Long-term Western diet intake leads to dysregulated bile acid signaling and dermatitis with Th2 and Th17 pathway features in mice. J Dermatol Sci 2019; 95:13-20. [PMID: 31213388 DOI: 10.1016/j.jdermsci.2019.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/09/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dietary interventions are implicated in the development of atopic dermatitis, psoriasis, and acne. OBJECTIVE To investigate the effect of diet and the bile acid (BA) receptors, such as TGR5 (Takeda G protein receptor 5) and S1PR2 (sphingosine-1-phosphate receptor 2) in the development of dermatitis. METHODS C57BL/6 mice were fed a control diet (CD) or Western diet (WD) since weaning until they were 10 months old followed by analyzing histology, gene expression, and BA profiling. RESULTS Mice developed dermatitis as they aged and the incidence was higher in females than males. Additionally, WD intake substantially increased the incidence of dermatitis. Cutaneous antimicrobial peptide genesS100A8, S100A9, and Defb4 were reduced in WD-fed mice, but increased when mice developed skin lesions. In addition, Tgr5 and TGR5-regulated Dio2 and Nos3 were reduced in WD intake but induced in dermatitic lesions. Trpa1 and Trpv1, which mediate itch, were also increased in dermatitic lesions. The expression of S1pr2 and genes encoding sphingosine kinases, S1P phosphatases, binding protein, and transporter were all reduced by WD intake but elevated in dermatitic lesions. Furthermore, dermatitis development increased total cutaneous BA with an altered profile, which may change TGR5 and S1PR2 activity. Moreover, supplementation with BA sequestrant cholestyramine reduced epidermal thickening as well as cutaneous inflammatory cytokines. CONCLUSION In summary, activation of TGR5 and S1PR2, which regulate itch, keratinocyte proliferation, metabolism, and inflammation, may contribute to WD-exacerbated dermatitis with Th2 and Th17 features. In addition, elevated total BA play a significant role in inducing dermatitis and cutaneous inflammation.
Collapse
Affiliation(s)
- Prasant Kumar Jena
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Lili Sheng
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Kyle Mcneil
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Thinh Q Chau
- Department of Dermatology, University of California, Davis, Sacramento, CA, 95817, USA
| | - Sebastian Yu
- Department of Dermatology, University of California, Davis, Sacramento, CA, 95817, USA
| | - Maija Kiuru
- Department of Dermatology, University of California, Davis, Sacramento, CA, 95817, USA
| | - Maxwell A Fung
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, 95817, USA; Department of Dermatology, University of California, Davis, Sacramento, CA, 95817, USA
| | - Samuel T Hwang
- Department of Dermatology, University of California, Davis, Sacramento, CA, 95817, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
153
|
Inoue T, Kohno M, Nagahara H, Murakami K, Sagawa T, Kasahara A, Kaneshita S, Kida T, Fujioka K, Wada M, Nakada H, Hla T, Kawahito Y. Upregulation of sphingosine-1-phosphate receptor 3 on fibroblast-like synoviocytes is associated with the development of collagen-induced arthritis via increased interleukin-6 production. PLoS One 2019; 14:e0218090. [PMID: 31173610 PMCID: PMC6555509 DOI: 10.1371/journal.pone.0218090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sphingosine-1-phosphate receptor 3 (S1P3) is one of five receptors for sphingosine-1-phosphate (S1P). S1P/S1P3 signaling is involved in numerous physiological and pathological processes including bone metabolism, sepsis, cancer, and immunity. In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLSs) are activated by several factors and promote abundant proinflammatory cytokine production and bone destruction. The aim of this study was to investigate whether S1P3 is associated with the development of autoimmune arthritis and the pathogenic function of FLSs. METHODS Wild-type (WT) and S1P3 knockout (S1P3-KO) collagen-induced arthritis (CIA) mice were evaluated with respect to clinical and histological disease severity, along with the levels of anti-collagen antibodies and expression of tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6). S1P3 expression in the synovium was analyzed by real-time reverse-transcription polymerase chain reaction (RT-PCR) and immunofluorescence staining. FLSs isolated from CIA mice were activated with TNFα and S1P3 expression was analyzed by real-time RT-PCR. The role of S1P/S1P3 signaling in activated and non-activated FLSs was investigated by measuring cell proliferation and cyto/chemokine production by real-time RT-PCR and/or enzyme-linked immunosorbent assay. RESULTS Clinical and histological scores, and synovial IL-6 expression were significantly lower in S1P3-KO mice with CIA than in WT mice. Arthritic synovia had higher S1P3 expression than intact synovia and FLSs in arthritic joints expressed S1P3 in vivo. Primary cultured FLSs produced IL-6 in a time-dependent manner in response to S1P stimulation and exhibited higher levels of S1P3 expression after activation with TNFα. S1P3-induced production of IL-6 and MMP-3 was increased in FLSs pre-activated with TNFα. CONCLUSION In this study, we demonstrated that S1P3 expression is associated with the development of autoimmune arthritis via inflammation-induced increases in S1P/S1P3 signaling that increase production of IL-6 in FLSs. Inhibition of S1P/S1P3 signaling could open the door to the development of new therapies for RA.
Collapse
Affiliation(s)
- Takuya Inoue
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masataka Kohno
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| | - Hidetake Nagahara
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Murakami
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoya Sagawa
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Kasahara
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shunya Kaneshita
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Kida
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuki Fujioka
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Makoto Wada
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Nakada
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Timothy Hla
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yutaka Kawahito
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
154
|
Lange MD, Abernathy J, Farmer BD. Evaluation of a Recombinant Flavobacterium columnare DnaK Protein Vaccine as a Means of Protection Against Columnaris Disease in Channel Catfish ( Ictalurus punctatus). Front Immunol 2019; 10:1175. [PMID: 31244827 PMCID: PMC6562308 DOI: 10.3389/fimmu.2019.01175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/08/2019] [Indexed: 01/18/2023] Open
Abstract
Flavobacterium columnare causes substantial losses among cultured finfish species. The Gram-negative bacterium is an opportunistic pathogen that manifests as biofilms on the host's mucosal surfaces as the disease progresses. We previously demonstrated that the dominant mucosal IgM antibody response to F. columnare is to the chaperone protein DnaK that is found in the extracellular fraction. To establish the efficacy of using recombinant protein technology to develop a new vaccine against columnaris disease, we are reporting on two consecutive years of vaccine trials using a recombinant F. columnare DnaK protein (rDnaK). In year one, three groups of channel catfish (n = 300) were immunized by bath immersion with a live attenuated F. columnare isolate, rDnaK or sham immunized. After 6 weeks, an F. columnare laboratory challenge showed a significant increase in survival (>30%) in both the live attenuated and rDnaK vaccines when compared to the non-immunized control. A rDnaK-specific ELISA revealed significant levels of mucosal IgM antibodies in the skin of catfish immunized with rDnaK at 4- and 6-weeks post immunization. In the second year, three groups of channel catfish (n = 300) were bath immunized with rDnaK alone or with rDnaK after a brief osmotic shock or sham immunized. After 6 weeks a laboratory challenge with F. columnare was conducted and showed a significant increase in survival in the rDnaK (> 25%) and in rDnaK with osmotic shock (>35%) groups when compared to the non-immunized control. The rDnaK-specific ELISA demonstrated significant levels of mucosal IgM antibodies in the skin of catfish groups immunized with rDnaK at 4- and 6-weeks post immunization. To further understand the processes which have conferred immune protection in the rDnaK group, we conducted RNA sequencing of skin samples from the non-immunized (n = 6) and rDnaK treated channel catfish at 1-week (n = 6) and 6 weeks (n = 6) post immunization. Significantly altered gene expression was identified and results will be discussed. Work to further enhance the catfish immune response to F. columnare rDnaK is underway as this protein remains a promising candidate for additional optimization and experimental trials in a production setting.
Collapse
Affiliation(s)
- Miles D Lange
- Harry K. Dupree Stuttgart National Aquaculture Research Center, Agricultural Research Service, United States Department of Agriculture, Stuttgart, AR, United States
| | - Jason Abernathy
- Harry K. Dupree Stuttgart National Aquaculture Research Center, Agricultural Research Service, United States Department of Agriculture, Stuttgart, AR, United States
| | - Bradley D Farmer
- Harry K. Dupree Stuttgart National Aquaculture Research Center, Agricultural Research Service, United States Department of Agriculture, Stuttgart, AR, United States
| |
Collapse
|
155
|
Salas-Perdomo A, Miró-Mur F, Gallizioli M, Brait VH, Justicia C, Meissner A, Urra X, Chamorro A, Planas AM. Role of the S1P pathway and inhibition by fingolimod in preventing hemorrhagic transformation after stroke. Sci Rep 2019; 9:8309. [PMID: 31165772 PMCID: PMC6549179 DOI: 10.1038/s41598-019-44845-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/24/2019] [Indexed: 12/31/2022] Open
Abstract
Hemorrhagic transformation (HT) is a complication of severe ischemic stroke after revascularization. Patients with low platelet counts do not receive reperfusion therapies due to high risk of HT. The immunomodulatory drug fingolimod attenuated HT after tissue plasminogen activator in a thromboembolic stroke model, but the underlying mechanism is unknown. Fingolimod acts on several sphingosine-1-phosphate (S1P) receptors, prevents lymphocyte trafficking to inflamed tissues, and affects brain and vascular cells. This study aimed to investigate changes in S1P-signaling in response to brain ischemia/reperfusion and the effects of the S1P receptor modulator fingolimod on HT. We studied brain expression of S1P signaling components, S1P concentration, and immune cell infiltration after ischemia/reperfusion in mice. We administered fingolimod after ischemia to wild-type mice, lymphocyte-deficient Rag2−/− mice, and mice with low platelet counts. Ischemia increased S1P-generating enzyme SphK1 mRNA, S1P concentration, and S1P receptor-1 (S1P1)+ T-cells in the brain. Fingolimod prevented lymphocyte infiltration, and attenuated the severity of HT in Rag2−/− mice but it was ineffective under thrombocytopenia. Fingolimod prevented β-catenin degradation but not Evans blue extravasation. Ischemia/reperfusion upregulates brain S1P signaling pathway, and fingolimod exerts local effects that attenuate HT. Although fingolimod seems to act on the brain tissue, it did not prevent blood-brain barrier leakage.
Collapse
Affiliation(s)
- Angélica Salas-Perdomo
- Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Miró-Mur
- Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mattia Gallizioli
- Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Vanessa H Brait
- Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Carles Justicia
- Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anja Meissner
- Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Experimental Medical Sciences & Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Xabier Urra
- Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain
| | - Angel Chamorro
- Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain
| | - Anna M Planas
- Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain. .,Àrea de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
156
|
Méndez-Enríquez E, Hallgren J. Mast Cells and Their Progenitors in Allergic Asthma. Front Immunol 2019; 10:821. [PMID: 31191511 PMCID: PMC6548814 DOI: 10.3389/fimmu.2019.00821] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
Mast cells and their mediators have been implicated in the pathogenesis of asthma and allergy for decades. Allergic asthma is a complex chronic lung disease in which several different immune cells, genetic factors and environmental exposures influence the pathology. Mast cells are key players in the asthmatic response through secretion of a multitude of mediators with pro-inflammatory and airway-constrictive effects. Well-known mast cell mediators, such as histamine and bioactive lipids are responsible for many of the physiological effects observed in the acute phase of allergic reactions. The accumulation of mast cells at particular sites of the allergic lung is likely relevant to the asthma phenotype, severity and progression. Mast cells located in different compartments in the lung and airways have different characteristics and express different mediators. According to in vivo experiments in mice, lung mast cells develop from mast cell progenitors induced by inflammatory stimuli to migrate to the airways. Human mast cell progenitors have been identified in the blood circulation. A high frequency of circulating human mast cell progenitors may reflect ongoing pathological changes in the allergic lung. In allergic asthma, mast cells become activated mainly via IgE-mediated crosslinking of the high affinity receptor for IgE (FcεRI) with allergens. However, mast cells can also be activated by numerous other stimuli e.g. toll-like receptors and MAS-related G protein-coupled receptor X2. In this review, we summarize research with implications on the role and development of mast cells and their progenitors in allergic asthma and cover selected activation pathways and mast cell mediators that have been implicated in the pathogenesis. The review places an emphasis on describing mechanisms identified using in vivo mouse models and data obtained by analysis of clinical samples.
Collapse
Affiliation(s)
- Erika Méndez-Enríquez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
157
|
Hsu SC, Chang JH, Hsu YP, Bai KJ, Huang SK, Hsu CW. Circulating sphingosine-1-phosphate as a prognostic biomarker for community-acquired pneumonia. PLoS One 2019; 14:e0216963. [PMID: 31091284 PMCID: PMC6519827 DOI: 10.1371/journal.pone.0216963] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/01/2019] [Indexed: 12/25/2022] Open
Abstract
Early determination of the severity of Community-Acquired Pneumonia (CAP) is essential for better disease prognosis. Current predictors are suboptimal, and their clinical utility remains to be defined, highlighting the need for developing biomarkers with efficacious prognostic value. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid with a documented regulatory role in immune defense and maintenance of endothelial barrier integrity. For early diagnose of CAP and recognition of severe CAP patients, we conduct this pilot study to access the potential utility of the circulating S1P in an Emergency department setting. In the prospective study, plasma S1P levels were quantified in healthy controls and patients with CAP. Also, their discriminating power was assessed by receiver operating characteristic analysis. The association between S1P levels and disease severity indices was assessed by Spearman correlation and logistic regression tests. Patients with CAP had significantly higher plasma S1P levels than healthy individuals (CAP: 27.54 ng/ml, IQR = 14.37-49.99 ng/ml; Controls: 10.58 ng/ml, IQR = 4.781-18.91 ng/ml; p < 0.0001). S1P levels were inversely correlated with disease severity in patients with CAP. Based on multivariate logistic regression analysis, the plasma S1P concentrations showed significant predicting power for mortality (OR: 0.909; CI: 0.801-0.985; p < 0.05), intensive care unit admission (OR: 0.89; CI: 0.812-0.953; p < 0.005) and long hospital stay (OR: 0.978; CI: 0.961-0.992; p < 0.005). Interestingly, significantly elevated levels of S1P were noted in patients who received methylprednisolone treatment during hospitalization. These results suggest that S1P may be associated with the pathogenesis of CAP and may have prognostic utility in CAP and its therapy, especially in the Emergency Department setting.
Collapse
Affiliation(s)
- Shih-Chang Hsu
- Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jer-Hwa Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Pin Hsu
- Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Jen Bai
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
- Lou-Hu Hospital, Shen-Zhen University, Shen-Zhen, China
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Chin-Wang Hsu
- Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
158
|
Lipocalin 2: A New Antimicrobial in Mast Cells. Int J Mol Sci 2019; 20:ijms20102380. [PMID: 31091692 PMCID: PMC6566617 DOI: 10.3390/ijms20102380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022] Open
Abstract
Mast cells (MCs) play a significant role in the innate immune defense against bacterial infection through the release of cytokines and antimicrobial peptides. However, their antimicrobial function is still only partially described. We therefore hypothesized that MCs express additional antimicrobial peptides. In this study, we used FANTOM 5 transcriptome data to identify for the first time that MCs express lipocalin 2 (LCN2), a known inhibitor of bacterial growth. Using MCs derived from mice which were deficient in LCN2, we showed that this antimicrobial peptide is an important component of the MCs' antimicrobial activity against Escherichia coli (E. coli). Since sphingosine-1-phosphate receptors (S1PRs) on MCs are known to regulate their function during infections, we hypothesized that S1P could activate LCN2 production in MCs. Using an in vitro assay, we demonstrated that S1P enhances MCs antimicrobial peptide production and increases the capacity of MCs to directly kill S. aureus and E. coli via an LCN2 release. In conclusion, we showed that LCN2 is expressed by MCs and plays a role in their capacity to inhibit bacterial growth.
Collapse
|
159
|
Sphingosine-1-phosphate receptor 1 activation in astrocytes contributes to neuropathic pain. Proc Natl Acad Sci U S A 2019; 116:10557-10562. [PMID: 31068460 DOI: 10.1073/pnas.1820466116] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Neuropathic pain afflicts millions of individuals and represents a major health problem for which there is limited effective and safe therapy. Emerging literature links altered sphingolipid metabolism to nociceptive processing. However, the neuropharmacology of sphingolipid signaling in the central nervous system in the context of chronic pain remains largely unexplored and controversial. We now provide evidence that sphingosine-1-phosphate (S1P) generated in the dorsal horn of the spinal cord in response to nerve injury drives neuropathic pain by selectively activating the S1P receptor subtype 1 (S1PR1) in astrocytes. Accordingly, genetic and pharmacological inhibition of S1PR1 with multiple antagonists in distinct chemical classes, but not agonists, attenuated and even reversed neuropathic pain in rodents of both sexes and in two models of traumatic nerve injury. These S1PR1 antagonists retained their ability to inhibit neuropathic pain during sustained drug administration, and their effects were independent of endogenous opioid circuits. Moreover, mice with astrocyte-specific knockout of S1pr1 did not develop neuropathic pain following nerve injury, thereby identifying astrocytes as the primary cellular substrate of S1PR1 activity. On a molecular level, the beneficial reductions in neuropathic pain resulting from S1PR1 inhibition were driven by interleukin 10 (IL-10), a potent neuroprotective and anti-inflammatory cytokine. Collectively, our results provide fundamental neurobiological insights that identify the cellular and molecular mechanisms engaged by the S1PR1 axis in neuropathic pain and establish S1PR1 as a target for therapeutic intervention with S1PR1 antagonists as a class of nonnarcotic analgesics.
Collapse
|
160
|
Buggert M, Nguyen S, Salgado-Montes de Oca G, Bengsch B, Darko S, Ransier A, Roberts ER, Del Alcazar D, Brody IB, Vella LA, Beura L, Wijeyesinghe S, Herati RS, Del Rio Estrada PM, Ablanedo-Terrazas Y, Kuri-Cervantes L, Sada Japp A, Manne S, Vartanian S, Huffman A, Sandberg JK, Gostick E, Nadolski G, Silvestri G, Canaday DH, Price DA, Petrovas C, Su LF, Vahedi G, Dori Y, Frank I, Itkin MG, Wherry EJ, Deeks SG, Naji A, Reyes-Terán G, Masopust D, Douek DC, Betts MR. Identification and characterization of HIV-specific resident memory CD8 + T cells in human lymphoid tissue. Sci Immunol 2019; 3:3/24/eaar4526. [PMID: 29858286 DOI: 10.1126/sciimmunol.aar4526] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/26/2018] [Indexed: 12/18/2022]
Abstract
Current paradigms of CD8+ T cell-mediated protection in HIV infection center almost exclusively on studies of peripheral blood, which is thought to provide a window into immune activity at the predominant sites of viral replication in lymphoid tissues (LTs). Through extensive comparison of blood, thoracic duct lymph (TDL), and LTs in different species, we show that many LT memory CD8+ T cells bear phenotypic, transcriptional, and epigenetic signatures of resident memory T cells (TRMs). Unlike their circulating counterparts in blood or TDL, most of the total and follicular HIV-specific CD8+ T cells in LTs also resemble TRMs Moreover, high frequencies of HIV-specific CD8+ TRMs with skewed clonotypic profiles relative to matched blood samples are present in LTs of individuals who spontaneously control HIV replication in the absence of antiretroviral therapy (elite controllers). Single-cell RNA sequencing analysis confirmed that HIV-specific TRMs are enriched for effector-related immune genes and signatures compared with HIV-specific non-TRMs in elite controllers. Together, these data indicate that previous studies in blood have largely failed to capture the major component of HIV-specific CD8+ T cell responses resident within LTs.
Collapse
Affiliation(s)
- Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gonzalo Salgado-Montes de Oca
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
| | - Bertram Bengsch
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy Ransier
- Genome Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily R Roberts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Del Alcazar
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Division of Rheumatology, Philadelphia VA Medical Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irene Bukh Brody
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura A Vella
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lalit Beura
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sathi Wijeyesinghe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ramin S Herati
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Perla M Del Rio Estrada
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
| | - Yuria Ablanedo-Terrazas
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
| | - Leticia Kuri-Cervantes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alberto Sada Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shant Vartanian
- Department of Medicine, University of California, San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Austin Huffman
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Johan K Sandberg
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Gregory Nadolski
- Children's Hospital of Philadelphia, Penn Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guido Silvestri
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - David H Canaday
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Geriatric Research, Education and Clinical Center, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura F Su
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Division of Rheumatology, Philadelphia VA Medical Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Golnaz Vahedi
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yoav Dori
- Children's Hospital of Philadelphia, Penn Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian Frank
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maxim G Itkin
- Children's Hospital of Philadelphia, Penn Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo Reyes-Terán
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
161
|
Wu J, Ma S, Sandhoff R, Ming Y, Hotz-Wagenblatt A, Timmerman V, Bonello-Palot N, Schlotter-Weigel B, Auer-Grumbach M, Seeman P, Löscher WN, Reindl M, Weiss F, Mah E, Weisshaar N, Madi A, Mohr K, Schlimbach T, Velasco Cárdenas RMH, Koeppel J, Grünschläger F, Müller L, Baumeister M, Brügger B, Schmitt M, Wabnitz G, Samstag Y, Cui G. Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8 + T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness. Immunity 2019; 50:1218-1231.e5. [PMID: 30952607 DOI: 10.1016/j.immuni.2019.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 01/07/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022]
Abstract
Patients with the neurological disorder HSAN-I suffer frequent infections, attributed to a lack of pain sensation and failure to seek care for minor injuries. Whether protective CD8+ T cells are affected in HSAN-I patients remains unknown. Here, we report that HSAN-I-associated mutations in serine palmitoyltransferase subunit SPTLC2 dampened human T cell responses. Antigen stimulation and inflammation induced SPTLC2 expression, and murine T-cell-specific ablation of Sptlc2 impaired antiviral-T-cell expansion and effector function. Sptlc2 deficiency reduced sphingolipid biosynthetic flux and led to prolonged activation of the mechanistic target of rapamycin complex 1 (mTORC1), endoplasmic reticulum (ER) stress, and CD8+ T cell death. Protective CD8+ T cell responses in HSAN-I patient PBMCs and Sptlc2-deficient mice were restored by supplementing with sphingolipids and pharmacologically inhibiting ER stress-induced cell death. Therefore, SPTLC2 underpins protective immunity by translating extracellular stimuli into intracellular anabolic signals and antagonizes ER stress to promote T cell metabolic fitness.
Collapse
Affiliation(s)
- Jingxia Wu
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sicong Ma
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group (G131), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yanan Ming
- Internal Medicine IV, University Heidelberg Hospital, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data Management, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, B-2610, University of Antwerp, Antwerpen, Belgium
| | - Nathalie Bonello-Palot
- Department of Medical Genetics, Children Timone Hospital, 264 Rue Saint Pierre & Aix Marseille University, INSERM, MMG, U1251, 13385 Marseille, France
| | - Beate Schlotter-Weigel
- Friedrich-Baur-Institut, Neurologische Klinik and Poliklinik Ludwig-Maximilians-Universität, 80336 München, Germany
| | - Michaela Auer-Grumbach
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Pavel Seeman
- DNA Laboratory, Department of Child Neurology, 2nd Medical School, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Wolfgang N Löscher
- Clinical Department of Neurology, Medical University Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Florian Weiss
- Department of Psychiatry and Psychotherapy, University Hospital of Psychiatry, Bolligenstrasse 111, 3000 Bern, Germany
| | - Eric Mah
- School of Medicine, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nina Weisshaar
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Alaa Madi
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Kerstin Mohr
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Tilo Schlimbach
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Rubí M-H Velasco Cárdenas
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jonas Koeppel
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Florian Grünschläger
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lisann Müller
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Maren Baumeister
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Michael Schmitt
- Internal Medicine V, University Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Guido Wabnitz
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Guoliang Cui
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
162
|
Hasegawa T, Kikuta J, Ishii M. Imaging the Bone-Immune Cell Interaction in Bone Destruction. Front Immunol 2019; 10:596. [PMID: 30972080 PMCID: PMC6443987 DOI: 10.3389/fimmu.2019.00596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/05/2019] [Indexed: 11/13/2022] Open
Abstract
Bone is a highly dynamic organ that is continuously being remodeled by the reciprocal interactions between bone and immune cells. We have originally established an advanced imaging system for visualizing the in vivo behavior of osteoclasts and their precursors in the bone marrow cavity using two-photon microscopy. Using this system, we found that the blood-enriched lipid mediator, sphingosine-1-phosphate, controlled the migratory behavior of osteoclast precursors. We also developed pH-sensing chemical fluorescent probes to detect localized acidification by bone-resorbing osteoclasts on the bone surface in vivo, and identified two distinct functional states of differentiated osteoclasts, "bone-resorptive" and "non-resorptive." Here, we summarize our studies on the dynamics and functions of bone and immune cells within the bone marrow. We further discuss how our intravital imaging techniques can be applied to evaluate the mechanisms of action of biological agents in inflammatory bone destruction. Our intravital imaging techniques would be beneficial for studying the cellular dynamics in arthritic inflammation and bone destruction in vivo and would also be useful for evaluating novel therapies in animal models of bone-destroying diseases.
Collapse
Affiliation(s)
- Tetsuo Hasegawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
163
|
Don-Doncow N, Vanherle L, Zhang Y, Meissner A. T-Cell Accumulation in the Hypertensive Brain: A Role for Sphingosine-1-Phosphate-Mediated Chemotaxis. Int J Mol Sci 2019; 20:ijms20030537. [PMID: 30695999 PMCID: PMC6386943 DOI: 10.3390/ijms20030537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/11/2022] Open
Abstract
Hypertension is considered the major modifiable risk factor for the development of cognitive impairment. Because increased blood pressure is often accompanied by an activation of the immune system, the concept of neuro-inflammation gained increasing attention in the field of hypertension-associated neurodegeneration. Particularly, hypertension-associated elevated circulating T-lymphocyte populations and target organ damage spurred the interest to understanding mechanisms leading to inflammation-associated brain damage during hypertension. The present study describes sphingosine-1-phosphate (S1P) as major contributor to T-cell chemotaxis to the brain during hypertension-associated neuro-inflammation and cognitive impairment. Using Western blotting, flow cytometry and mass spectrometry approaches, we show that hypertension stimulates a sphingosine kinase 1 (SphK1)-dependent increase of cerebral S1P concentrations in a mouse model of angiotensin II (AngII)-induced hypertension. The development of a distinct S1P gradient between circulating blood and brain tissue associates to elevated CD3+ T-cell numbers in the brain. Inhibition of S1P1-guided T-cell chemotaxis with the S1P receptor modulator FTY720 protects from augmentation of brain CD3 expression and the development of memory deficits in hypertensive WT mice. In conclusion, our data highlight a new approach to the understanding of hypertension-associated inflammation in degenerative processes of the brain during disease progression.
Collapse
Affiliation(s)
| | - Lotte Vanherle
- Department of Experimental Science, Lund University, 22 184 Lund, Sweden.
| | - Yun Zhang
- Department of Experimental Science, Lund University, 22 184 Lund, Sweden.
| | - Anja Meissner
- Department of Experimental Science, Lund University, 22 184 Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, 22 184 Lund, Sweden.
| |
Collapse
|
164
|
Kano M, Kobayashi T, Date M, Tennichi M, Hamaguchi Y, Strasser DS, Takehara K, Matsushita T. Attenuation of murine sclerodermatous models by the selective S1P 1 receptor modulator cenerimod. Sci Rep 2019; 9:658. [PMID: 30679645 PMCID: PMC6345830 DOI: 10.1038/s41598-018-37074-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a lipid mediator, regulates lymphocyte migration between lymphoid tissue and blood. Furthermore, S1P participates in several physiological phenomena including angiogenesis, inflammation, immune regulation, and neurotransmitter release. Moreover, S1P/S1P receptor signaling involves in systemic sclerosis (SSc) pathogenesis. This study aimed to investigate whether the selective S1P1 receptor modulator cenerimod attenuates murine sclerodermatous models. Cenerimod was orally administered to murine sclerodermatous chronic graft versus host disease (Scl-cGVHD) mice, either from day 0 to 42 or day 22 to 42 after bone marrow transplantation. Bleomycin-induced SSc model mice were administered cenerimod from day 0 to 28. Early cenerimod administration inhibited, and delayed cenerimod administration attenuated skin and lung fibrosis in Scl-cGVHD mice. Cenerimod suppressed the infiltration of CD4+ T cells, CD8+ T cells, and CD11b+ cells into the inflamed skin of Scl-cGVHD mice as opposed to control mice. In contrast, cenerimod increased the frequency of regulatory T cells in the spleen and skin of Scl-cGVHD mice. Additionally, cenerimod attenuated the mRNA expression of extracellular matrix and fibrogenic cytokines in the skin. Furthermore, cenerimod attenuated bleomycin-induced fibrosis in the skin and lung. Hence, the selective S1P1 receptor modulator cenerimod is a promising candidate for treating patients with SSc and Scl-cGVHD.
Collapse
Affiliation(s)
- Miyu Kano
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Tadahiro Kobayashi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Mutsumi Date
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Momoko Tennichi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Daniel S Strasser
- Idorsia Pharmaceuticals Ltd., Drug Discovery, Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan.
| |
Collapse
|
165
|
Kappel S, Borgström A, Stokłosa P, Dörr K, Peinelt C. Store-operated calcium entry in disease: Beyond STIM/Orai expression levels. Semin Cell Dev Biol 2019; 94:66-73. [PMID: 30630032 DOI: 10.1016/j.semcdb.2019.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Accepted: 01/05/2019] [Indexed: 12/19/2022]
Abstract
Precise intracellular calcium signaling is crucial to numerous cellular functions. In non-excitable cells, store-operated calcium entry (SOCE) is a key step in the generation of intracellular calcium signals. Tight regulation of SOCE is important, and dysregulation is involved in several pathophysiological cellular malfunctions. The current underlying SOCE, calcium release-activated calcium current (ICRAC), was first discovered almost three decades ago. Since its discovery, the molecular components of ICRAC, Orai1 and stromal interaction molecule 1 (STIM1), have been extensively investigated. Several regulatory mechanisms and proteins contribute to alterations in SOCE and cellular malfunctions in cancer, immune and neurodegenerative diseases, inflammation, and neuronal disorders. This review summarizes these regulatory mechanisms, including glycosylation, pH sensing, and the regulatory proteins golli, α-SNAP, SARAF, ORMDL3, CRACR2A, and TRPM4 channels.
Collapse
Affiliation(s)
- Sven Kappel
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Anna Borgström
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | | | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
166
|
Halova I, Rönnberg E, Draberova L, Vliagoftis H, Nilsson GP, Draber P. Changing the threshold-Signals and mechanisms of mast cell priming. Immunol Rev 2019; 282:73-86. [PMID: 29431203 DOI: 10.1111/imr.12625] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Elin Rönnberg
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Harissios Vliagoftis
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Alberta Respiratory Center and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gunnar P Nilsson
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
167
|
Role of Bioactive Sphingolipids in Inflammation and Eye Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:149-167. [PMID: 31562629 DOI: 10.1007/978-3-030-21735-8_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation is a common underlying factor in a diversity of ocular diseases, ranging from macular degeneration, autoimmune uveitis, glaucoma, diabetic retinopathy and microbial infection. In addition to the variety of known cellular mediators of inflammation, such as cytokines, chemokines and lipid mediators, there is now considerable evidence that sphingolipid metabolites also play a central role in the regulation of inflammatory pathways. Various sphingolipid metabolites, such as ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), and lactosylceramide (LacCer) can contribute to ocular inflammatory diseases through multiple pathways. For example, inflammation generates Cer from sphingomyelins (SM) in the plasma membrane, which induces death receptor ligand formation and leads to apoptosis of retinal pigment epithelial (RPE) and photoreceptor cells. Inflammatory stress by reactive oxygen species leads to LacCer accumulation and S1P secretion and induces proliferation of retinal endothelial cells and eventual formation of new vessels. In sphingolipid/lysosomal storage disorders, sphingolipid metabolites accumulate in lysosomes and can cause ocular disorders that have an inflammatory etiology. Sphingolipid metabolites activate complement factors in the immune-response mediated pathogenesis of macular degeneration. These examples highlight the integral association between sphingolipids and inflammation in ocular diseases.
Collapse
|
168
|
Sphingosine-1-Phosphate Receptor 2 Controls Podosome Components Induced by RANKL Affecting Osteoclastogenesis and Bone Resorption. Cells 2019; 8:cells8010017. [PMID: 30609675 PMCID: PMC6357083 DOI: 10.3390/cells8010017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Proinflammatory cytokine production, cell chemotaxis, and osteoclastogenesis can lead to inflammatory bone loss. Previously, we showed that sphingosine-1-phosphate receptor 2 (S1PR2), a G protein coupled receptor, regulates inflammatory cytokine production and osteoclastogenesis. However, the signaling pathways regulated by S1PR2 in modulating inflammatory bone loss have not been elucidated. Herein, we demonstrated that inhibition of S1PR2 by a specific S1PR2 antagonist (JTE013) suppressed phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-B (NF-κB) induced by an oral bacterial pathogen, Aggregatibacter actinomycetemcomitans, and inhibited the release of IL-1β, IL-6, TNF-α, and S1P in murine bone marrow cells. In addition, shRNA knockdown of S1PR2 or treatment by JTE013 suppressed cell chemotaxis induced by bacteria-stimulated cell culture media. Furthermore, JTE013 suppressed osteoclastogenesis and bone resorption induced by RANKL in murine bone marrow cultures. ShRNA knockdown of S1PR2 or inhibition of S1PR2 by JTE013 suppressed podosome components, including PI3K, Src, Pyk2, integrin β3, filamentous actin (F-actin), and paxillin levels induced by RANKL in murine bone marrow cells. We conclude that S1PR2 plays an essential role in modulating proinflammatory cytokine production, cell chemotaxis, osteoclastogenesis, and bone resorption. Inhibition of S1PR2 signaling could be a novel therapeutic strategy for bone loss associated with skeletal diseases.
Collapse
|
169
|
Yagci ZB, Esvap E, Ozkara HA, Ulgen KO, Olmez EO. Inflammatory response and its relation to sphingolipid metabolism proteins: Chaperones as potential indirect anti-inflammatory agents. MOLECULAR CHAPERONES IN HUMAN DISORDERS 2019; 114:153-219. [PMID: 30635081 DOI: 10.1016/bs.apcsb.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
170
|
S1P 1 receptor phosphorylation, internalization, and interaction with Rab proteins: effects of sphingosine 1-phosphate, FTY720-P, phorbol esters, and paroxetine. Biosci Rep 2018; 38:BSR20181612. [PMID: 30366961 PMCID: PMC6294635 DOI: 10.1042/bsr20181612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) and FTY720-phosphate (FTYp) increased intracellular calcium in cells expressing S1P1 mCherry-tagged receptors; the synthetic agonist was considerably less potent. Activation of protein kinase C by phorbol myristate acetate (PMA) blocked these effects. The three agents induced receptor phosphorylation and internalization, with the action of FTYp being more intense. S1P1 receptor–Rab protein (GFP-tagged) interaction was studied using FRET. The three agents were able to induce S1P1 receptor–Rab5 interaction, although with different time courses. S1P1 receptor–Rab9 interaction was mainly increased by the phorbol ester, whereas S1P1 receptor–Rab7 interaction was only increased by FTYp and after a 30-min incubation. These actions were not observed using dominant negative (GDP-bound) Rab protein mutants. The data suggested that the three agents induce interaction with early endosomes, but that the natural agonist induced rapid receptor recycling, whereas activation of protein kinase C favored interaction with late endosome and slow recycling and FTYp triggered receptor interaction with vesicles associated with proteasomal/lysosomal degradation. The ability of bisindolylmaleimide I and paroxetine to block some of these actions suggested the activation of protein kinase C was associated mainly with the action of PMA, whereas G protein-coupled receptor kinase (GRK) 2 (GRK2) was involved in the action of the three agents.
Collapse
|
171
|
Sjödin MOD, Checa A, Yang M, Dahlén SE, Wheelock ÅM, Eklund A, Grunewald J, Wheelock CE. Soluble epoxide hydrolase derived lipid mediators are elevated in bronchoalveolar lavage fluid from patients with sarcoidosis: a cross-sectional study. Respir Res 2018; 19:236. [PMID: 30509266 PMCID: PMC6276236 DOI: 10.1186/s12931-018-0939-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/14/2018] [Indexed: 01/04/2023] Open
Abstract
Background Sarcoidosis is a systemic inflammatory multi-organ disease almost always affecting the lungs. The etiology remains unknown, but the hallmark of sarcoidosis is formation of non-caseating epithelioid cells granulomas in involved organs. In Scandinavia, > 30% of sarcoidosis patients have Löfgren’s syndrome (LS), an acute disease onset mostly indicating a favorable prognosis. The impact of dysregulation of lipid mediators, which has been investigated in other inflammatory disorders, is still unknown. Methods Using three different liquid chromatography coupled to tandem mass spectrometry targeted platforms (LC-MS/MS), we quantified a broad suite of lipid mediators including eicosanoids, sphingolipids and endocannabinoids in bronchoalveolar lavage (BAL) fluid from pulmonary sarcoidosis patients (n = 41) and healthy controls (n = 16). Results A total of 47 lipid mediators were consistently detected in BAL fluid of patients and controls. After false discovery rate adjustment, two products of the soluble epoxide hydrolase (sEH) enzyme, 11,12-dihydroxyeicosa-5,8,14-trienoic acid (11,12-DiHETrE, p = 4.4E-5, q = 1.2E-3, median fold change = 6.0) and its regioisomer 14,15-dihydroxyeicosa-5,8,11-trienoic acid (14,15-DiHETrE, p = 3.6E-3, q = 3.2E-2, median fold change = 1.8) increased in patients with sarcoidosis. Additional shifts were observed in sphingolipid metabolism, with a significant increase in palmitic acid-derived sphingomyelin (SM16:0, p = 1.3E-3, q = 1.7E-2, median fold change = 1.3). No associations were found between these 3 lipid mediators and LS, whereas levels of SM 16:0 and 11,12-DiHETrE associated with radiological stage (p < 0.05), and levels of 14,15-DiHETrE were associated with the BAL fluid CD4/CD8 ratio. Conclusions These observed shifts in lipid mediators provide new insights into the pathobiology of sarcoidosis and in particular highlight the sEH pathway to be dysregulated in disease. Electronic supplementary material The online version of this article (10.1186/s12931-018-0939-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcus O D Sjödin
- Division of Physiological Chemistry II, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden.,Experimental Asthma & Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Checa
- Division of Physiological Chemistry II, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Mingxing Yang
- Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine (CMM), Karolinska Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Experimental Asthma & Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine (CMM), Karolinska Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Anders Eklund
- Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine (CMM), Karolinska Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine (CMM), Karolinska Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
172
|
Baker JE, Boudreau RM, Seitz AP, Caldwell CC, Gulbins E, Edwards MJ. Sphingolipids and Innate Immunity: A New Approach to Infection in the Post-Antibiotic Era? Surg Infect (Larchmt) 2018; 19:792-803. [DOI: 10.1089/sur.2018.187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jennifer E. Baker
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Ryan M. Boudreau
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Aaron P. Seitz
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Charles C. Caldwell
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
- Division of Research, Shriners Hospital for Children, Cincinnati, Ohio
| | - Erich Gulbins
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael J. Edwards
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
173
|
Yu FPS, Sajdak BS, Sikora J, Salmon AE, Nagree MS, Gurka J, Kassem IS, Lipinski DM, Carroll J, Medin JA. Acid Ceramidase Deficiency in Mice Leads to Severe Ocular Pathology and Visual Impairment. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:320-338. [PMID: 30472209 DOI: 10.1016/j.ajpath.2018.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/09/2023]
Abstract
Farber disease (FD) is a debilitating lysosomal storage disorder characterized by severe inflammation and neurodegeneration. FD is caused by mutations in the ASAH1 gene, resulting in deficient acid ceramidase (ACDase) activity. Patients with ACDase deficiency exhibit a broad clinical spectrum. In classic cases, patients develop hepatosplenomegaly, nervous system involvement, and childhood mortality. Ocular manifestations include decreased vision, a grayish appearance to the retina with a cherry red spot, and nystagmus. That said, the full effect of ACDase deficiency on the visual system has not been studied in detail. We previously developed a mouse model that is orthologous for a known patient mutation in Asah1 that recapitulates human FD. Herein, we report evidence of a severe ocular pathology in Asah1P361R/P361R mice. Asah1P361R/P361R mice exhibit progressive retinal and optic nerve pathology. Through noninvasive ocular imaging and histopathological analyses of these Asah1P361R/P361R animals, we revealed progressive inflammation, the presence of retinal dysplasia, and significant storage pathology in various cell types in both the retina and optic nerves. Lipidomic analyses of retinal tissues revealed an abnormal accumulation of ceramides and other sphingolipids. Electroretinograms and behavioral tests showed decreased retinal and visual responses. Taken together, these data suggest that ACDase deficiency leads to sphingolipid imbalance, inflammation, dysmorphic retinal and optic nerve pathology, and severe visual impairment.
Collapse
Affiliation(s)
- Fabian P S Yu
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Benjamin S Sajdak
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jakub Sikora
- Rare Diseases Research Unit, Department of Pediatrics and Adolescent Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic; Institute of Pathology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alexander E Salmon
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Murtaza S Nagree
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jiří Gurka
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Iris S Kassem
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel M Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin; Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffrey A Medin
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin; University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
174
|
Abhyankar V, Kaduskar B, Kamat SS, Deobagkar D, Ratnaparkhi GS. Drosophila DNA/RNA methyltransferase contributes to robust host defense in aging animals by regulating sphingolipid metabolism. ACTA ACUST UNITED AC 2018; 221:jeb.187989. [PMID: 30254027 DOI: 10.1242/jeb.187989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
Abstract
Drosophila methyltransferase (Mt2) has been implicated in the methylation of both DNA and tRNA. In this study, we demonstrate that loss of Mt2 activity leads to an age-dependent decline of immune function in the adult fly. A newly eclosed adult has mild immune defects that are exacerbated in a 15 day old Mt2-/- fly. The age-dependent effects appear to be systemic, including disturbances in lipid metabolism, changes in cell shape of hemocytes and significant fold-changes in levels of transcripts related to host defense. Lipid imbalance, as measured by quantitative lipidomics, correlates with immune dysfunction, with high levels of immunomodulatory lipids, sphingosine-1-phosphate (S1P) and ceramides, along with low levels of storage lipids. Activity assays on fly lysates confirm the age-dependent increase in S1P and concomitant reduction of S1P lyase activity. We hypothesize that Mt2 functions to regulate genetic loci such as S1P lyase and this regulation is essential for robust host defense as the animal ages. Our study uncovers novel links between age--dependent Mt2 function, innate immune response and lipid homeostasis.
Collapse
Affiliation(s)
- Varada Abhyankar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Bhagyashree Kaduskar
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Deepti Deobagkar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India .,Center of Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| |
Collapse
|
175
|
Colonoscopic-Guided Pinch Biopsies in Mice as a Useful Model for Evaluating the Roles of Host and Luminal Factors in Colonic Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2811-2825. [PMID: 30273600 DOI: 10.1016/j.ajpath.2018.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022]
Abstract
Colonic inflammation, a hallmark of inflammatory bowel disease, can be influenced by host intrinsic and extrinsic factors. There continues to be a need for models of colonic inflammation that can both provide insights into disease pathogenesis and be used to investigate potential therapies. Herein, we tested the utility of colonoscopic-guided pinch biopsies in mice for studying colonic inflammation and its treatment. Gene expression profiling of colonic wound beds after injury showed marked changes, including increased expression of genes important for the inflammatory response. Interestingly, many of these gene expression changes mimicked those alterations found in inflammatory bowel disease patients. Biopsy-induced inflammation was associated with increases in neutrophils, macrophages, and natural killer cells. Injury also led to elevated levels of sphingosine-1-phosphate (S1P), a bioactive lipid that is an important mediator of inflammation mainly through its receptor, S1P1. Genetic deletion of S1P1 in the endothelium did not alter the inflammatory response but led to increased colonic bleeding. Bacteria invaded into the wound beds, raising the possibility that microbes contributed to the observed changes in mucosal gene expression. In support of this, reducing bacterial abundance markedly attenuated the inflammatory response to wounding. Taken together, this study demonstrates the utility of the pinch biopsy model of colonic injury to elucidate the molecular underpinnings of colonic inflammation and its treatment.
Collapse
|
176
|
Identification and Structure-Activity Relationship (SAR) of potent and selective oxadiazole-based agonists of sphingosine-1-phosphate receptor (S1P 1). Bioorg Chem 2018; 82:41-57. [PMID: 30268973 DOI: 10.1016/j.bioorg.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 12/23/2022]
Abstract
Agonism of S1P1 receptor has been proven to be responsible for peripheral blood lymphopenia and elicts the identification of various S1P1 modulators. In this paper we described a series of oxadiazole-based S1P1 direct-acting agonists disubstituted on terminal benzene ring, with high potency for S1P1 receptor and favorable selectivity against S1P3 receptor. In addition, two representative agents named 16-3b and 16-3g demonstrated impressive efficacy in lymphocyte reduction along with reduced effect on heart rate when orally administered. Furthermore, these compounds have been shown to possess desired pharmacokinetic (PK) and physicochemical profiles. The binding mode between 16-3b and the activated S1P1 model was also studied.
Collapse
|
177
|
Kawa Y, Nagano T, Yoshizaki A, Dokuni R, Katsurada M, Terashita T, Yasuda Y, Umezawa K, Yamamoto M, Kamiryo H, Kobayashi K, Nishimura Y. Role of S1P/S1PR3 axis in release of CCL20 from human bronchial epithelial cells. PLoS One 2018; 13:e0203211. [PMID: 30192865 PMCID: PMC6128515 DOI: 10.1371/journal.pone.0203211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/16/2018] [Indexed: 11/18/2022] Open
Abstract
Background Sphingosine kinase phosphorylates sphingosine to generate sphingosine 1 phosphate (S1P) following stimulation of the five plasma membrane G-protein-coupled receptors. The objective of this study is to clarify the role of S1P and its receptors (S1PRs), especially S1PR3 in airway epithelial cells. Methods The effects of S1P on asthma-related genes expression were examined with the human bronchial epithelial cells BEAS-2B and Calu-3 using a transcriptome analysis and siRNA of S1PRs. To clarify the role of CCL20 in the airway inflammation, BALB/c mice were immunized with ovalbumin (OVA) and subsequently challenged with an OVA-containing aerosol to induce asthma with or without intraperitoneal administration of anti-CCL20. Finally, the anti-inflammatory effect of VPC 23019, S1PR1/3 antagonist, in the OVA-induced asthma was examined. Results S1P induced the expression of some asthma-related genes, such as ADRB2, PTGER4, and CCL20, in the bronchial epithelial cells. The knock-down of SIPR3 suppressed the expression of S1P-inducing CCL20. Anti-CCL20 antibody significantly attenuated the eosinophil numbers in the bronchoalveolar lavage fluid (P<0.01). Upon OVA challenge, VPC23019 exhibited substantially attenuated eosinophilic inflammation. Conclusions S1P/S1PR3 pathways have a role in release of proinflammatory cytokines from bronchial epithelial cells. Our results suggest that S1P/S1PR3 may be a possible candidate for the treatment of bronchial asthma.
Collapse
Affiliation(s)
- Yoshitaka Kawa
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
- * E-mail:
| | - Asuka Yoshizaki
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Ryota Dokuni
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Masahiro Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Tomomi Terashita
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Yuichiro Yasuda
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Kanoko Umezawa
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Hiroshi Kamiryo
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Japan
| |
Collapse
|
178
|
S1PR3 Mediates Itch and Pain via Distinct TRP Channel-Dependent Pathways. J Neurosci 2018; 38:7833-7843. [PMID: 30082422 DOI: 10.1523/jneurosci.1266-18.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/14/2018] [Indexed: 11/21/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive signaling lipid associated with a variety of chronic pain and itch disorders. S1P signaling has been linked to cutaneous pain, but its role in itch has not yet been studied. Here, we find that S1P triggers itch and pain in male mice in a concentration-dependent manner, with low levels triggering acute itch alone and high levels triggering both pain and itch. Ca2+ imaging and electrophysiological experiments revealed that S1P signals via S1P receptor 3 (S1PR3) and TRPA1 in a subset of pruriceptors and via S1PR3 and TRPV1 in a subset of heat nociceptors. Consistent with these findings, S1P-evoked itch behaviors are selectively lost in mice lacking TRPA1, whereas S1P-evoked acute pain and heat hypersensitivity are selectively lost in mice lacking TRPV1. We conclude that S1P acts via different cellular and molecular mechanisms to trigger itch and pain. Our discovery elucidates the diverse roles that S1P signaling plays in somatosensation and provides insight into how itch and pain are discriminated in the periphery.SIGNIFICANCE STATEMENT Itch and pain are major health problems with few effective treatments. Here, we show that the proinflammatory lipid sphingosine 1-phosphate (S1P) and its receptor, S1P receptor 3 (S1PR3), trigger itch and pain behaviors via distinct molecular and cellular mechanisms. Our results provide a detailed understanding of the roles that S1P and S1PR3 play in somatosensation, highlighting their potential as targets for analgesics and antipruritics, and provide new insight into the mechanistic underpinnings of itch versus pain discrimination in the periphery.
Collapse
|
179
|
Györfi AH, Matei AE, Distler JH. Targeting TGF-β signaling for the treatment of fibrosis. Matrix Biol 2018; 68-69:8-27. [DOI: 10.1016/j.matbio.2017.12.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 01/02/2023]
|
180
|
Novel Lipid Signaling Mediators for Mesenchymal Stem Cell Mobilization during Bone Repair. Cell Mol Bioeng 2018; 11:241-253. [PMID: 29983824 DOI: 10.1007/s12195-018-0532-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Introduction Mesenchymal stem and progenitor cells (MSCs), which normally reside in the bone marrow, are critical to bone health and can be recruited to sites of traumatic bone injury, contributing to new bone formation. The ability to control the trafficking of MSCs provides therapeutic potential for improving traumatic bone healing and therapy for genetic bone diseases such as hypophosphatasia. Methods In this study, we explored the sphingosine-1-phosphate (S1P) signaling axis as a means to control the mobilization of MSCs into blood and possibly to recruit MSCs enhancing bone growth. Results Loss of S1P receptor 3 (S1PR3) leads to an increase in circulating CD45-/CD29+/CD90+/Sca1 putative mesenchymal progenitor cells, suggesting that blocking S1PR3 may stimulate MSCs to leave the bone marrow. Antagonism of S1PR3 with the small molecule VPC01091 stimulated acute migration of CD45-/CD29+/CD90+/Sca1+ MSCs into the blood as early as 1.5 hours after treatment. VPC01091 administration also increased ectopic bone formation induced by BMP-2 and significantly increased new bone formation in critically sized rat cranial defects, suggesting that mobilized MSCs may home to injuries to contribute to healing. We also explored the possibility of combining S1P manipulation of endogenous host cell occupancy with exogenous MSC transplantation for potential use in combination therapies. Importantly, reducing niche occupancy of host MSCs with VPC01091 does not impede engraftment of exogenous MSCs. Conclusions Our studies suggest that MSC mobilization through S1PR3 antagonism is a promising strategy for endogenous tissue engineering and improving MSC delivery to treat bone diseases.
Collapse
|
181
|
Don-Doncow N, Zhang Y, Matuskova H, Meissner A. The emerging alliance of sphingosine-1-phosphate signalling and immune cells: from basic mechanisms to implications in hypertension. Br J Pharmacol 2018; 176:1989-2001. [PMID: 29856066 DOI: 10.1111/bph.14381] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 01/19/2023] Open
Abstract
The immune system plays a considerable role in hypertension. In particular, T-lymphocytes are recognized as important players in its pathogenesis. Despite substantial experimental efforts, the molecular mechanisms underlying the nature of T-cell activation contributing to an onset of hypertension or disease perpetuation are still elusive. Amongst other cell types, lymphocytes express distinct profiles of GPCRs for sphingosine-1-phosphate (S1P) - a bioactive phospholipid that is involved in many critical cell processes and most importantly majorly regulates T-cell development, lymphocyte recirculation, tissue-homing patterns and chemotactic responses. Recent findings have revealed a key role for S1P chemotaxis and T-cell mobilization for the onset of experimental hypertension, and elevated circulating S1P levels have been linked to several inflammation-associated diseases including hypertension in patients. In this article, we review the recent progress towards understanding how S1P and its receptors regulate immune cell trafficking and function and its potential relevance for the pathophysiology of hypertension. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
| | - Yun Zhang
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Hana Matuskova
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Anja Meissner
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
182
|
Romani R, Manni G, Donati C, Pirisinu I, Bernacchioni C, Gargaro M, Pirro M, Calvitti M, Bagaglia F, Sahebkar A, Clerici G, Matino D, Pomili G, Di Renzo GC, Talesa VN, Puccetti P, Fallarino F. S1P promotes migration, differentiation and immune regulatory activity in amniotic-fluid-derived stem cells. Eur J Pharmacol 2018; 833:173-182. [PMID: 29886240 PMCID: PMC6086338 DOI: 10.1016/j.ejphar.2018.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
Abstract
Stem cells have high potential for cell therapy in regenerative medicine. We previously isolated stem cell types from human amniotic fluid, derived from prenatal amniocentesis. One type, characterized by a fast doubling time, was designated as fast human amniotic stem cells (fHASCs). These cells exhibited high differentiation potential and immunoregulatory properties. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that influences stem-cell pluripotency, differentiation, mobility, and regulates immune functions. In this study, we investigated the influence of S1P on fHASC migration, proliferation, differentiation and immune regulatory functions. We found that fHASC stimulation with S1P potentiated their migratory and proliferative activity in vitro. Notably, short fHASC exposure to S1P enhanced their differentiation towards multiple lineages, including adipocytes, osteocytes and endothelial cells, an effect that was associated with downregulation of the main transcription factors involved in the maintenance of a stem-cell undifferentiated state. A specific crosstalk between S1P and tumor growth factor β1 (TGF-β1) has recently been demonstrated. We found that fHASC exposure to S1P in combination with TGF-β1 promoted the expression of the immune regulatory pathway of indoleamine 2,3-dioxygenase 1 (IDO1). In addition, human peripheral blood mononuclear cells, co-cultured with fHASCs treated with S1P and TGF-β1, expanded regulatory T-cells, via a mechanism requiring IDO1. Overall, this study demonstrates that S1P potentiates several properties in fHASCs, an effect that may be critical for exploiting the therapeutic potential of fHASCs and might explain the specific effects of S1P on stem cells during pregnancy.
Collapse
Affiliation(s)
- Rita Romani
- Department of Experimental Medicine, University of Perugia, Italy
| | - Giorgia Manni
- Department of Experimental Medicine, University of Perugia, Italy
| | - Chiara Donati
- Department of Experimental Biomedical Sciences and Clinics University of Florence, Italy
| | - Irene Pirisinu
- Department of Experimental Medicine, University of Perugia, Italy
| | - Caterina Bernacchioni
- Department of Experimental Biomedical Sciences and Clinics University of Florence, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Italy
| | - Matteo Pirro
- Department of Medicine, University of Perugia, Italy
| | - Mario Calvitti
- Department of Experimental Medicine, University of Perugia, Italy
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Graziano Clerici
- Department of Obstetrics and Gynaecology and Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Davide Matino
- Department of Experimental Medicine, University of Perugia, Italy
| | - Giovanni Pomili
- Department of Obstetrics and Gynaecology and Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Gian Carlo Di Renzo
- Department of Obstetrics and Gynaecology and Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | | | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, Italy
| | | |
Collapse
|
183
|
Preclinical study of the antitumor effect of sphingosine-1-phosphate receptor 1 antibody (S1PR1-antibody) against human breast cancer cells. Invest New Drugs 2018; 37:57-64. [DOI: 10.1007/s10637-018-0618-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/25/2018] [Indexed: 12/19/2022]
|
184
|
Xiao L, Zhou Y, Zhu L, Yang S, Huang R, Shi W, Peng B, Xiao Y. SPHK1-S1PR1-RANKL Axis Regulates the Interactions Between Macrophages and BMSCs in Inflammatory Bone Loss. J Bone Miner Res 2018; 33:1090-1104. [PMID: 29377379 DOI: 10.1002/jbmr.3396] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/04/2018] [Accepted: 01/13/2018] [Indexed: 01/29/2023]
Abstract
Accumulating evidence indicates that the immune and skeletal systems interact with each other through various regulators during the osteoclastogenic process. Among these regulators, the bioactive lipid sphingosine-1-phosphate (S1P), which is synthesized by sphingosine kinase 1/2 (SPHK1/2), has recently been recognized to play a role in immunity and bone remodeling through its receptor sphingosine-1-phosphate receptor 1 (S1PR1). However, little is known regarding the potential role of S1PR1 signaling in inflammatory bone loss. We observed that SPHK1 and S1PR1 were upregulated in human apical periodontitis, accompanied by macrophage infiltration and enhanced expression of receptor activator of NF-κB ligand (RANKL, an indispensable factor in osteoclastogenesis and bone resorption) and increased numbers of S1PR1-RANKL double-positive cells in lesion tissues. Using an in vitro co-culture model of macrophages and bone marrow stromal cells (BMSCs), it was revealed that in the presence of lipopolysaccharide (LPS) stimulation, macrophages could significantly induce SPHK1 activity, which resulted in activated S1PR1 in BMSCs. The activated S1P-S1PR1 signaling was responsible for the increased RANKL production in BMSCs, as S1PR1-blockage abolished this effect. Applying a potent S1P-S1PR1 signaling modulator, Fingolimod (FTY720), in a Wistar rat apical periodontitis model effectively prevented bone lesions in vivo via downregulation of RANKL production, osteoclastogenesis, and bone resorption. Our data unveiled the regulatory role of SPHK1-S1PR1-RANKL axis in inflammatory bone lesions and proposed a potential therapeutic intervention by targeting this cell-signaling pathway to prevent bone loss. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia
| | - Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shasha Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Huang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia
| | - Wei Shi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia
| | - Bin Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
185
|
Suh JH, Degagné É, Gleghorn EE, Setty M, Rodriguez A, Park KT, Verstraete SG, Heyman MB, Patel AS, Irek M, Gildengorin GL, Hubbard NE, Borowsky AD, Saba JD. Sphingosine-1-Phosphate Signaling and Metabolism Gene Signature in Pediatric Inflammatory Bowel Disease: A Matched-case Control Pilot Study. Inflamm Bowel Dis 2018; 24:1321-1334. [PMID: 29788359 PMCID: PMC5986285 DOI: 10.1093/ibd/izy007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 12/12/2022]
Abstract
GOAL The aim of this study was to investigate gene expression levels of proteins involved in sphingosine-1-phosphate (S1P) metabolism and signaling in a pediatric inflammatory bowel disease (IBD) patient population. BACKGROUND IBD is a debilitating disease affecting 0.4% of the US population. The incidence of IBD in childhood is rising. Identifying effective targeted therapies that can be used safely in young patients and developing tools for selecting specific candidates for targeted therapies are important goals. Clinical IBD trials now underway target S1PR1, a receptor for the pro-inflammatory sphingolipid S1P. However, circulating and tissue sphingolipid levels and S1P-related gene expression have not been characterized in pediatric IBD. METHODS Pediatric IBD patients and controls were recruited in a four-site study. Patients received a clinical score using PUCAI or PCDAI evaluation. Colon biopsies were collected during endoscopy. Gene expression was measured by qRT-PCR. Plasma and gut tissue sphingolipids were measured by LC-MS/MS. RESULTS Genes of S1P synthesis (SPHK1, SPHK2), degradation (SGPL1), and signaling (S1PR1, S1PR2, and S1PR4) were significantly upregulated in colon biopsies of IBD patients with moderate/severe symptoms compared with controls or patients in remission. Tissue ceramide, dihydroceramide, and ceramide-1-phosphate (C1P) levels were significantly elevated in IBD patients compared with controls. CONCLUSIONS A signature of elevated S1P-related gene expression in colon tissues of pediatric IBD patients correlates with active disease and normalizes in remission. Biopsied gut tissue from symptomatic IBD patients contains high levels of pro-apoptotic and pro-inflammatory sphingolipids. A combined analysis of gut tissue sphingolipid profiles with this S1P-related gene signature may be useful for monitoring response to conventional therapy.
Collapse
Affiliation(s)
- Jung H Suh
- UCSF Benioff Children’s Hospital Oakland, Oakland, Califorina, USA
| | - Émilie Degagné
- UCSF Benioff Children’s Hospital Oakland, Oakland, Califorina, USA
| | | | - Mala Setty
- UCSF Benioff Children’s Hospital Oakland, Oakland, Califorina, USA
| | - Alexis Rodriguez
- Lucile Packard Children’s Hospital Stanford, Division of Gastroenterology, Palo Alto, Califorina, USA
| | - K T Park
- Lucile Packard Children’s Hospital Stanford, Division of Gastroenterology, Palo Alto, Califorina, USA
| | - Sofia G Verstraete
- Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children’s Hospital San Francisco, San Francisco, California, USA
| | - Melvin B Heyman
- Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children’s Hospital San Francisco, San Francisco, California, USA
| | - Ashish S Patel
- Division of Pediatric Gastroenterology, Children’s Medical Center of Dallas, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Melissa Irek
- Division of Pediatric Gastroenterology, Children’s Medical Center of Dallas, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | | | - Neil E Hubbard
- Department of Pathology, University of California at Davis School of Medicine, Sacramento, California, USA
| | - Alexander D Borowsky
- Department of Pathology, University of California at Davis School of Medicine, Sacramento, California, USA
| | - Julie D Saba
- UCSF Benioff Children’s Hospital Oakland, Oakland, Califorina, USA,Address correspondence to: Julie D. Saba MD, PhD, Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609. E-mail:
| |
Collapse
|
186
|
Ardawi MSM, Rouzi AA, Al-Senani NS, Qari MH, Elsamanoudy AZ, Mousa SA. High Plasma Sphingosine 1-phosphate Levels Predict Osteoporotic Fractures in Postmenopausal Women: The Center of Excellence for Osteoporosis Research Study. J Bone Metab 2018; 25:87-98. [PMID: 29900158 PMCID: PMC5995758 DOI: 10.11005/jbm.2018.25.2.87] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/14/2018] [Accepted: 04/18/2018] [Indexed: 11/11/2022] Open
Abstract
Background Higher sphingosine 1-phosphate (S1P) plasma levels are associated with decreased bone mineral density (BMD), and increased risk of prevalent vertebral fracture. So, we hypothesized that postmenopausal women with increased baseline plasma S1P levels have a greater risk for future incident fracture (osteoporosis-related fractures [ORFs]). Methods This study was conducted in a prospective longitudinal cohort of 707 women recruited in 2004 and followed up annually for a mean period of 5.2±1.3 years. They were postmenopausal (aged ≥50 years). The primary outcome measure was the time to the first confirmed ORF event using radiographs and/or a surgical report. Results The plasma S1P levels (µmol/L) were significantly higher in the women with incident fracture (7.23±0.79) than in those without ORFs (5.02±0.51; P<0.001). High S1P levels were strongly associated with increased fracture risk. After adjustment for age and other confounders, the hazard ratio (HR) was 6.12 (95% confidence interval [CI], 4.92−7.66) for each 1-standard deviation increase in plasma S1P levels. The women in the highest quartile of S1P levels had a significant increase in fracture risk (HR, 9.89; 95% CI, 2.83−34.44). Results were similar when we compared plasma S1P levels at the 1-year visit. Conclusions The associations between plasma S1P levels and fracture risk were independent of BMD and other confounders. These findings demonstrate that high plasma S1P level at baseline and at years 1 to 5 is a strong and independent risk factor for future [ORFs] among postmenopausal women and could be a useful biomarker for fracture risk assessment in this population.
Collapse
Affiliation(s)
- Mohammed-Salleh M Ardawi
- Center of Excellence for Osteoporosis Research, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahim A Rouzi
- Center of Excellence for Osteoporosis Research, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nawal S Al-Senani
- Center of Excellence for Osteoporosis Research, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H Qari
- Center of Excellence for Osteoporosis Research, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Hematology, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Z Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaker A Mousa
- Center of Excellence for Osteoporosis Research, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia.,The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
187
|
Wang HY, Wang Y, Zhang Y, Wang J, Xiong SY, Sun Q. Crosslink between lipids and acute uveitis: a lipidomic analysis. Int J Ophthalmol 2018; 11:736-746. [PMID: 29862170 DOI: 10.18240/ijo.2018.05.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/15/2018] [Indexed: 01/19/2023] Open
Abstract
AIM To explore the roles of phospholipids and sphingolipids in the inflammatory process of uveitis. METHODS Aqueous humor (AH) and the retina were obtained from endotoxin-induced uveitis (EIU) rats during the acute inflammation stage (24h after endotoxin injection). Lipids were extracted using a modified Bligh and Dyer method and subjected to mass spectrometric identification using class-specific lipid standards and ratiometric quantification. Relative intensity analysis was performed to evaluate the amount change of common lipids between the EIU and control groups. RESULTS Unique lipid species encompassing all five phospholipid classes were found in both control and the EIU AH and retina. Commensurate with the significantly increased level of lysophospholipids in the EIU AH and retina, we found that the ratio of lysophospholipids to total phospholipids was significantly increased too. We also detected a significant increase in 18:0 lysophosphatidylcholine levels in the EIU group (fold change =6.4 in AH and 3.8 in retina). Cer240, Cer241, and SM240 levels remarkably increased in the EIU AH. Enhanced C12 ceramide-1-phosphate (C12 C-1-P), C16 C-1-P, C24 C-1-P, and upregulated Cer160, Cer240, SM120, and SM240 were found in EIU retina. C-1-P was believed to restore homeostasis by inhibiting nuclear factor kappa B (NF-κB) activation. However, we still found elevated NF-κB levels in the EIU retina. CONCLUSION A variety of lipids might have played a critical role in EIU inflammation. Exogenous topical application of these protective lipids or inhibition of these pro-inflammatory lipids may be useful therapeutic strategies for the resolution of EIU.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Jiaotong University, Shanghai 200080, China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Yi Wang
- Department of Chemistry, Fudan University, Shanghai 200030, China.,Department of Institutes of Biomedical Sciences, Fudan University, Shanghai 200030, China
| | - Yuan Zhang
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Jiaotong University, Shanghai 200080, China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Jing Wang
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Jiaotong University, Shanghai 200080, China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Shu-Yu Xiong
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Jiaotong University, Shanghai 200080, China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Qian Sun
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Jiaotong University, Shanghai 200080, China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| |
Collapse
|
188
|
Shi D, Tian T, Yao S, Cao K, Zhu X, Zhang M, Wen S, Li L, Shi M, Zhou H. FTY720 attenuates behavioral deficits in a murine model of systemic lupus erythematosus. Brain Behav Immun 2018; 70:293-304. [PMID: 29548997 DOI: 10.1016/j.bbi.2018.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/10/2018] [Accepted: 03/11/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropsychiatric (NP) involvement in systemic lupus erythematosus (SLE) severely impacts patients' quality of life and leads to a poor prognosis. The current therapeutic protocol, corticosteroid administration, can also induce neuropsychiatric disorders. FTY720 is an immunomodulator that selectively confines lymphocytes in lymph nodes and reduces autoreactive T cell recruitment to the central nervous system (CNS). This study aimed to identify a novel therapeutic strategy for NPSLE. B6.MRL-lpr mice were treated with oral administration of FTY720 (2 mg/kg) three times per week for 12 weeks, to evaluate its efficacy in a model of NPSLE. FTY720 significantly attenuated the impulsive and depression-like behavior of B6.MRL-lpr mice. Neuronal damage was reduced in the cortex, hippocampus, and amygdala of the FTY720-treated B6.MRL-lpr mice, as well as in TNF-α-treated HT22 cells. Additionally, FTY720 downregulated levels of inflammatory cytokines, and reduced the infiltration of T cells and neutrophils in the brain parenchyma. FTY720 also acted directly on cerebral endothelial cells and reduced the permeability of the blood-brain barrier (BBB) in B6.MRL-lpr mice, as evidenced by reduced central IgG and albumin levels. Finally, FTY720 significantly inhibited activation of PI3K/Akt/GSK3β/p65 signaling, which further reduced the expression levels of adhesion molecules in bEND.3 cells treated with B6.MRL-lpr mouse serum. Collectively, our data indicate that oral administration of FTY720 at an early stage has beneficial effects in NPSLE-model B6.MRL-lpr mice, suggesting that it may represent an effective new therapeutic strategy for NPSLE.
Collapse
Affiliation(s)
- Dongyan Shi
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Tongguan Tian
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Shu Yao
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Kelei Cao
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Xingxing Zhu
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Mingshun Zhang
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Shuang Wen
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Longjun Li
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China.
| |
Collapse
|
189
|
Luo Z, Rosenberg AJ, Liu H, Han J, Tu Z. Syntheses and in vitro evaluation of new S1PR1 compounds and initial evaluation of a lead F-18 radiotracer in rodents. Eur J Med Chem 2018; 150:796-808. [PMID: 29604582 PMCID: PMC5908474 DOI: 10.1016/j.ejmech.2018.03.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/27/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022]
Abstract
Thirteen new sphingosine-1-phosphate receptor 1 (S1PR1) ligands were designed and synthesized by replacing azetidine-3-carboxylic acid moiety of compound 4 with new polar groups. The in vitro binding potency of these new analogs toward S1PR1 was determined. Out of 13 new compounds, four compounds 9a, 10c, 12b, and 16b displayed high S1PR1 binding potency with IC50 values of 13.2 ± 3.2, 14.7 ± 1.7, 9.7 ± 1.6, and 6.3 ± 1.3 nM, respectively; further binding studies of these four ligands toward S1PR2-5 suggested they are highly selective for S1PR1 over other S1PRs. The radiosynthesis of the lead radiotracer [18F]12b was achieved with good radiochemical yield (∼14.1%), high radiochemical purity (>98%), and good specific activity (∼54.1 GBq/μmol, decay corrected to the end of synthesis, EOS). Ex vivo autoradiography and initial biodistribution studies in rodents were performed, suggesting that [18F]12b was able to penetrate the blood-brain barrier (BBB) with high brain uptake (0.71% ID/g at 60 min post-injection) and no defluorination was observed. In vitro autoradiography study in brain slices of lipopolysaccharides (LPS)-induced neuroinflammation mice indicated that SEW2871, a specific S1PR1 ligand was able to reduce the uptake of [18F]12b, suggesting [18F]12b has S1PR1 specific binding. These initial results suggested that [18F]12b has potential to be an F-18 labeled radiotracer for imaging S1PR1 in the brain of the animal in vivo.
Collapse
Affiliation(s)
- Zonghua Luo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adam J Rosenberg
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Junbin Han
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
190
|
S1P₄ Regulates Passive Systemic Anaphylaxis in Mice but Is Dispensable for Canonical IgE-Mediated Responses in Mast Cells. Int J Mol Sci 2018; 19:ijms19051279. [PMID: 29693558 PMCID: PMC5983835 DOI: 10.3390/ijms19051279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Mast cells are key players in the development of inflammatory allergic reactions. Cross-linking of the high-affinity receptor for IgE (FcεRI) on mast cells leads to the generation and secretion of the sphingolipid mediator, sphingosine-1-phosphate (S1P) which is able, in turn, to transactivate its receptors on mast cells. Previous reports have identified the expression of two of the five receptors for S1P on mast cells, S1P1 and S1P2, with functions in FcεRI-mediated chemotaxis and degranulation, respectively. Here, we show that cultured mouse mast cells also express abundant message for S1P4. Genetic deletion of S1pr4 did not affect the differentiation of bone marrow progenitors into mast cells or the proliferation of mast cells in culture. A comprehensive characterization of IgE-mediated responses in S1P4-deficient bone marrow-derived and peritoneal mouse mast cells indicated that this receptor is dispensable for mast cell degranulation, cytokine/chemokine production and FcεRI-mediated chemotaxis in vitro. However, interleukin-33 (IL-33)-mediated enhancement of IgE-induced degranulation was reduced in S1P4-deficient peritoneal mast cells, revealing a potential negative regulatory role for S1P4 in an IL-33-rich environment. Surprisingly, genetic deletion of S1pr4 resulted in exacerbation of passive systemic anaphylaxis to IgE/anti-IgE in mice, a phenotype likely related to mast cell-extrinsic influences, such as the high circulating levels of IgE in these mice which increases FcεRI expression and consequently the extent of the response to FcεRI engagement. Thus, we provide evidence that S1P4 modulates anaphylaxis in an unexpected manner that does not involve regulation of mast cell responsiveness to IgE stimulation.
Collapse
|
191
|
Badawy SMM, Okada T, Kajimoto T, Hirase M, Matovelo SA, Nakamura S, Yoshida D, Ijuin T, Nakamura SI. Extracellular α-synuclein drives sphingosine 1-phosphate receptor subtype 1 out of lipid rafts, leading to impaired inhibitory G-protein signaling. J Biol Chem 2018; 293:8208-8216. [PMID: 29632069 DOI: 10.1074/jbc.ra118.001986] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/04/2018] [Indexed: 11/06/2022] Open
Abstract
α-Synuclein (α-Syn)-positive intracytoplasmic inclusions, known as Lewy bodies, are thought to be involved in the pathogenesis of Lewy body diseases, such as Parkinson's disease (PD). Although growing evidence suggests that cell-to-cell transmission of α-Syn is associated with the progression of PD and that extracellular α-Syn promotes formation of inclusion bodies, its precise mechanism of action in the extracellular space remains unclear. Here, as indicated by both conventional fractionation techniques and FRET-based protein-protein interaction analysis, we demonstrate that extracellular α-Syn causes expulsion of sphingosine 1-phosphate receptor subtype 1 (S1P1R) from the lipid raft fractions. S1P1R regulates vesicular trafficking, and its expulsion involved α-Syn binding to membrane-surface gangliosides. Consequently, the S1P1R became refractory to S1P stimulation required for activating inhibitory G-protein (Gi) in the plasma membranes. Moreover, the extracellular α-Syn also induced uncoupling of the S1P1R on internal vesicles, resulting in the reduced amount of CD63 molecule (CD63) in the lumen of multivesicular endosomes, together with a decrease in CD63 in the released exosomes from α-Syn-treated cells. Furthermore, cholesterol-depleting agent-induced S1P1R expulsion from the rafts also resulted in S1P1R uncoupling. Taken together, these results suggest that extracellular α-Syn-induced expulsion of S1P1R from lipid rafts promotes the uncoupling of S1P1R from Gi, thereby blocking subsequent Gi signals, such as inhibition of cargo sorting into exosomal vesicles in multivesicular endosomes. These findings help shed additional light on PD pathogenesis.
Collapse
Affiliation(s)
- Shaymaa Mohamed Mohamed Badawy
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Taro Okada
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Mitsuhiro Hirase
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shubi Ambwene Matovelo
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shunsuke Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Daisuke Yoshida
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Takeshi Ijuin
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan.
| |
Collapse
|
192
|
Zuo L, Zhou L, Xu T, Li Z, Liu L, Shi Y, Kang J, Gao G, Du S, Sun Z, Zhang X. Antiseptic Activity of Ethnomedicinal Xuebijing Revealed by the Metabolomics Analysis Using UHPLC-Q-Orbitrap HRMS. Front Pharmacol 2018; 9:300. [PMID: 29651245 PMCID: PMC5884946 DOI: 10.3389/fphar.2018.00300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/15/2018] [Indexed: 01/06/2023] Open
Abstract
Xuebijing (XBJ) injection is an ethnomedicinal formula that has been widely used in the therapy of sepsis in China. However, the underlying theraputic mechanisms remain uninvestigated. In this research, a metabolomic method based on UHPLC-Q-Orbitrap HRMS was applied to make a holistic evaluation of XBJ on septic rats which were induced by the classical cecal ligation and puncture (CLP) operation. The plasma metabolic changes were profiled and evaluated by multivariate analytical (MVA) methods. In the results, a total of 41 differential metabolites were identified between CLP-operated group and sham-operated group, which were mainly involved in amino acid metabolism and lipid metabolism. After pathway analysis, it was finally discovered that the majority of the influenced metabolic pathways caused by sepsis mainly involved in energy metabolism, oxidative stress, and inflammation metabolism. When intervened by XBJ injection, 32 of the 41 disordered metabolites had been adjusted in reverse, which suggested that XBJ could mediate the abnormal metabolic pathways synergistically. In conclusion, the present study systematically investigated the efficacy and its underlying therapeutic mechanisms of XBJ on sepsis, while offering a new insight for the subsequent relevant exploration of other Chinese medicine at the same time.
Collapse
Affiliation(s)
- Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Tanye Xu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Zhuolun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Liwei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yingying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Guanmin Gao
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuzhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
193
|
Bryan AM, Del Poeta M. Sphingosine-1-phosphate receptors and innate immunity. Cell Microbiol 2018; 20:e12836. [PMID: 29498184 DOI: 10.1111/cmi.12836] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/04/2018] [Accepted: 02/15/2018] [Indexed: 12/24/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a signalling lipid that regulates many cellular processes in mammals. One well-studied role of S1P signalling is to modulate T-cell trafficking, which has a major impact on adaptive immunity. Compounds that target S1P signalling pathways are of interest for immune system modulation. Recent studies suggest that S1P signalling regulates many more cell types and processes than previously appreciated. This review will summarise current understanding of S1P signalling, focusing on recent novel findings in the roles of S1P receptors in innate immunity.
Collapse
Affiliation(s)
- Arielle M Bryan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.,Veterans Administration Medical Center, Northport, NY, USA.,Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
194
|
Hill RZ, Hoffman BU, Morita T, Campos SM, Lumpkin EA, Brem RB, Bautista DM. The signaling lipid sphingosine 1-phosphate regulates mechanical pain. eLife 2018; 7:e33285. [PMID: 29561262 PMCID: PMC5896955 DOI: 10.7554/elife.33285] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
Somatosensory neurons mediate responses to diverse mechanical stimuli, from innocuous touch to noxious pain. While recent studies have identified distinct populations of A mechanonociceptors (AMs) that are required for mechanical pain, the molecular underpinnings of mechanonociception remain unknown. Here, we show that the bioactive lipid sphingosine 1-phosphate (S1P) and S1P Receptor 3 (S1PR3) are critical regulators of acute mechanonociception. Genetic or pharmacological ablation of S1PR3, or blockade of S1P production, significantly impaired the behavioral response to noxious mechanical stimuli, with no effect on responses to innocuous touch or thermal stimuli. These effects are mediated by fast-conducting A mechanonociceptors, which displayed a significant decrease in mechanosensitivity in S1PR3 mutant mice. We show that S1PR3 signaling tunes mechanonociceptor excitability via modulation of KCNQ2/3 channels. Our findings define a new role for S1PR3 in regulating neuronal excitability and establish the importance of S1P/S1PR3 signaling in the setting of mechanical pain thresholds.
Collapse
Affiliation(s)
- Rose Z Hill
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Benjamin U Hoffman
- Department of Physiology and Cellular BiophysicsColumbia University College of Physicians and SurgeonsNew YorkUnited States
- Medical Scientist Training ProgramColumbia UniversityNew YorkUnited States
| | - Takeshi Morita
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | | | - Ellen A Lumpkin
- Department of Physiology and Cellular BiophysicsColumbia University College of Physicians and SurgeonsNew YorkUnited States
- Neurobiology CourseMarine Biological LaboratoryWoods HoleUnited States
| | - Rachel B Brem
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Buck Institute for Research on AgingNovatoUnited States
| | - Diana M Bautista
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Neurobiology CourseMarine Biological LaboratoryWoods HoleUnited States
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
195
|
Sphingosine Kinase 1 Regulates Inflammation and Contributes to Acute Lung Injury in Pneumococcal Pneumonia via the Sphingosine-1-Phosphate Receptor 2. Crit Care Med 2018; 46:e258-e267. [DOI: 10.1097/ccm.0000000000002916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
196
|
Cao M, Ji C, Zhou Y, Huang W, Ni W, Tong X, Wei JF. Sphingosine kinase inhibitors: A patent review. Int J Mol Med 2018; 41:2450-2460. [PMID: 29484372 DOI: 10.3892/ijmm.2018.3505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/30/2018] [Indexed: 11/05/2022] Open
Abstract
Sphingosine kinases (SphKs) catalyze the conversion of the sphingosine to the promitogenic/migratory product, sphingosine-1-phosphate (S1P). SphK/S1P pathway has been linked to the progression of cancer and various other diseases including allergic inflammatory disease, cardiovascular diseases, rejection after transplantation, the central nervous system, and virus infections. Therefore, SphKs represent potential new targets for developing novel therapeutics for these diseases. The history and development of SphK inhibitors are discussed, summarizing SphK inhibitors by their structures, and describing some applications of SphK inhibitors. We concluded: i) initial SphK inhibitors based on sphingosine have low specificity with several important off-targets. Identification the off-targets that would work synergistically with SphKs, and developing compounds that target the unique C4 domain of SphKs should be the focus of future studies. ii) The modifications of SphK inhibitors, which are devoted to increasing the selectivity to one of the two isoforms, now focus on the alkyl length, the spacer between the head and linker rings, and the insertion and the position of lipidic group in tail region. iii) SphK/S1P signaling pathway holds therapeutic values for many diseases. To find the exact function of each isoform of SphKs increasing the number of SphK inhibitor clinical trials is necessary.
Collapse
Affiliation(s)
- Mengda Cao
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongcheng, Beijing 100730, P.R. China
| | - Chunmei Ji
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yanjun Zhou
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiwei Ni
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xunliang Tong
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongcheng, Beijing 100730, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
197
|
Wedman PA, Aladhami A, Chumanevich AP, Fuseler JW, Oskeritzian CA. Mast cells and sphingosine-1-phosphate underlie prelesional remodeling in a mouse model of eczema. Allergy 2018; 73:405-415. [PMID: 28905998 PMCID: PMC10127444 DOI: 10.1111/all.13310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic skin inflammation that affects children and adults worldwide, but its pathogenesis remains ill-understood. METHODS We show that a single application of OVA to mouse skin initiates remodeling and cellular infiltration of the hypodermis measured by a newly developed computer-aided method. RESULTS Importantly, we demonstrate that skin mast cell (MC) activation and local sphingosine-1-phosphate (S1P) are significantly augmented after OVA treatment in mice. Deficiency in sphingosine kinase (SphK)1, the S1P-producing enzyme, or in MC, remarkably mitigates all signs of OVA-mediated remodeling and MC activation. Furthermore, skin S1P levels remain unchanged in MC-deficient mice exposed to OVA. LPS-free OVA does not recapitulate any of the precursor signs of AD, supporting a triggering contribution of LPS in AD that, per se, suffice to activate local MC and elevate skin S1P. CONCLUSION We describe MC and S1P as novel pathogenic effectors that initiate remodeling in AD prior to any skin lesions and reveal the significance of LPS in OVA used in most studies, thus mimicking natural antigen (Ag) exposure.
Collapse
Affiliation(s)
- P. A. Wedman
- Department of Pathology, Microbiology and Immunology; University of South Carolina School of Medicine; Columbia SC USA
| | - A. Aladhami
- Department of Pathology, Microbiology and Immunology; University of South Carolina School of Medicine; Columbia SC USA
- University of Baghdad; Baghdad Iraq
| | - A. P. Chumanevich
- Department of Pathology, Microbiology and Immunology; University of South Carolina School of Medicine; Columbia SC USA
| | - J. W. Fuseler
- Department of Pathology, Microbiology and Immunology; University of South Carolina School of Medicine; Columbia SC USA
| | - C. A. Oskeritzian
- Department of Pathology, Microbiology and Immunology; University of South Carolina School of Medicine; Columbia SC USA
| |
Collapse
|
198
|
S1P Signalling Differentially Affects Migration of Peritoneal B Cell Populations In Vitro and Influences the Production of Intestinal IgA In Vivo. Int J Mol Sci 2018; 19:ijms19020391. [PMID: 29382132 PMCID: PMC5855613 DOI: 10.3390/ijms19020391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 01/07/2023] Open
Abstract
Introduction: Sphingosine-1-phosphate (S1P) regulates the migration of follicular B cells (B2 cells) and directs the positioning of Marginal zone B cells (MZ B cells) within the spleen. The function of S1P signalling in the third B cell lineage, B1 B cells, mainly present in the pleural and peritoneal cavity, has not yet been determined. Methods: S1P receptor expression was analysed in peritoneal B cells by real-time polymerase chain reaction (qPCR). The chemotactic response to S1P was studied in vitro. The role of S1P signalling was further explored in a s1p4−/− mouse strain. Results: Peritoneal B cells expressed considerable amounts of the S1P receptors 1 and 4 (S1P1 and S1P4, respectively). S1P1 showed differential expression between the distinct peritoneal B cell lineages. While B2 cells showed no chemotactic response to S1P, B1 B cells showed a migration response to S1P. s1p4−/− mice displayed significant alterations in the composition of peritoneal B cell populations, as well as a significant reduction of mucosal immunoglobulin A (IgA) in the gut. Discussion: S1P signalling influences peritoneal B1 B cell migration. S1P4 deficiency alters the composition of peritoneal B cell populations and reduces secretory IgA levels. These findings suggest that S1P signalling may be a target to modulate B cell function in inflammatory intestinal pathologies.
Collapse
|
199
|
Chiricozzi E, Loberto N, Schiumarini D, Samarani M, Mancini G, Tamanini A, Lippi G, Dechecchi MC, Bassi R, Giussani P, Aureli M. Sphingolipids role in the regulation of inflammatory response: From leukocyte biology to bacterial infection. J Leukoc Biol 2018; 103:445-456. [PMID: 29345379 DOI: 10.1002/jlb.3mr0717-269r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/13/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids (SLs) are amphiphilic molecules mainly associated with the external leaflet of eukaryotic plasma membrane, and are structural membrane components with key signaling properties. Since the beginning of the last century, a large number of papers described the involvement of these molecules in several aspects of cell physiology and pathology. Several lines of evidence support the critical role of SLs in inflammatory diseases, by acting as anti- or pro-inflammatory mediators. They are involved in control of leukocyte activation and migration, and are recognized as essential players in host response to pathogenic infection. We propose here a critical overview of current knowledge on involvement of different classes of SLs in inflammation, focusing on the role of simple and complex SLs in pathogen-mediated inflammatory response.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Nicoletta Loberto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Domitilla Schiumarini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Maura Samarani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Giulia Mancini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Tamanini
- Laboratorio di Patologia Molecolare-Laboratorio Analisi, Dipartimento di Patologia e Diagnostica, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Giuseppe Lippi
- Sezione di Biochimica Clinica, Università degli Studi di Verona, Verona, Italy
| | - Maria Cristina Dechecchi
- Laboratorio di Patologia Molecolare-Laboratorio Analisi, Dipartimento di Patologia e Diagnostica, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Rosaria Bassi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Paola Giussani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Massimo Aureli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
200
|
Muse Cells Are Endogenous Reparative Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:43-68. [PMID: 30484223 DOI: 10.1007/978-4-431-56847-6_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dynamics and actions of Muse cells at a time of physical crisis are unique and highly remarkable compared with other stem cell types. When the living body is in a steady state, low levels of Muse cells are mobilized to the peripheral blood, possibly from the bone marrow, and supplied to the connective tissue of nearly every organ. Under conditions of serious tissue damage, such as acute myocardial infarction and stroke, Muse cells are highly mobilized to the peripheral blood, drastically increasing their numbers in the peripheral blood within 24 h after the onset of tissue injury. The alerting signal, sphingosine-1-phosphate, attracts Muse cells to the damaged site mainly via the sphingosine-1-phosphate receptor 2, enabling them to preferentially home to site of injury. After homing, Muse cells spontaneously differentiate into tissue-compatible cells and replenish new functional cells for tissue repair. Because Muse cells have pleiotropic effects, including paracrine, anti-inflammatory, anti-fibrotic, and anti-apoptotic effects, these cells synergistically deliver long-lasting functional and structural recovery. This chapter describes how Muse cells exert their reparative effects in vivo.
Collapse
|