151
|
Simonov D, Swift S, Blenkiron C, Phillips AR. Bacterial RNA as a signal to eukaryotic cells as part of the infection process. Discoveries (Craiova) 2016; 4:e70. [PMID: 32309589 PMCID: PMC7159825 DOI: 10.15190/d.2016.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The discovery of regulatory RNA has identified an underappreciated area for microbial subversion of the host. There is increasing evidence that RNA can be delivered from bacteria to host cells associated with membrane vesicles or by direct release from intracellular bacteria. Once inside the host cell, RNA can act by activating sequence-independent receptors of the innate immune system, where recent findings suggest this can be more than simple pathogen detection, and may contribute to the subversion of immune responses. Sequence specific effects are also being proposed, with examples from nematode, plant and human models providing support for the proposition that bacteria-to-human RNA signaling and the subversion of host gene expression may occur.
Collapse
Affiliation(s)
- Denis Simonov
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Anthony R Phillips
- Department of Surgery, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
152
|
Unluturk BD, Balasubramaniam S, Akyildiz IF. The Impact of Social Behavior on the Attenuation and Delay of Bacterial Nanonetworks. IEEE Trans Nanobioscience 2016; 15:959-969. [PMID: 27849547 DOI: 10.1109/tnb.2016.2627081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Molecular communication (MC) is a new paradigm for developing communication systems that exchanges information through the transmission and reception of molecules. One proposed model for MC is using bacteria to carry information encoded into DNA plasmids, and this is termed bacterial nanonetworks. However, a limiting factor in the models that have been studied so far is the environment considered only in ideal conditions with a single population. This is far from realistic in natural environments, where bacteria coexist in multiple populations of same and different species, resulting in a very complex social community. This complex community has social interactions that include cooperation, cheating, as well as competition. In this paper, the effects of these social interactions on the information delivery in bacterial nanonetworks are studied in terms of delay, attenuation and data rate. The numerical results show that the cooperative behavior of bacteria improves the performance of delay and attenuation leading to a higher data rate, and this performance can be degraded once their behavior switches towards cheating. The competitive social behavior shows that the performance can degrade delay as well as attenuation leading to slower data rates, as the population with the encoded DNA plasmids are prevented from reaching the receiver. The analysis of social interactions between the bacteria will pave the way for efficient design of bacterial nanonetworks enabling applications such as intrabody sensing, drug delivery, and environmental control against pollution and biological hazards.
Collapse
|
153
|
Stone W, Kroukamp O, Korber DR, McKelvie J, Wolfaardt GM. Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience. Front Microbiol 2016; 7:1563. [PMID: 27746774 PMCID: PMC5043023 DOI: 10.3389/fmicb.2016.01563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022] Open
Abstract
The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation.
Collapse
Affiliation(s)
- Wendy Stone
- Department of Microbiology, University of Stellenbosch, Cape TownSouth Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ONCanada
| | - Otini Kroukamp
- Department of Microbiology, University of Stellenbosch, Cape TownSouth Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ONCanada
| | - Darren R Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK Canada
| | - Jennifer McKelvie
- Environmental Geoscience, Nuclear Waste Management Organization, Toronto, ON Canada
| | - Gideon M Wolfaardt
- Department of Microbiology, University of Stellenbosch, Cape TownSouth Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ONCanada
| |
Collapse
|
154
|
Understanding the Streptococcus mutans Cid/Lrg System through CidB Function. Appl Environ Microbiol 2016; 82:6189-6203. [PMID: 27520814 DOI: 10.1128/aem.01499-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023] Open
Abstract
The Streptococcus mutans lrgAB and cidAB operons have been previously described as a potential model system to dissect the complexity of biofilm development and virulence of S. mutans Herein, we have attempted to further characterize the Cid/Lrg system by focusing on CidB, which has been shown to be critical for the ability of S. mutans to survive and persist in a nonpreferred oxygen-enriched condition. We have found that the expression level of cidB is critical to oxidative stress tolerance of S. mutans, most likely by impacting lrg expression. Intriguingly, the impaired aerobic growth phenotype of the cidB mutant could be restored by the additional loss of either CidA or LrgA. Growth-dependent expression of cid and lrg was demonstrated to be tightly under the control of both CcpA and the VicKR two-component system (TCS), regulators known to play an essential role in controlling major catabolic pathways and cell envelope homeostasis, respectively. RNA sequencing (RNA-Seq) analysis revealed that mutation of cidB resulted in global gene expression changes, comprising major domains of central metabolism and virulence processes, particularly in those involved with oxidative stress resistance. Loss of CidB also significantly changed the expression of genes related to genomic islands (GI) TnSmu1 and TnSmu2, the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas system, and toxin-antitoxin (T/A) modules. Taken together, these data show that CidB impinges on the stress response, as well as the fundamental cellular physiology of S. mutans, and further suggest a potential link between Cid/Lrg-mediated cellular processes, S. mutans pathogenicity, and possible programmed growth arrest and cell death mechanisms. IMPORTANCE The ability of Streptococcus mutans to survive a variety of harmful or stressful conditions and to emerge as a numerically significant member of stable oral biofilm communities are essential elements for its persistence and cariogenicity. In this study, the homologous cidAB and lrgAB operons, previously identified as being highly balanced and coordinated during S. mutans aerobic growth, were further characterized through the functional and transcriptomic analysis of CidB. Precise control of CidB levels is shown to impact the expression of lrg, oxidative stress tolerance, major metabolic domains, and the molecular modules linked to cell death and lysis. This study advances our understanding of the Cid/Lrg system as a key player in the integration of complex environmental signals (such as oxidative stress) into the regulatory networks that modulate S. mutans virulence and cell homeostasis.
Collapse
|
155
|
Spitzer P, Condic M, Herrmann M, Oberstein TJ, Scharin-Mehlmann M, Gilbert DF, Friedrich O, Grömer T, Kornhuber J, Lang R, Maler JM. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. Sci Rep 2016; 6:32228. [PMID: 27624303 PMCID: PMC5021948 DOI: 10.1038/srep32228] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/04/2016] [Indexed: 11/09/2022] Open
Abstract
Amyloid-β (Aβ) peptides are the main components of the plaques found in the brains of patients with Alzheimer's disease. However, Aβ peptides are also detectable in secretory compartments and peripheral blood contains a complex mixture of more than 40 different modified and/or N- and C-terminally truncated Aβ peptides. Recently, anti-infective properties of Aβ peptides have been reported. Here, we investigated the interaction of Aβ peptides of different lengths with various bacterial strains and the yeast Candida albicans. The amyloidogenic peptides Aβ1-42, Aβ2-42, and Aβ3p-42 but not the non-amyloidogenic peptides Aβ1-40 and Aβ2-40 bound to microbial surfaces. As observed by immunocytochemistry, scanning electron microscopy and Gram staining, treatment of several bacterial strains and Candida albicans with Aβ peptide variants ending at position 42 (Aβx-42) caused the formation of large agglutinates. These aggregates were not detected after incubation with Aβx-40. Furthermore, Aβx-42 exerted an antimicrobial activity on all tested pathogens, killing up to 80% of microorganisms within 6 h. Aβ1-40 only had a moderate antimicrobial activity against C. albicans. Agglutination of Aβ1-42 was accelerated in the presence of microorganisms. These data demonstrate that the amyloidogenic Aβx-42 variants have antimicrobial activity and may therefore act as antimicrobial peptides in the immune system.
Collapse
Affiliation(s)
- Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Mateja Condic
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Medicine III, Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Gluecksstraße 4a, D-91054 Erlangen, Germany
| | - Timo Jan Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Marina Scharin-Mehlmann
- Electron Devices, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, D-91058 Erlangen, Germany
| | - Daniel F Gilbert
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Paul-Gordan-Str. 3, D-91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg, Paul-Gordan-Str. 3, D-91052 Erlangen, Germany
| | - Teja Grömer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University Erlangen-Nuremberg, Wasserturmstr. 3/5, D-91054 Erlangen, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| |
Collapse
|
156
|
Lam SJ, O'Brien-Simpson NM, Pantarat N, Sulistio A, Wong EHH, Chen YY, Lenzo JC, Holden JA, Blencowe A, Reynolds EC, Qiao GG. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat Microbiol 2016; 1:16162. [PMID: 27617798 DOI: 10.1038/nmicrobiol.2016.162] [Citation(s) in RCA: 573] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/02/2016] [Indexed: 12/25/2022]
Abstract
With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Shu J Lam
- Polymer Science Group, Department of Chemical &Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Namfon Pantarat
- Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Adrian Sulistio
- Polymer Science Group, Department of Chemical &Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Edgar H H Wong
- Polymer Science Group, Department of Chemical &Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yu-Yen Chen
- Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jason C Lenzo
- Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - James A Holden
- Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anton Blencowe
- Polymer Science Group, Department of Chemical &Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.,School of Pharmacy and Medical Sciences, Division of Health Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia
| | - Eric C Reynolds
- Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical &Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
157
|
Bloom-Ackermann Z, Steinberg N, Rosenberg G, Oppenheimer-Shaanan Y, Pollack D, Ely S, Storzi N, Levy A, Kolodkin-Gal I. Toxin-Antitoxin systems eliminate defective cells and preserve symmetry in Bacillus subtilis biofilms. Environ Microbiol 2016; 18:5032-5047. [PMID: 27450630 DOI: 10.1111/1462-2920.13471] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/07/2016] [Accepted: 07/20/2016] [Indexed: 01/02/2023]
Abstract
Toxin-antitoxin modules are gene pairs encoding a toxin and its antitoxin, and are found on the chromosomes of many bacteria, including pathogens. Here, we characterize the specific contribution of the TxpA and YqcG toxins in elimination of defective cells from developing Bacillus subtilis biofilms. On nutrient limitation, defective cells accumulated in the biofilm breaking its symmetry. Deletion of the toxins resulted in accumulation of morphologically abnormal cells, and interfered with the proper development of the multicellular community. Dual physiological responses are of significance for TxpA and YqcG activation: nitrogen deprivation enhances the transcription of both TxpA and YqcG toxins, and simultaneously sensitizes the biofilm cells to their activity. Furthermore, we demonstrate that while both toxins when overexpressed affect the morphology of the developing biofilm, the toxin TxpA can act to lyse and dissolve pre-established B. subtilis biofilms.
Collapse
Affiliation(s)
- Zohar Bloom-Ackermann
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nitai Steinberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Gili Rosenberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | - Dan Pollack
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shir Ely
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nimrod Storzi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Asaf Levy
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
158
|
Asplund-Samuelsson J, Sundh J, Dupont CL, Allen AE, McCrow JP, Celepli NA, Bergman B, Ininbergs K, Ekman M. Diversity and Expression of Bacterial Metacaspases in an Aquatic Ecosystem. Front Microbiol 2016; 7:1043. [PMID: 27458440 PMCID: PMC4933709 DOI: 10.3389/fmicb.2016.01043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/22/2016] [Indexed: 11/13/2022] Open
Abstract
Metacaspases are distant homologs of metazoan caspase proteases, implicated in stress response, and programmed cell death (PCD) in bacteria and phytoplankton. While the few previous studies on metacaspases have relied on cultured organisms and sequenced genomes, no studies have focused on metacaspases in a natural setting. We here present data from the first microbial community-wide metacaspase survey; performed by querying metagenomic and metatranscriptomic datasets from the brackish Baltic Sea, a water body characterized by pronounced environmental gradients and periods of massive cyanobacterial blooms. Metacaspase genes were restricted to ~4% of the bacteria, taxonomically affiliated mainly to Bacteroidetes, Alpha- and Betaproteobacteria and Cyanobacteria. The gene abundance was significantly higher in larger or particle-associated bacteria (>0.8 μm), and filamentous Cyanobacteria dominated metacaspase gene expression throughout the bloom season. Distinct seasonal expression patterns were detected for the three metacaspase genes in Nodularia spumigena, one of the main bloom-formers. Clustering of normalized gene expression in combination with analyses of genomic and assembly data suggest functional diversification of these genes, and possible roles of the metacaspase genes related to stress responses, i.e., sulfur metabolism in connection to oxidative stress, and nutrient stress induced cellular differentiation. Co-expression of genes encoding metacaspases and nodularin toxin synthesis enzymes was also observed in Nodularia spumigena. The study shows that metacaspases represent an adaptation of potentially high importance for several key organisms in the Baltic Sea, most prominently Cyanobacteria, and open up for further exploration of their physiological roles in microbes and assessment of their ecological impact in aquatic habitats.
Collapse
Affiliation(s)
- Johannes Asplund-Samuelsson
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm UniversitySolna, Sweden
| | - John Sundh
- Science for Life Laboratory, Department of Biology and Environmental Science, Linnaeus UniversitySolna, Sweden
| | - Chris L. Dupont
- Microbial and Environmental Genomics, J. Craig Venter InstituteSan Diego, CA, USA
| | - Andrew E. Allen
- Microbial and Environmental Genomics, J. Craig Venter InstituteSan Diego, CA, USA
| | - John P. McCrow
- Microbial and Environmental Genomics, J. Craig Venter InstituteSan Diego, CA, USA
| | - Narin A. Celepli
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm UniversitySolna, Sweden
| | - Birgitta Bergman
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm UniversitySolna, Sweden
| | - Karolina Ininbergs
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm UniversitySolna, Sweden
| | - Martin Ekman
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm UniversitySolna, Sweden
| |
Collapse
|
159
|
Chaudhari SS, Thomas VC, Sadykov MR, Bose JL, Ahn DJ, Zimmerman MC, Bayles KW. The LysR-type transcriptional regulator, CidR, regulates stationary phase cell death in Staphylococcus aureus. Mol Microbiol 2016; 101:942-53. [PMID: 27253847 DOI: 10.1111/mmi.13433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 11/29/2022]
Abstract
The Staphylococcus aureus LysR-type transcriptional regulator, CidR, activates the expression of two operons including cidABC and alsSD that display pro- and anti-death functions, respectively. Although several investigations have focused on the functions of different genes associated with these operons, the collective role of the CidR regulon in staphylococcal physiology is not clearly understood. Here we reveal that the primary role of this regulon is to limit acetate-dependent potentiation of cell death in staphylococcal populations. Although both CidB and CidC promote acetate generation and cell death, the CidR-dependent co-activation of CidA and AlsSD counters the effects of CidBC by redirecting intracellular carbon flux towards acetoin formation. From a mechanistic standpoint, we demonstrate that CidB is necessary for full activation of CidC, whereas CidA limits the abundance of CidC in the cell.
Collapse
Affiliation(s)
- Sujata S Chaudhari
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5900, USA
| | - Vinai C Thomas
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5900, USA
| | - Marat R Sadykov
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5900, USA
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, MSN 3029, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Daniel J Ahn
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5900, USA
| | - Matthew C Zimmerman
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kenneth W Bayles
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5900, USA.
| |
Collapse
|
160
|
Durand P, Sym S, Michod R. Programmed Cell Death and Complexity in Microbial Systems. Curr Biol 2016; 26:R587-R593. [DOI: 10.1016/j.cub.2016.05.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
161
|
|
162
|
Nagy G, Pinczes G, Pinter G, Pocsi I, Prokisch J, Banfalvi G. In Situ Electron Microscopy of Lactomicroselenium Particles in Probiotic Bacteria. Int J Mol Sci 2016; 17:E1047. [PMID: 27376279 PMCID: PMC4964423 DOI: 10.3390/ijms17071047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 11/16/2022] Open
Abstract
Electron microscopy was used to test whether or not (a) in statu nascendi synthesized, and in situ measured, nanoparticle size does not differ significantly from the size of nanoparticles after their purification; and (b) the generation of selenium is detrimental to the bacterial strains that produce them. Elemental nano-sized selenium produced by probiotic latic acid bacteria was used as a lactomicroselenium (lactomicroSel) inhibitor of cell growth in the presence of lactomicroSel, and was followed by time-lapse microscopy. The size of lactomicroSel produced by probiotic bacteria was measured in situ and after isolation and purification. For these measurements the TESLA BS 540 transmission electron microscope was converted from analog (aTEM) to digital processing (dTEM), and further to remote-access internet electron microscopy (iTEM). Lactobacillus acidophilus produced fewer, but larger, lactomicroSel nanoparticles (200-350 nm) than Lactobacillus casei (L. casei), which generated many, smaller lactomicroSel particles (85-200 nm) and grains as a cloudy, less electrodense material. Streptococcus thermophilus cells generated selenoparticles (60-280 nm) in a suicidic manner. The size determined in situ in lactic acid bacteria was significantly lower than those measured by scanning electron microscopy after the isolation of lactomicroSel particles obtained from lactobacilli (100-500 nm), but higher relative to those isolated from Streptococcus thermopilus (50-100 nm). These differences indicate that smaller lactomicroSel particles could be more toxic to the producing bacteria themselves and discrepancies in size could have implications with respect to the applications of selenium nanoparticles as prebiotics.
Collapse
Affiliation(s)
- Gabor Nagy
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen 4010, Hungary.
| | - Gyula Pinczes
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen 4010, Hungary.
| | - Gabor Pinter
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen 4010, Hungary.
| | - Istvan Pocsi
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen 4010, Hungary.
| | - Jozsef Prokisch
- Department of Animal Breeding, University of Debrecen, Debrecen 4010, Hungary.
| | - Gaspar Banfalvi
- Department of Biotechnology and Microbiology, University of Debrecen, Debrecen 4010, Hungary.
| |
Collapse
|
163
|
Ramisetty BCM, Raj S, Ghosh D. Escherichia coli MazEF toxin-antitoxin system does not mediate programmed cell death. J Basic Microbiol 2016; 56:1398-1402. [PMID: 27259116 DOI: 10.1002/jobm.201600247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/20/2016] [Indexed: 11/06/2022]
Abstract
Toxin-antitoxins systems (TAS) are prokaryotic operons containing two small overlapping genes which encode two components referred to as toxin and antitoxin. Involvement of TAS in bacterial programmed cell death (PCD) is highly controversial. MazEF, a typical type II TAS, is particularly implicated in mediating PCD in Escherichia coli. Hence, we compared the metabolic fitness and stress tolerance of E. coli strains (MC4100 and its mazEF-derivative) which were extensively used by proponents of mazEF-mediated PCD. We found that both the strains are deficient in relA gene and that the ΔmazEF strain has lower fitness and stress tolerance compared to wild type MC4100. We could not reproduce mazEF mediated PCD which emphasizes the need for skeptic approach to the PCD hypothesis.
Collapse
Affiliation(s)
| | - Swati Raj
- School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Dimpy Ghosh
- School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudram, Thanjavur, India
| |
Collapse
|
164
|
Kaczanowski S. Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging. Phys Biol 2016; 13:031001. [DOI: 10.1088/1478-3975/13/3/031001] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
165
|
Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G, Petty NK, Osvath SR, Cárcamo-Oyarce G, Gloag ES, Shimoni R, Omasits U, Ito S, Yap X, Monahan LG, Cavaliere R, Ahrens CH, Charles IG, Nomura N, Eberl L, Whitchurch CB. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat Commun 2016; 7:11220. [PMID: 27075392 PMCID: PMC4834629 DOI: 10.1038/ncomms11220] [Citation(s) in RCA: 451] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023] Open
Abstract
Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs.
Collapse
Affiliation(s)
- Lynne Turnbull
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Masanori Toyofuku
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Department of Plant and Microbial Biology, University of Zurich, Zürich 8008, Switzerland
| | - Amelia L Hynen
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Masaharu Kurosawa
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zürich 8008, Switzerland
| | - Nicola K Petty
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Sarah R Osvath
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Gerardo Cárcamo-Oyarce
- Department of Plant and Microbial Biology, University of Zurich, Zürich 8008, Switzerland
| | - Erin S Gloag
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Raz Shimoni
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Ulrich Omasits
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Satoshi Ito
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Xinhui Yap
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Leigh G Monahan
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Rosalia Cavaliere
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Christian H Ahrens
- Agroscope, Institute for Plant Production Sciences, Research Group Molecular Diagnostics, Genomics and Bioinformatics, &Swiss Institute of Bioinformatics (SIB), Wädenswil 8820, Switzerland
| | - Ian G Charles
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Nobuhiko Nomura
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zürich 8008, Switzerland
| | - Cynthia B Whitchurch
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
166
|
Klemenčič M, Dolinar M. Orthocaspase and toxin-antitoxin loci rubbing shoulders in the genome of Microcystis aeruginosa PCC 7806. Curr Genet 2016; 62:669-675. [PMID: 26968707 DOI: 10.1007/s00294-016-0582-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 12/12/2022]
Abstract
Programmed cell death in multicellular organisms is a coordinated and precisely regulated process. On the other hand, in bacteria we have little clue about the network of interacting molecules that result in the death of a single cell within a population or the death of almost complete population, such as often observed in cyanobacterial blooms. With the recent discovery that orthocaspase MaOC1 of the cyanobacterium Microcystis aeruginosa is an active proteolytic enzyme, we have gained a possible hint about at least one step in the process, but the picture is far from complete. Interestingly, the genomic context of MaOC1 revealed the presence of multiple copies of genes that belong to toxin-antitoxin modules. It has been speculated that these also play a role in bacterial programmed cell death. The discovery of two components linked to cell death within the same genomic region could open new ways to deciphering the underlying mechanisms of cyanobacterial cell death.
Collapse
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Marko Dolinar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
167
|
Prax M, Mechler L, Weidenmaier C, Bertram R. Glucose Augments Killing Efficiency of Daptomycin Challenged Staphylococcus aureus Persisters. PLoS One 2016; 11:e0150907. [PMID: 26960193 PMCID: PMC4784881 DOI: 10.1371/journal.pone.0150907] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/21/2016] [Indexed: 02/05/2023] Open
Abstract
Treatment of Staphylococcus aureus in stationary growth phase with high doses of the antibiotic daptomycin (DAP) eradicates the vast majority of the culture and leaves persister cells behind. Despite resting in a drug-tolerant and dormant state, persister cells exhibit metabolic activity which might be exploited for their elimination. We here report that the addition of glucose to S. aureus persisters treated with DAP increased killing by up to five-fold within one hour. This glucose-DAP effect also occurred with strains less sensitive to the drug. The underlying mechanism is independent of the proton motive force and was not observed with non-metabolizable 2-deoxy-glucose. Our results are consistent with two hypotheses on the glucose-DAP interplay. The first is based upon glucose-induced carbohydrate transport proteins that may influence DAP and the second suggests that glucose may trigger the release or activity of cell-lytic proteins to augment DAP’s mode of action.
Collapse
Affiliation(s)
- Marcel Prax
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Lehrbereich Mikrobielle Genetik, Auf der Morgenstelle 28, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Paul-Ehrlich-Institut, Mikrobiologische Sicherheit, Paul-Ehrlich-Str. 51–59, 63225 Langen, Germany
| | - Lukas Mechler
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Lehrbereich Mikrobielle Genetik, Auf der Morgenstelle 28, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Christopher Weidenmaier
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Medizinische Mikrobiologie und Hygiene, Elfriede-Aulhorn-Str. 6, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Ralph Bertram
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Lehrbereich Mikrobielle Genetik, Auf der Morgenstelle 28, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Klinikum Nürnberg Medical School GmbH, Research Department, Paracelsus Medical University, Nuremberg, Germany
- * E-mail:
| |
Collapse
|
168
|
Liu SY, Tonggu L, Niu LN, Gong SQ, Fan B, Wang L, Zhao JH, Huang C, Pashley DH, Tay FR. Antimicrobial activity of a quaternary ammonium methacryloxy silicate-containing acrylic resin: a randomised clinical trial. Sci Rep 2016; 6:21882. [PMID: 26903314 PMCID: PMC4763235 DOI: 10.1038/srep21882] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/03/2016] [Indexed: 12/30/2022] Open
Abstract
Quaternary ammonium methacryloxy silicate (QAMS)-containing acrylic resin demonstrated contact-killing antimicrobial ability in vitro after three months of water storage. The objective of the present double-blind randomised clinical trial was to determine the in vivo antimicrobial efficacy of QAMS-containing orthodontic acrylic by using custom-made removable retainers that were worn intraorally by 32 human subjects to create 48-hour multi-species plaque biofilms, using a split-mouth study design. Two control QAMS-free acrylic disks were inserted into the wells on one side of an orthodontic retainer, and two experimental QAMS-containing acrylic disks were inserted into the wells on the other side of the same retainer. After 48 hours, the disks were retrieved and examined for microbial vitality using confocal laser scanning microscopy. No harm to the oral mucosa or systemic health occurred. In the absence of carry-across effect and allocation bias (disks inserted in the left or right side of retainer), significant difference was identified between the percentage kill in the biovolume of QAMS-free control disks (3.73 ± 2.11%) and QAMS-containing experimental disks (33.94 ± 23.88%) retrieved from the subjects (P ≤ 0.001). The results validated that the QAMS-containing acrylic exhibits favourable antimicrobial activity against plaque biofilms in vivo. The QAMS-containing acrylic may also be used for fabricating removable acrylic dentures.
Collapse
Affiliation(s)
- Si-ying Liu
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lige Tonggu
- University of Washington, School of Medicine, Department of Biological Structure, Seattle, Washington, USA
| | - Li-na Niu
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shi-qiang Gong
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Fan
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Liguo Wang
- University of Washington, School of Medicine, Department of Biological Structure, Seattle, Washington, USA
| | - Ji-hong Zhao
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Cui Huang
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - David H. Pashley
- The Dental College of Georgia, Department of Endodontics, Augusta University, Augusta, Georgia, USA
| | - Franklin R. Tay
- The Dental College of Georgia, Department of Endodontics, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
169
|
Lioliou E, Fechter P, Caldelari I, Jester BC, Dubrac S, Helfer AC, Boisset S, Vandenesch F, Romby P, Geissmann T. Various checkpoints prevent the synthesis of Staphylococcus aureus peptidoglycan hydrolase LytM in the stationary growth phase. RNA Biol 2016; 13:427-40. [PMID: 26901414 DOI: 10.1080/15476286.2016.1153209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In Staphylococcus aureus, peptidoglycan metabolism plays a role in the host inflammatory response and pathogenesis. Transcription of the peptidoglycan hydrolases is activated by the essential 2-component system WalKR at low cell density. During stationary growth phase, WalKR is not active and transcription of the peptidoglycan hydrolase genes is repressed. In this work, we studied regulation of expression of the glycylglycine endopeptidase LytM. We show that, in addition to the transcriptional regulation mediated by WalKR, the synthesis of LytM is negatively controlled by a unique mechanism at the stationary growth phase. We have identified 2 different mRNAs encoding lytM, which vary in the length of their 5' untranslated (5'UTR) regions. LytM is predominantly produced from the WalKR-regulated mRNA transcript carrying a short 5'UTR. The lytM mRNA is also transcribed as part of a polycistronic operon with the upstream SA0264 gene and is constitutively expressed. Although SA0264 protein can be synthesized from the longer operon transcript, lytM cannot be translated because its ribosome-binding site is sequestered into a translationally inactive secondary structure. In addition, the effector of the agr system, RNAIII, can inhibit translation of lytM present on the operon without altering the transcript level but does not have an effect on the translation of the upstream gene. We propose that this dual regulation of lytM expression, at the transcriptional and post-transcriptional levels, contributes to prevent cell wall damage during the stationary phase of growth.
Collapse
Affiliation(s)
- Efthimia Lioliou
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Pierre Fechter
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Isabelle Caldelari
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Brian C Jester
- b Institute of Systems and Synthetic Biology, University of Evry-Val-d'Essonne, CNRS FRE3561 , Evry , France
| | - Sarah Dubrac
- c Unité de Biologie des Bactéries pathogènes à Gram-positif, Institut Pasteur , 28 rue du Dr Roux, Paris , France
| | - Anne-Catherine Helfer
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Sandrine Boisset
- d CIRI, Center International de Recherche en Infectiologie - Inserm U1111 - Université Lyon 1 - Ecole Normale Supérieure de Lyon - CNRS UMR5308 , 21 Avenue Tony Garnier, LYON cedex 07 , France
| | - François Vandenesch
- d CIRI, Center International de Recherche en Infectiologie - Inserm U1111 - Université Lyon 1 - Ecole Normale Supérieure de Lyon - CNRS UMR5308 , 21 Avenue Tony Garnier, LYON cedex 07 , France
| | - Pascale Romby
- a Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC , 15 rue René Descartes, Strasbourg , France
| | - Thomas Geissmann
- d CIRI, Center International de Recherche en Infectiologie - Inserm U1111 - Université Lyon 1 - Ecole Normale Supérieure de Lyon - CNRS UMR5308 , 21 Avenue Tony Garnier, LYON cedex 07 , France
| |
Collapse
|
170
|
Kim SK, Lee JH. Biofilm dispersion in Pseudomonas aeruginosa. J Microbiol 2016; 54:71-85. [PMID: 26832663 DOI: 10.1007/s12275-016-5528-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023]
Abstract
In recent decades, many researchers have written numerous articles about microbial biofilms. Biofilm is a complex community of microorganisms and an example of bacterial group behavior. Biofilm is usually considered a sessile mode of life derived from the attached growth of microbes to surfaces, and most biofilms are embedded in self-produced extracellular matrix composed of extracellular polymeric substances (EPSs), such as polysaccharides, extracellular DNAs (eDNA), and proteins. Dispersal, a mode of biofilm detachment indicates active mechanisms that cause individual cells to separate from the biofilm and return to planktonic life. Since biofilm cells are cemented and surrounded by EPSs, dispersal is not simple to do and many researchers are now paying more attention to this active detachment process. Unlike other modes of biofilm detachment such as erosion or sloughing, which are generally considered passive processes, dispersal occurs as a result of complex spatial differentiation and molecular events in biofilm cells in response to various environmental cues, and there are many biological reasons that force bacterial cells to disperse from the biofilms. In this review, we mainly focus on the spatial differentiation of biofilm that is a prerequisite for dispersal, as well as environmental cues and molecular events related to the biofilm dispersal. More specifically, we discuss the dispersal-related phenomena and mechanisms observed in Pseudomonas aeruginosa, an important opportunistic human pathogen and representative model organism for biofilm study.
Collapse
Affiliation(s)
- Soo-Kyoung Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Joon-Hee Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea.
| |
Collapse
|
171
|
Escherichia coli Quorum-Sensing EDF, A Peptide Generated by Novel Multiple Distinct Mechanisms and Regulated by trans-Translation. mBio 2016; 7:e02034-15. [PMID: 26814184 PMCID: PMC4742708 DOI: 10.1128/mbio.02034-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Eshcerichia coli mazEF is a stress-induced toxin-antitoxin module mediating cell death and requiring a quorum-sensing (QS) extracellular death factor (EDF), the pentapeptide NNWNN. Here we uncovered several distinct molecular mechanisms involved in its generation from the zwf mRNA encoding glucose-6-phosphate dehydrogenase. In particular, we show that, under stress conditions, the endoribonuclease MazF cleaves specific ACA sites, thereby generating a leaderless zwf mRNA which is truncated 30 codons after the EDF-encoding region. Since the nascent ribosome peptide exit tunnel can accommodate up to 40 amino acids, this arrangement allows the localization of the EDF residues inside the tunnel when the ribosome is stalled at the truncation site. Moreover, ribosome stalling activates the trans-translation system, which provides a means for the involvement of ClpPX in EDF generation. Furthermore, the trans-translation is described as a regulatory system that attenuated the generation of EDF, leading to low levels of EDF in the single cell. Therefore, the threshold EDF molecule concentration required is achieved only by the whole population, as expected for QS. Bacteria communicate with one another via quorum-sensing (QS) signal molecules. QS provides a mechanism for bacteria to monitor each other’s presence and to modulate gene expression in response to population density. Previously, we added E. coli pentapeptide EDF to this list of QS molecules. We showed that, under stress conditions, the induced MazF, an endoribonuclease cleaving at ACA sites, generates EDF from zwf. Here we studied the mechanism of EDF generation and asked whether it is related to EDF density dependency. We illustrated that, under stress conditions, multiple distinct complex mechanisms are involved in EDF generation. This includes formation of leaderless truncated zwf mRNA by MazF, configuration of a length corresponding to the nascent ribosome peptide exit tunnel, rescue performed by the trans-translation system, and cleavage by ClpPX protease. trans-Translation is described as a regulatory system attenuating EDF generation and leading to low levels of EDF in the single cell, as expected for QS.
Collapse
|
172
|
SrrAB Modulates Staphylococcus aureus Cell Death through Regulation of cidABC Transcription. J Bacteriol 2016; 198:1114-22. [PMID: 26811317 DOI: 10.1128/jb.00954-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/20/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED The death and lysis of a subpopulation in Staphylococcus aureus biofilm cells are thought to benefit the surviving population by releasing extracellular DNA, a critical component of the biofilm extracellular matrix. Although the means by which S. aureus controls cell death and lysis is not understood, studies implicate the role of the cidABC and lrgAB operons in this process. Recently, disruption of the srrAB regulatory locus was found to cause increased cell death during biofilm development, likely as a result of the sensitivity of this mutant to hypoxic growth. In the current study, we extended these findings by demonstrating that cell death in the ΔsrrAB mutant is dependent on expression of the cidABC operon. The effect of cidABC expression resulted in the generation of increased reactive oxygen species (ROS) accumulation and was independent of acetate production. Interestingly, consistently with previous studies, cidC-encoded pyruvate oxidase was found to be important for the generation of acetic acid, which initiates the cell death process. However, these studies also revealed for the first time an important role of the cidB gene in cell death, as disruption of cidB in the ΔsrrAB mutant background decreased ROS generation and cell death in a cidC-independent manner. The cidB mutation also caused decreased sensitivity to hydrogen peroxide, which suggests a complex role for this system in ROS metabolism. Overall, the results of this study provide further insight into the function of the cidABC operon in cell death and reveal its contribution to the oxidative stress response. IMPORTANCE The manuscript focuses on cell death mechanisms in Staphylococcus aureus and provides important new insights into the genes involved in this ill-defined process. By exploring the cause of increased stationary-phase death in an S. aureus ΔsrrAB regulatory mutant, we found that the decreased viability of this mutant was a consequence of the overexpression of the cidABC operon, previously shown to be a key mediator of cell death. These investigations highlight the role of the cidB gene in the death process and the accumulation of reactive oxygen species. Overall, the results of this study are the first to demonstrate a positive role for CidB in cell death and to provide an important paradigm for understanding this process in all bacteria.
Collapse
|
173
|
Lunov O, Zablotskii V, Churpita O, Jäger A, Polívka L, Syková E, Dejneka A, Kubinová Š. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma. Biomaterials 2015; 82:71-83. [PMID: 26761777 DOI: 10.1016/j.biomaterials.2015.12.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/19/2015] [Indexed: 02/06/2023]
Abstract
Direct interactions of plasma matter with living cells and tissues can dramatically affect their functionality, initiating many important effects from cancer elimination to bacteria deactivation. However, the physical mechanisms and biochemical pathways underlying the effects of non-thermal plasma on bacteria and cell fate have still not been fully explored. Here, we report on the molecular mechanisms of non-thermal plasma-induced bacteria inactivation in both Gram-positive and Gram-negative strains. We demonstrate that depending on the exposure time plasma induces either direct physical destruction of bacteria or triggers programmed cell death (PCD) that exhibits characteristic features of apoptosis. The interplay between physical disruption and PCD is on the one hand driven by physical plasma parameters, and on the other hand by biological and physical properties of bacteria. The explored possibilities of the tuneable bacteria deactivation provide a basis for the development of advanced plasma-based therapies. To a great extent, our study opens new possibilities for controlled non-thermal plasma interactions with living systems.
Collapse
Affiliation(s)
- Oleg Lunov
- Institute of Physics AS CR, Prague, Czech Republic.
| | | | | | - Ales Jäger
- Institute of Physics AS CR, Prague, Czech Republic
| | - Leoš Polívka
- Institute of Physics AS CR, Prague, Czech Republic
| | - Eva Syková
- Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | | | - Šárka Kubinová
- Institute of Physics AS CR, Prague, Czech Republic; Institute of Experimental Medicine AS CR, Prague, Czech Republic
| |
Collapse
|
174
|
Choi H, Hwang JS, Lee DG. Coprisin exerts antibacterial effects by inducing apoptosis-like death inEscherichia coli. IUBMB Life 2015; 68:72-8. [DOI: 10.1002/iub.1463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/23/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Hyemin Choi
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences; Kyungpook National University; Buk-Gu Daegu Republic of Korea
| | - Jae-Sam Hwang
- National Academy of Agricultural Science, RDA; Suwon Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences; Kyungpook National University; Buk-Gu Daegu Republic of Korea
| |
Collapse
|
175
|
Characterization of cell death in Escherichia coli mediated by XseA, a large subunit of exonuclease VII. J Microbiol 2015; 53:820-8. [PMID: 26626352 DOI: 10.1007/s12275-015-5304-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/06/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Exonuclease VII (ExoVII) of Escherichia coli is a single strandspecific DNA nuclease composed of two different subunits: the large subunit, XseA, and the small subunit, XseB. In this study, we found that multicopy single-stranded DNAs (msDNAs), Ec83 and Ec78, are the in vivo substrates of ExoVII; the enzyme cuts the phosphodiester bond between the fourth and fifth nucleotides from the 5'end. We used this msDNA cleavage to assess ExoVII activity in vivo. Both subunits were required for enzyme activity. Expression of XseA without XseB caused cell death, even though no ExoVII activity was detected. The lethality caused by XseA was rescued by surplus XseB. In XseA-induced death, cells were elongated and multinucleated, and their chromosomes were fragmented and condensed; these are the morphological hallmarks of apoptotic cell death in bacteria. A putative caspase recognition sequence (FVAD) was found in XseA, and its hypothetical caspase product with 257 amino acids was as active as the intact protein in inducing cell death. We propose that under ordinary conditions, XseA protects chromosome as a component of the ExoVII enzyme, but in some conditions, the protein causes cell death; the destruction of cell is probably carried out by the amino terminal fragment derived from the cleavage of XseA by caspase-like enzyme.
Collapse
|
176
|
Olvera-Carrillo Y, Van Bel M, Van Hautegem T, Fendrych M, Huysmans M, Simaskova M, van Durme M, Buscaill P, Rivas S, Coll NS, Coppens F, Maere S, Nowack MK. A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants. PLANT PHYSIOLOGY 2015; 169:2684-99. [PMID: 26438786 PMCID: PMC4677882 DOI: 10.1104/pp.15.00769] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/30/2015] [Indexed: 05/19/2023]
Abstract
A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta.
Collapse
Affiliation(s)
- Yadira Olvera-Carrillo
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (Y.O.-C., M.V.B., T.V.H., M.F., M.H., M.S., M.v.D., F.C., S.M., M.K.N.);Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (P.B., S.R.); andCenter for Research in Agricultural Genomics, Bellaterra-Cerdanyola del Valles, 08193 Barcelona, Spain (N.S.C.)
| | - Michiel Van Bel
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (Y.O.-C., M.V.B., T.V.H., M.F., M.H., M.S., M.v.D., F.C., S.M., M.K.N.);Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (P.B., S.R.); andCenter for Research in Agricultural Genomics, Bellaterra-Cerdanyola del Valles, 08193 Barcelona, Spain (N.S.C.)
| | - Tom Van Hautegem
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (Y.O.-C., M.V.B., T.V.H., M.F., M.H., M.S., M.v.D., F.C., S.M., M.K.N.);Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (P.B., S.R.); andCenter for Research in Agricultural Genomics, Bellaterra-Cerdanyola del Valles, 08193 Barcelona, Spain (N.S.C.)
| | - Matyáš Fendrych
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (Y.O.-C., M.V.B., T.V.H., M.F., M.H., M.S., M.v.D., F.C., S.M., M.K.N.);Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (P.B., S.R.); andCenter for Research in Agricultural Genomics, Bellaterra-Cerdanyola del Valles, 08193 Barcelona, Spain (N.S.C.)
| | - Marlies Huysmans
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (Y.O.-C., M.V.B., T.V.H., M.F., M.H., M.S., M.v.D., F.C., S.M., M.K.N.);Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (P.B., S.R.); andCenter for Research in Agricultural Genomics, Bellaterra-Cerdanyola del Valles, 08193 Barcelona, Spain (N.S.C.)
| | - Maria Simaskova
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (Y.O.-C., M.V.B., T.V.H., M.F., M.H., M.S., M.v.D., F.C., S.M., M.K.N.);Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (P.B., S.R.); andCenter for Research in Agricultural Genomics, Bellaterra-Cerdanyola del Valles, 08193 Barcelona, Spain (N.S.C.)
| | - Matthias van Durme
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (Y.O.-C., M.V.B., T.V.H., M.F., M.H., M.S., M.v.D., F.C., S.M., M.K.N.);Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (P.B., S.R.); andCenter for Research in Agricultural Genomics, Bellaterra-Cerdanyola del Valles, 08193 Barcelona, Spain (N.S.C.)
| | - Pierre Buscaill
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (Y.O.-C., M.V.B., T.V.H., M.F., M.H., M.S., M.v.D., F.C., S.M., M.K.N.);Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (P.B., S.R.); andCenter for Research in Agricultural Genomics, Bellaterra-Cerdanyola del Valles, 08193 Barcelona, Spain (N.S.C.)
| | - Susana Rivas
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (Y.O.-C., M.V.B., T.V.H., M.F., M.H., M.S., M.v.D., F.C., S.M., M.K.N.);Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (P.B., S.R.); andCenter for Research in Agricultural Genomics, Bellaterra-Cerdanyola del Valles, 08193 Barcelona, Spain (N.S.C.)
| | - Nuria S. Coll
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (Y.O.-C., M.V.B., T.V.H., M.F., M.H., M.S., M.v.D., F.C., S.M., M.K.N.);Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (P.B., S.R.); andCenter for Research in Agricultural Genomics, Bellaterra-Cerdanyola del Valles, 08193 Barcelona, Spain (N.S.C.)
| | - Frederik Coppens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (Y.O.-C., M.V.B., T.V.H., M.F., M.H., M.S., M.v.D., F.C., S.M., M.K.N.);Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (P.B., S.R.); andCenter for Research in Agricultural Genomics, Bellaterra-Cerdanyola del Valles, 08193 Barcelona, Spain (N.S.C.)
| | - Steven Maere
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (Y.O.-C., M.V.B., T.V.H., M.F., M.H., M.S., M.v.D., F.C., S.M., M.K.N.);Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (P.B., S.R.); andCenter for Research in Agricultural Genomics, Bellaterra-Cerdanyola del Valles, 08193 Barcelona, Spain (N.S.C.)
| | - Moritz K. Nowack
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (Y.O.-C., M.V.B., T.V.H., M.F., M.H., M.S., M.v.D., F.C., S.M., M.K.N.);Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (P.B., S.R.); andCenter for Research in Agricultural Genomics, Bellaterra-Cerdanyola del Valles, 08193 Barcelona, Spain (N.S.C.)
| |
Collapse
|
177
|
Paerl HW, Otten TG. Duelling 'CyanoHABs': unravelling the environmental drivers controlling dominance and succession among diazotrophic and non-N2 -fixing harmful cyanobacteria. Environ Microbiol 2015; 18:316-24. [PMID: 26310611 DOI: 10.1111/1462-2920.13035] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/20/2015] [Indexed: 11/27/2022]
Abstract
Eutrophication often manifests itself by increased frequencies and magnitudes of cyanobacterial harmful algal blooms (CyanoHABs) in freshwater systems. It is generally assumed that nitrogen-fixing cyanobacteria will dominate when nitrogen (N) is limiting and non-N2 fixers dominate when N is present in excess. However, this is rarely observed in temperate lakes, where N2 fixers often bloom when N is replete, and non-fixers (e.g. Microcystis) dominate when N concentrations are lowest. This review integrates observations from previous studies with insights into the environmental factors that select for CyanoHAB groups. This information may be used to predict how nutrient reduction strategies targeting N, phosphorus (P) or both N and P may alter cyanobacterial community composition. One underexplored concern is that as N inputs are reduced, CyanoHABs may switch from non-N2 fixing to diazotrophic taxa, with no net improvement in water quality. However, monitoring and experimental observations indicate that in eutrophic systems, minimizing both N and P loading will lead to the most significant reductions in total phytoplankton biomass without this shift occurring, because successional patterns appear to be strongly driven by physical factors, including temperature, irradiance and hydrology. Notably, water temperature is a primary driver of cyanobacterial community succession, with warming favouring non-diazotrophic taxa.
Collapse
Affiliation(s)
- Hans W Paerl
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, NC, 28557, USA
| | - Timothy G Otten
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
178
|
Beltrame CO, Côrtes MF, Bonelli RR, Côrrea ABDA, Botelho AMN, Américo MA, Fracalanzza SEL, Figueiredo AMS. Inactivation of the Autolysis-Related Genes lrgB and yycI in Staphylococcus aureus Increases Cell Lysis-Dependent eDNA Release and Enhances Biofilm Development In Vitro and In Vivo. PLoS One 2015; 10:e0138924. [PMID: 26406329 PMCID: PMC4583396 DOI: 10.1371/journal.pone.0138924] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/04/2015] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus ica-independent biofilms are multifactorial in nature, and various bacterial proteins have been associated with biofilm development, including fibronectin-binding proteins A and B, protein A, surface protein SasG, proteases, and some autolysins. The role of extracellular DNA (eDNA) has also been demonstrated in some S. aureus biofilms. Here, we constructed a Tn551 library, and the screening identified two genes that affected biofilm formation, lrgB and yycI. The repressive effect of both genes on the development of biofilm was also confirmed in knockout strains constructed by allelic recombination. In contrast, the superexpression of either lrgB or yycI by a cadmium-inducible promoter led to a decrease in biofilm accumulation. Indeed, a significant increase in the cell-lysis dependent eDNA release was detected when lrgB or yycI were inactivated, explaining the enhanced biofilm formed by these mutants. In fact, lrgB and yycI genes belong to distinct operons that repress bacterial autolysis through very different mechanisms. LrgB is associated with the synthesis of phage holin/anti-holin analogues, while YycI participates in the activation/repression of the two-component system YycGF (WalKR). Our in vivo data suggest that autolysins activation lead to increased bacterial virulence in the foreign body animal model since a higher number of attached cells was recovered from the implanted catheters inoculated with lrgB or yycI knockout mutants.
Collapse
Affiliation(s)
- Cristiana Ossaille Beltrame
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
| | - Marina Farrel Côrtes
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
| | - Raquel Regina Bonelli
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
| | - Ana Beatriz de Almeida Côrrea
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
| | - Ana Maria Nunes Botelho
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
| | - Marco Antônio Américo
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
| | - Sérgio Eduardo Longo Fracalanzza
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
| | - Agnes Marie Sá Figueiredo
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
179
|
Hansmann B, Schröder JM, Gerstel U. Skin-Derived C-Terminal Filaggrin-2 Fragments Are Pseudomonas aeruginosa-Directed Antimicrobials Targeting Bacterial Replication. PLoS Pathog 2015; 11:e1005159. [PMID: 26371476 PMCID: PMC4570713 DOI: 10.1371/journal.ppat.1005159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/20/2015] [Indexed: 01/08/2023] Open
Abstract
Soil- and waterborne bacteria such as Pseudomonas aeruginosa are constantly challenging body surfaces. Since infections of healthy skin are unexpectedly rare, we hypothesized that the outermost epidermis, the stratum corneum, and sweat glands directly control the growth of P. aeruginosa by surface-provided antimicrobials. Due to its high abundance in the upper epidermis and eccrine sweat glands, filaggrin-2 (FLG2), a water-insoluble 248 kDa S100 fused-type protein, might possess these innate effector functions. Indeed, recombinant FLG2 C-terminal protein fragments display potent antimicrobial activity against P. aeruginosa and other Pseudomonads. Moreover, upon cultivation on stratum corneum, P. aeruginosa release FLG2 C-terminus-containing FLG2 fragments from insoluble material, indicating liberation of antimicrobially active FLG2 fragments by the bacteria themselves. Analyses of the underlying antimicrobial mechanism reveal that FLG2 C-terminal fragments do not induce pore formation, as known for many other antimicrobial peptides, but membrane blebbing, suggesting an alternative mode of action. The association of the FLG2 fragment with the inner membrane of treated bacteria and its DNA-binding implicated an interference with the bacterial replication that was confirmed by in vitro and in vivo replication assays. Probably through in situ-activation by soil- and waterborne bacteria such as Pseudomonads, FLG2 interferes with the bacterial replication, terminates their growth on skin surface and thus may contributes to the skin's antimicrobial defense shield. The apparent absence of FLG2 at certain body surfaces, as in the lung or of burned skin, would explain their higher susceptibility towards Pseudomonas infections and make FLG2 C-terminal fragments and their derivatives candidates for new Pseudomonas-targeting antimicrobials.
Collapse
Affiliation(s)
- Britta Hansmann
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Ulrich Gerstel
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
180
|
Liu G, Wang J. Modeling effects of DO and SRT on activated sludge decay and production. WATER RESEARCH 2015; 80:169-178. [PMID: 26001822 DOI: 10.1016/j.watres.2015.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/23/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
The effect of dissolved oxygen (DO) on the endogenous decay of active heterotrophic biomass and the hydrolysis of cell debris were studied. With the inclusion of a hydrolysis process for the cell debris, mathematical models that are capable of quantifying the effects of DO and sludge retention time (SRT) on concentrations of active biomass and cell debris in activated sludge are presented. By modeling the biomass cultivated with unlimited DO, the values of endogenous decay coefficient for heterotrophic biomass, the hydrolysis constant of cell debris, and the fraction of decayed biomass that became cell debris were determined to be 0.38 d(-1), 0.013 d(-1), and 0.28, respectively. Results from modeling the biomass cultivated under different DO conditions suggested that the experimental low DO (∼0.2 mg/L) did not inhibit the endogenous decay of heterotrophic biomass, but significantly inhibited the hydrolysis of cell debris with a half-velocity constant value of 2.1 mg/L. Therefore, the increase in sludge production with low DO was mainly contributed by cell debris rather than the active heterotrophic biomass. Maximizing sludge production during aerobic wastewater treatment could reduce aeration energy consumption and improve biogas energy recovery potential.
Collapse
Affiliation(s)
- Guoqiang Liu
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA; Frontier Environmental Technology, 12687 Cinnamon Court, Rolla, MO 65401, USA
| | - Jianmin Wang
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| |
Collapse
|
181
|
Mutual Cross-Feeding Interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 Explain the Bifidogenic and Butyrogenic Effects of Arabinoxylan Oligosaccharides. Appl Environ Microbiol 2015; 81:7767-81. [PMID: 26319874 DOI: 10.1128/aem.02089-15] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023] Open
Abstract
Arabinoxylan oligosaccharides (AXOS) are a promising class of prebiotics that have the potential to stimulate the growth of bifidobacteria and the production of butyrate in the human colon, known as the bifidogenic and butyrogenic effects, respectively. Although these dual effects of AXOS are considered beneficial for human health, their underlying mechanisms are still far from being understood. Therefore, this study investigated the metabolic interactions between Bifidobacterium longum subsp. longum NCC2705 (B. longum NCC2705), an acetate producer and arabinose substituent degrader of AXOS, and Eubacterium rectale ATCC 33656, an acetate-converting butyrate producer. Both strains belong to prevalent species of the human colon microbiota. The strains were grown on AXOS during mono- and coculture fermentations, and their growth, AXOS consumption, metabolite production, and expression of key genes were monitored. The results showed that the growth of both strains and gene expression in both strains were affected by cocultivation and that these effects could be linked to changes in carbohydrate consumption and concomitant metabolite production. The consumption of the arabinose substituents of AXOS by B. longum NCC2705 with the concomitant production of acetate allowed E. rectale ATCC 33656 to produce butyrate (by means of a butyryl coenzyme A [CoA]:acetate CoA-transferase), explaining the butyrogenic effect of AXOS. Eubacterium rectale ATCC 33656 released xylose from the AXOS substrate, which favored the B. longum NCC2705 production of acetate, explaining the bifidogenic effect of AXOS. Hence, those interactions represent mutual cross-feeding mechanisms that favor the coexistence of bifidobacterial strains and butyrate producers in the same ecological niche. In conclusion, this study provides new insights into the bifidogenic and butyrogenic effects of AXOS.
Collapse
|
182
|
Asplund-Samuelsson J. The art of destruction: revealing the proteolytic capacity of bacterial caspase homologs. Mol Microbiol 2015; 98:1-6. [PMID: 26123017 DOI: 10.1111/mmi.13111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2015] [Indexed: 12/29/2022]
Abstract
Caspases are proteases that initiate and execute programmed cell death in animal tissues, thereby facilitating multicellular development and survival. While caspases are unique to metazoans and specifically cleave substrates at aspartic acid residues, homologs are found in protozoa, plants, algae, fungi, bacteria and archaea, and show specificity for basic residues. In this issue of Molecular Microbiology, Klemenčič and colleagues present the first biochemical characterization of a bacterial caspase homolog, classified as an orthocaspase. By expressing the gene MaOC1 from the cyanobacterium Microcystis aeruginosa PCC 7806 in Escherichia coli, the authors discovered specificity for substrates with arginine in the P1 position. The protein requires autocatalytic processing to become active and is dependent on an intact histidine-cysteine dyad. These results significantly extend our knowledge of the specificities of bacterial caspase homologs, which are known to be highly diverse in protein domain architectures and active site mutations. Although bacterial programmed cell death is one possible area of action, the function of most bacterial caspase homologs remains unexplored. Cyanobacteria represent the best studied group in terms of prokaryotic caspase-like proteins both genomically and experimentally, and thereby provide a suitable platform for further investigations into activation, regulation and physiological roles of orthocaspases.
Collapse
Affiliation(s)
- Johannes Asplund-Samuelsson
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm University, P-Box 1031, 171 21, Solna, Sweden
| |
Collapse
|
183
|
A self-lysis pathway that enhances the virulence of a pathogenic bacterium. Proc Natl Acad Sci U S A 2015; 112:8433-8. [PMID: 26100878 DOI: 10.1073/pnas.1506299112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system.
Collapse
|
184
|
Abstract
UNLABELLED Chromosomal DNA is a constant source of information, essential for any given cell to respond and adapt to changing conditions. Here, we investigated the fate of exponentially growing bacterial cells experiencing a sudden and rapid loss of their entire chromosome. Utilizing Bacillus subtilis cells harboring an inducible copy of the endogenous toxin yqcG, which encodes an endonuclease, we induced the formation of a population of cells that lost their genetic information simultaneously. Surprisingly, these DNA-less cells, termed DLCs, did not lyse immediately and exhibited normal cellular morphology for a period of at least 5 h after DNA loss. This cellular integrity was manifested by their capacity to maintain an intact membrane and membrane potential and cell wall architecture similar to those of wild-type cells. Unlike growing cells that exhibit a dynamic profile of macromolecules, DLCs displayed steady protein and RNA reservoirs. Remarkably, following DLCs by time lapse microscopy revealed that they succeeded in synthesizing proteins, elongating, and dividing, apparently forming de novo Z rings at the midcell position. Taken together, the persistence of key cellular events in DLCs indicates that the information to carry out lengthy processes is harbored within the remaining molecular components. IMPORTANCE Perturbing bacterial growth by the use of antibiotics targeting replication, transcription, or translation has been a subject of study for many years; however, the consequences of a more dramatic event, in which the entire bacterial chromosome is lost, have not been described. Here, we followed the fate of bacterial cells encountering an abrupt loss of their entire genome. Surprisingly, the cells preserved an intact envelope and functioning macromolecules. Furthermore, cells lacking their genome could still elongate and divide hours after the loss of DNA. Our data suggest that the information stored in the transient reservoir of macromolecules is sufficient to carry out complex and lengthy processes even in the absence of the chromosome. Based on our study, the formation of DNA-less bacteria could serve as a novel vaccination strategy, enabling an efficient induction of the immune system without the risk of bacterial propagation within the host.
Collapse
|
185
|
Abstract
UNLABELLED Direct, mediator-free transfer of electrons between a microbial cell and a solid phase in its surrounding environment has been suggested to be a widespread and ecologically significant process. The high rates of microbial electron uptake observed during microbially influenced corrosion of iron [Fe(0)] and during microbial electrosynthesis have been considered support for a direct electron uptake in these microbial processes. However, the underlying molecular mechanisms of direct electron uptake are unknown. We investigated the electron uptake characteristics of the Fe(0)-corroding and electromethanogenic archaeon Methanococcus maripaludis and discovered that free, surface-associated redox enzymes, such as hydrogenases and presumably formate dehydrogenases, are sufficient to mediate an apparent direct electron uptake. In genetic and biochemical experiments, we showed that these enzymes, which are released from cells during routine culturing, catalyze the formation of H2 or formate when sorbed to an appropriate redox-active surface. These low-molecular-weight products are rapidly consumed by M. maripaludis cells when present, thereby preventing their accumulation to any appreciable or even detectable level. Rates of H2 and formate formation by cell-free spent culture medium were sufficient to explain the observed rates of methane formation from Fe(0) and cathode-derived electrons by wild-type M. maripaludis as well as by a mutant strain carrying deletions in all catabolic hydrogenases. Our data collectively show that cell-derived free enzymes can mimic direct extracellular electron transfer during Fe(0) corrosion and microbial electrosynthesis and may represent an ecologically important but so far overlooked mechanism in biological electron transfer. IMPORTANCE The intriguing trait of some microbial organisms to engage in direct electron transfer is thought to be widespread in nature. Consequently, direct uptake of electrons into microbial cells from solid surfaces is assumed to have a significant impact not only on fundamental microbial and biogeochemical processes but also on applied bioelectrochemical systems, such as microbial electrosynthesis and biocorrosion. This study provides a simple mechanistic explanation for frequently observed fast electron uptake kinetics in microbiological systems without a direct transfer: free, cell-derived enzymes can interact with cathodic surfaces and catalyze the formation of intermediates that are rapidly consumed by microbial cells. This electron transfer mechanism likely plays a significant role in various microbial electron transfer reactions in the environment.
Collapse
|
186
|
Devigne A, Ithurbide S, Bouthier de la Tour C, Passot F, Mathieu M, Sommer S, Servant P. DdrO is an essential protein that regulates the radiation desiccation response and the apoptotic-like cell death in the radioresistant Deinococcus radiodurans bacterium. Mol Microbiol 2015; 96:1069-84. [PMID: 25754115 DOI: 10.1111/mmi.12991] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 02/04/2023]
Abstract
Deinococcus radiodurans is known for its extreme radioresistance. Comparative genomics identified a radiation-desiccation response (RDR) regulon comprising genes that are highly induced after DNA damage and containing a conserved motif (RDRM) upstream of their coding region. We demonstrated that the RDRM sequence is involved in cis-regulation of the RDR gene ddrB in vivo. Using a transposon mutagenesis approach, we showed that, in addition to ddrO encoding a predicted RDR repressor and irrE encoding a positive regulator recently shown to cleave DdrO in Deinococcus deserti, two genes encoding α-keto-glutarate dehydrogenase subunits are involved in ddrB regulation. In wild-type cells, the DdrO cell concentration decreased transiently in an IrrE-dependent manner at early times after irradiation. Using a conditional gene inactivation system, we showed that DdrO depletion enhanced expression of three RDR proteins, consistent with the hypothesis that DdrO acts as a repressor of the RDR regulon. DdrO-depleted cells loose viability and showed morphological changes evocative of an apoptotic-like response, including membrane blebbing, defects in cell division and DNA fragmentation. We propose that DNA repair and apoptotic-like death might be two responses mediated by the same regulators, IrrE and DdrO, but differently activated depending on the persistence of IrrE-dependent DdrO cleavage.
Collapse
Affiliation(s)
- Alice Devigne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, 91405, Orsay, France
| | - Solenne Ithurbide
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, 91405, Orsay, France
| | - Claire Bouthier de la Tour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, 91405, Orsay, France
| | - Fanny Passot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, 91405, Orsay, France
| | - Martine Mathieu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, 91405, Orsay, France
| | - Suzanne Sommer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, 91405, Orsay, France
| | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, 91405, Orsay, France
| |
Collapse
|
187
|
Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis 2015; 6:e1609. [PMID: 25611384 PMCID: PMC4669768 DOI: 10.1038/cddis.2014.570] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023]
Abstract
Programmed cell death is a process known to have a crucial role in many aspects of eukaryotes physiology and is clearly essential to their life. As a consequence, the underlying molecular mechanisms have been extensively studied in eukaryotes and we now know that different signalling pathways leading to functionally and morphologically different forms of death exist in these organisms. Similarly, mono-cellular organism can activate signalling pathways leading to death of a number of cells within a colony. The reason why a single-cell organism would activate a program leading to its death is apparently counterintuitive and probably for this reason cell death in prokaryotes has received a lot less attention in the past years. However, as summarized in this review there are many reasons leading to prokaryotic cell death, for the benefit of the colony. Indeed, single-celled organism can greatly benefit from multicellular organization. Within this forms of organization, regulation of death becomes an important issue, contributing to important processes such as: stress response, development, genetic transformation, and biofilm formation.
Collapse
|
188
|
Munsch-Alatossava P, Alatossava T. Nitrogen gas flushing can be bactericidal: the temperature-dependent destiny of Bacillus weihenstephanensis KBAB4 under a pure N2 atmosphere. Front Microbiol 2014; 5:619. [PMID: 25452751 PMCID: PMC4231974 DOI: 10.3389/fmicb.2014.00619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/30/2014] [Indexed: 11/16/2022] Open
Abstract
Gram-negative Pseudomonas and Gram-positive Bacillus are the most common spoilage bacteria in raw and pasteurized milk, respectively. In previous studies, nitrogen (N2) gas flushing treatments of raw and pasteurized milk at cold chain-temperatures inhibited bacterial spoilage and highlighted different susceptibilities to the N2 treatment with the exclusion of certain bacterial types. Here, we investigated the effects of pure N2 gas flushing on representative strains of these genera grown in mono- or co-cultures at 15 and 25°C. Bacillus weihenstephanensis, a frequent inhabitant of fluid dairy products, is represented by the genome-sequenced KBAB4 strain. Among Pseudomonas, P. tolaasii LMG 2342(T) and strain C1, a raw milk psychrotroph, were selected. The N2 gas flushing treatment revealed: (1) temperature-dependent responses; (2) inhibition of the growth of both pseudomonads; (3) emergence of small colony variants (SCVs) for B. weihenstephanensis strain KBAB4 at 15°C induced by the N2 treatment or when grown in co-culture with Pseudomonas strains; (4) N2 gas flushing modulates (suppressed or stimulated) bacterial antagonistic reactions in co-cultures; (5) most importantly, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed that at 25°C the majority of the KBAB4 cells were killed by pure N2 gas flushing. This observation constitutes the first evidence that N2 gas flushing has bactericidal effects.
Collapse
Affiliation(s)
- Patricia Munsch-Alatossava
- Division of Food Technology, Department of Food and Environmental Sciences, University of HelsinkiHelsinki, Finland
| | | |
Collapse
|
189
|
Bidle KD. The molecular ecophysiology of programmed cell death in marine phytoplankton. ANNUAL REVIEW OF MARINE SCIENCE 2014; 7:341-75. [PMID: 25251265 DOI: 10.1146/annurev-marine-010213-135014] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.
Collapse
Affiliation(s)
- Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey 08901;
| |
Collapse
|
190
|
Abstract
In bacteria, SOS is a global response to DNA damage, mediated by the recA-lexA genes, resulting in cell cycle arrest, DNA repair, and mutagenesis. Previously, we reported that Escherichia coli responds to DNA damage via another recA-lexA-mediated pathway resulting in programmed cell death (PCD). We called it apoptosis-like death (ALD) because it is characterized by membrane depolarization and DNA fragmentation, which are hallmarks of eukaryotic mitochondrial apoptosis. Here, we show that ALD is an extreme SOS response that occurs only under conditions of severe DNA damage. Furthermore, we found that ALD is characterized by additional hallmarks of eukaryotic mitochondrial apoptosis, including (i) rRNA degradation by the endoribonuclease YbeY, (ii) upregulation of a unique set of genes that we called extensive-damage-induced (Edin) genes, (iii) a decrease in the activities of complexes I and II of the electron transport chain, and (iv) the formation of high levels of OH˙ through the Fenton reaction, eventually resulting in cell death. Our genetic and molecular studies on ALD provide additional insight for the evolution of mitochondria and the apoptotic pathway in eukaryotes. The SOS response is the first described and the most studied bacterial response to DNA damage. It is mediated by a set of two genes, recA-lexA, and it results in DNA repair and thereby in the survival of the bacterial culture. We have shown that Escherichia coli responds to DNA damage by an additional recA-lexA-mediated pathway resulting in an apoptosis-like death (ALD). Apoptosis is a mode of cell death that has previously been reported only in eukaryotes. We found that E. coli ALD is characterized by several hallmarks of eukaryotic mitochondrial apoptosis. Altogether, our results revealed that recA-lexA is a DNA damage response coordinator that permits two opposite responses: life, mediated by the SOS, and death, mediated by the ALD. The choice seems to be a function of the degree of DNA damage in the cell.
Collapse
|
191
|
The periodontal pathogen Porphyromonas gingivalis induces expression of transposases and cell death of Streptococcus mitis in a biofilm model. Infect Immun 2014; 82:3374-82. [PMID: 24866802 DOI: 10.1128/iai.01976-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oral microbial communities are extremely complex biofilms with high numbers of bacterial species interacting with each other (and the host) to maintain homeostasis of the system. Disturbance in the oral microbiome homeostasis can lead to either caries or periodontitis, two of the most common human diseases. Periodontitis is a polymicrobial disease caused by the coordinated action of a complex microbial community, which results in inflammation of tissues that support the teeth. It is the most common cause of tooth loss among adults in the United States, and recent studies have suggested that it may increase the risk for systemic conditions such as cardiovascular diseases. In a recent series of papers, Hajishengallis and coworkers proposed the idea of the "keystone-pathogen" where low-abundance microbial pathogens (Porphyromonas gingivalis) can orchestrate inflammatory disease by turning a benign microbial community into a dysbiotic one. The exact mechanisms by which these pathogens reorganize the healthy oral microbiome are still unknown. In the present manuscript, we present results demonstrating that P. gingivalis induces S. mitis death and DNA fragmentation in an in vitro biofilm system. Moreover, we report here the induction of expression of multiple transposases in a Streptococcus mitis biofilm when the periodontopathogen P. gingivalis is present. Based on these results, we hypothesize that P. gingivalis induces S. mitis cell death by an unknown mechanism, shaping the oral microbiome to its advantage.
Collapse
|
192
|
Wadhawan S, Gautam S, Sharma A. Involvement of proline oxidase (PutA) in programmed cell death of Xanthomonas. PLoS One 2014; 9:e96423. [PMID: 24788936 PMCID: PMC4006831 DOI: 10.1371/journal.pone.0096423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/06/2014] [Indexed: 12/19/2022] Open
Abstract
Xanthomonas campestris strains have been reported to undergo programmed cell death (PCD) in a protein rich medium. Protein hydrolysates used in media such as nutrient broth comprise of casein digest with abundance of proline and glutamate. In the current study, X. campestris pv. campestris (Xcc) cells displayed PCD when grown in PCD inducing medium (PIM) containing casein tryptic digest. This PCD was also observed in PCD non-inducing carbohydrate rich medium (PNIM) fortified with either proline or proline along with glutamate. Surprisingly, no PCD was noticed in PNIM fortified with glutamate alone. Differential role of proline or glutamate in inducing PCD in Xcc cells growing in PNIM was studied. It was found that an intermediate product of this oxidation was involved in initiation of PCD. Proline oxidase also called as proline utilization A (PutA), catalyzes the two step oxidation of proline to glutamate. Interestingly, higher PutA activity was noticed in cells growing in PIM, and PCD was found to be inhibited by tetrahydro-2-furoic acid, a competitive inhibitor of this enzyme. Further, PCD was abolished in Xcc ΔputA strain generated using a pKNOCK suicide plasmid, and restored in Xcc ΔputA strain carrying functional PutA in a plasmid vector. Xanthomonas cells growing in PIM also displayed increased generation of ROS, as well as cell filamentation (a probable indication of SOS response). These filamented cells also displayed enhanced caspase-3-like activity during in situ labeling using a fluorescent tagged caspase-3 inhibitor (FITC-DEVD-FMK). The extent of PCD associated markers such as DNA damage, phosphatidylserine externalization and membrane depolarization were found to be significantly enhanced in wild type cells, but drastically reduced in Xcc ΔputA cells. These findings thus establish the role of PutA mediated proline oxidation in regulating death in stressed Xanthomonas cells.
Collapse
Affiliation(s)
- Surbhi Wadhawan
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Arun Sharma
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
193
|
Wen Y, Behiels E, Devreese B. Toxin-Antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog Dis 2014; 70:240-9. [DOI: 10.1111/2049-632x.12145] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yurong Wen
- Unit for Biological Mass Spectrometry and Proteomics; Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Ghent University; Ghent Belgium
| | - Ester Behiels
- Unit for Biological Mass Spectrometry and Proteomics; Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Ghent University; Ghent Belgium
| | - Bart Devreese
- Unit for Biological Mass Spectrometry and Proteomics; Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Ghent University; Ghent Belgium
| |
Collapse
|