151
|
Blommer J, Pitcher T, Mustapic M, Eren E, Yao PJ, Vreones MP, Pucha KA, Dalrymple-Alford J, Shoorangiz R, Meissner WG, Anderson T, Kapogiannis D. Extracellular vesicle biomarkers for cognitive impairment in Parkinson's disease. Brain 2023; 146:195-208. [PMID: 35833836 PMCID: PMC10060702 DOI: 10.1093/brain/awac258] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/24/2022] [Accepted: 06/22/2022] [Indexed: 01/11/2023] Open
Abstract
Besides motor symptoms, many individuals with Parkinson's disease develop cognitive impairment perhaps due to coexisting α-synuclein and Alzheimer's disease pathologies and impaired brain insulin signalling. Discovering biomarkers for cognitive impairment in Parkinson's disease could help clarify the underlying pathogenic processes and improve Parkinson's disease diagnosis and prognosis. This study used plasma samples from 273 participants: 103 Parkinson's disease individuals with normal cognition, 121 Parkinson's disease individuals with cognitive impairment (81 with mild cognitive impairment, 40 with dementia) and 49 age- and sex-matched controls. Plasma extracellular vesicles enriched for neuronal origin were immunocaptured by targeting the L1 cell adhesion molecule, then biomarkers were quantified using immunoassays. α-Synuclein was lower in Parkinson's disease compared to control individuals (P = 0.004) and in cognitively impaired Parkinson's disease individuals compared to Parkinson's disease with normal cognition (P < 0.001) and control (P < 0.001) individuals. Amyloid-β42 did not differ between groups. Phosphorylated tau (T181) was higher in Parkinson's disease than control individuals (P = 0.003) and in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P < 0.001) and controls (P < 0.001). Total tau was not different between groups. Tyrosine-phosphorylated insulin receptor substrate-1 was lower in Parkinson's disease compared to control individuals (P = 0.03) and in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.02) and controls (P = 0.01), and also decreased with increasing motor symptom severity (P = 0.005); serine312-phosphorylated insulin receptor substrate-1 was not different between groups. Mechanistic target of rapamycin was not different between groups, whereas phosphorylated mechanistic target of rapamycin trended lower in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.05). The ratio of α-synuclein to phosphorylated tau181 was lower in Parkinson's disease compared to controls (P = 0.001), in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P < 0.001) and decreased with increasing motor symptom severity (P < 0.001). The ratio of insulin receptor substrate-1 phosphorylated serine312 to insulin receptor substrate-1 phosphorylated tyrosine was higher in Parkinson's disease compared to control individuals (P = 0.01), in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.02) and increased with increasing motor symptom severity (P = 0.003). α-Synuclein, phosphorylated tau181 and insulin receptor substrate-1 phosphorylated tyrosine contributed in diagnostic classification between groups. These findings suggest that both α-synuclein and tau pathologies and impaired insulin signalling underlie Parkinson's disease with cognitive impairment. Plasma neuronal extracellular vesicles biomarkers may inform cognitive prognosis in Parkinson's disease.
Collapse
Affiliation(s)
- Joseph Blommer
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - Toni Pitcher
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Maja Mustapic
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - Erden Eren
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - Pamela J Yao
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - Michael P Vreones
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - Krishna A Pucha
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - John Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch 8041, New Zealand
| | - Reza Shoorangiz
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
| | - Wassilios G Meissner
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
- University of Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
- Service de Neurologie—Maladies Neurodégénératives, CHU Bordeaux, F-33000 Bordeaux, France
| | - Tim Anderson
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Dimitrios Kapogiannis
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| |
Collapse
|
152
|
Carneiro P, Loureiro JA, Delerue-Matos C, Morais S, Pereira MDC. Nanostructured label–free electrochemical immunosensor for detection of a Parkinson's disease biomarker. Talanta 2023; 252:123838. [DOI: 10.1016/j.talanta.2022.123838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
|
153
|
Han Y, He Z. Concomitant protein pathogenesis in Parkinson's disease and perspective mechanisms. Front Aging Neurosci 2023; 15:1189809. [PMID: 37181621 PMCID: PMC10174460 DOI: 10.3389/fnagi.2023.1189809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Comorbidity is a common phenotype in Parkinson's disease (PD). Patients with PD not only have motor deficit symptoms, but also have heterogeneous non-motor symptoms, including cognitive impairment and emotional changes, which are the featured symptoms observed in patients with Alzheimer's disease (AD), frontotemporal dementia (FTD) and cerebrovascular disease. Moreover, autopsy studies have also confirmed the concomitant protein pathogenesis, such as the co-existences of α-synuclein, amyloid-β and tau pathologies in PD and AD patients' brains. Here, we briefly summarize the recent reports regarding the comorbidity issues in PD from both clinical observations and neuropathological evidences. Furthermore, we provide some discussion about the perspective potential mechanisms underlying such comorbidity phenomenon, with a focus on PD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuliang Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhuohao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Zhuohao He,
| |
Collapse
|
154
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Wiklund L, Sharma HS. Nanodelivery of Histamine H3/H4 Receptor Modulators BF-2649 and Clobenpropit with Antibodies to Amyloid Beta Peptide in Combination with Alpha Synuclein Reduces Brain Pathology in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2023; 32:55-96. [PMID: 37480459 DOI: 10.1007/978-3-031-32997-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Parkinson's disease (PD) in military personnel engaged in combat operations is likely to develop in their later lives. In order to enhance the quality of lives of PD patients, exploration of novel therapy based on new research strategies is highly warranted. The hallmarks of PD include increased alpha synuclein (ASNC) and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) leading to brain pathology. In addition, there are evidences showing increased histaminergic nerve fibers in substantia niagra pars compacta (SNpc), striatum (STr), and caudate putamen (CP) associated with upregulation of histamine H3 receptors and downregulation of H4 receptors in human brain. Previous studies from our group showed that modulation of potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist induces neuroprotection in PD brain pathology. Recent studies show that PD also enhances amyloid beta peptide (AβP) depositions in brain. Keeping these views in consideration in this review, nanowired delivery of monoclonal antibodies to AβP together with ASNC and H3/H4 modulator drugs on PD brain pathology is discussed based on our own observations. Our investigation shows that TiO2 nanowired BF-2649 (1 mg/kg, i.p.) or CLBPT (1 mg/kg, i.p.) once daily for 1 week together with nanowired delivery of monoclonal antibodies (mAb) to AβP and ASNC induced superior neuroprotection in PD-induced brain pathology. These observations are the first to show the modulation of histaminergic receptors together with antibodies to AβP and ASNC induces superior neuroprotection in PD. These observations open new avenues for the development of novel drug therapies for clinical strategies in PD.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
155
|
Zhang J, Jin J, Su D, Feng T, Zhao H. Tau-PET imaging in Parkinson's disease: a systematic review and meta-analysis. Front Neurol 2023; 14:1145939. [PMID: 37181568 PMCID: PMC10174250 DOI: 10.3389/fneur.2023.1145939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/30/2023] [Indexed: 05/16/2023] Open
Abstract
Background Pathological tau accumulates in the cerebral cortex of Parkinson's disease (PD), resulting in cognitive deterioration. Positron emission tomography (PET) can be used for in vivo imaging of tau protein. Therefore, we conducted a systematic review and meta-analysis of tau protein burden in PD cognitive impairment (PDCI), PD dementia (PDD), and other neurodegenerative diseases and explored the potential of the tau PET tracer as a biomarker for the diagnosis of PDCI. Methods PubMed, Embase, the Cochrane Library, and Web of Science databases were systematically searched for studies published till 1 June 2022 that used PET imaging to detect tau burden in the brains of PD patients. Standardized mean differences (SMDs) of tau tracer uptake were calculated using random effects models. Subgroup analysis based on the type of tau tracers, meta-regression, and sensitivity analysis was conducted. Results A total of 15 eligible studies were included in the meta-analysis. PDCI patients (n = 109) had a significantly higher tau tracer uptake in the inferior temporal lobe than healthy controls (HCs) (n = 237) and had a higher tau tracer uptake in the entorhinal region than PD with normal cognition (PDNC) patients (n = 61). Compared with progressive supranuclear palsy (PSP) patients (n = 215), PD patients (n = 178) had decreased tau tracer uptake in the midbrain, subthalamic nucleus, globus pallidus, cerebellar deep white matter, thalamus, striatum, substantia nigra, dentate nucleus, red nucleus, putamen, and frontal lobe. Tau tracer uptake values of PD patients (n = 178) were lower than those of patients with Alzheimer's disease (AD) (n = 122) in the frontal lobe and occipital lobe and lower than those in patients with dementia with Lewy bodies (DLB) (n = 55) in the occipital lobe and infratemporal lobe. Conclusion In vivo imaging studies with PET could reveal region-specific binding patterns of the tau tracer in PD patients and help in the differential diagnosis of PD from other neurodegenerative diseases. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
- Junjiao Zhang
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianing Jin
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongning Su
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- *Correspondence: Tao Feng
| | - Huiqing Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Huiqing Zhao
| |
Collapse
|
156
|
Xu Y, Yang X, Xiong Q, Han J, Zhu Q. The dual role of p63 in cancer. Front Oncol 2023; 13:1116061. [PMID: 37182132 PMCID: PMC10174455 DOI: 10.3389/fonc.2023.1116061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
The p53 family is made up of three transcription factors: p53, p63, and p73. These proteins are well-known regulators of cell function and play a crucial role in controlling various processes related to cancer progression, including cell division, proliferation, genomic stability, cell cycle arrest, senescence, and apoptosis. In response to extra- or intracellular stress or oncogenic stimulation, all members of the p53 family are mutated in structure or altered in expression levels to affect the signaling network, coordinating many other pivotal cellular processes. P63 exists as two main isoforms (TAp63 and ΔNp63) that have been contrastingly discovered; the TA and ΔN isoforms exhibit distinguished properties by promoting or inhibiting cancer progression. As such, p63 isoforms comprise a fully mysterious and challenging regulatory pathway. Recent studies have revealed the intricate role of p63 in regulating the DNA damage response (DDR) and its impact on diverse cellular processes. In this review, we will highlight the significance of how p63 isoforms respond to DNA damage and cancer stem cells, as well as the dual role of TAp63 and ΔNp63 in cancer.
Collapse
Affiliation(s)
- Yongfeng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojuan Yang
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qunli Xiong
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qing Zhu, ; Junhong Han,
| | - Qing Zhu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Qing Zhu, ; Junhong Han,
| |
Collapse
|
157
|
Lee J, Park S, Jang W. Serum zinc deficiency could be associated with dementia conversion in Parkinson's disease. Front Aging Neurosci 2023; 15:1132907. [PMID: 37181629 PMCID: PMC10172503 DOI: 10.3389/fnagi.2023.1132907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Background Association between heavy metals and Parkinson's disease (PD) is well noted, but studies regarding heavy metal levels and non-motor symptoms of PD, such as PD's dementia (PD-D), are lacking. Methods In this retrospective cohort study, we compared five serum heavy metal levels (Zn, Cu, Pb, Hg, and Mn) of newly diagnosed PD patients (n = 124). Among 124 patients, 40 patients were later converted to Parkinson's disease dementia (PD-D), and 84 patients remained without dementia during the follow-up time. We collected clinical parameters of PD and conducted correlation analysis with heavy metal levels. PD-D conversion time was defined as the initiation time of cholinesterase inhibitors. Cox proportional hazard models were used to identify factors associated with dementia conversion in PD subjects. Results Zn deficiency was significant in the PD-D group than in the PD without dementia group (87.53 ± 13.20 vs. 74.91 ± 14.43, p < 0.01). Lower serum Zn level was significantly correlated with K-MMSE and LEDD at 3 months (r = -0.28, p < 0.01; r = 0.38, p < 0.01). Zn deficiency also contributed to a shorter time to dementia conversion (HR 0.953, 95% CI 0.919 to 0.988, p < 0.01). Conclusion This clinical study suggests that a low serum Zn level can be a risk factor for developing PD-D and could be used as a biological marker for PD-D conversion.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Family Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Suyeon Park
- Department of Biostatistics, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Wooyoung Jang
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
- *Correspondence: Wooyoung Jang,
| |
Collapse
|
158
|
Wang Z, Zheng Y, Cai H, Yang C, Li S, Lv H, Feng T, Yu Z. Aβ1-42-containing platelet-derived extracellular vesicle is associated with cognitive decline in Parkinson's disease. Front Aging Neurosci 2023; 15:1170663. [PMID: 37122378 PMCID: PMC10140302 DOI: 10.3389/fnagi.2023.1170663] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background Cortical amyloid deposition is a common observation in Parkinson's disease dementia (PDD) patients. Aβ1-42 is linked to a more rapid progression of dementia. Platelets, which degranulate upon activation, are a primary source of Aβ. It has been repeatedly reported that peripheral extracellular vesicles (EVs) can partially reach the central nervous system. Thus, we speculate that activated platelet-derived Aβ1-42-containing EVs (PEV-Aβ1-42) play a crucial role in the cognitive decline of PD patients. Methods The study included 189 participants: 66 with non-dementia PD, 73 with PDD, and 50 healthy controls. All participants underwent blood collection and clinical assessments. Twenty PD patients underwent re-examination and repeated blood collection 14 months later. A nano-scale flow cytometry assay was used to detect PEVs and PEV-Aβ1-42 using fluorescence-labeled CD62P and Aβ1-42 antibodies. Results Parkinson's disease dementia patients had higher PEV-Aβ1-42 concentrations than healthy controls (p = 0.028). The ratio of PEV-Aβ1-42 to PEV was significantly higher in PDD patients compared to those in non-dementia PD and healthy controls (p PD-ND < 0.001, p HC = 0.041). The PEV-Aβ1-42/PEV ratio appears to influence the odds of developing dementia (OR = 1.76, p < 0.001). The change in the PEV-Aβ1-42/PEV ratio was also correlated with cognitive decline over 14 months (r = -0.447, p < 0.05). Conclusion The plasma PEV-Aβ1-42/PEV ratio may serve as a diagnostic and prognostic biomarker for PDD patients.
Collapse
Affiliation(s)
- Ziyu Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanchu Zheng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huihui Cai
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siming Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong Lv
- Clinical Diagnosis Department of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhenwei Yu, ; Tao Feng, , ; Hong Lv,
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- *Correspondence: Zhenwei Yu, ; Tao Feng, , ; Hong Lv,
| | - Zhenwei Yu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- *Correspondence: Zhenwei Yu, ; Tao Feng, , ; Hong Lv,
| |
Collapse
|
159
|
Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Nanowired Delivery of Cerebrolysin Together with Antibodies to Amyloid Beta Peptide, Phosphorylated Tau, and Tumor Necrosis Factor Alpha Induces Superior Neuroprotection in Alzheimer's Disease Brain Pathology Exacerbated by Sleep Deprivation. ADVANCES IN NEUROBIOLOGY 2023; 32:3-53. [PMID: 37480458 DOI: 10.1007/978-3-031-32997-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Sleep deprivation induces amyloid beta peptide and phosphorylated tau deposits in the brain and cerebrospinal fluid together with altered serotonin metabolism. Thus, it is likely that sleep deprivation is one of the predisposing factors in precipitating Alzheimer's disease (AD) brain pathology. Our previous studies indicate significant brain pathology following sleep deprivation or AD. Keeping these views in consideration in this review, nanodelivery of monoclonal antibodies to amyloid beta peptide (AβP), phosphorylated tau (p-tau), and tumor necrosis factor alpha (TNF-α) in sleep deprivation-induced AD is discussed based on our own investigations. Our results suggest that nanowired delivery of monoclonal antibodies to AβP with p-tau and TNF-α induces superior neuroprotection in AD caused by sleep deprivation, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
160
|
Tang Y, Li L, Hu T, Jiao F, Han L, Li S, Xu Z, Fan Y, Sun Y, Liu F, Yen TC, Zuo C, Wang J. In Vivo 18 F-Florzolotau Tau Positron Emission Tomography Imaging in Parkinson's Disease Dementia. Mov Disord 2023; 38:147-152. [PMID: 36368769 DOI: 10.1002/mds.29273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tau pathology is observed during autopsy in many patients with Parkinson's disease dementia (PDD). Positron emission tomography (PET) imaging using the tracer 18 F-florzolotau has the potential to capture tau accumulation in the living brain. OBJECTIVE The aim was to describe the results of 18 F-florzolotau PET/CT (computed tomography) imaging in patients with PDD. METHODS Ten patients with PDD, 9 with Parkinson's disease with normal cognition (PD-NC), and 9 age-matched healthy controls (HCs) were enrolled. Clinical assessments and 18 F-florzolotau PET/CT imaging were performed. RESULTS 18 F-Florzolotau uptake was significantly higher in the cortical regions of patients with PDD compared with both PD-NC and HCs, especially in the temporal lobe. Notably, 18 F-florzolotau uptake in the occipital lobe of patients with PDD showed a significant correlation with cognitive impairment as reflected by Mini-Mental State Examination (MMSE) scores. CONCLUSIONS 18 F-Florzolotau PET imaging can effectively capture the occurrence of tau pathology in patients with PDD, which was also linked to MMSE scores. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yilin Tang
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling Li
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tianyu Hu
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangyang Jiao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Linlin Han
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiyu Li
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiheng Xu
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yun Fan
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yimin Sun
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengtao Liu
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
161
|
Kim JR. Oligomerization by co-assembly of β-amyloid and α-synuclein. Front Mol Biosci 2023; 10:1153839. [PMID: 37021111 PMCID: PMC10067735 DOI: 10.3389/fmolb.2023.1153839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Aberrant self-assembly of an intrinsically disordered protein is a pathological hallmark of protein misfolding diseases, such as Alzheimer's and Parkinson's diseases (AD and PD, respectively). In AD, the 40-42 amino acid-long extracellular peptide, β-amyloid (Aβ), self-assembles into oligomers, which eventually aggregate into fibrils. A similar self-association of the 140 amino acid-long intracellular protein, α-synuclein (αS), is responsible for the onset of PD pathology. While Aβ and αS are primarily extracellular and intracellular polypeptides, respectively, there is evidence of their colocalization and pathological overlaps of AD and PD. This evidence has raised the likelihood of synergistic, toxic protein-protein interactions between Aβ and αS. This mini review summarizes the findings of studies on Aβ-αS interactions related to enhanced oligomerization via co-assembly, aiming to provide a better understanding of the complex biology behind AD and PD and common pathological mechanisms among the major neurodegenerative diseases.
Collapse
|
162
|
Galambo D, Bergdahl A. Physiological levels of cardiolipin acutely affect mitochondrial respiration in vascular smooth muscle cells. Curr Res Physiol 2022; 6:100097. [PMID: 36594049 PMCID: PMC9803913 DOI: 10.1016/j.crphys.2022.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/03/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiolipin (CL) is a phospholipid molecule found in the inner mitochondrial membrane, where it normally associates with and activates the respiratory complexes. Following myocardial infarction, CL gets released from necrotic cells, consequently affecting neighboring tissues. We have previously demonstrated that physiological concentrations of up to 100 μM CL diminish endothelial cell migration and angiogenic sprouting. Since CL is vital to cellular life, we hypothesized that this molecule may have considerable implications on vascular smooth muscle cells bioenergetics, a key phase in atherogenesis. We examined the acute effects of physiological concentrations of CL on oxidative phosphorylation in permeabilized mice aorta using high-resolution respirometry and a substrate-inhibitor titration protocol. We found that CL significantly lowers LEAK and maximal State 3 respiration. In addition, we found that the acceptor control ratio, representing the coupling between oxidation and phosphorylation, was significantly upregulated by CL. Our findings demonstrate that in situ mitochondrial respiration in permeabilized smooth muscle cells is attenuated when physiological concentrations of CL are applied acutely. This could provide a novel therapy to reduce their dedifferentiation and consequently atherogenesis.
Collapse
Affiliation(s)
- Deema Galambo
- Department of Biology, Concordia, Montreal, QC, Canada
| | - Andreas Bergdahl
- Department of Health, Kinesiology & Applied Physiology, Concordia University, Montreal, QC, Canada
- Corresponding author.
| |
Collapse
|
163
|
Gubinelli F, Sarauskyte L, Venuti C, Kulacz I, Cazzolla G, Negrini M, Anwer D, Vecchio I, Jakobs F, Manfredsson F, Davidsson M, Heuer A. Characterisation of functional deficits induced by AAV overexpression of alpha-synuclein in rats. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100065. [PMID: 36632447 PMCID: PMC9827042 DOI: 10.1016/j.crneur.2022.100065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Background In the last decades different preclinical animal models of Parkinson's disease (PD) have been generated, aiming to mimic the progressive neuronal loss of midbrain dopaminergic (DA) cells as well as motor and non-motor impairment. Among all the available models, AAV-based models of human alpha-synuclein (h-aSYN) overexpression are promising tools for investigation of disease progression and therapeutic interventions. Objectives The goal with this work was to characterise the impairment in motor and non-motor domains following nigrostriatal overexpression of h-aSYN and correlate the behavioural deficits with histological assessment of associated pathology. Methods Intranigral injection of an AAV9 expressing h-aSYN was compared with untreated animals, 6-OHDA and AAV9 expressing either no transgene or GFP. The animals were assessed on a series of simple and complex behavioural tasks probing motor and non-motor domains. Post-mortem neuropathology was analysed using immunohistochemical methods. Results Overexpression of h-aSYN led to progressive degeneration of DA neurons of the SN and axonal terminals in the striatum (STR). We observed extensive nigral and striatal pathology, resembling that of human PD brain, as well as the development of stable progressive deficit in simple motor tasks and in non-motor domains such as deficits in motivation and lateralised neglect. Conclusions In the present work we characterized a rat model of PD that closely resembles human PD pathology at the histological and behavioural level. The correlation of cell loss with behavioural performance enables the selection of rats which can be used in neuroprotective or neurorestorative therapies.
Collapse
Affiliation(s)
- F. Gubinelli
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - L. Sarauskyte
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - C. Venuti
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - I. Kulacz
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - G. Cazzolla
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - M. Negrini
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - D. Anwer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - I. Vecchio
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - F. Jakobs
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - F.P. Manfredsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - M. Davidsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA,Molecular Neuromodulation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - A. Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden,Corresponding author. Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Sölvegatan 19, 22 184, Lund, Sweden.
| |
Collapse
|
164
|
Lipiński WP, Visser BS, Robu I, Fakhree MAA, Lindhoud S, Claessens MMAE, Spruijt E. Biomolecular condensates can both accelerate and suppress aggregation of α-synuclein. SCIENCE ADVANCES 2022; 8:eabq6495. [PMID: 36459561 PMCID: PMC10942789 DOI: 10.1126/sciadv.abq6495] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Biomolecular condensates present in cells can fundamentally affect the aggregation of amyloidogenic proteins and play a role in the regulation of this process. While liquid-liquid phase separation of amyloidogenic proteins by themselves can act as an alternative nucleation pathway, interaction of partly disordered aggregation-prone proteins with preexisting condensates that act as localization centers could be a far more general mechanism of altering their aggregation behavior. Here, we show that so-called host biomolecular condensates can both accelerate and slow down amyloid formation. We study the amyloidogenic protein α-synuclein and two truncated α-synuclein variants in the presence of three types of condensates composed of nonaggregating peptides, RNA, or ATP. Our results demonstrate that condensates can markedly speed up amyloid formation when proteins localize to their interface. However, condensates can also significantly suppress aggregation by sequestering and stabilizing amyloidogenic proteins, thereby providing living cells with a possible protection mechanism against amyloid formation.
Collapse
Affiliation(s)
- Wojciech P. Lipiński
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Brent S. Visser
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Irina Robu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Mohammad A. A. Fakhree
- Nanobiophysics, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, Netherlands
| | - Saskia Lindhoud
- Department of Molecules and Materials, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Mireille M. A. E. Claessens
- Nanobiophysics, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| |
Collapse
|
165
|
Mok VWL, Chan LG, Goh JCB, Tan LCS. Psychosis in Parkinson's disease in a Southeast Asian cohort: prevalence and clinical correlates. Singapore Med J 2022; 63:702-708. [PMID: 34911181 PMCID: PMC9875879 DOI: 10.11622/smedj.2021182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Introduction Psychosis is a prominent neuropsychiatric symptom of Parkinson's disease (PD) and is associated with negative outcomes, such as poorer quality of life and greater rate of functional impairment. Early identification of patients with PD at risk of developing psychosis facilitates appropriate management to improve outcomes. However, this phenomenon has not been examined locally. This study aimed to examine the prevalence of PD-associated psychosis in the local setting, identify any associated risk factors, as well as characterise the cognitive trajectory of patients with PD with psychosis. Methods A retrospective cohort of 336 patients with PD, who presented to the National Neuroscience Institute, Singapore, in 2006 and 2007 and attended follow-up visits through to 2013 was analysed. The data analysed included scores from clinician assessments of cognitive function, disease severity and presence of psychotic symptoms, conducted when clinically appropriate during patients' medical visits. Survival analysis and logistic and linear regression analysis were performed. Results Psychosis was diagnosed in 63 patients with PD, indicating a prevalence of 18.8% for PD-associated psychosis. Incidence of psychosis in PD was calculated to be 40 per 1,000 person-years. No significant association was found between demographic variables and the odds of developing psychosis in PD. Regression analyses found that the presence of psychosis significantly predicted greater cognitive decline and disease severity. Conclusion Psychosis has a significant presence among the PD population in Singapore, possibly serving as an indicator of more rapid cognitive decline and progression of PD severity.
Collapse
Affiliation(s)
| | - Lai Gwen Chan
- Department of Psychological Medicine, Tan Tock Seng Hospital, Singapore
| | | | - Louis Chew Seng Tan
- Research; Department of Neurology, National Neuroscience Institute, Singapore
| |
Collapse
|
166
|
Nila IS, Sumsuzzman DM, Khan ZA, Jung JH, Kazema AS, Kim SJ, Hong Y. Identification of exosomal biomarkers and its optimal isolation and detection method for the diagnosis of Parkinson's disease: A systematic review and meta-analysis. Ageing Res Rev 2022; 82:101764. [PMID: 36273807 DOI: 10.1016/j.arr.2022.101764] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/27/2022] [Accepted: 10/16/2022] [Indexed: 01/31/2023]
Abstract
Recently, there has been growing interest in exosomal biomarkers for their active targeting and specificity for delivering their cargos (proteins, lipids, nucleic acids) from the parent cell to the recipient cell. Currently, the clinical diagnosis of Parkinson's disease (PD) is mainly based on a clinician's neuropsychological examination and motor symptoms (e.g., bradykinesia, rigidity, postural instability, and resting tremor). However, this diagnosis method is not accurate due to overlapping criteria of other neurodegenerative diseases. Exosomes are differentially expressed in PD and a combination of types and contents of exosomes might be used as a biomarker in PD. Here, we systematically reviewed and meta-analyzed exosomal contents, types and sources of exosomes, method of isolation, and protein quantification tools to determine the optimum exosome-related attributes for PD diagnosis. Pubmed, Embase, and ISI Web of Science were searched for relevant studies. 25 studies were included in the meta-analysis. The Ratio of Mean (RoM) with 95% confidence intervals (CI) was calculated to estimate the effect size. Biomarker performances were rated by random-effects meta-analysis with the Restricted Maximum Likelihood (REML) method. The study protocol is available at PROSPERO (CRD42022331885). Exosomal α-synuclein (α-Syn) was significantly altered in PD patients from healthy controls [RoM = 1.67, 95% CI (0.99 to 2.35); p = 0.00] followed by tau [RoM = 1.33, 95% CI (0.79 to 1.87); p = 0.00], PS-129 [RoM = 0.97, 95% CI (0.54 to 1.40); p = 0.00], and DJ-1/PARK7 [RoM = 0.93, 95% CI (0.64 to 1.21); p = 0.00]. Central nervous system derived L1CAM exosome [RoM = 1.24, 95% CI (1.04 to 1.45); p = 0.00] from either plasma [RoM = 1.35, 95% CI (1.09 to 1.61); p = 0.00]; or serum [RoM = 1.47, 95% CI (1.05 to 1.90); p = 0.00] has been found the optimum type of exosome. The exosome isolation by ExoQuick [RoM = 1.16, 95% CI (0.89 to 1.43); p = 0.00] and protein quantification method by ELISA [RoM = 1.28, 95% CI (1.15 to 1.41); p = 0.00] has been found the optimum isolation and quantification method, respectively for PD diagnosis. This meta-analysis suggests that α-Syn in L1CAM exosome derived from blood, isolated by ExoQuick kit, and quantified by ELISA can be used for PD diagnosis.
Collapse
Affiliation(s)
- Irin Sultana Nila
- Institute of Digital Anti-aging Healthcare, Inje University, Gimhae 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea.
| | - Dewan Md Sumsuzzman
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Republic of Korea.
| | - Zeeshan Ahmad Khan
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Republic of Korea.
| | - Jin Ho Jung
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea; Dementia and Neurodegenerative Disease Research Center, Inje University, Busan 47392, Republic of Korea.
| | - Ashura Suleiman Kazema
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Department of Physical Therapy, Graduate School of Inje University, Gimhae 50834, Republic of Korea.
| | - Sang Jin Kim
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea; Dementia and Neurodegenerative Disease Research Center, Inje University, Busan 47392, Republic of Korea.
| | - Yonggeun Hong
- Institute of Digital Anti-aging Healthcare, Inje University, Gimhae 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Republic of Korea; Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Republic of Korea; Department of Physical Therapy, Graduate School of Inje University, Gimhae 50834, Republic of Korea; Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Republic of Korea.
| |
Collapse
|
167
|
Murakami K, Sakaguchi Y, Taniwa K, Izuo N, Hanaki M, Kawase T, Hirose K, Shimizu T, Irie K. Lysine-targeting inhibition of amyloid β oligomerization by a green perilla-derived metastable chalcone in vitro and in vivo. RSC Chem Biol 2022; 3:1380-1396. [PMID: 36544574 PMCID: PMC9709778 DOI: 10.1039/d2cb00194b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/16/2022] [Indexed: 12/05/2022] Open
Abstract
Oligomers of amyloid β (Aβ) represent an early aggregative form that causes neurotoxicity in the pathogenesis of Alzheimer's disease (AD). Thus, preventing Aβ aggregation is important for preventing AD. Despite intensive studies on dietary compounds with anti-aggregation properties, some identified compounds are susceptible to autoxidation and/or hydration upon incubation in water, leaving unanswered issues regarding which active structures in metastable compounds are actually responsible for the inhibition of Aβ aggregation. In this study, we observed the site-specific inhibition of 42-mer Aβ (Aβ42) oligomerization by the green perilla-derived chalcone 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC), which was converted to its decomposed flavonoids (dDDC, 1-3) via nucleophilic aromatic substitution with water molecules. DDC suppressed Aβ42 fibrillization and slowed the transformation of the β-sheet structure, which is rich in Aβ42 aggregates. To validate the contribution of dDDC to the inhibitory effects of DDC on Aβ42 aggregation, we synthesized 1-3 and identified 3, a catechol-type flavonoid, as one of the active forms of DDC. 1H-15N SOFAST-HMQC NMR revealed that 1-3 as well as DDC could interact with residues between His13 and Leu17, which were near the intermolecular β-sheet (Gln15-Ala21). The nucleation in Aβ42 aggregates involves the rate-limiting formation of low-molecular-weight oligomers. The formation of a Schiff base with dDDC at Lys16 and Lys28 in the dimer through autoxidation of dDDC was associated with the suppression of Aβ42 nucleation. Of note, in two AD mouse models using immunoaffinity purification-mass spectrometry, adduct formation between dDDC and brain Aβ was observed in a similar manner as reported in vitro. The present findings unraveled the lysine-targeting inhibitory mechanism of metastable dietary ingredients regarding Aβ oligomerization.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Yoshiki Sakaguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Kota Taniwa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | - Naotaka Izuo
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba UniversityChiba260-8670Japan
| | - Mizuho Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| | | | | | - Takahiko Shimizu
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba UniversityChiba260-8670Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto UniversityKyoto606-8502Japan
| |
Collapse
|
168
|
Tao M, Dou K, Xie Y, Hou B, Xie A. The associations of cerebrospinal fluid biomarkers with cognition, and rapid eye movement sleep behavior disorder in early Parkinson's disease. Front Neurosci 2022; 16:1049118. [PMID: 36507360 PMCID: PMC9728099 DOI: 10.3389/fnins.2022.1049118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background In Parkinson's disease (PD), levels of cerebrospinal fluid (CSF) biomarkers and progression of non-motor symptoms are associated, but the specifics are not yet clear. Objective The aim of this study was to investigate the associations of non-motor symptoms with CSF biomarkers in PD. Materials and methods We assessed 487 individuals from the Parkinson's Progression Markers Initiative (PPMI), consisting of 155 healthy controls (HCs) and 332 individuals with PD. Patients with PD were grouped according to non-motor symptoms and compared CSF α-synuclein (α-syn), amyloid-beta 1-42 (Aβ1-42), and total tau (t-tau) levels. Multiple linear regressions were used in baseline analysis and linear mixed-effects models in longitudinal analysis. Analyses of mediating effects between cognition and CSF biomarkers were also performed. Results At baseline, PD patients with cognitive impairment (PDCI) exhibited significantly lower CSF α-syn (β = -0.1244; P = 0.0469), Aβ (β = -0.1302; P = 0.0447), and t-tau (β = -0.1260; P = 0.0131) levels than PD patients without cognitive impairment (PDCU). Moreover, a faster decline of α-syn (β = -0.2152; P = 0.0374) and Aβ (β = -0.3114; P = 0.0023) and a faster rise of t-tau (β = -0.1534; P = 0.0274) have been found in longitudinal analysis. The Aβ positive group showed an earlier decline in cognitive performance (β = -0.5341; P = 0.0180) compared with the negative Aβ group in both analyses. In addition, we found that PD patients with probable rapid eye movement sleep behavior disorder (pRBD) showed decreased CSF α-syn (β = -0.1343; P = 0.0033) levels. Finally, mediation analysis demonstrated that olfactory function partially mediated the relationship between cognition and CSF biomarkers levels. Conclusion Our study shows that CSF biomarkers are associated with cognition at baseline and longitudinally. Cognitive impairment is more severe in patients with a heavier Aβ burden. CSF α-syn decreased in PD patients with pRBD. This study suggests that early recognition of the increased risk of non-motor symptoms is important for disease surveillance and may be associated with the pathological progression of CSF markers.
Collapse
Affiliation(s)
- Mingzhu Tao
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaixin Dou
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yijie Xie
- Department of Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Binghui Hou
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China,Binghui Hou,
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China,Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, China,*Correspondence: Anmu Xie,
| |
Collapse
|
169
|
Chen H, Xu Y, Chen L, Shang S, Luo X, Wang X, Xia W, Zhang H. The convergent and divergent patterns in brain perfusion between Alzheimer's disease and Parkinson's disease with dementia: An ASL MRI study. Front Neurosci 2022; 16:892374. [PMID: 36408395 PMCID: PMC9669427 DOI: 10.3389/fnins.2022.892374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background Aberrant brain blood perfusion changes have been found to play an important role in the progress of Alzheimer's disease (AD) and Parkinson's disease with dementia (PDD). However, the convergent and divergent patterns in brain perfusion between two dementias remain poorly documented. Objective To explore the impaired brain perfusion pattern and investigate their overlaps and differences between AD and PDD using normalized cerebral blood flow (CBF). Methods The regional perfusion in patients with AD and PDD as well as healthy control (HC) subjects were explored using the three-dimensional arterial spin labeling. The normalized CBF values were compared across the three groups and further explored the potential linkages to clinical assessments. Results In total, 24 patients with AD, 26 patients with PDD, and 35 HC subjects were enrolled. Relative to the HC group, both the AD group and the PDD group showed reduced normalized CBF mainly in regions of the temporal and frontal gyrus, whereas preserved perfusion presented in the sensorimotor cortex and basal ganglia area. Compared with the AD group, the PDD group showed decreased perfusion in the right putamen and right supplementary motor area (SMA), while preserved perfusion in the right inferior parietal lobule (IPL) and right precuneus. In the AD group, significant correlations were observed between the normalized CBF values in the right IPL and scores of global cognitive function (P = 0.033, ρ = 0.442), between the normalized CBF values in the right precuneus and the scores of memory function (P = 0.049,ρ = 0.406). The normalized CBF in the right putamen was significantly linked to cores of motor symptoms (P = 0.017, ρ = 0.214) in the PDD group. Conclusion Our findings suggested convergent and divergent patterns of brain hemodynamic dysregulation between AD and PDD and contributed to a better understanding of the pathophysiological mechanisms.
Collapse
Affiliation(s)
- Hongri Chen
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Radiology, Weihai Maternal and Child Health Care Hospital, Weihai, China
| | - Yao Xu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lanlan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Songan Shang
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xianfu Luo
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xin Wang
- Department of Rehabilitation, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wei Xia
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongying Zhang
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
- *Correspondence: Hongying Zhang
| |
Collapse
|
170
|
Salim S, Ahmad F, Banu A, Mohammad F. Gut microbiome and Parkinson's disease: Perspective on pathogenesis and treatment. J Adv Res 2022:S2090-1232(22)00242-9. [PMID: 36332796 PMCID: PMC10403695 DOI: 10.1016/j.jare.2022.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a disease of ⍺-synuclein aggregation-mediated dopaminergic neuronal loss in the substantia nigra pars compacta, which leads to motor and non-motor symptoms. Through the last two decades of research, there has been growing consensus that inflammation-mediated oxidative stress, mitochondrial dysfunction, and cytokine-induced toxicity are mainly involved in neuronal damage and loss associated with PD. However, it remains unclear how these mechanisms relate to sporadic PD, a more common form of PD. Both enteric and central nervous systems have been implicated in the pathogenesis of sporadic PD, thus highlighting the crosstalk between the gut and brain. AIM of Review: In this review, we summarize how alterations in the gut microbiome can affect PD pathogenesis. We highlight various mechanisms increasing/decreasing the risk of PD development. Based on the previous supporting evidence, we suggest how early interventions could protect against PD development and how controlling specific factors, including our diet, could modify our perspective on disease mechanisms and therapeutics. We explain the strong relationship between the gut microbiota and the brain in PD subjects, by delineating the multiple mechanisms involved inneuroinflammation and oxidative stress. We conclude that the neurodetrimental effects of western diet (WD) and the neuroprotective effects of Mediterranean diets should be further exploredin humans through clinical trials. Key Scientific Concepts of Review: Alterations in the gut microbiome and associated metabolites may contribute to pathogenesis in PD. In some studies, probiotics have been shown to exert anti-oxidative effects in PD via improved mitochondrial dynamics and homeostasis, thus reducing PD-related consequences. However, there is a significant unmet need for randomized clinical trials to investigate the effectiveness of microbial products, probiotic-based supplementation, and dietary intervention in reversing gut microbial dysbiosis in PD.
Collapse
|
171
|
Dhakal S, Robang AS, Bhatt N, Puangmalai N, Fung L, Kayed R, Paravastu AK, Rangachari V. Distinct neurotoxic TDP-43 fibril polymorphs are generated by heterotypic interactions with α-Synuclein. J Biol Chem 2022; 298:102498. [PMID: 36116552 PMCID: PMC9587012 DOI: 10.1016/j.jbc.2022.102498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid aggregates of specific proteins constitute important pathological hallmarks in many neurodegenerative diseases, defining neuronal degeneration and disease onset. Recently, increasing numbers of patients show comorbidities and overlaps between multiple neurodegenerative diseases, presenting distinct phenotypes. Such overlaps are often accompanied by colocalizations of more than one amyloid protein, prompting the question of whether direct interactions between different amyloid proteins could generate heterotypic amyloids. To answer this question, we investigated the effect of α-synuclein (αS) on the DNA-binding protein TDP-43 aggregation inspired by their coexistence in pathologies such as Lewy body dementia and limbic predominant age-related TDP-43 encephalopathy. We previously showed αS and prion-like C-terminal domain (PrLD) of TDP-43 synergistically interact to generate toxic heterotypic aggregates. Here, we extend these studies to investigate whether αS induces structurally and functionally distinct polymorphs of PrLD aggregates. Using αS-PrLD heterotypic aggregates generated in two different stoichiometric proportions, we show αS can affect PrLD fibril forms. PrLD fibrils show distinctive residue level signatures determined by solid state NMR, dye-binding capability, proteinase K (PK) stability, and thermal stability toward SDS denaturation. Furthremore, by gold nanoparticle labeling and transmission electron microscopy, we show the presence of both αS and PrLD proteins within the same fibrils, confirming the existence of heterotypic amyloid fibrils. We also observe αS and PrLD colocalize in the cytosol of neuroblastoma cells and show that the heterotypic PrLD fibrils selectively induce synaptic dysfunction in primary neurons. These findings establish the existence of heterotypic amyloid and provide a molecular basis for the observed overlap between synucleinopathies and TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Leiana Fung
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA.
| |
Collapse
|
172
|
Kaide S, Watanabe H, Iikuni S, Hasegawa M, Ono M. Synthesis and Evaluation of 18F-Labeled Chalcone Analogue for Detection of α-Synuclein Aggregates in the Brain Using the Mouse Model. ACS Chem Neurosci 2022; 13:2982-2990. [PMID: 36197745 DOI: 10.1021/acschemneuro.2c00473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the brains of patients with synucleinopathies such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, α-synuclein (α-syn) aggregates deposit abnormally to induce neurodegeneration, although the mechanism is unclear. Thus, in vivo imaging studies targeting α-syn aggregates have attracted much attention to guide medical intervention against synucleinopathy. In our previous study, a chalcone analogue, [125I]PHNP-3, functioned as a feasible probe in terms of α-syn binding in vitro; however, it did not migrate to the mouse brain, and further improvement of brain uptake was required. In the present study, we designed and synthesized two novel 18F-labeled chalcone analogues, [18F]FHCL-1 and [18F]FHCL-2, using a central nervous system multiparameter optimization (CNS MPO) algorithm with the aim of improving blood-brain barrier permeation in the mouse brain. Then, we evaluated their utility for in vivo imaging of α-syn aggregates using a mouse model. In the competitive inhibition assay, both chalcone analogues exhibited high binding affinity for α-syn aggregates (Ki = 2.6 and 3.4 nM, respectively), while no marked amyloid β (Aβ)-binding was observed. The 18F-labeling reaction was successfully performed. In a biodistribution experiment, brain uptake of both chalcone analogues in normal mice (2.09 and 2.40% injected dose/gram (% ID/g) at 2 min postinjection, respectively) was higher than that of [125I]PHNP-3, suggesting that the introduction of 18F into the chalcone analogue led to an improvement in brain uptake in mice while maintaining favorable binding ability for α-syn aggregates. Furthermore, in an ex vivo autoradiography experiment, [18F]FHCL-2 showed the feasibility of the detection of α-syn aggregates in the mouse brain in vivo. These preclinical studies demonstrated the validity of the design of α-syn-targeting probes based on the CNS MPO score and the possibility of in vivo imaging of α-syn aggregates in a mouse model using 18F-labeled chalcone analogues.
Collapse
Affiliation(s)
- Sho Kaide
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
173
|
Akber U, Bong S, Park ZY, Park CS. Effects of cereblon on stress-activated redox proteins and core behavior. Brain Res 2022; 1793:148054. [PMID: 35973609 DOI: 10.1016/j.brainres.2022.148054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022]
Abstract
The mechanisms underlying the vulnerability and resilience of an individual to stress are only partly understood. Response to stress is determined by behavioral and biochemical changes in the brain. Chronic ultra-mild stress (CUMS) induces an anhedonic-like state in mice that resembles symptoms of human depression. This study reports the role of cereblon (CRBN) in regulating the metabolic and antioxidant status of neuronal tissues in the mouse model of CUMS. Intriguingly, Crbn-/- (KO) mice showed resilient responsiveness, both at the behavioral and proteomic levels. Several core behaviors were also differentially altered by CUMS in KO mice. Liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based proteome analysis of whole brain lysate (WBL) showed an enriched chaperonic, metabolic, and antioxidant status in the brains of KO subjects, including several members of DNAJ chaperones, creatine kinase, quinone oxidoreductase, superoxide dismutase (SOD1), glutathione S-transferase Mu (GSTM), peroxiredoxin-6 (PRDX6), and thioredoxin. Pathological phosphorylation as characterized by aggregation of tau and α-synuclein (α-syn) was significantly reduced in the neuronal tissues of KO mouse model of CUMS as compared to wild type (WT) mice. Furthermore, significantly increased SOD1 activity and reduced lipid peroxidation were observed in Crbn-KO systems. Integrated signaling pathways were also identified in CRBN-specific sub-networks constructed from protein-protein interaction analysis by STRING. The present study highlights the roles of CRBN in regulating the stress response (SR) and reshaping metabolic status in the brains of mice exposed to CUMS. A better understanding of the molecular mechanisms of depression and neurodegeneration can improve the development of novel treatments.
Collapse
Affiliation(s)
- Uroos Akber
- Laboratory of Molecular Neurobiology, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sunhwa Bong
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Zee-Yong Park
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Chul-Seung Park
- Laboratory of Molecular Neurobiology, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
174
|
Proteinopathies: Deciphering Physiology and Mechanisms to Develop Effective Therapies for Neurodegenerative Diseases. Mol Neurobiol 2022; 59:7513-7540. [PMID: 36205914 DOI: 10.1007/s12035-022-03042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/13/2022] [Indexed: 10/10/2022]
Abstract
Neurodegenerative diseases (NDs) are a cluster of diseases marked by progressive neuronal loss, axonal transport blockage, mitochondrial dysfunction, oxidative stress, neuroinflammation, and aggregation of misfolded proteins. NDs are more prevalent beyond the age of 50, and their symptoms often include motor and cognitive impairment. Even though various proteins are involved in different NDs, the mechanisms of protein misfolding and aggregation are very similar. Recently, several studies have discovered that, like prions, these misfolded proteins have the inherent capability of translocation from one neuron to another, thus having far-reaching implications for understanding the processes involved in the onset and progression of NDs, as well as the development of innovative therapy and diagnostic options. These misfolded proteins can also influence the transcription of other proteins and form aggregates, tangles, plaques, and inclusion bodies, which then accumulate in the CNS, leading to neuronal dysfunction and neurodegeneration. This review demonstrates protein misfolding and aggregation in NDs, and similarities and differences between different protein aggregates have been discussed. Furthermore, we have also reviewed the disposal of protein aggregates, the various molecular machinery involved in the process, their regulation, and how these molecular mechanisms are targeted to build innovative therapeutic and diagnostic procedures. In addition, the landscape of various therapeutic interventions for targeting protein aggregation for the effective prevention or treatment of NDs has also been discussed.
Collapse
|
175
|
Liquid-Liquid Phase Separation Promotes Protein Aggregation and Its Implications in Ferroptosis in Parkinson’s Disease Dementia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7165387. [PMID: 36246407 PMCID: PMC9560807 DOI: 10.1155/2022/7165387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
The pathological features of PDD are represented by dopaminergic neuronal death and intracellular α-synuclein (α-syn) aggregation. The interaction of iron accumulation with α-syn and tau was further explored as an essential pathological mechanism of PDD. However, the links and mechanisms between these factors remain unclear. Studies have shown that the occurrence and development of neurodegenerative diseases such as PDD are closely related to the separation of abnormal phases. Substances such as proteins can form droplets through liquid-liquid phase separation (LLPS) under normal physiological conditions and even undergo further liquid-solid phase transitions to form solid aggregates under disease or regulatory disorders, leading to pathological phenomena. By analyzing the existing literature, we propose that LLPS is the crucial mechanism causing abnormal accumulation of α-syn, tau, and other proteins in PDD, and its interaction with iron metabolism disorder is the key factor driving ferroptosis in PDD. Therefore, we believe that LLPS can serve as one of the means to explain the pathological mechanism of PDD. Determining the significance of LLPS in neurodegenerative diseases such as PDD will stimulate interest in research into treatments based on interference with abnormal LLPS.
Collapse
|
176
|
Pang CCC, Sørensen MH, Lee K, Luk KC, Trojanowski JQ, Lee VMY, Noble W, Chang RCC. Investigating key factors underlying neurodegeneration linked to alpha-synuclein spread. Neuropathol Appl Neurobiol 2022; 48:e12829. [PMID: 35727707 PMCID: PMC9546483 DOI: 10.1111/nan.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 11/27/2022]
Abstract
AIMS It has long been considered that accumulation of pathological alpha-synuclein (aSyn) leads to synaptic/neuronal loss which then results in behavioural and cognitive dysfunction. To investigate this claim, we investigated effects downstream of aSyn preformed fibrils (PFFs) and 6-hydroxydopamine (6-OHDA), because aSyn PFFs induce spreading/accumulation of aSyn, and 6-OHDA rapidly causes local neuronal loss. METHODS We injected mouse aSyn PFFs into the medial forebrain bundle (MFB) of Sprague-Dawley rats. We investigated spread of pathological aSyn, phosphorylation of aSyn and tau, oxidative stress, synaptic/neuronal loss and cognitive dysfunction 60, 90 and 120 days after injection. Similarly, we injected 6-OHDA into the MFB and examined the same parameters 1 and 3 weeks after injection. RESULTS Following aSyn PFF injection, phosphorylated aSyn was found distant from the injection site in the hippocampus and frontal cortex. However, despite neuron loss being evident close to the site of injection in the substantia nigra at 120 days post injection, there were no other neurodegeneration-associated features associated with aSyn including synaptic loss. In contrast, 6-OHDA caused severe neuronal loss in the substantia nigra at 3 weeks post injection that was accompanied by phosphorylation of aSyn and tau, oxidative stress, loss of synaptic proteins, cognitive and motor dysfunction. CONCLUSIONS Our results demonstrate that spread/replication and slow accumulation of pathological aSyn may not be sufficient to induce neurodegenerative changes. In contrast, oxidative stress responses in addition to aSyn accumulation were associated with other Parkinson's disease (PD)-associated abnormalities and cognitive dysfunction. Our results may be important when considering why only some PD patients develop dementia.
Collapse
Affiliation(s)
- Cindy C. C. Pang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of MedicineThe University of Hong KongHong Kong SARChina
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical NeuroscienceKing's College LondonLondonUK
| | - Maja H. Sørensen
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Krit Lee
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Kelvin C. Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Alzheimer's Disease Core Center, Institute on AgingUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Alzheimer's Disease Core Center, Institute on AgingUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Virginia M. Y. Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Alzheimer's Disease Core Center, Institute on AgingUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Wendy Noble
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical NeuroscienceKing's College LondonLondonUK
| | - Raymond C. C. Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of MedicineThe University of Hong KongHong Kong SARChina
- State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongPokfulamHong Kong SARChina
| |
Collapse
|
177
|
Tanaka R, Hattori N. Abnormal circadian blood pressure regulation and cognitive impairment in α-synucleinopathies. Hypertens Res 2022; 45:1908-1917. [PMID: 36123397 DOI: 10.1038/s41440-022-01032-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022]
Abstract
Circadian blood pressure (BP) rhythm is important for the maintenance of healthy daily life, and its disruption is associated with poor outcomes. Cardiovascular autonomic failure is often observed in older populations but has a greater impact on neurodegenerative disorders such as α-synucleinopathies. These BP abnormalities include orthostatic hypotension (OH), supine hypertension (SH), and a loss of nocturnal BP fall. OH not only causes falls or syncope but is also related to cognitive impairment in α-synucleinopathies. For example, OH doubles or triples the risk for the development of cognitive impairment in Parkinson's disease (PD). The diffuse central and peripheral neuropathology of α-synuclein may contribute to both OH and cognitive impairment. Moreover, repeated cerebral hypoperfusion in OH is thought to be related to cerebrovascular and neuronal damage, which may cause cognitive impairment. SH, which often coexists with OH, is also associated with cognitive impairment through cerebrovascular damage, such as white matter lesions and cerebral microbleeds. The reverse-dipping (riser) pattern on ambulatory BP monitoring is commonly observed in PD (∼56%), regardless of disease duration and severity. It is also related to cognitive impairment and more pronounced when coexisting with OH. These abnormal circadian BP profiles may be synergistically associated with cognitive impairment and poor outcomes in α-synucleinopathies. Although evidence for aggressive control of BP dysregulation improving cognitive impairment and outcomes is limited, regular BP monitoring appears to be important for total management of α-synucleinopathies.
Collapse
Affiliation(s)
- Ryota Tanaka
- Stroke Center and Division of Neurology, Department of Medicine, Jichi Medical University, Yakushiji 3311-1, Shimotsuke-shi, Tochigi, 329-0498, Japan.
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Hongo 3311-1, Bunkyo-ku, Tokyo, 113-0011, Japan
| |
Collapse
|
178
|
The Role of Glymphatic System in Alzheimer’s and Parkinson’s Disease Pathogenesis. Biomedicines 2022; 10:biomedicines10092261. [PMID: 36140362 PMCID: PMC9496080 DOI: 10.3390/biomedicines10092261] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of neurodegenerative dementia, whilst Parkinson’s disease (PD) is a neurodegenerative movement disorder. These two neurodegenerative disorders share the accumulation of toxic proteins as a pathological hallmark. The lack of definitive disease-modifying treatments for these neurogenerative diseases has led to the hypothesis of new pathogenic mechanisms to target and design new potential therapeutic approaches. The recent observation that the glymphatic system is supposed to be responsible for the movement of cerebrospinal fluid into the brain and clearance of metabolic waste has led to study its involvement in the pathogenesis of these classic proteinopathies. Aquaporin-4 (AQP4), a water channel located in the endfeet of astrocyte membrane, is considered a primary driver of the glymphatic clearance system, and defective AQP4-mediated glymphatic drainage has been linked to proteinopathies. The objective of the present review is to present the recent body of knowledge that links the glymphatic system to the pathogenesis of AD and PD disease and other lifestyle factors such as sleep deprivation and exercise that may influence glymphatic system function. We will also focus on the potential neuroimaging approaches that could identify a neuroimaging marker to detect glymphatic system changes.
Collapse
|
179
|
Mihaescu AS, Valli M, Uribe C, Diez-Cirarda M, Masellis M, Graff-Guerrero A, Strafella AP. Beta amyloid deposition and cognitive decline in Parkinson's disease: a study of the PPMI cohort. Mol Brain 2022; 15:79. [PMID: 36100909 PMCID: PMC9472347 DOI: 10.1186/s13041-022-00964-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
The accumulation of beta amyloid in the brain has a complex and poorly understood impact on the progression of Parkinson's disease pathology and much controversy remains regarding its role, specifically in cognitive decline symptoms. Some studies have found increased beta amyloid burden is associated with worsening cognitive impairment in Parkinson's disease, especially in cases where dementia occurs, while other studies failed to replicate this finding. To better understand this relationship, we examined a cohort of 25 idiopathic Parkinson's disease patients and 30 healthy controls from the Parkinson's Progression Marker Initiative database. These participants underwent [18F]Florbetaben positron emission tomography scans to quantify beta amyloid deposition in 20 cortical regions. We then analyzed this beta amyloid data alongside the longitudinal Montreal Cognitive Assessment scores across 3 years to see how participant's baseline beta amyloid levels affected their cognitive scores prospectively. The first analysis we performed with these data was a hierarchical cluster analysis to help identify brain regions that shared similarity. We found that beta amyloid clusters differently in Parkinson's disease patients compared to healthy controls. In the Parkinson's disease group, increased beta amyloid burden in cluster 2 was associated with worse cognitive ability, compared to deposition in clusters 1 or 3. We also performed a stepwise linear regression where we found an adjusted R2 of 0.495 (49.5%) in a model explaining the Parkinson's disease group's Montreal Cognitive Assessment score 1-year post-scan, encompassing the left gyrus rectus, the left anterior cingulate cortex, and the right parietal cortex. Taken together, these results suggest regional beta amyloid deposition alone has a moderate effect on predicting future cognitive decline in Parkinson's disease patients. The patchwork effect of beta amyloid deposition on cognitive ability may be part of what separates cognitive impairment from cognitive sparing in Parkinson's disease. Thus, we suggest it would be more useful to measure beta amyloid burden in specific brain regions rather than using a whole-brain global beta amyloid composite score and use this information as a tool for determining which Parkinson's disease patients are most at risk for future cognitive decline.
Collapse
Affiliation(s)
- Alexander S Mihaescu
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Krembil Brain Institute, University Health Network, University of Toronto, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Mikaeel Valli
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Krembil Brain Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Carme Uribe
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Krembil Brain Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Maria Diez-Cirarda
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Krembil Brain Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Mario Masellis
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Antonio P Strafella
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Krembil Brain Institute, University Health Network, University of Toronto, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Morton and Gloria Shulman Movement Disorder Unit & Edmond J. Safra Program in Parkinson Disease, Neurology Division, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
180
|
Agrawal N, Parisini E. Early Stages of Misfolding of PAP248-286 at two different pH values: An Insight from Molecular Dynamics Simulations. Comput Struct Biotechnol J 2022; 20:4892-4901. [PMID: 36147683 PMCID: PMC9474323 DOI: 10.1016/j.csbj.2022.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/01/2023] Open
Abstract
PAP248-286 peptides, which are highly abundant in human semen, aggregate and form amyloid fibrils that enhance HIV infection. Previous experimental studies have shown that the infection-promoting activity of PAP248-286 begins to increase well before amyloid formation takes place and that pH plays a key role in the enhancement of PAP248-286-related infection. Hence, understanding the early stages of misfolding of the PAP2482-86 peptide is crucial. To this end, we have performed 60 independent MD simulations for a total of 24 µs at two different pH values (4.2 and 7.2). Our data shows that early stages of misfolding of the PAP248-286 peptide is a multistage process and that the first step of the process is a transition from an “I-shaped” structure to a “U-shaped” structure. We further observed that the structure of PAP248-286 at the two different pH values shows significantly different features. At pH 4.2, the peptide has less intra-molecular H-bonds and a reduced α-helical content than at pH 7.2. Moreover, differences in intra-peptide residues contacts are also observed at the two pH values. Finally, free energy landscape analysis shows that there are more local minima in the energy surface of the peptide at pH 7.2 than at pH 4.2. Overall, the present study elucidates the early stages of misfolding of the PAP248-286 peptide at the atomic level, thus possibly opening new avenues in structure-based drug discovery against HIV infection.
Collapse
Affiliation(s)
- Nikhil Agrawal
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Corresponding authors at: Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia.
| | - Emilio Parisini
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia
- Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy
- Corresponding authors at: Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia.
| |
Collapse
|
181
|
Shellikeri S, Cho S, Cousins KAQ, Liberman M, Howard E, Balganorth Y, Weintraub D, Spindler M, Deik A, Lee EB, Trojanowski JQ, Irwin D, Wolk D, Grossman M, Nevler N. Natural speech markers of Alzheimer's disease co-pathology in Lewy body dementias. Parkinsonism Relat Disord 2022; 102:94-100. [PMID: 35985146 PMCID: PMC9680016 DOI: 10.1016/j.parkreldis.2022.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION An estimated 50% of patients with Lewy body dementias (LBD), including Parkinson's disease dementia (PDD) and Dementia with Lewy bodies (DLB), have co-occurring Alzheimer's disease (AD) that is associated with worse prognosis. This study tests an automated analysis of natural speech as an inexpensive, non-invasive screening tool for AD co-pathology in biologically-confirmed cohorts of LBD patients with AD co-pathology (SYN + AD) and without (SYN-AD). METHODS We analyzed lexical-semantic and acoustic features of picture descriptions using automated methods in 22 SYN + AD and 38 SYN-AD patients stratified using AD CSF biomarkers or autopsy diagnosis. Speech markers of AD co-pathology were identified using best subset regression, and their diagnostic discrimination was tested using receiver operating characteristic. ANCOVAs compared measures between groups covarying for demographic differences and cognitive disease severity. We tested relations with CSF tau levels, and compared speech measures between PDD and DLB clinical disorders in the same cohort. RESULTS Age of acquisition of nouns (p = 0.034, |d| = 0.77) and lexical density (p = 0.0064, |d| = 0.72) were reduced in SYN + AD, and together showed excellent discrimination for SYN + AD vs. SYN-AD (95% sensitivity, 66% specificity; AUC = 0.82). Lower lexical density was related to higher CSF t-Tau levels (R = -0.41, p = 0.0021). Clinically-diagnosed PDD vs. DLB did not differ on any speech features. CONCLUSION AD co-pathology may result in a deviant natural speech profile in LBD characterized by specific lexical-semantic impairments, not detectable by clinical disorder diagnosis. Our study demonstrates the potential of automated digital speech analytics as a screening tool for underlying AD co-pathology in LBD.
Collapse
Affiliation(s)
- Sanjana Shellikeri
- Penn Frontotemporal Degeneration Center and Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Sunghye Cho
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA, USA
| | - Katheryn A Q Cousins
- Penn Frontotemporal Degeneration Center and Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Liberman
- Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA, USA; Department of Linguistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica Howard
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Yvonne Balganorth
- Penn Frontotemporal Degeneration Center and Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Weintraub
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Meredith Spindler
- Parkinson's Disease and Movement Disorders Center, and Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andres Deik
- Parkinson's Disease and Movement Disorders Center, and Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Irwin
- Penn Frontotemporal Degeneration Center and Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - David Wolk
- Penn Frontotemporal Degeneration Center and Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center and Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi Nevler
- Penn Frontotemporal Degeneration Center and Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
182
|
Tönges L, Buhmann C, Klebe S, Klucken J, Kwon EH, Müller T, Pedrosa DJ, Schröter N, Riederer P, Lingor P. Blood-based biomarker in Parkinson's disease: potential for future applications in clinical research and practice. J Neural Transm (Vienna) 2022; 129:1201-1217. [PMID: 35428925 PMCID: PMC9463345 DOI: 10.1007/s00702-022-02498-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022]
Abstract
The clinical presentation of Parkinson's disease (PD) is both complex and heterogeneous, and its precise classification often requires an intensive work-up. The differential diagnosis, assessment of disease progression, evaluation of therapeutic responses, or identification of PD subtypes frequently remains uncertain from a clinical point of view. Various tissue- and fluid-based biomarkers are currently being investigated to improve the description of PD. From a clinician's perspective, signatures from blood that are relatively easy to obtain would have great potential for use in clinical practice if they fulfill the necessary requirements as PD biomarker. In this review article, we summarize the knowledge on blood-based PD biomarkers and present both a researcher's and a clinician's perspective on recent developments and potential future applications.
Collapse
Affiliation(s)
- Lars Tönges
- Department of Neurology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany.
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, 44801, Bochum, Nordrhein-Westfalen, Germany.
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, 45147, Essen, Germany
| | - Jochen Klucken
- Department of Digital Medicine, University Luxembourg, LCSB, L-4367, Belval, Luxembourg
- Digital Medicine Research Group, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- Centre Hospitalier de Luxembourg, Digital Medicine Research Clinic, L-1210, Luxembourg, Luxembourg
| | - Eun Hae Kwon
- Department of Neurology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, 13088, Berlin, Germany
| | - David J Pedrosa
- Department of Neurology, Universitätsklinikum Gießen and Marburg, Marburg Site, 35043, Marburg, Germany
- Center of Mind, Brain and Behaviour (CMBB), Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Nils Schröter
- Department of Neurology and Clinical Neuroscience, University of Freiburg, 79106, Freiburg, Germany
| | - Peter Riederer
- Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Clinic and Policlinic for Psychiatry, 97080, Wuerzburg, Germany
- University of Southern Denmark Odense, 5000, Odense, Denmark
| | - Paul Lingor
- School of Medicine, Klinikum Rechts Der Isar, Department of Neurology, Technical University of Munich, 81675, München, Germany
| |
Collapse
|
183
|
Murakami K, Ono K. Interactions of amyloid coaggregates with biomolecules and its relevance to neurodegeneration. FASEB J 2022; 36:e22493. [PMID: 35971743 DOI: 10.1096/fj.202200235r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 01/16/2023]
Abstract
The aggregation of amyloidogenic proteins is a pathological hallmark of various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In these diseases, oligomeric intermediates or toxic aggregates of amyloids cause neuronal damage and degeneration. Despite the substantial effort made over recent decades to implement therapeutic interventions, these neurodegenerative diseases are not yet understood at the molecular level. In many cases, multiple disease-causing amyloids overlap in a sole pathological feature or a sole disease-causing amyloid represents multiple pathological features. Various amyloid pathologies can coexist in the same brain with or without clinical presentation and may even occur in individuals without disease. From sparse data, speculation has arisen regarding the coaggregation of amyloids with disparate amyloid species and other biomolecules, which are the same characteristics that make diagnostics and drug development challenging. However, advances in research related to biomolecular condensates and structural analysis have been used to overcome some of these challenges. Considering the development of these resources and techniques, herein we review the cross-seeding of amyloidosis, for example, involving the amyloids amyloid β, tau, α-synuclein, and human islet amyloid polypeptide, and their cross-inhibition by transthyretin and BRICHOS. The interplay of nucleic acid-binding proteins, such as prions, TAR DNA-binding protein 43, fused in sarcoma/translated in liposarcoma, and fragile X mental retardation polyglycine, with nucleic acids in the pathology of neurodegeneration are also described, and we thereby highlight the potential clinical applications in central nervous system therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenjiro Ono
- Department of Neurology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
184
|
Abstract
Genetics is one of the various approaches adopted to understand and control mammalian sleep. Reverse genetics, which is usually applied to analyze sleep in gene-deficient mice, has been the mainstream field of genetic studies on sleep for the past three decades and has revealed that various molecules, including orexin, are involved in sleep regulation. Recently, forward genetic studies in humans and mice have identified gene mutations responsible for heritable sleep abnormalities, such as SIK3, NALCN, DEC2, the neuropeptide S receptor, and β1 adrenergic receptor. Furthermore, the protein kinase A-SIK3 pathway was shown to represent the intracellular neural signaling for sleep need. Large-scale genome-wide analyses of human sleep have been conducted, and many gene loci associated with individual differences in sleep have been found. The development of genome-editing technology and gene transfer by an adeno-associated virus has updated and expanded the genetic studies on mammals. These efforts are expected to elucidate the mechanisms of sleep–wake regulation and develop new therapeutic interventions for sleep disorders.
Collapse
Affiliation(s)
- Hiromasa Funato
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 951-8585, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75390, Texas, USA
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
185
|
Jackson NA, Guerrero-Muñoz MJ, Castillo-Carranza DL. The prion-like transmission of tau oligomers via exosomes. Front Aging Neurosci 2022; 14:974414. [PMID: 36062141 PMCID: PMC9434014 DOI: 10.3389/fnagi.2022.974414] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The conversion and transmission of misfolded proteins established the basis for the prion concept. Neurodegenerative diseases are considered “prion-like” disorders that lack infectivity. Among them, tauopathies are characterized by the conversion of native tau protein into an abnormally folded aggregate. During the progression of the disease, misfolded tau polymerizes into oligomers and intracellular neurofibrillary tangles (NFTs). While the toxicity of NFTs is an ongoing debate, the contribution of tau oligomers to early onset neurodegenerative pathogenesis is accepted. Tau oligomers are readily transferred from neuron to neuron propagating through the brain inducing neurodegeneration. Recently, transmission of tau oligomers via exosomes is now proposed. There is still too much to uncover about tau misfolding and propagation. Here we summarize novel findings of tau oligomers transmission and propagation via exosomes.
Collapse
Affiliation(s)
- Noel A. Jackson
- School of Public Health, Harvard University, Boston, MA, United States
| | | | - Diana L. Castillo-Carranza
- School of Medicine, University of Monterrey, San Pedro Garza García, Mexico
- *Correspondence: Diana L. Castillo-Carranza,
| |
Collapse
|
186
|
Ganne A, Balasubramaniam M, Ayyadevara S, Shmookler Reis RJ. Machine-learning analysis of intrinsically disordered proteins identifies key factors that contribute to neurodegeneration-related aggregation. Front Aging Neurosci 2022; 14:938117. [PMID: 35992603 PMCID: PMC9382113 DOI: 10.3389/fnagi.2022.938117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Protein structure is determined by the amino acid sequence and a variety of post-translational modifications, and provides the basis for physiological properties. Not all proteins in the proteome attain a stable conformation; roughly one third of human proteins are unstructured or contain intrinsically disordered regions exceeding 40% of their length. Proteins comprising or containing extensive unstructured regions are termed intrinsically disordered proteins (IDPs). IDPs are known to be overrepresented in protein aggregates of diverse neurodegenerative diseases. We evaluated the importance of disordered proteins in the nematode Caenorhabditis elegans, by RNAi-mediated knockdown of IDPs in disease-model strains that mimic aggregation associated with neurodegenerative pathologies. Not all disordered proteins are sequestered into aggregates, and most of the tested aggregate-protein IDPs contribute to important physiological functions such as stress resistance or reproduction. Despite decades of research, we still do not understand what properties of a disordered protein determine its entry into aggregates. We have employed machine-learning models to identify factors that predict whether a disordered protein is found in sarkosyl-insoluble aggregates isolated from neurodegenerative-disease brains (both AD and PD). Machine-learning predictions, coupled with principal component analysis (PCA), enabled us to identify the physiochemical properties that determine whether a disordered protein will be enriched in neuropathic aggregates.
Collapse
Affiliation(s)
- Akshatha Ganne
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, United States
| | | | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, United States
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Central Arkansas Veterans Healthcare System, Little Rock, AR, United States
- *Correspondence: Srinivas Ayyadevara,
| | - Robert J. Shmookler Reis
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, United States
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Central Arkansas Veterans Healthcare System, Little Rock, AR, United States
- Robert J. Shmookler Reis,
| |
Collapse
|
187
|
Lin CL, Zheng TL, Tsou SH, Chang HM, Tseng LH, Yu CH, Hung CS, Ho YJ. Amitriptyline Improves Cognitive and Neuronal Function in a Rat Model that Mimics Dementia with Lewy Bodies. Behav Brain Res 2022; 435:114035. [PMID: 35926562 DOI: 10.1016/j.bbr.2022.114035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022]
Abstract
Dementia with Lewy bodies (DLB), a highly prevalent neurodegenerative disorder, causes motor and cognitive deficits. The main pathophysiologies of DLB are glutamate excitotoxicity and accumulation of Lewy bodies comprising α-synuclein (α-syn) and β-amyloid (Aβ). Amitriptyline (AMI) promotes expression of glutamate transporter-1 and glutamate reuptake. In this study, we measured the effects of AMI on behavioral and neuronal function in a DLB rat model. We used rivastigmine (RIVA) as a positive control. To establish the DLB rat model, male Wistar rats were stereotaxically injected with recombinant adenoassociated viral vector with the SNCA gene (10μg/10μL) and Aβ (5μg/2.5μL) into the left ventricle and prefrontal cortex, respectively. AMI (10mg/kg/day, i.p.), RIVA (2mg/kg/day, i.p.), or saline was injected intraperitoneally after surgery. From the 29th day, behavioral tests were performed to evaluate the motor and cognitive functions of the rats. Immunohistochemical staining was used to assess neuronal changes. We measured the α-syn level, number of newborn cells, and neuronal density in the hippocampus and in the nigrostriatal dopaminergic system. The DLB group exhibited deficit in object recognition. Both the AMI and RIVA treatments reversed these deficits. Histologically, the DLB rats exhibited cell loss in the substantia nigra pars compacta and in the hippocampal CA1 area. AMI reduced this cell loss, but RIVA did not. In addition, the DLB rats exhibited a lower number of newborn cells and higher α-syn levels in the dentate gyrus (DG). AMI did not affect α-syn accumulation but recovered neurogenesis in the DG of the rats, whereas RIVA reversed the α-syn accumulation but did not affect neurogenesis in the rats. We suggest that AMI may have potential for use in the treatment of DLB.
Collapse
Affiliation(s)
- Chih-Li Lin
- Institute of Medicine, Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Ting-Lin Zheng
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Sing-Hua Tsou
- Institute of Medicine, Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Hung-Ming Chang
- Department of Anantomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Li-Ho Tseng
- Graduate School of Environmental Management, Tajen University, Pingtung 907, Taiwan, ROC
| | - Ching-Han Yu
- Department of Pysiology, School of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC.
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10581, Taiwan, ROC.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC.
| |
Collapse
|
188
|
Li D, Ren T, Li H, Liao G, Zhang X. Porphyromonas gingivalis: A key role in Parkinson's disease with cognitive impairment? Front Neurol 2022; 13:945523. [PMID: 35959396 PMCID: PMC9363011 DOI: 10.3389/fneur.2022.945523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Cognitive impairment (CI) is a common complication of Parkinson's disease (PD). The major features of Parkinson's disease with cognitive impairment (PD-CI) include convergence of α-Synuclein (α-Syn) and Alzheimer's disease (AD)-like pathologies, neuroinflammation, and dysbiosis of gut microbiota. Porphyromonas gingivalis (P. gingivalis) is an important pathogen in periodontitis. Recent research has suggested a role of P. gingivalis and its virulence factor in the pathogenesis of PD and AD, in particular concerning neuroinflammation and deposition of α-Synuclein (α-Syn) and amyloid-β (Aβ). Furthermore, in animal models, oral P. gingivalis could cause neurodegeneration through regulating the gut-brain axis, suggesting an oral-gut-brain axis might exist. In this article, we discussed the pathological characteristics of PD-CI and the role of P. gingivalis in them.
Collapse
Affiliation(s)
- Dongcheng Li
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Tengzhu Ren
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hao Li
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Geng Liao
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Xiong Zhang
- Department of Neurology, Affiliated Maoming People's Hospital, Southern Medical University, Maoming, China
- *Correspondence: Xiong Zhang
| |
Collapse
|
189
|
Stefanoska K, Gajwani M, Tan ARP, Ahel HI, Asih PR, Volkerling A, Poljak A, Ittner A. Alzheimer's disease: Ablating single master site abolishes tau hyperphosphorylation. SCIENCE ADVANCES 2022; 8:eabl8809. [PMID: 35857446 PMCID: PMC9258953 DOI: 10.1126/sciadv.abl8809] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/23/2022] [Indexed: 05/22/2023]
Abstract
Hyperphosphorylation of the neuronal tau protein is a hallmark of neurodegenerative tauopathies such as Alzheimer's disease. A central unanswered question is why tau becomes progressively hyperphosphorylated. Here, we show that tau phosphorylation is governed by interdependence- a mechanistic link between initial site-specific and subsequent multi-site phosphorylation. Systematic assessment of site interdependence identified distinct residues (threonine-50, threonine-69, and threonine-181) as master sites that determine propagation of phosphorylation at multiple epitopes. CRISPR point mutation and expression of human tau in Alzheimer's mice showed that site interdependence governs physiologic and amyloid-associated multi-site phosphorylation and cognitive deficits, respectively. Combined targeting of master sites and p38α, the most central tau kinase linked to interdependence, synergistically ablated hyperphosphorylation. In summary, our work delineates how complex tau phosphorylation arises to inform therapeutic and biomarker design for tauopathies.
Collapse
Affiliation(s)
- Kristie Stefanoska
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Corresponding author. (A.I.); (K.S.)
| | - Mehul Gajwani
- Dementia Research Centre, Faculty of Health, Human and Medical Sciences, Macquarie University, Sydney, NSW, Australia
- Monash Biomedical Imaging, Monash University, Clayton,Victoria, Australia
| | - Amanda R. P. Tan
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Holly I. Ahel
- Department of Biomedical Sciences, Faculty of Health, Human and Medical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Prita R. Asih
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Alexander Volkerling
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Arne Ittner
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Corresponding author. (A.I.); (K.S.)
| |
Collapse
|
190
|
Park J, Lee K, Kim K, Yi SJ. The role of histone modifications: from neurodevelopment to neurodiseases. Signal Transduct Target Ther 2022; 7:217. [PMID: 35794091 PMCID: PMC9259618 DOI: 10.1038/s41392-022-01078-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulatory mechanisms, including DNA methylation, histone modification, chromatin remodeling, and microRNA expression, play critical roles in cell differentiation and organ development through spatial and temporal gene regulation. Neurogenesis is a sophisticated and complex process by which neural stem cells differentiate into specialized brain cell types at specific times and regions of the brain. A growing body of evidence suggests that epigenetic mechanisms, such as histone modifications, allow the fine-tuning and coordination of spatiotemporal gene expressions during neurogenesis. Aberrant histone modifications contribute to the development of neurodegenerative and neuropsychiatric diseases. Herein, recent progress in understanding histone modifications in regulating embryonic and adult neurogenesis is comprehensively reviewed. The histone modifications implicated in neurodegenerative and neuropsychiatric diseases are also covered, and future directions in this area are provided.
Collapse
Affiliation(s)
- Jisu Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
191
|
Jellinger KA. Are there morphological differences between Parkinson's disease-dementia and dementia with Lewy bodies? Parkinsonism Relat Disord 2022; 100:24-32. [PMID: 35691178 DOI: 10.1016/j.parkreldis.2022.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 05/30/2022] [Indexed: 12/17/2022]
Abstract
Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are two major neurocognitive disorders in the spectrum of Lewy body diseases that overlap in many clinical and neuropathological features, although they show several differences. Clinically distinguished mainly based on the duration of parkinsonism prior to development of dementia, their morphology is characterized by a variable combination of Lewy body (LB) and Alzheimer's disease (AD) pathologies, the latter usually being more frequent and severe in DLB. OBJECTIVE The aims of the study were to investigate essential neuropathological differences between PDD and DLB in a larger cohort of autopsy cases. METHODS 110 PDD autopsy cases were compared with 78 DLB cases. The major demographic, clinical (duration of illness, final MMSE) and neuropathological data were assessed retrospectively. Neuropathological studies used standardized methods and immunohistochemistry for phospho-tau, β-amyloid (Aß) and α-synuclein, with semiquantitative assessment of the major histological lesions. RESULTS PDD patients were significantly older at death than DLB ones (mean 83.9 vs. 79.8 years), with a significantly longer disease duration (mean 9.2 vs. 6.7 years). Braak LB scores and particularly neuritic Braak stages were significantly higher in the DLB group (mean 5.1and 5.1 vs. 4.2 and 4.4, respectively), as were Thal Aβ phases (mean 4.1 vs. 3.0). Diffuse striatal Aβ plaques were considerable in 55% and moderate in 45% of DLB cases, but were extremely rare in PDD. The most significant differences concerned the frequency and degree of cerebral amyloid angiopathy (CAA), being significantly higher in DLB (98.7 vs. 50%, and mean degree of 2.9 vs. 0.72, respectively). Worse prognosis in DLB than in PDD was linked to both increased Braak neuritic stages and more severe CAA. INTERPRETATION These and other recent studies imply the association of CAA, more severe concomitant AD pathology, and striatal Aβ load with cognitive decline and more rapid disease process that distinguishes DLB from PDD, while the influence of other cerebrovascular diseases or co-pathologies in both disorders was not specifically examined. The importance of both CAA and tau pathology in DLB and much less in PDD supports the concept of a pathogenetic continuum from Parkinson's disease (PD) - > PDD - > DLB - > DLB + AD and subtypes of AD with LB pathology within the spectrum of age-related proteinopathies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Vienna, Austria, Alberichgasse 5/13, A-1150, Vienna, Austria.
| |
Collapse
|
192
|
Buratti FA, Boeffinger N, Garro HA, Flores JS, Hita FJ, Gonçalves PDC, Copello FDR, Lizarraga L, Rossetti G, Carloni P, Zweckstetter M, Outeiro TF, Eimer S, Griesinger C, Fernández CO. Aromaticity at position 39 in α-synuclein: A modulator of amyloid fibril assembly and membrane-bound conformations. Protein Sci 2022; 31:e4360. [PMID: 35762717 PMCID: PMC9235065 DOI: 10.1002/pro.4360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022]
Abstract
Recent studies revealed that molecular events related with the physiology and pathology of αS might be regulated by specific sequence motifs in the primary sequence of αS. The importance of individual residues in these motifs remains an important open avenue of investigation. In this work, we have addressed the structural details related to the amyloid fibril assembly and lipid-binding features of αS through the design of site-directed mutants at position 39 of the protein and their study by in vitro and in vivo assays. We demonstrated that aromaticity at position 39 of αS primary sequence influences strongly the aggregation properties and the membrane-bound conformations of the protein, molecular features that might have important repercussions for the function and dysfunction of αS. Considering that aggregation and membrane damage is an important driver of cellular toxicity in amyloid diseases, future work is needed to link our findings with studies based on toxicity and neuronal cell death. BRIEF STATEMENT OUTLINING SIGNIFICANCE: Modulation by distinct sequential motifs and specific residues of αS on its physiological and pathological states is an active area of research. Here, we demonstrated that aromaticity at position 39 of αS modulates the membrane-bound conformations of the protein, whereas removal of aromatic functionality at position 39 reduces strongly the amyloid assembly in vitro and in vivo. Our study provides new evidence for the modulation of molecular events related with the physiology and pathology of αS.
Collapse
Affiliation(s)
- Fiamma A. Buratti
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR‐MPINAT)Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de RosarioRosarioArgentina
| | - Nicola Boeffinger
- Department of NMR‐based Structural BiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Department of Structural Cell Biology, Institute for Cell Biology and NeuroscienceGoethe University FrankfurtFrankfurtGermany
| | - Hugo A. Garro
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR‐MPINAT)Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de RosarioRosarioArgentina
- Area de Química OrgánicaUNSL‐INTEQUI/CONICETSan LuisArgentina
| | - Jesica S. Flores
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR‐MPINAT)Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de RosarioRosarioArgentina
| | - Francisco J. Hita
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR‐MPINAT)Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de RosarioRosarioArgentina
| | - Phelippe do Carmo Gonçalves
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR‐MPINAT)Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de RosarioRosarioArgentina
| | | | - Leonardo Lizarraga
- Centro de Investigaciones en Bionanociencias (CIBION‐CONICET)Buenos AiresArgentina
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM‐9) and Institute for Advanced Simulations (IAS‐5)JülichGermany
- Department of NeurologyUniversity Hospital Aachen, RWTH Aachen UniversityAachenGermany
- Jülich Supercomputing Center (JSC)JülichGermany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM‐9) and Institute for Advanced Simulations (IAS‐5)JülichGermany
- Faculty of Mathematics, Computer Science and Natural SciencesRWTH AachenAachenGermany
- Institute for Neuroscience and Medicine (INM‐11) Forschungszentrum JülichJülichGermany
| | - Markus Zweckstetter
- Department of NMR‐based Structural BiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
- Translational and Clinical Research InstituteNewcastle UniversityNewcastleUK
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)GöttingenGermany
| | - Stefan Eimer
- Department of Structural Cell Biology, Institute for Cell Biology and NeuroscienceGoethe University FrankfurtFrankfurtGermany
| | - Christian Griesinger
- Department of NMR‐based Structural BiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Claudio O. Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR‐MPINAT)Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de RosarioRosarioArgentina
- Department of NMR‐based Structural BiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| |
Collapse
|
193
|
Morphological basis of Parkinson disease-associated cognitive impairment: an update. J Neural Transm (Vienna) 2022; 129:977-999. [PMID: 35726096 DOI: 10.1007/s00702-022-02522-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cognitive impairment is one of the most salient non-motor symptoms of Parkinson disease (PD) that poses a significant burden on the patients and carers as well as being a risk factor for early mortality. People with PD show a wide spectrum of cognitive dysfunctions ranging from subjective cognitive decline and mild cognitive impairment (MCI) to frank dementia. The mean frequency of PD with MCI (PD-MCI) is 25.8% and the pooled dementia frequency is 26.3% increasing up to 83% 20 years after diagnosis. A better understanding of the underlying pathological processes will aid in directing disease-specific treatment. Modern neuroimaging studies revealed considerable changes in gray and white matter in PD patients with cognitive impairment, cortical atrophy, hypometabolism, dopamine/cholinergic or other neurotransmitter dysfunction and increased amyloid burden, but multiple mechanism are likely involved. Combined analysis of imaging and fluid markers is the most promising method for identifying PD-MCI and Parkinson disease dementia (PDD). Morphological substrates are a combination of Lewy- and Alzheimer-associated and other concomitant pathologies with aggregation of α-synuclein, amyloid, tau and other pathological proteins in cortical and subcortical regions causing destruction of essential neuronal networks. Significant pathological heterogeneity within PD-MCI reflects deficits in various cognitive domains. This review highlights the essential neuroimaging data and neuropathological changes in PD with cognitive impairment, the amount and topographical distribution of pathological protein aggregates and their pathophysiological relevance. Large-scale clinicopathological correlative studies are warranted to further elucidate the exact neuropathological correlates of cognitive impairment in PD and related synucleinopathies as a basis for early diagnosis and future disease-modifying therapies.
Collapse
|
194
|
Qin Q, Wan H, Wang D, Li J, Qu Y, Zhao J, Li J, Xue Z. The Association of CSF sTREM2 With Cognitive Decline and Its Dynamic Change in Parkinson's Disease: Analysis of the PPMI Cohort. Front Aging Neurosci 2022; 14:892493. [PMID: 35783125 PMCID: PMC9245456 DOI: 10.3389/fnagi.2022.892493] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/24/2022] [Indexed: 01/20/2023] Open
Abstract
Background Soluble fragment of triggering receptor expressed on myeloid cells 2 (sTREM2) in cerebrospinal fluid (CSF) is a biomarker of microglial activation and increased in several neurodegenerative diseases. However, the role of sTREM2 in Parkinson's diseases (PDs) remains unclear. This study aims to investigate whether CSF sTREM2 is changed during the pathology of PD and its association with cognitive decline. Methods We recruited 219 de novo patients with PD and 100 healthy controls from Parkinson's Progression Markers Initiative (PPMI). Cross-sectional and longitudinal associations between cognition and CSF sTREM2 were evaluated using multivariable-adjusted models. To assess the changes in CSF sTREM2 during the pathology of PD, patients were classified through the A/T classification framework with addition of α-synuclein (α-syn), which we implemented based on the CSF amyloid β-peptide 1-42 (A) and phosphorylated tau (T) and α-syn (S). Results The CSF sTREM2 did not differ between healthy controls and patients with PD or between PD clinical subgroups (p > 0.05). However, higher baseline CSF sTREM2 predicted greater global cognitive decline in patients with PD (β = -0.585, p = 0.039). Moreover, after a mean follow-up of 5.51 ± 1.31 years, baseline CSF sTREM2 that elevated in the middle tertile (HR = 2.426, 95% CI: 1.023-5.754, p = 0.044) and highest tertile (HR = 2.833, 95% CI: 1.226-6.547, p = 0.015) were associated with a future high risk of cognitive decline. Additionally, CSF sTREM2 decreased in abnormal Aβ pathology (A+) and α-syn pathology (S+) but normal tau pathology, while increased in abnormal phosphorylated tau (T+) (p < 0.05). Conclusion CSF sTREM2 may be a promising predictor for the cognitive decline in PD rather than a diagnostic biomarker. The dynamic change in CSF sTREM2 in PD may help to the monitor of neuronal injury and microglial activity.
Collapse
Affiliation(s)
- Qixiong Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hengming Wan
- Department of General Family Medicine, Liuzhou Worker's Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwei Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangting Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
195
|
Prasad S, Katta MR, Abhishek S, Sridhar R, Valisekka SS, Hameed M, Kaur J, Walia N. Recent advances in Lewy body dementia: A comprehensive review. Dis Mon 2022; 69:101441. [PMID: 35690493 DOI: 10.1016/j.disamonth.2022.101441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lewy Body Dementia is the second most frequent neurodegenerative illness proven to cause dementia, after Alzheimer's disease (AD). It is believed to be vastly underdiagnosed, as there is a significant disparity between the number of cases diagnosed clinically and those diagnosed via neuropathology at the time of postmortem autopsy. Strikingly, many of the pharmacologic treatments used to treat behavioral and cognitive symptoms in other forms of dementia exacerbate the symptoms of DLB. Therefore, it is critical to accurately diagnose DLB as these patients require a specific treatment approach. This article focuses on its pathophysiology, risk factors, differentials, and its diverse treatment modalities. In this study, an English language literature search was conducted on Medline, Cochrane, Embase, and Google Scholar till April 2022. The following search strings and Medical Subject Headings (MeSH) terms were used: "Lewy Body Dementia," "Dementia with Lewy bodies," and "Parkinson's Disease Dementia." We explored the literature on Lewy Body Dementia for its epidemiology, pathophysiology, the role of various genes and how they bring about the disease, biomarkers, its differential diagnoses and treatment options.
Collapse
Affiliation(s)
- Sakshi Prasad
- Faculty of Medicine, National Pirogov Memorial Medical University, 21018, Vinnytsya, Ukraine.
| | | | | | | | | | - Maha Hameed
- Alfaisal University College of Medicine, Riyadh, Saudi Arabia
| | | | - Namrata Walia
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Sciences Center, Houston, Texas, United States of America
| |
Collapse
|
196
|
Blömeke L, Pils M, Kraemer-Schulien V, Dybala A, Schaffrath A, Kulawik A, Rehn F, Cousin A, Nischwitz V, Willbold J, Zack R, Tropea TF, Bujnicki T, Tamgüney G, Weintraub D, Irwin D, Grossman M, Wolk DA, Trojanowski JQ, Bannach O, Chen-Plotkin A, Willbold D. Quantitative detection of α-Synuclein and Tau oligomers and other aggregates by digital single particle counting. NPJ Parkinsons Dis 2022; 8:68. [PMID: 35655068 PMCID: PMC9163356 DOI: 10.1038/s41531-022-00330-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pathological hallmark of neurodegenerative diseases is the formation of toxic oligomers by proteins such as alpha-synuclein (aSyn) or microtubule-associated protein tau (Tau). Consequently, such oligomers are promising biomarker candidates for diagnostics as well as drug development. However, measuring oligomers and other aggregates in human biofluids is still challenging as extreme sensitivity and specificity are required. We previously developed surface-based fluorescence intensity distribution analysis (sFIDA) featuring single-particle sensitivity and absolute specificity for aggregates. In this work, we measured aSyn and Tau aggregate concentrations of 237 cerebrospinal fluid (CSF) samples from five cohorts: Parkinson's disease (PD), dementia with Lewy bodies (DLB), Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and a neurologically-normal control group. aSyn aggregate concentration discriminates PD and DLB patients from normal controls (sensitivity 73%, specificity 65%, area under the receiver operating curve (AUC) 0.68). Tau aggregates were significantly elevated in PSP patients compared to all other groups (sensitivity 87%, specificity 70%, AUC 0.76). Further, we found a tight correlation between aSyn and Tau aggregate titers among all patient cohorts (Pearson coefficient of correlation r = 0.81). Our results demonstrate that aSyn and Tau aggregate concentrations measured by sFIDA differentiate neurodegenerative disease diagnostic groups. Moreover, sFIDA-based Tau aggregate measurements might be particularly useful in distinguishing PSP from other parkinsonisms. Finally, our findings suggest that sFIDA can improve pre-clinical and clinical studies by identifying those individuals that will most likely respond to compounds designed to eliminate specific oligomers or to prevent their formation.
Collapse
Affiliation(s)
- Lara Blömeke
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- attyloid GmbH, 40225, Düsseldorf, Germany
| | - Marlene Pils
- attyloid GmbH, 40225, Düsseldorf, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Victoria Kraemer-Schulien
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Alexandra Dybala
- attyloid GmbH, 40225, Düsseldorf, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Anja Schaffrath
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Andreas Kulawik
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- attyloid GmbH, 40225, Düsseldorf, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Fabian Rehn
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Anneliese Cousin
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Volker Nischwitz
- Central Institute for Engineering, Electronics and Analytics, Analytics (ZEA-3), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Johannes Willbold
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Rebecca Zack
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tuyen Bujnicki
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Gültekin Tamgüney
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Daniel Weintraub
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parkinson's Disease and Mental Illness Research, Education, and Clinical Centers, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - David Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oliver Bannach
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- attyloid GmbH, 40225, Düsseldorf, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dieter Willbold
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
197
|
Bonaccorsi di Patti MC, Angiulli E, Casini A, Vaccaro R, Cioni C, Toni M. Synuclein Analysis in Adult Xenopus laevis. Int J Mol Sci 2022; 23:ijms23116058. [PMID: 35682736 PMCID: PMC9181771 DOI: 10.3390/ijms23116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
The α-, β- and γ-synucleins are small soluble proteins expressed in the nervous system of mammals and evolutionary conserved in vertebrates. After being discovered in the cartilaginous fish Torpedo californica, synucleins have been sequenced in all vertebrates, showing differences in the number of genes and splicing isoforms in different taxa. Although α-, β- and γ-synucleins share high homology in the N-terminal sequence, suggesting their evolution from a common ancestor, the three isoforms also differ in molecular characteristics, expression levels and tissue distribution. Moreover, their functions have yet to be fully understood. Great scientific interest on synucleins mainly derives from the involvement of α-synuclein in human neurodegenerative diseases, collectively named synucleinopathies, which involve the accumulation of amyloidogenic α-synuclein inclusions in neurons and glia cells. Studies on synucleinopathies can take advantage of the development of new vertebrate models other than mammals. Moreover, synuclein expression in non-mammalian vertebrates contribute to clarify the physiological role of these proteins in the evolutionary perspective. In this paper, gene expression levels of α-, β- and γ-synucleins have been analysed in the main organs of adult Xenopus laevis by qRT-PCR. Moreover, recombinant α-, β- and γ-synucleins were produced to test the specificity of commercial antibodies against α-synuclein used in Western blot and immunohistochemistry. Finally, the secondary structure of Xenopus synucleins was evaluated by circular dichroism analysis. Results indicate Xenopus as a good model for studying synucleinopathies, and provide a useful background for future studies on synuclein functions and their evolution in vertebrates.
Collapse
Affiliation(s)
| | - Elisa Angiulli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00161 Rome, Italy; (E.A.); (C.C.)
| | - Arianna Casini
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy; (A.C.); (R.V.)
| | - Rosa Vaccaro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy; (A.C.); (R.V.)
| | - Carla Cioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00161 Rome, Italy; (E.A.); (C.C.)
| | - Mattia Toni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, 00161 Rome, Italy; (E.A.); (C.C.)
- Correspondence: (M.C.B.d.P.); (M.T.)
| |
Collapse
|
198
|
Kumari M, Sharma S, Deep S. Tetrabutylammonium based ionic liquids (ILs) inhibit the amyloid aggregation of superoxide dismutase 1 (SOD1). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
199
|
Si X, Guo T, Wang Z, Fang Y, Gu L, Cao L, Yang W, Gao T, Song Z, Tian J, Yin X, Guan X, Zhou C, Wu J, Bai X, Liu X, Zhao G, Zhang M, Pu J, Zhang B. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson's disease. NPJ Parkinsons Dis 2022; 8:54. [PMID: 35487930 PMCID: PMC9055043 DOI: 10.1038/s41531-022-00316-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
Alpha-synucleinopathy is postulated to be central to both idiopathic rapid eye movement sleep behaviour disorder (iRBD) and Parkinson’s disease (PD). Growing evidence suggests an association between the diminished clearance of α-synuclein and glymphatic system dysfunction. However, evidence accumulating primarily based on clinical data to support glymphatic system dysfunction in patients with iRBD and PD is currently insufficient. This study aimed to use diffusion tensor image analysis along the perivascular space (DTI-ALPS) to evaluate glymphatic system activity and its relationship to clinical scores of disease severity in patients with possible iRBD (piRBDs) and those with PD. Further, we validated the correlation between the ALPS index and the prognosis of PD longitudinally. Overall, 168 patients with PD, 119 piRBDs, and 129 healthy controls were enroled. Among them, 50 patients with PD had been longitudinally reexamined. Patients with PD exhibited a lower ALPS index than those with piRBDs (P = 0.036), and both patient groups showed a lower ALPS index than healthy controls (P < 0.001 and P = 0.001). The ALPS index and elevated disease severity were negatively correlated in the piRBD and PD subgroups. Moreover, the ALPS index was correlated with cognitive decline in patients with PD in the longitudinal analyses. In conclusion, DTI-ALPS provided neuroimaging evidence of glymphatic system dysfunction in piRBDs and patients with PD; however, the potential of assessing the pathological progress of α-synucleinopathies as an indicator is worth verifying. Further development of imaging methods for glymphatic system function is also warranted.
Collapse
Affiliation(s)
- Xiaoli Si
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China.,Department of Neurology, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, N1 Avenue, 322000, Yiwu, Zhejiang, China
| | - Tao Guo
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
| | - Zhiyun Wang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
| | - Yi Fang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
| | - Luyan Gu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
| | - Lanxiao Cao
- Department of Neurology, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, N1 Avenue, 322000, Yiwu, Zhejiang, China
| | - Wenyi Yang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
| | - Ting Gao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
| | - Zhe Song
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
| | - Xinzhen Yin
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
| | - Xiaojun Guan
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
| | - Cheng Zhou
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
| | - Jingjing Wu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
| | - Xueqin Bai
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
| | - Xiaocao Liu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
| | - Guohua Zhao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China. .,Department of Neurology, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, N1 Avenue, 322000, Yiwu, Zhejiang, China.
| | - Minming Zhang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China.
| | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China.
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China.
| |
Collapse
|
200
|
Lateralized deficits after unilateral AAV-vector based overexpression of alpha-synuclein in the midbrain of rats on drug-free behavioural tests. Behav Brain Res 2022; 429:113887. [DOI: 10.1016/j.bbr.2022.113887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
|