151
|
Alteration of the Total Cellular Glycome during Late Differentiation of Chondrocytes. Int J Mol Sci 2019; 20:ijms20143546. [PMID: 31331074 PMCID: PMC6678350 DOI: 10.3390/ijms20143546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
In normal articular cartilage, chondrocytes do not readily proliferate or terminally differentiate, and exhibit a low level of metabolism. Hypertrophy-like changes of chondrocytes have been proposed to play a role in the pathogenesis of osteoarthritis by inducing protease-mediated cartilage degradation and calcification; however, the molecular mechanisms underlying these changes are unclear. Glycans are located on the outermost cell surface. Dynamic cellular differentiation can be monitored and quantitatively characterized by profiling the glycan structures of total cellular glycoproteins. This study aimed to clarify the alterations in glycans upon late differentiation of chondrocytes, during which hypertrophy-like changes occur. Primary mouse chondrocytes were differentiated using an insulin-induced chondro-osteogenic differentiation model. Comprehensive glycomics, including N-glycans, O-glycans, free oligosaccharides, glycosaminoglycan, and glycosphingolipid, were analyzed for the chondrocytes after 0-, 10- and 20-days cultivation. The comparison and clustering of the alteration of glycans upon hypertrophy-like changes of primary chondrocytes were performed. Comprehensive glycomic analyses provided complementary alterations in the levels of various glycans derived from glycoconjugates during hypertrophic differentiation. In addition, expression of genes related to glycan biosynthesis and metabolic processes was significantly correlated with glycan alterations. Our results indicate that total cellular glycan alterations are closely associated with chondrocyte hypertrophy and help to describe the glycophenotype by chondrocytes and their hypertrophic differentiation. our results will assist the identification of diagnostic and differentiation biomarkers in the future.
Collapse
|
152
|
Pamphlett R, Kum Jew S. Mercury Is Taken Up Selectively by Cells Involved in Joint, Bone, and Connective Tissue Disorders. Front Med (Lausanne) 2019; 6:168. [PMID: 31380381 PMCID: PMC6659129 DOI: 10.3389/fmed.2019.00168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background: The causes of most arthropathies, osteoarthritis, and connective tissue disorders remain unknown, but exposure to toxic metals could play a part in their pathogenesis. Human exposure to mercury is common, so to determine whether mercury could be affecting joints, bones, and connective tissues we used a histochemical method to determine the cellular uptake of mercury in mice. Whole neonatal mice were examined since this allowed histological assessment of mercury in joint, bone, and connective tissue cells. Materials and Methods: Pregnant mice were exposed to a non-toxic dose of 0.5 mg/m3 of mercury vapor for 4 h a day on gestational days 14-18. Neonates were sacrificed at postnatal day 1, fixed in formalin, and transverse blocks of the body were processed for paraffin embedding. Seven micrometer sections were stained for inorganic mercury using silver nitrate autometallography, either alone or combined with CD44 immunostaining to detect progenitor cells. Control neonates were not exposed to mercury during gestation. Results: Uptake of mercury was marked in synovial cells, articular chondrocytes, and periosteal and tracheal cartilage cells. Mercury was seen in fibroblasts in the dermis, aorta, esophagus and striated muscle, some of which were CD44-positive progenitor cells, and in the endothelial cells of small blood vessels. Mercury was also present in renal tubules and liver periportal cells. Conclusions: Mercury is taken up selectively by cells that are predominantly affected in rheumatoid arthritis and osteoarthritis. In addition, fibroblasts in several organs often involved in multisystem connective tissue disorders take up mercury. Mercury provokes the autoimmune, inflammatory, genetic, and epigenetic changes that have been described in a range of arthropathies and bone and connective tissue disorders. These findings support the hypothesis that mercury exposure could trigger some of these disorders, particularly in people with a genetic susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Roger Pamphlett
- Discipline of Pathology, Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Stephen Kum Jew
- Discipline of Pathology, Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
153
|
Huang B, Yu H, Li Y, Zhang W, Liu X. Upregulation of long noncoding TNFSF10 contributes to osteoarthritis progression through the miR-376-3p/FGFR1 axis. J Cell Biochem 2019; 120:19610-19620. [PMID: 31297857 DOI: 10.1002/jcb.29267] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is a common joint disease with high morbidity, but there is still no definitive treatment for it. Long noncoding RNAs (lncRNAs) have been confirmed to play key roles in OA progression. This work was done to investigate the roles and action mechanism of lncRNA TNFSF10 in OA. The messenger RNA levels of TNFSF10 in articular cartilage samples from patients or chondrocytes were detected by Quantitative real-time PCR assay (qRT-PCR). The effects of TNFSF10 on chondrocytes were evaluated on the basis of cell growth, apoptosis, and inflammation. Then, the interaction between TNFSF10 and miR-376-3p was explored by dual-luciferase reporter test, RNA-binding protein immunoprecipitation, and RNA pull-down assay. Finally, various cell experiments, Western blot analysis, and qRT-PCR were performed to study the interaction among TNFSF10, miR-376-3p, and fibroblast growth factor receptor 1 (FGFR1). It was found that TNFSF10 was upregulated in OA cartilages and stimulated cell proliferation, antiapoptosis, and inflammation for chondrocytes. In addition, TNFSF10 acted as a competing endogenous RNA to downregulate miR-376-3p, and the influence of TNFSF10 on chondrocytes was partly reversed by miR-376-3p. Moreover, FGFR1, as a target of miR-376-3p, had reversal functions on the outcomes mediated by miR-376-3p. The further analysis displayed that there was a negative relationship between TNFSF10 and miR-376-3p as well as miR-376-3p and FGFR1, while FGFR1 was positively related with TNFSF10. Altogether, TNFSF10 overexpression probably stimulated proliferation and inflammation, and inhibited apoptosis by regulating the miR-376-3p/FGFR1 axis, implying that its increase contributed to OA progression. Our study provided a new potential biomarker or therapeutic target-TNFSF10, which was helpful to develop an efficient approach to cure OA.
Collapse
Affiliation(s)
- Bingzhe Huang
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Haichi Yu
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Yingzhi Li
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Wei Zhang
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Xiaoning Liu
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin, P. R. China
| |
Collapse
|
154
|
Kim SH, Ha CW, Park YB, Nam E, Lee JE, Lee HJ. Intra-articular injection of mesenchymal stem cells for clinical outcomes and cartilage repair in osteoarthritis of the knee: a meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg 2019; 139:971-980. [PMID: 30756165 DOI: 10.1007/s00402-019-03140-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) have gained popularity for articular cartilage repair. However, efficacy of intra-articular MSCs in osteoarthritis remains unclear. In the setting of a meta-analysis of randomized controlled trials (RCTs), we aimed to investigate the efficacy of intra-articular MSCs on clinical outcomes and cartilage repair in patients with knee osteoarthritis. MATERIALS AND METHODS PubMed, EMBASE, Cochrane Library, CINAHL, and Scopus were searched from inception to March 31, 2017. This study included RCTs using cell population containing MSCs for treatment of knee osteoarthritis. The quality was assessed by Cochrane Collaboration`s risk of bias tool. For meta-analysis, data on clinical outcomes measured by visual analog scale (VAS), Lysholm score, WOMAC and data on cartilage repair measured by MOCART and WORMS were extracted. In studies with several cell concentrations, outcomes of recommended concentration were used mainly to ensure robustness. RESULTS A total of five RCTs (220 patients) were included. Two studies were deemed to have low risk of bias. In pooled analysis, there was significant difference in VAS score (mean difference [MD], - 9.2; 95% CI: - 17.21, - 1.20) and Lysholm score (MD, 8.70; 95% CI 0.06, 17.34), but not WOMAC (MD, - 7.44; 95% CI - 20.38, 5.50). In cumulative functional analysis using Lysholm score and WOMAC in recommended concentration, there was a significant improvement (standard mean difference [SMD], 0.53; 95% CI 0.13, 0.94) after treatment. In cartilage repair assessed by MRI, there was no significant difference (SMD, 0.53; 95% CI- 0.28, 1.34). CONCLUSIONS This meta-analysis demonstrated that intra-articular MSCs have a limited evidence in pain relief and functional improvement in knee osteoarthritis. While MSCs may result in favorable clinical outcomes with a recommended concentration, use of concomitant treatment should be considered. In addition, current evidence does not support the use of intra-articular MSCs for improving cartilage repair in knee osteoarthritis. LEVEL OF EVIDENCE Systematic review of Level-II studies.
Collapse
Affiliation(s)
- Seong Hwan Kim
- Department of Orthopedic Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, 06973, Seoul, South Korea
| | - Chul-Won Ha
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, 06351, Seoul, South Korea
| | - Yong-Beom Park
- Department of Orthopedic Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, 06973, Seoul, South Korea.
| | - Eunwoo Nam
- Biostatistical Consulting and Research Lab, Medical Research Collaborating Center, Han-Yang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Jung-Eun Lee
- Biostatistical Consulting and Research Lab, Medical Research Collaborating Center, Han-Yang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Han-Jun Lee
- Department of Orthopedic Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, 06973, Seoul, South Korea
| |
Collapse
|
155
|
Fischer T, Riedl R. Inhibitory Antibodies Designed for Matrix Metalloproteinase Modulation. Molecules 2019; 24:molecules24122265. [PMID: 31216704 PMCID: PMC6631688 DOI: 10.3390/molecules24122265] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/20/2023] Open
Abstract
The family of matrix metalloproteinases (MMPs) consists of a set of biological targets that are involved in a multitude of severe pathogenic events such as different forms of cancers or arthritis. Modulation of the target class with small molecule drugs has not led to the anticipated success until present, as all clinical trials failed due to unacceptable side effects or a lack of therapeutic outcome. Monoclonal antibodies offer a tremendous therapeutic potential given their high target selectivity and good pharmacokinetic profiles. For the treatment of a variety of diseases there are already antibody therapies available and the number is increasing. Recently, several antibodies were developed for the selective inhibition of single MMPs that showed high potency and were therefore investigated in in vivo studies with promising results. In this review, we highlight the progress that has been achieved toward the design of inhibitory antibodies that successfully modulate MMP-9 and MMP-14.
Collapse
Affiliation(s)
- Thomas Fischer
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| |
Collapse
|
156
|
A Randomized Controlled Trial on the Effects of Low-Dose Extracorporeal Shockwave Therapy in Patients With Knee Osteoarthritis. Arch Phys Med Rehabil 2019; 100:1695-1702. [PMID: 31194946 DOI: 10.1016/j.apmr.2019.04.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To test the efficacy of low-dose extracorporeal shockwave therapy (ESWT) on osteoarthritis knee pain, lower limb function, and cartilage alteration for patients with knee osteoarthritis. DESIGN Randomized controlled trial with placebo control. SETTING Outpatient physical therapy clinics within a hospital network. PARTICIPANTS Eligible volunteers (N=63) with knee osteoarthritis (Kellgren-Lawrence grade II or III) were randomly assigned to 2 groups. INTERVENTIONS Patients in the experimental group received low-dose ESWT for 4 weeks while those in the placebo group got sham shockwave therapy. Both groups maintained a usual level of home exercise. MAIN OUTCOME MEASURES Knee pain and physical function were measured using a visual analog scale (VAS), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the Lequesne index at baseline, 5 weeks, and 12 weeks. Cartilage alteration was measured analyzing the transverse relaxation time (T2) mapping. RESULTS The VAS score, WOMAC, and Lequesne index of the ESWT group were significantly better than those of the placebo group at 5 and 12 weeks (P<.05). Both groups showed improvement in pain and disability scores over the 12-week follow-up period (P<.05). In terms of imaging results, there was no significant difference in T2 values between groups during the trial, although T2 values of the ESWT group at 12 weeks significantly increased compared to those at baseline (P=.004). The number and prevalence of adverse effects were similar between the 2 groups, and no serious side effects were found. CONCLUSIONS A 4-week treatment of low-dose ESWT was superior to placebo for pain easement and functional improvement in patients with mild to moderate knee osteoarthritis but had some negative effects on articular cartilage.
Collapse
|
157
|
Dong L, Wu J, Chen K, Xie J, Wang Y, Li D, Liu Y, Yin A, Zhao Y, Han Y, Zhou J, Zhang L, Chen Z, Zuo D. Mannan-Binding Lectin Attenuates Inflammatory Arthritis Through the Suppression of Osteoclastogenesis. Front Immunol 2019; 10:1239. [PMID: 31214191 PMCID: PMC6557994 DOI: 10.3389/fimmu.2019.01239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
Mannan-binding lectin (MBL) is a vital element in the host innate immune system, which is primarily produced by the liver and secreted into the circulation. Low serum level of MBL is reported to be associated with an increased risk of arthritis. However, the underlying mechanism by which MBL contributes to the pathogenesis of arthritis is poorly understood. In this study, we investigated the precise role of MBL on the course of experimental murine adjuvant-induced arthritis (AIA). MBL-deficient (MBL−/−) AIA mice showed significantly increased inflammatory responses compared with wild-type C57BL/6 AIA mice, including exacerbated cartilage damage, enhanced histopathological features and high level of tartrate-resistant acid phosphatase (TRAP)-positive cells. MBL protein markedly inhibited the osteoclast formation from human blood monocytes induced by receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) in vitro. Mechanistic studies established that MBL inhibited osteoclast differentiation via down-regulation of p38 signaling pathway and subsequent nuclear translocation of c-fos as well as activation of nuclear factor of activated T-cells c1 (NFATc1) pathway. Importantly, we have provided the evidence that concentrations of MBL correlated negatively with the serum levels of amino-terminal propeptide of type I procollagen (PINP) and C-terminal telopeptide of type I collagen (β-CTX), serum markers of bone turnover, in patients with arthritis. Our study revealed an unexpected function of MBL in osteoclastogenesis, thus providing new insight into inflammatory arthritis and other bone-related diseases in patients with MBL deficiency.
Collapse
Affiliation(s)
- Lijun Dong
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Wu
- Geriatrics Center, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Kai Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingwen Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Youyi Wang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology, Southern Medical University, Guangzhou, China
| | - Dantong Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunzhi Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Aiping Yin
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yue Zhao
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yunpeng Han
- Department of Clinical Laboratory, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liyun Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| | - Daming Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
158
|
Fischer T, Senn N, Riedl R. Design and Structural Evolution of Matrix Metalloproteinase Inhibitors. Chemistry 2019; 25:7960-7980. [DOI: 10.1002/chem.201805361] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/09/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Nicole Senn
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| |
Collapse
|
159
|
McCutchan A, Dobson GP, Stewart N, Letson HL, Grant AL, Jovanovic IA, Hazratwala K, Wilkinson M, McEwen P, Morris J. Absence of cytotoxic and inflammatory effects following in vitro exposure of chondrogenically-differentiated human mesenchymal stem cells to adenosine, lidocaine and Mg 2+ solution. J Exp Orthop 2019; 6:16. [PMID: 30989345 PMCID: PMC6465392 DOI: 10.1186/s40634-019-0185-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022] Open
Abstract
Background ALM solution, a combination of adenosine, lidocaine and Mg2+, is an emerging small volume therapy that has been shown to prevent and correct coagulopathy and surgery-related inflammation in preclinical models, though its application in orthopaedic surgery is yet to be demonstrated. The effect of ALM solution on chondrocytes is unknown. The aim of this preliminary study was to investigate the effect of ALM solution on viability and inflammatory responses of chondrogenically-differentiated human bone marrow-derived mesenchymal stem cells (chondro-MSC), in vitro. Methods Chondro-MSC were exposed to media only, saline (0.9% NaCl or 1.3% NaCl) only, or saline containing ALM (1 mM adenosine, 3 mM lidocaine, 2.5 mM Mg2+) or tranexamic acid (TXA, 100 mg/ml) for 1 or 4 h. Responses to ALM solutions containing higher lidocaine concentrations were also compared. Chondrocyte viability was determined using WST-8 colorimetric assays and inflammatory cytokine (TNF-α, IL-1β, IL-8) and matrix metalloproteinases (MMP-3, MMP-12, MMP-13) concentrations using multiplex bead arrays. Results The viability of chondro-MSC was significantly greater after 1 h treatment with ALM compared to saline (96.2 ± 7.9 versus 75.6 ± 7.3%). Extension of exposure times to 4 h had no significant adverse effect on cell viability after treatment with ALM (1 h, 85.4 ± 5.6 v 4 h, 74.0 ± 15.2%). Cytotoxicity was evident following exposure to solutions containing lidocaine concentrations greater than 30 mM. There were no significant differences in viability (80 ± 5.4 v 57.3 ± 16.2%) or secretion of IL-8 (60 ± 20 v 160 ± 50 pg/ml), MMP-3 (0.95 ± 0.6 v 3.4 ± 1.6 ng/ml), and MMP-13 (4.2 ± 2.4 v 9.2 ± 4.3 ng/ml) in chondro-MSC exposed to saline, ALM or TXA. Conclusions Short-term, in vitro exposure to clinically-relevant concentrations of ALM solution had no adverse inflammatory or chondrotoxic effects on human chondro-MSC, with responses comparable to saline and TXA. These findings provide support for continued evaluation of ALM solution as a possible therapeutic to improve outcomes following orthopaedic procedures.
Collapse
Affiliation(s)
- Andrew McCutchan
- Department of Haematology and Bone Marrow Transplantation, Townsville Hospital, Townsville, Australia
| | - Geoffrey P Dobson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Natalie Stewart
- Department of Haematology and Bone Marrow Transplantation, Townsville Hospital, Townsville, Australia
| | - Hayley L Letson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Andrea L Grant
- The Orthopaedic Research Institute of Queensland, 7 Turner St, Pimlico, Townsville, Q 4812, Australia
| | | | - Kaushik Hazratwala
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia.,The Orthopaedic Research Institute of Queensland, 7 Turner St, Pimlico, Townsville, Q 4812, Australia
| | - Matthew Wilkinson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia.,The Orthopaedic Research Institute of Queensland, 7 Turner St, Pimlico, Townsville, Q 4812, Australia
| | - Peter McEwen
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia.,The Orthopaedic Research Institute of Queensland, 7 Turner St, Pimlico, Townsville, Q 4812, Australia
| | - Jodie Morris
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia. .,The Orthopaedic Research Institute of Queensland, 7 Turner St, Pimlico, Townsville, Q 4812, Australia.
| |
Collapse
|
160
|
Kavand H, van Lintel H, Renaud P. Efficacy of pulsed electromagnetic fields and electromagnetic fields tuned to the ion cyclotron resonance frequency of Ca 2+ on chondrogenic differentiation. J Tissue Eng Regen Med 2019; 13:799-811. [PMID: 30793837 DOI: 10.1002/term.2829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
Previous studies provide strong evidence for the therapeutic effect of electromagnetic fields (EMFs) on different tissues including cartilage. Diverse exposure parameters applied in scientific reports and the unknown interacting mechanism of EMF with biological systems make EMF studies challenging. In 1985, Liboff proposed that when magnetic fields are tuned to the cyclotron resonance frequencies of critical ions, the motion of ions through cell membranes is enhanced, and thus biological effects appear. Such exposure system consists of a weak alternating magnetic field (B1 ) in the presence of a static magnetic field (B0 ) and depends on the relationship between the magnitudes of B0 and B1 and the angular frequency Ω. The purpose of the present study is to determine the chondrogenic potential of EMF with regards to pulsed EMF (PEMF) and the ion cyclotron resonance (ICR) theory. We used different stimulating systems to generate EMFs in which cells are either stimulated with ubiquitous PEMF parameters, frequently reported, or parameters tuned to satisfy the ICR for Ca2+ (including negative and positive control groups). Chondrogenesis was analysed after 3 weeks of treatment. Cell stimulation under the ICR condition showed positive results in the context of glycosaminoglycans and type II collagen synthesis. In contrast, the other electromagnetically stimulated groups showed no changes compared with the control groups. Furthermore, gene expression assays revealed an increase in the expression of chondrogenic markers (COL2A1, SOX9, and ACAN) in the ICR group. These results suggest that the Ca2+ ICR condition can be an effective factor in inducing chondrogenesis.
Collapse
Affiliation(s)
- Hanie Kavand
- Microsystems Laboratory, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Harald van Lintel
- Microsystems Laboratory, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Renaud
- Microsystems Laboratory, Institute of Microengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
161
|
He Y, Manon-Jensen T, Arendt-Nielsen L, Petersen KK, Christiansen T, Samuels J, Abramson S, Karsdal MA, Attur M, Bay-Jensen AC. Potential diagnostic value of a type X collagen neo-epitope biomarker for knee osteoarthritis. Osteoarthritis Cartilage 2019; 27:611-620. [PMID: 30654118 DOI: 10.1016/j.joca.2019.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/20/2018] [Accepted: 01/07/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Phenotypic changes of chondrocytes toward hypertrophy might be fundamental in the pathogenesis of osteoarthritis (OA), of which type X collagen (Col10) is a well-known marker. The purpose was to develop a specific immunoassay for blood quantification of a newly identified neo-epitope of type Col10 to assess its diagnostic value for radiographic knee OA. METHODS A neo-epitope of Col10 was identified in urine samples from OA patients. A monoclonal antibody against the neo-epitope was produced in Balb/C mice. The enzyme responsible for the cleavage was identified. Immunohistochemical detection of this neo-epitope was performed on human OA cartilage. An immunoassay (Col10neo) was developed and quantified in two clinical studies: the C4Pain-003 and the NYU OA progression study. Receiver operating characteristic curve (ROC) curve analysis was carried out to evaluate the discriminative power of Col10neo between OA and rheumatoid arthritis (RA). RESULTS A neo-epitope specific mAb was produced. The Cathepsin K-generated neo-epitope was localized to the pericellular matrix of chondrocytes, while its presence was extended and more prominent in superficial fibrillation in the cartilage with advanced degradation. In the C4Pain study, a higher level of Col10neo was seen in subjects with greater KL grade. The group of the highest tertile of Col10neo included more subjects with KL3-4. In the NYU study, Col10neo was statistically higher in OA than control or RA. ROC curve analysis revealed area under the curve was 0.88 (95% CI 0.81-0.94). CONCLUSION Our findings indicate that Col10neo linked to hypertrophic chondrocytes could be used as a diagnostic biochemical marker for knee OA.
Collapse
Affiliation(s)
- Y He
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - T Manon-Jensen
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | - L Arendt-Nielsen
- SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark; C4Pain, Aalborg, Denmark
| | - K K Petersen
- SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - T Christiansen
- Orthopedic Department, Gentofte University Hospital, Hellerup, Denmark
| | - J Samuels
- Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY, 10003, USA
| | - S Abramson
- Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY, 10003, USA
| | - M A Karsdal
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | - M Attur
- Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY, 10003, USA
| | - A C Bay-Jensen
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| |
Collapse
|
162
|
Ajekigbe B, Cheung K, Xu Y, Skelton A, Panagiotopoulos A, Soul J, Hardingham T, Deehan D, Barter M, Young D. Identification of long non-coding RNAs expressed in knee and hip osteoarthritic cartilage. Osteoarthritis Cartilage 2019; 27:694-702. [PMID: 30611906 PMCID: PMC6444060 DOI: 10.1016/j.joca.2018.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/06/2018] [Accepted: 12/24/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Long intergenic non-coding RNAs (lincRNAs) are emerging as key regulators in gene expression; however, little is known about the lincRNA expression changes that occur in osteoarthritis (OA). Here we aimed to define a transcriptome of lncRNAs in OA cartilage, specifically comparing the lincRNA transcriptome of knee and hip cartilage. METHOD RNA-seq was performed on nucleic acid extracted from hip cartilage from patients undergoing joint replacement surgery because of either OA (n = 10) or because of a neck of femur fracture (NOF; n = 6). After transcript alignment, counts were performed using Salmon and differential expression for ENSEMBL lincRNAs determined using DESeq2. Hip RNA-seq lincRNA expression was compared to a knee dataset (ArrayExpress; E-MTAB-4304). ChIP-seq data from ENCODE was used to determine whether lincRNAs were associated with promoters (plncRNA) or unidirectional enhancer-like regulatory elements (elncRNAs). RESULTS Our analysis of the hip transcriptome identified 1692 expressed Transcripts Per Million (TPM ≥1) Ensembl lincRNAs, of which 198 were significantly (FDR ≤0.05) differentially expressed in OA vs normal (NOF) cartilage. Similar analysis of knee cartilage transcriptome identified 648 Emsembl lincRNAs with 93 significantly (FDR ≤0.05) differentially expressed in intact vs damaged cartilage. In total, 1834 lincRNAs were expressed in both hip and knee cartilage, with a highly significant correlation in expression between the two cartilages. CONCLUSION This is the first study to use RNA-seq to map and compare the lincRNA transcriptomes of hip and knee cartilage. We propose that lincRNAs expressed selectively in cartilage, or showing differential expression in OA, will play a role in cartilage homoeostasis.
Collapse
Affiliation(s)
- B. Ajekigbe
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK
| | - K. Cheung
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK,Faculty of Medical Sciences, Bioinformatics Support Unit, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Y. Xu
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK
| | - A.J. Skelton
- Faculty of Medical Sciences, Bioinformatics Support Unit, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - A. Panagiotopoulos
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK
| | - J. Soul
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - T.E. Hardingham
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - D.J. Deehan
- Freeman Hospital, Orthopaedics, Freeman Road, High Heaton, Newcastle Upon Tyne, NE7 7DN, UK
| | - M.J. Barter
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK
| | - D.A. Young
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK,Address correspondence and reprint requests to: D.A. Young, Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK. Tel: 44-191-2418831.
| |
Collapse
|
163
|
Zhang S, Ren Q, Qi H, Liu S, Liu Y. Adverse Effects of Fine-Particle Exposure on Joints and Their Surrounding Cells and Microenvironment. ACS NANO 2019; 13:2729-2748. [PMID: 30773006 DOI: 10.1021/acsnano.8b08517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Current understanding of the health risks and adverse effects upon exposure to fine particles is premised on the direct association of particles with target organs, particularly the lung; however, fine-particle exposure has also been found to have detrimental effects on sealed cavities distant to the portal-of-entry, such as joints. Moreover, the fundamental toxicological issues have been ascribed to the direct toxic mechanisms, in particular, oxidative stress and proinflammatory responses, without exploring the indirect mechanisms, such as compensated, adaptive, and secondary effects. In this Review, we recapitulate the current findings regarding the detrimental effects of fine-particle exposure on joints, the surrounding cells, and microenvironment, as well as their deteriorating impact on the progression of arthritis. We also elaborate the likely molecular mechanisms underlying the particle-induced detrimental influence on joints, not limited to direct toxicity, but also considering the other indirect mechanisms. Because of the similarities between fine air particles and engineered nanomaterials, we compare the toxicities of engineered nanomaterials to those of fine air particles. Arthritis and joint injuries are prevalent, particularly in the elderly population. Considering the severity of global exposure to fine particles and limited studies assessing the detrimental effects of fine-particle exposure on joints and arthritis, this Review aims to appeal to a broad interest and to promote more research efforts in this field.
Collapse
Affiliation(s)
- Shuping Zhang
- Institute for Medical Engineering and Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Hui Qi
- Beijing Jishuitan Hospital , Peking University Health Science Center , Beijing 100035 , P. R. China
- Beijing Research Institute of Traumatology and Orthopaedics , Beijing 100035 , P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Yajun Liu
- Beijing Jishuitan Hospital , Peking University Health Science Center , Beijing 100035 , P. R. China
| |
Collapse
|
164
|
Sewerin P, Schleich C, Brinks R, Müller-Lutz A, Fichter F, Eichner M, Schneider M, Ostendorf B, Vordenbäumen S. Assessing Associations of Synovial Perfusion, Cartilage Quality, and Outcome in Rheumatoid Arthritis Using Dynamic Contrast-enhanced Magnetic Resonance Imaging. J Rheumatol 2019; 47:15-19. [PMID: 30877219 DOI: 10.3899/jrheum.180832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To assess associations of synovial perfusion, cartilage quality, and outcome in rheumatoid arthritis (RA). METHODS Synovial perfusion and cartilage quality were assessed by dynamic contrast-enhanced magnetic resonance imaging in metacarpophalangeal joints of 28 treatment-naive patients with RA at baseline and at 3 and 6 months after methotrexate. Analysis was by linear mixed modeling. RESULTS Synovial perfusion variables were associated with remission (p < 0.05) and cartilage quality (p < 0.004). Maximum synovial enhancement was associated to European League Against Rheumatism response (p < 0.05). Synovial perfusion improved in nonresponders over time (p < 0.05). CONCLUSION Synovial perfusion relates to remission, response, and cartilage quality in a cohort of therapy-naive patients with early RA.
Collapse
Affiliation(s)
- Philipp Sewerin
- From Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology, and Department of Diagnostic and Interventional Radiology, Düsseldorf, Germany. .,P. Sewerin, MD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; C. Schleich, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; R. Brinks, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; A. Müller-Lutz, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; F. Fichter, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Eichner, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Schneider, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; B. Ostendorf, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; S. Vordenbäumen, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology. P. Sewerin and C. Schleich contributed equally to this work.
| | - Christoph Schleich
- From Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology, and Department of Diagnostic and Interventional Radiology, Düsseldorf, Germany.,P. Sewerin, MD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; C. Schleich, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; R. Brinks, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; A. Müller-Lutz, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; F. Fichter, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Eichner, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Schneider, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; B. Ostendorf, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; S. Vordenbäumen, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology. P. Sewerin and C. Schleich contributed equally to this work
| | - Ralph Brinks
- From Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology, and Department of Diagnostic and Interventional Radiology, Düsseldorf, Germany.,P. Sewerin, MD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; C. Schleich, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; R. Brinks, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; A. Müller-Lutz, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; F. Fichter, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Eichner, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Schneider, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; B. Ostendorf, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; S. Vordenbäumen, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology. P. Sewerin and C. Schleich contributed equally to this work
| | - Anja Müller-Lutz
- From Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology, and Department of Diagnostic and Interventional Radiology, Düsseldorf, Germany.,P. Sewerin, MD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; C. Schleich, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; R. Brinks, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; A. Müller-Lutz, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; F. Fichter, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Eichner, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Schneider, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; B. Ostendorf, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; S. Vordenbäumen, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology. P. Sewerin and C. Schleich contributed equally to this work
| | - Florian Fichter
- From Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology, and Department of Diagnostic and Interventional Radiology, Düsseldorf, Germany.,P. Sewerin, MD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; C. Schleich, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; R. Brinks, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; A. Müller-Lutz, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; F. Fichter, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Eichner, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Schneider, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; B. Ostendorf, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; S. Vordenbäumen, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology. P. Sewerin and C. Schleich contributed equally to this work
| | - Markus Eichner
- From Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology, and Department of Diagnostic and Interventional Radiology, Düsseldorf, Germany.,P. Sewerin, MD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; C. Schleich, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; R. Brinks, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; A. Müller-Lutz, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; F. Fichter, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Eichner, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Schneider, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; B. Ostendorf, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; S. Vordenbäumen, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology. P. Sewerin and C. Schleich contributed equally to this work
| | - Matthias Schneider
- From Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology, and Department of Diagnostic and Interventional Radiology, Düsseldorf, Germany.,P. Sewerin, MD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; C. Schleich, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; R. Brinks, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; A. Müller-Lutz, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; F. Fichter, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Eichner, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Schneider, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; B. Ostendorf, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; S. Vordenbäumen, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology. P. Sewerin and C. Schleich contributed equally to this work
| | - Benedikt Ostendorf
- From Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology, and Department of Diagnostic and Interventional Radiology, Düsseldorf, Germany.,P. Sewerin, MD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; C. Schleich, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; R. Brinks, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; A. Müller-Lutz, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; F. Fichter, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Eichner, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Schneider, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; B. Ostendorf, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; S. Vordenbäumen, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology. P. Sewerin and C. Schleich contributed equally to this work
| | - Stefan Vordenbäumen
- From Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology, and Department of Diagnostic and Interventional Radiology, Düsseldorf, Germany.,P. Sewerin, MD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; C. Schleich, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; R. Brinks, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; A. Müller-Lutz, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; F. Fichter, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Eichner, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology; M. Schneider, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; B. Ostendorf, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology; S. Vordenbäumen, MD, PhD, Heinrich-Heine-University Düsseldorf, Medical Faculty, Department and Hiller-Research-Unit for Rheumatology. P. Sewerin and C. Schleich contributed equally to this work
| |
Collapse
|
165
|
Dos Anjos LMJ, Salvador PA, de Souza ÁC, de Souza da Fonseca A, de Paoli F, Gameiro J. Modulation of immune response to induced-arthritis by low-level laser therapy. JOURNAL OF BIOPHOTONICS 2019; 12:e201800120. [PMID: 30203577 DOI: 10.1002/jbio.201800120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
As low-level laser therapy immune cells responses are not always clarified, this study aimed to evaluate cytokines and immune cells profile after low-level laser therapy (LLLT) on arthritis-induced model. Arthritis was induced in C57BL/6 mice divided into five groups: euthanized 5 hours after inflammation induction; untreated; dexamethasone treated; LLLT at 3 Jcm-2 ; LLLT at 30 Jcm-2 . Cytokine measurements by enzyme-linked immunosorbent assay and mRNA cytokine relative levels by real-time quantitative polymerase chain reaction were performed with arthritic ankle (IL-1β, IL-6, TNF-α, IL-10 and TGF-β). Macrophages, dendritic cells, natural killer cells, lymphocytes CD4+ , CD8+ , Treg and costimulatory proteins were quantified in proximal lymph node by flow cytometry. Data showed decrease in all cytokine levels after LLLT and alteration in mRNA relative levels, depending on the energy density used. LLLT was able to increase of immune cell populations analyzed in the lymph node as well as costimulatory proteins expression on macrophages and dendritic cells. Treg TCD4+ and TCD8+ population enrichment were observed in LLLT at 3 and 30 Jcm-2 groups, respectively. Furthermore, Treg TCD8+ cells expressing higher levels of CD25 were observed at LLLT at 30 Jcm-2 group. Our results indicate that LLLT could change the inflammatory course of arthritis, tending to accelerate its resolution through immune cells photobiostimulation.
Collapse
Affiliation(s)
- Lúcia Mara J Dos Anjos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Pollyanna A Salvador
- Departamento de Microbiologia, Parasitologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Álvaro C de Souza
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Rio de Janeiro, Brazil
| | - Flávia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Jacy Gameiro
- Departamento de Microbiologia, Parasitologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
166
|
Jayaram P, Ikpeama U, Rothenberg JB, Malanga GA. Bone Marrow-Derived and Adipose-Derived Mesenchymal Stem Cell Therapy in Primary Knee Osteoarthritis: A Narrative Review. PM R 2019; 11:177-191. [PMID: 30010050 DOI: 10.1016/j.pmrj.2018.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/29/2018] [Indexed: 12/15/2022]
Abstract
Regenerative medicine in the context of musculoskeletal injury is a broad term that offers potential therapeutic solutions to restore or repair damaged tissue. The current focus in recent literature and clinical practice has been on cell based therapy. In particular, much attention has been centered on autologous bone marrow concentrate and adipose-derived mesenchymal stem cells (MSCs) for cartilage and tendon disorders. This article provides an overview of MSC-derived therapy and offers a comprehensive review of adipose- and bone marrow-derived MSC therapy in primary knee osteoarthritis. LEVEL OF EVIDENCE: IV.
Collapse
Affiliation(s)
- Prathap Jayaram
- H. Ben Taub Dept of Physical Medicine & Rehabilitation, Orthopedic Surgery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| | - Uzoh Ikpeama
- H. Ben Taub Dept of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX
| | - Joshua B Rothenberg
- Departments of Regenerative Medicine and Orthopedic Biologics, BocaCare Orthopedics, Boca Raton Regional Hospital, Boca Raton, FL
| | - Gerard A Malanga
- Department of Physical Medicine and Rehabilitation, Rutgers School of Biomedical and Health Sciences, Newark, NJ; Rutgers University and New Jersey Regenerative Medicine Institute, Cedar Knolls, NJ
| |
Collapse
|
167
|
Li J, Zheng J. Theaflavins prevent cartilage degeneration via AKT/FOXO3 signaling in vitro. Mol Med Rep 2018; 19:821-830. [PMID: 30569095 PMCID: PMC6323294 DOI: 10.3892/mmr.2018.9745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
Theaflavins (TFs) are the main bioactive polyphenols in tea and contribute to protection against oxidative stress. Excessive reactive oxygen species (ROS) accumulation can lead to the disruption of cartilage homeostasis. The present study examined the potential effects of TFs on H2O2-induced cartilage degeneration in vitro. Cell Counting kit (CCK-8) was used to determine cell viability, and flow cytometric analysis was used to detect ROS, apoptosis and DNA damage. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to detect the expression levels of target factors. The present study revealed that TFs effectively reduced the expression of catabolic factors, including matrix metalloproteinase-13, interleukin-1 and cartilage glycoprotein 39. TFs inhibited ROS generation in cartilage degeneration, and suppressed apoptosis and DNA damage caused by oxidative stress. TFs also downregulated the expression levels of cleaved caspase-3 and B-cell lymphoma 2-associated X protein, and the DNA damage-related genes, ATR serine/threonine kinase and ATM serine/threonine kinase. Furthermore, TFs enhanced the activity of glutathione peroxidase 1 and catalase, but reduced the expression levels of phosphorylated (p)-AKT serine/threonine kinase (AKT) and p-Forkhead box O3 (FOXO3)a. Conversely, the effects of TFs on apoptosis and DNA damage were reversed by persistent activation of AKT. In conclusion, TFs prevented cartilage degeneration via AKT/FOXO3 signaling in vitro. The present study suggested that TFs may be a potential candidate drug for the prevention of cartilage degeneration.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopedics, Xiangyang Central Hospital, The Affiliated Hospital of Hubei College of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Jianping Zheng
- Department of Orthopedics, Xiangyang Central Hospital, The Affiliated Hospital of Hubei College of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
168
|
Peng X, Zhang Y, Wang Y, He Q, Yu Q. IGF‐1 and BMP‐7 synergistically stimulate articular cartilage repairing in the rabbit knees by improving chondrogenic differentiation of bone‐marrow mesenchymal stem cells. J Cell Biochem 2018; 120:5570-5582. [PMID: 30417423 DOI: 10.1002/jcb.27841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Xian‐Bo Peng
- Department of Joint Surgery & Sports Medicine Qianfoshan Hospital of Shandong Province Jinan China
| | - Yuan Zhang
- Department of Geriatric Neurology Qianfoshan Hospital of Shandong Province Jinan China
| | - Yue‐Qiu Wang
- Department of Joint Branch Jining No. 2 People’s Hospital, Shandong Province Jining China
| | - Qi He
- Department of Blood Transfusion Shandong Provincial Hospital Jinan China
| | - Qian Yu
- Department of Joint Surgery & Sports Medicine Qianfoshan Hospital of Shandong Province Jinan China
| |
Collapse
|
169
|
Chen X, Zheng C, Wang C, Guo Z, Gao S, Ning Z, Huang C, Lu C, Fu Y, Guan D, Lu A, Wang Y. Systems-Mapping of Herbal Effects on Complex Diseases Using the Network-Perturbation Signatures. Front Pharmacol 2018; 9:1174. [PMID: 30405409 PMCID: PMC6201628 DOI: 10.3389/fphar.2018.01174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/28/2018] [Indexed: 01/15/2023] Open
Abstract
The herbs have proven to hold great potential to improve people's health and wellness during clinical practice over the past millennia. However, herbal medicine for the personalized treatment of disease is still under investigation owing to the complex multi-component interactions in herbs. To reveal the valuable insights for herbal synergistic therapy, we have chosen Traditional Chinese Medicine (TCM) as a case to illustrate the art and science behind the complicated multi-molecular, multi-genes interaction systems, and how the good practices of herbal combination therapy are applicable to personalized treatment. Here, we design system-wide interaction map strategy to provide a generic solution to establish the links between diseases and herbs based on comprehensive testing of molecular signatures in herb-disease pairs. Firstly, we integrated gene expression profiles from 189 diseases to characterize the disease-pathological feature. Then, we generated the perturbation signatures from the huge chemical informatics data and pharmacological data for each herb, which were represented the targets affected by the ingredients in the herb. So that we could assess the effects of herbs on the individual. Finally, we integrated the data of 189 diseases and 502 herbs, yielding the optimal herbal combinations for the diseases based on the strategy, and verifying the reliability of the strategy through the permutation testing and literature verification. Furthermore, we propose a novel formula as a candidate therapeutic drugs of rheumatoid arthritis and demonstrate its therapeutic mechanism through the systematic analysis of the influencing targets and biological processes. Overall, this computational method provides a systematic approach, which blended herbal medicine and omics data sets, allowing for the development of novel drug combinations for complex human diseases.
Collapse
Affiliation(s)
- Xuetong Chen
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, China.,School of Chinese Medicine, Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Chunli Zheng
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, China
| | - Chun Wang
- School of Chinese Medicine, Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, Hong Kong.,Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihu Guo
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, China
| | - Shuo Gao
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, China
| | - Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Huang
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingxue Fu
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, China
| | - Daogang Guan
- School of Chinese Medicine, Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Aiping Lu
- School of Chinese Medicine, Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Yonghua Wang
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, China
| |
Collapse
|
170
|
Jahanban‐Esfahlan R, Mehrzadi S, Reiter RJ, Seidi K, Majidinia M, Baghi HB, Khatami N, Yousefi B, Sadeghpour A. Melatonin in regulation of inflammatory pathways in rheumatoid arthritis and osteoarthritis: involvement of circadian clock genes. Br J Pharmacol 2018; 175:3230-3238. [PMID: 28585236 PMCID: PMC6057898 DOI: 10.1111/bph.13898] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are the two most prevalent joint diseases. A such, they are important causes of pain and disability in a substantial proportion of the human population. A common characteristic of these diseases is the erosion of articular cartilage and consequently joint dysfunction. Melatonin has been proposed as a link between circadian rhythms and joint diseases including RA and OA. This hormone exerts a diversity of regulatory actions through binding to specific receptors and intracellular targets as well as having receptor-independent actions as a free radical scavenger. Cytoprotective effects of melatonin involve a myriad of prominent receptor-mediated pathways/molecules associated with inflammation, of which the role of omnipresent NF-κB signalling is crucial. Likewise, disturbance of circadian timekeeping is closely involved in the aetiology of inflammatory arthritis. Melatonin is shown to stimulate cartilage destruction/regeneration through direct/indirect modulation of the expression of the main circadian clock genes, such as BMAL, CRY and/or DEC2. In the current article, we review the effects of melatonin on RA and OA, focusing on its ability to regulate inflammatory pathways and circadian rhythms. We also review the possible protective effects of melatonin on RA and OA pathogenesis. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Rana Jahanban‐Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Saeed Mehrzadi
- Razi Drug Research CenterIran University of Medical SciencesTehranIran
| | - Russel J Reiter
- Department of Cellular and Structural BiologyThe University of Texas Health Science CenterSan AntonioTXUSA
| | - Khaled Seidi
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Maryam Majidinia
- Solid Tumor Research CenterUrmia University of Medical SciencesUrmiaIran
| | | | - Nasrin Khatami
- Students Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Bahman Yousefi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Molecular Targeting Therapy Research Group, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Alireza Sadeghpour
- Department of Orthopaedic Surgery, School of Medicine and Shohada Educational HospitalTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
171
|
Dai M, Sui B, Xue Y, Liu X, Sun J. Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes. Biomaterials 2018; 180:91-103. [PMID: 30031224 DOI: 10.1016/j.biomaterials.2018.07.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 06/17/2018] [Accepted: 07/07/2018] [Indexed: 12/13/2022]
Abstract
Cartilage lesions in degenerative osteoarthritis (OA) are involved with pathological microenvironmental alterations induced by inflammatory macrophages, and apoptotic and/or hypertrophic chondrocytes. However, current non-operative therapies for cartilage repair in OA can rarely achieve long-term and satisfactory outcomes. This study aims to evaluate a newly developed squid type II collagen (SCII) for repairing OA-induced cartilage lesions. Our in vitro data show that SCII induces M2 polarization of macrophages, and activates macrophages to express pro-chondrogenic genes (TGF-β and IGF), which greatly improves the microenvironment around chondrocytes to produce type II collagen and glycosaminoglycan. In addition, glycine in SCII activates glycine receptors on inflammatory chondrocytes to decrease intracellular calcium concentration, leading to effective inhibition of chondrocyte apoptosis and hypertrophy. The in vitro effects of SCII are further confirmed in vivo. In a rat model of OA, SCII increases the ratio of M2 macrophages, elevates the levels of pro-chondrogenic cytokines (TGF-β1 and TGF-β3) in synovial fluid, and inhibits chondrocyte apoptosis and MMP13 production. Our findings show that SCII immunomodulates M2 activation of macrophages to skew the local OA microenvironment towards a pro-chondrogenic atmosphere, and promotes cartilage repair under inflammatory condition. It shows great potential for SCII to be a novel biomaterial for cartilage repair in OA.
Collapse
Affiliation(s)
- Meilu Dai
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China
| | - Baiyan Sui
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China
| | - Yang Xue
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China
| | - Xin Liu
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China.
| | - Jiao Sun
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China.
| |
Collapse
|
172
|
Skármeta NP, Araneda L, Araya C. Destructive psoriatic arthritis of the temporomandibular joint: a clinical case, an overview of the pathophysiology and its differential diagnoses. Cranio 2018; 38:201-207. [DOI: 10.1080/08869634.2018.1484575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nicolas Patricio Skármeta
- Faculty of Health Sciences, Occlusion and Orofacial Pain, School of Dental Medicine, Universidad San Sebastian, Santiago, Chile
- Orofacial Pain and TMDs, OPH Dental, Santiago, Chile
- Orofacial Pain and TMDs Hospital del Salvador, SSMO, Santiago, Chile
| | - Luis Araneda
- Maxillofacial Radiology, Hospital del Salvador, SSMO, Santiago, Chile
- Faculty of Health Sciences, Department of Maxillofacial Radiology, School of Dental Medicine, Universidad San Sebastian, Santiago, Chile
- Faculty of Sciences, Maxillofacial Radiology, School of Dental Medicine, Universidad Mayor, Santiago, Chile
- Faculty of Dentistry, Department of Maxillofacial Radiology, Universidad de Chile, Santiago, Chile
| | - Cristobal Araya
- Faculty of Sciences, Oral Medicine and Pathology, School of Dental Medicine, Universidad Mayor, Santiago, Chile
- Oral Medicine and Pathology, Instituto Nacional del Cancer, Santiago, Chile
| |
Collapse
|
173
|
Ribitsch I, Mayer RL, Egerbacher M, Gabner S, Kańduła MM, Rosser J, Haltmayer E, Auer U, Gültekin S, Huber J, Bileck A, Kreil DP, Gerner C, Jenner F. Fetal articular cartilage regeneration versus adult fibrocartilaginous repair: secretome proteomics unravels molecular mechanisms in an ovine model. Dis Model Mech 2018; 11:11/7/dmm033092. [PMID: 29991479 PMCID: PMC6078409 DOI: 10.1242/dmm.033092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/18/2018] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA), a degenerative joint disease characterized by progressive cartilage degeneration, is one of the leading causes of disability worldwide owing to the limited regenerative capacity of adult articular cartilage. Currently, there are no disease-modifying pharmacological or surgical therapies for OA. Fetal mammals, in contrast to adults, are capable of regenerating injured cartilage in the first two trimesters of gestation. A deeper understanding of the properties intrinsic to the response of fetal tissue to injury would allow us to modulate the way in which adult tissue responds to injury. In this study, we employed secretome proteomics to compare fetal and adult protein regulation in response to cartilage injury using an ovine cartilage defect model. The most relevant events comprised proteins associated with the immune response and inflammation, proteins specific for cartilage tissue and cartilage development, and proteins involved in cell growth and proliferation. Alarmins S100A8, S100A9 and S100A12 and coiled-coil domain containing 88A (CCDC88A), which are associated with inflammatory processes, were found to be significantly upregulated following injury in adult, but not in fetal animals. By contrast, cartilage-specific proteins like proteoglycan 4 were upregulated in response to injury only in fetal sheep postinjury. Our results demonstrate the power and relevance of the ovine fetal cartilage regeneration model presented here for the first time. The identification of previously unrecognized modulatory proteins that plausibly affect the healing process holds great promise for potential therapeutic interventions. Summary: Secretome proteomics identifies differential regulation of inflammation modulators during fetal and adult articular cartilage defect healing, offering novel strategies for therapy.
Collapse
Affiliation(s)
- Iris Ribitsch
- VETERM, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Rupert L Mayer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Monika Egerbacher
- Histology & Embryology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Simone Gabner
- Histology & Embryology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Maciej M Kańduła
- Department of Biotechnology, Boku University Vienna, Vienna 1180, Austria.,Institute of Bioinformatics, Johannes Kepler University, Linz 4040, Austria
| | - Julie Rosser
- VETERM, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Eva Haltmayer
- VETERM, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Ulrike Auer
- Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Sinan Gültekin
- VETERM, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Johann Huber
- Teaching and Research Farm Kremesberg, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - David P Kreil
- Department of Biotechnology, Boku University Vienna, Vienna 1180, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Florien Jenner
- VETERM, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| |
Collapse
|
174
|
Arthroprotective Effects of Cf-02 Sharing Structural Similarity with Quercetin. Int J Mol Sci 2018; 19:ijms19051453. [PMID: 29757957 PMCID: PMC5983747 DOI: 10.3390/ijms19051453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
In this study, we synthesized hundreds of analogues based on the structure of small-molecule inhibitors (SMIs) that were previously identified in our laboratory with the aim of identifying potent yet safe compounds for arthritis therapeutics. One of the analogues was shown to share structural similarity with quercetin, a potent anti-inflammatory flavonoid present in many different fruits and vegetables. We investigated the immunomodulatory effects of this compound, namely 6-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenyl)-2H-benzo[e][1,3]oxazine-2,4(3H)-dione (Cf-02), in a side-by-side comparison with quercetin. Chondrocytes were isolated from pig joints or the joints of patients with osteoarthritis that had undergone total knee replacement surgery. Several measures were used to assess the immunomodulatory potency of these compounds in tumor necrosis factor (TNF-α)-stimulated chondrocytes. Characterization included the protein and mRNA levels of molecules associated with arthritis pathogenesis as well as the inducible nitric oxide synthase (iNOS)–nitric oxide (NO) system and matrix metalloproteinases (MMPs) in cultured chondrocytes and proteoglycan, and aggrecan degradation in cartilage explants. We also examined the activation of several important transcription factors, including nuclear factor-kappaB (NF-κB), interferon regulatory factor-1 (IRF-1), signal transducer and activator of transcription-3 (STAT-3), and activator protein-1 (AP-1). Our overall results indicate that the immunomodulatory potency of Cf-02 is fifty-fold more efficient than that of quercetin without any indication of cytotoxicity. When tested in vivo using the induced edema method, Cf-02 was shown to suppress inflammation and cartilage damage. The proposed method shows considerable promise for the identification of candidate disease-modifying immunomodulatory drugs and leads compounds for arthritis therapeutics.
Collapse
|
175
|
Cokelaere SM, Plomp SGM, de Boef E, de Leeuw M, Bool S, van de Lest CHA, van Weeren PR, Korthagen NM. Sustained intra-articular release of celecoxib in an equine repeated LPS synovitis model. Eur J Pharm Biopharm 2018; 128:327-336. [PMID: 29729412 DOI: 10.1016/j.ejpb.2018.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/23/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023]
Abstract
Synovial inflammation is an important characteristic of arthritic disorders like osteoarthritis and rheumatoid arthritis. Orally administered non-steroidal anti-inflammatory drugs (NSAIDs) such as celecoxib are among the most widely prescribed drugs to manage these debilitating diseases. Intra-articular delivery in biodegradable in situ forming hydrogels overcomes adverse systemic effects and prolongs drug retention in the joint. In this study two formulations of celecoxib (40 mg/g and 120 mg/g) in a propyl-capped PCLA-PEG-PCLA triblock copolymer were sequentially evaluated in a multiple LPS challenge equine synovitis model. Intra-articular release and systemic exposure to celecoxib and local changes at joint level were evaluated longitudinally. A single intra-articular injection of the high dose (HCLB)-gel or low dose (LCLB)-gel showed a sustained and controlled intra-articular release in both inflamed and healthy joints together with very low systemic exposure. Synovitis and lameness were moderate respectively very mild in this model due to the low concentration LPS (0.25 ng/joint). Both celecoxib formulations had a mild, transient effect on inflammatory and structural synovial fluid biomarkers but these returned to baseline within one week of administration. The HCLB-gel showed a significant inhibition in peak white blood cell concentration at 8 h after LPS induction. Elevated levels of celecoxib were observed in the joint for up to 30 days but no overall anti-inflammatory effects could be observed, which was thought to be due to the moderate synovitis. As there were no long-term adverse effects, sustained intra-articular release of celecoxib from in situ forming hydrogels should be evaluated further for its effects on longer-term relief of inflammatory joint pain in humans and animals.
Collapse
Affiliation(s)
- Stefan M Cokelaere
- Dept. Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands.
| | - Saskia G M Plomp
- Dept. Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Esther de Boef
- InGell Labs BV, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Mike de Leeuw
- InGell Labs BV, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Sophie Bool
- Dept. Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - Chris H A van de Lest
- Dept. Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands; Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - P René van Weeren
- Dept. Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - Nicoline M Korthagen
- Dept. Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
176
|
Lu J, Zhang H, Cai D, Zeng C, Lai P, Shao Y, Fang H, Li D, Ouyang J, Zhao C, Xie D, Huang B, Yang J, Jiang Y, Bai X. Positive-Feedback Regulation of Subchondral H-Type Vessel Formation by Chondrocyte Promotes Osteoarthritis Development in Mice. J Bone Miner Res 2018; 33:909-920. [PMID: 29329496 DOI: 10.1002/jbmr.3388] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 01/01/2023]
Abstract
Vascular-invasion-mediated interactions between activated articular chondrocytes and subchondral bone are essential for osteoarthritis (OA) development. Here, we determined the role of nutrient sensing mechanistic target of rapamycin complex 1 (mTORC1) signaling in the crosstalk across the bone cartilage interface and its regulatory mechanisms. Then mice with chondrocyte-specific mTORC1 activation (Tsc1 CKO and Tsc1 CKOER ) or inhibition (Raptor CKOER ) and their littermate controls were subjected to OA induced by destabilization of the medial meniscus (DMM) or not. DMM or Tsc1 CKO mice were treated with bevacizumab, a vascular endothelial growth factor (VEGF)-A antibody that blocks angiogenesis. Articular cartilage degeneration was evaluated using the Osteoarthritis Research Society International score. Immunostaining and Western blotting were conducted to detect H-type vessels and protein levels in mice. Primary chondrocytes from mutant mice and ADTC5 cells were treated with interleukin-1β to investigate the role of chondrocyte mTORC1 in VEGF-A secretion and in vitro vascular formation. Clearly, H-type vessels were increased in subchondral bone in DMM-induced OA and aged mice. Cartilage mTORC1 activation stimulated VEGF-A production in articular chondrocyte and H-type vessel formation in subchondral bone. Chondrocyte mTORC1 promoted OA partially through formation of VEGF-A-stimulated subchondral H-type vessels. In particular, vascular-derived nutrients activated chondrocyte mTORC1, and stimulated chondrocyte activation and production of VEGF, resulting in further angiogenesis in subchondral bone. Thus a positive-feedback regulation of H-type vessel formation in subchondral bone by articular chondrocyte nutrient-sensing mTORC1 signaling is essential for the pathogenesis and progression of OA. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jiansen Lu
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haiyan Zhang
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University
| | - Daozhang Cai
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University
| | - Chun Zeng
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University
| | - Pinglin Lai
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University
| | - Yan Shao
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hang Fang
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University
| | - Delong Li
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiayao Ouyang
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chang Zhao
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University
| | - Denghui Xie
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University
| | - Bin Huang
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institutes, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaochun Bai
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
177
|
Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res 2018; 6:15. [PMID: 29736302 PMCID: PMC5920070 DOI: 10.1038/s41413-018-0016-9] [Citation(s) in RCA: 960] [Impact Index Per Article: 137.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that primarily affects the lining of the synovial joints and is associated with progressive disability, premature death, and socioeconomic burdens. A better understanding of how the pathological mechanisms drive the deterioration of RA progress in individuals is urgently required in order to develop therapies that will effectively treat patients at each stage of the disease progress. Here we dissect the etiology and pathology at specific stages: (i) triggering, (ii) maturation, (iii) targeting, and (iv) fulminant stage, concomitant with hyperplastic synovium, cartilage damage, bone erosion, and systemic consequences. Modern pharmacologic therapies (including conventional, biological, and novel potential small molecule disease-modifying anti-rheumatic drugs) remain the mainstay of RA treatment and there has been significant progress toward achieving disease remission without joint deformity. Despite this, a significant proportion of RA patients do not effectively respond to the current therapies and thus new drugs are urgently required. This review discusses recent advances of our understanding of RA pathogenesis, disease modifying drugs, and provides perspectives on next generation therapeutics for RA. The preclinical stages of rheumatoid arthritis (RA) represent a golden window for the development of therapies which could someday prevent the onset of clinical disease. The autoimmune processes underpinning RA usually begin many years before symptoms such as joint pain and stiffness emerge. Recent studies have identified some of the key cellular players driving these processes and begun to unpick how genetic and environmental risk factors combine to trigger them; they also suggest the existence of several distinct subtypes of RA, which require further exploration. Jiake Xu at the University of Western Australia in Perth and colleagues review current treatment strategies for RA and how such insights could ultimately lead to the earlier diagnosis of RA - as well as providing new opportunities for drug treatment and prevention through behavioral changes in high-risk individuals.
Collapse
Affiliation(s)
- Qiang Guo
- 1Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, 410008 Changsha, China.,2School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
| | - Yuxiang Wang
- 1Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, 410008 Changsha, China
| | - Dan Xu
- 2School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia.,Musculoskeletal Health Network, Department of Health WA, 189 Royal Street, East Perth, WA 6004 Australia
| | - Johannes Nossent
- Musculoskeletal Health Network, Department of Health WA, 189 Royal Street, East Perth, WA 6004 Australia.,4School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
| | - Nathan J Pavlos
- 2School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
| | - Jiake Xu
- 2School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
| |
Collapse
|
178
|
Lima AC, Cunha C, Carvalho A, Ferreira H, Neves NM. Interleukin-6 Neutralization by Antibodies Immobilized at the Surface of Polymeric Nanoparticles as a Therapeutic Strategy for Arthritic Diseases. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13839-13850. [PMID: 29614225 DOI: 10.1021/acsami.8b01432] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Arthritic diseases are disabling conditions affecting millions of patients worldwide. Pro-inflammatory cytokines, particularly interleukin-6 (IL-6), plays a crucial role in inflammation and cartilage destruction. Although the beneficial effects of antibody therapy, its efficacy is limited. Therefore, this work proposes the immobilization of antibodies at the surface of biodegradable polymeric nanoparticles (NPs) to capture and neutralize IL-6. Our system is intended to protect, extend and enhance the therapeutic efficacy after delivery. Chitosan-hyaluronic acid NPs are synthesized as a stable monodisperse population. After determining the maximum immobilization capacity (10 μg/mL), the capture ability was confirmed. Biological assays demonstrate the NPs cytocompatibility with human articular chondrocytes (hACs) and human macrophages. hACs stimulated with macrophage conditioned medium shows the beneficial role of IL-6 capture and neutralization. Biofunctionalized NPs exhibit a prolonged action and stronger efficacy than the free antibody. In conclusion, this system can be an effective and long lasting treatment for arthritic diseases.
Collapse
Affiliation(s)
- Ana Cláudia Lima
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics , University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark , 4805-017 Barco, Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães , Portugal
| | - Cristina Cunha
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães , Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Agostinho Carvalho
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães , Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Helena Ferreira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics , University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark , 4805-017 Barco, Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães , Portugal
| | - Nuno M Neves
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics , University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark , 4805-017 Barco, Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark 4805-017 Barco, Guimarães , Portugal
| |
Collapse
|
179
|
Dai M, Liu X, Wang N, Sun J. Squid type II collagen as a novel biomaterial: Isolation, characterization, immunogenicity and relieving effect on degenerative osteoarthritis via inhibiting STAT1 signaling in pro-inflammatory macrophages. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:283-294. [PMID: 29752100 DOI: 10.1016/j.msec.2018.04.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/21/2017] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
Abstract
Collagen from marine organisms has a broad prospect in biomedical field, yet the knowledge on marine-derived type II collagen is rare. Herein, a novel type II collagen was successfully isolated from squid cartilage for the first time. After being characterized, the immunogenicity of squid type II collagen (SCII) was evaluated and compared with that of bovine type II collagen (BCII). Then investigations were further conducted for the impacts of SCII on pro-inflammatory macrophages and macrophage chemotaxis. The degenerative osteoarthritis (OA) -relieving effects of SCII were explored using OA rat model in vivo. Our results demonstrated that the isolated SCII maintained triple-superhelical structure of native collagen with high purity. Different from BCII, SCII presented no immunogenicity since it neither induced abnormal proliferation of lymphocytes in vitro nor changed the basic levels of IgM, IgG, anti-type II collagen IgG and CD4+/CD8+ lymphocytes ratio in vivo. Additionally, SCII also exerted prominent anti-inflammatory effects. SCII significantly reduced the production of pro-inflammatory cytokines by enhancing the activity of TCPTP and subsequently prompting the dephosphorylation of p-STAT1 in pro-inflammatory macrophages. Besides, it indirectly prevented hypertrophic changes of chondrocytes, and markedly impeded chemotaxis of macrophages. Moreover, inflammation condition in OA rats was significantly alleviated under treatment with SCII. These data suggested that the newly developed SCII could not only avoid the immunogenic risks of collagen derived from terrestrial animals, but more importantly, provide new choice for the control and treatment of OA.
Collapse
Affiliation(s)
- Meilu Dai
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200023, China
| | - Xin Liu
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200023, China
| | - Nanping Wang
- Shanghai Fisheries Research Institute, Shanghai 200433, China
| | - Jiao Sun
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200023, China.
| |
Collapse
|
180
|
Current Therapeutic Strategies for Stem Cell-Based Cartilage Regeneration. Stem Cells Int 2018; 2018:8490489. [PMID: 29765426 PMCID: PMC5889878 DOI: 10.1155/2018/8490489] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/14/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
The process of cartilage destruction in the diarthrodial joint is progressive and irreversible. This destruction is extremely difficult to manage and frustrates researchers, clinicians, and patients. Patients often take medication to control their pain. Surgery is usually performed when pain becomes uncontrollable or joint function completely fails. There is an unmet clinical need for a regenerative strategy to treat cartilage defect without surgery due to the lack of a suitable regenerative strategy. Clinicians and scientists have tried to address this using stem cells, which have a regenerative potential in various tissues. Cartilage may be an ideal target for stem cell treatment because it has a notoriously poor regenerative potential. In this review, we describe past, present, and future strategies to regenerate cartilage in patients. Specifically, this review compares a surgical regenerative technique (microfracture) and cell therapy, cell therapy with and without a scaffold, and therapy with nonaggregated and aggregated cells. We also review the chondrogenic potential of cells according to their origin, including autologous chondrocytes, mesenchymal stem cells, and induced pluripotent stem cells.
Collapse
|
181
|
Chondroprotective Effects and Mechanisms of Dextromethorphan: Repurposing Antitussive Medication for Osteoarthritis Treatment. Int J Mol Sci 2018. [PMID: 29534535 PMCID: PMC5877686 DOI: 10.3390/ijms19030825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disorder and primarily affects older people. The ideal anti-OA drug should have a modest anti-inflammatory effect and only limited or no toxicity for long-term use. Because the antitussive medication dextromethorphan (DXM) is protective in atherosclerosis and neurological diseases, two common disorders in aged people, we examined whether DXM can be protective in pro-inflammatory cytokine-stimulated chondrocytes and in a collagen-induced arthritis (CIA) animal model in this study. Chondrocytes were prepared from cartilage specimens taken from pigs or OA patients. Western blotting, quantitative PCR, and immunohistochemistry were adopted to measure the expression of collagen II (Col II) and matrix metalloproteinases (MMP). DXM significantly restored tumor necrosis factor-alpha (TNF-α)-mediated reduction of collagen II and decreased TNF-α-induced MMP-13 production. To inhibit the synthesis of MMP-13, DXM blocked TNF-α downstream signaling, including I kappa B kinase (IKK)α/β-IκBα-nuclear factor-kappaB (NF-κB) and c-Jun N-terminal kinase (JNK)-activator protein-1 (AP-1) activation. Besides this, DXM protected the CIA mice from severe inflammation and cartilage destruction. DXM seemed to protect cartilage from inflammation-mediated matrix degradation, which is an irreversible status in the disease progression of osteoarthritis. The results suggested that testing DXM as an osteoarthritis therapeutic should be a focus in further research.
Collapse
|
182
|
Chen P, Mei S, Xia C, Zhu R, Pang Y, Wang J, Zhang J, Shao F, Fan S. The amelioration of cartilage degeneration by photo-crosslinked GelHA hydrogel and crizotinib encapsulated chitosan microspheres. Oncotarget 2018; 8:30235-30251. [PMID: 28427172 PMCID: PMC5444739 DOI: 10.18632/oncotarget.15750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/30/2017] [Indexed: 02/01/2023] Open
Abstract
The present study aimed to investigate the synergistic therapeutic effect of decreasing cartilage angiogenesis via exposure to crizotinib encapsulated by chitosan microspheres and photo-crosslinked hydrogel, with the goal of evaluating crizotinib as a treatment for osteoarthritis. First, we developed and evaluated the characteristics of hydrogels and chitosan microspheres. Next, we measured the effect of crizotinib on the cartilage degeneration induced by interleukin-1β in chondrocytes. Crizotinib ameliorated the pathological changes induced by interleukin-1β via its anti-angiogenesis function. In addition, we surgically induced osteoarthritis in mice, which were then injected intra-articularly with crizotinib-loaded biomaterials. Cartilage matrix degradation, expression of vascular endothelial growth factor and extracellular signal-regulated kinases 1/2 were evaluated after surgery. Treatment with the combination of crizotinib-loaded biomaterials retarded the progression of surgically induced osteoarthritis. Crizotinib ameliorated cartilage matrix degradation by promoting anti-angiogenesis and impeding extracellular signal-regulated kinases 1/2 signaling pathway. Our results demonstrate that the combination of photo-crosslinked hydrogel and crizotinib-loaded chitosan microspheres might represent a promising strategy for osteoarthritis treatment.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, China
| | - Sheng Mei
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, China
| | - Chen Xia
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, China
| | - Ren Zhu
- Department of Orthopaedics, Yiwu Chowzhou Hospital, Yiwu, 322000, China
| | - Yichuan Pang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310016, China
| | - Jiying Wang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, China
| | - Jianfeng Zhang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, China
| | - Fangchun Shao
- Department of Pulmonary, Zhejiang Provincial People's Hospital, Hangzhou, 310016, China
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, 310016, China
| |
Collapse
|
183
|
Bhattacharya K, Sacchetti C, Costa PM, Sommertune J, Brandner BD, Magrini A, Rosato N, Bottini N, Bottini M, Fadeel B. Nitric Oxide Dependent Degradation of Polyethylene Glycol-Modified Single-Walled Carbon Nanotubes: Implications for Intra-Articular Delivery. Adv Healthc Mater 2018; 7:e1700916. [PMID: 29334180 DOI: 10.1002/adhm.201700916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/18/2017] [Indexed: 01/08/2023]
Abstract
Polyethylene glycol (PEG)-modified carbon nanotubes have been successfully employed for intra-articular delivery in mice without systemic or local toxicity. However, the fate of the delivery system itself remains to be understood. In this study 2 kDa PEG-modified single-walled carbon nanotubes (PNTs) are synthesized, and trafficking and degradation following intra-articular injection into the knee-joint of healthy mice are studied. Using confocal Raman microspectroscopy, PNTs can be imaged in the knee-joint and are found to either egress from the synovial cavity or undergo biodegradation over a period of 3 weeks. Raman analysis discloses that PNTs are oxidatively degraded mainly in the chondrocyte-rich cartilage and meniscus regions while PNTs can also be detected in the synovial membrane regions, where macrophages can be found. Furthermore, using murine chondrocyte (ATDC-5) and macrophage (RAW264.7) cell lines, biodegradation of PNTs in activated, nitric oxide (NO)-producing chondrocytes, which is blocked upon pharmacological inhibition of inducible nitric oxide synthase (iNOS), can be shown. Biodegradation of PNTs in macrophages is also noted, but after a longer period of incubation. Finally, cell-free degradation of PNTs upon incubation with the peroxynitrite-generating compound, SIN-1 is demonstrated. The present study paves the way for the use of PNTs as delivery systems in the treatment of diseases of the joint.
Collapse
Affiliation(s)
- Kunal Bhattacharya
- Nanosafety & Nanomedicine Laboratory‐NNL Division of Molecular Toxicology Institute of Environmental Medicine Karolinska Institutet 171 77 Stockholm Sweden
| | - Cristiano Sacchetti
- Division of Cellular Biology La Jolla Institute for Allergy and Immunology La Jolla CA 92037 USA
- Department of Medicine, and Clinical and Translational Research Institute University of California San Diego La Jolla CA 92037 USA
| | - Pedro M. Costa
- Nanosafety & Nanomedicine Laboratory‐NNL Division of Molecular Toxicology Institute of Environmental Medicine Karolinska Institutet 171 77 Stockholm Sweden
| | - Jens Sommertune
- Unit for Chemistry Materials and Surfaces RISE Research Institute of Sweden 114 86 Stockholm Sweden
| | - Birgit D. Brandner
- Unit for Chemistry Materials and Surfaces RISE Research Institute of Sweden 114 86 Stockholm Sweden
| | - Andrea Magrini
- Department of Biopathology and Imaging Diagnostics University of Rome Tor Vergata Rome 00173 Italy
| | - Nicola Rosato
- Department of Experimental Medicine and Surgery University of Rome Tor Vergata Rome 00173 Italy
| | - Nunzio Bottini
- Division of Cellular Biology La Jolla Institute for Allergy and Immunology La Jolla CA 92037 USA
- Department of Medicine, and Clinical and Translational Research Institute University of California San Diego La Jolla CA 92037 USA
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery University of Rome Tor Vergata Rome 00173 Italy
- Sanford Burnham Prebys Medical Discovery Institute La Jolla CA 92037 USA
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory‐NNL Division of Molecular Toxicology Institute of Environmental Medicine Karolinska Institutet 171 77 Stockholm Sweden
| |
Collapse
|
184
|
Xie Z, Khair M, Shaukat I, Netter P, Mainard D, Barré L, Ouzzine M. Non-canonical Wnt induces chondrocyte de-differentiation through Frizzled 6 and DVL-2/B-raf/CaMKIIα/syndecan 4 axis. Cell Death Differ 2018; 25:1442-1456. [PMID: 29352270 DOI: 10.1038/s41418-017-0050-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Dysregulation of Wnt signaling has been implicated in developmental defects and in the pathogenesis of many diseases such as osteoarthritis; however, the underlying mechanisms are poorly understood. Here, we report that non-canonical Wnt signaling induced loss of chondrocyte phenotype through activation of Fz-6/DVL-2/SYND4/CaMKIIα/B-raf/ERK1/2 cascade. We show that in response to Wnt-3a, Frizzled 6 (Fz-6) triggers the docking of CaMKIIα to syndecan 4 (SYND4) and that of B-raf to DVL-2, leading to the phosphorylation of B-raf by CaMKIIα and activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling, which leads to chondrocyte de-differentiation. We demonstrate that CaMKIIα associates and phosphorylates B-raf in vitro and in vivo. Our study reveals the mechanism by which non-canonical Wnt activates ERK1/2 signaling that induces loss of chondrocyte phenotype, and demonstrates a direct functional relationship between CaMKIIα and B-raf during chondrocyte de-differentiation. The identification of Fz-6, SYND4, and B-raf as novel physiological regulators of chondrocyte phenotype may provide new potential anti-osteoarthritic targets.
Collapse
Affiliation(s)
- Zhe Xie
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, 54505, Vandoeuvre-lès-Nancy, France
| | - Mostafa Khair
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, 54505, Vandoeuvre-lès-Nancy, France
| | - Irfan Shaukat
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, 54505, Vandoeuvre-lès-Nancy, France
| | - Patrick Netter
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, 54505, Vandoeuvre-lès-Nancy, France
| | - Didier Mainard
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, 54505, Vandoeuvre-lès-Nancy, France
| | - Lydia Barré
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, 54505, Vandoeuvre-lès-Nancy, France
| | - Mohamed Ouzzine
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, 54505, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
185
|
Sieker JT, Proffen BL, Waller KA, Chin K, Karamchedu NP, Akelman MR, Perrone GS, Kiapour AM, Konrad J, Murray MM, Fleming BC. Transcriptional profiling of articular cartilage in a porcine model of early post-traumatic osteoarthritis. J Orthop Res 2018; 36:318-329. [PMID: 28671352 PMCID: PMC5752630 DOI: 10.1002/jor.23644] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/25/2017] [Indexed: 02/04/2023]
Abstract
To identify the molecular pathophysiology present in early post-traumatic osteoarthritis (PTOA), the transcriptional profile of articular cartilage and its response to surgical PTOA induction were determined. Thirty six Yucatan minipigs underwent anterior cruciate ligament (ACL) transection and were randomly assigned in equal numbers to no further treatment, reconstruction or ligament repair. Cartilage was harvested at 1 and 4 weeks post-operatively and histology and RNA-sequencing were performed and compared to controls. Microscopic cartilage scores significantly worsened at 1 (p = 0.028) and 4 weeks (p = 0.001) post-surgery relative to controls, but did not differ between untreated, reconstruction or repair groups. Gene expression after ACL reconstruction and ACL transection were similar, with only 0.03% (including SERPINB7 and CR2) and 0.2% of transcripts (including INHBA) differentially expressed at 1 and 4 weeks respectively. COL2A1, COMP, SPARC, CHAD, and EF1ALPHA were the most highly expressed non ribosomal, non mitochondrial genes in the controls and remained abundant after surgery. A total of 1,275 genes were differentially expressed between 1 and 4 weeks post-surgery. With the treatment groups pooled, 682 genes were differentially expressed at both time-points, with the most significant changes observed in MMP1, COCH, POSTN, CYTL1, and PTGFR. This study confirmed the development of a microscopic PTOA stage after ACL surgery in the porcine model. Upregulation of multiple proteases (including MMP1 and ADAMTS4) were found; however, the level of expression remained orders of magnitude below that of extracellular matrix protein-coding genes (including COL2A1 and ACAN). In summary, genes with established roles in PTOA as well as novel targets for specific intervention were identified. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:318-329, 2018.
Collapse
Affiliation(s)
- Jakob T. Sieker
- Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | | | - Kimberly A. Waller
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Kaitlyn Chin
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Naga P. Karamchedu
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Matthew R. Akelman
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | | | - Ata M. Kiapour
- Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Johannes Konrad
- Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | | | - Braden C. Fleming
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
186
|
Huang S, Song X, Li T, Xiao J, Chen Y, Gong X, Zeng W, Yang L, Chen C. Pellet coculture of osteoarthritic chondrocytes and infrapatellar fat pad-derived mesenchymal stem cells with chitosan/hyaluronic acid nanoparticles promotes chondrogenic differentiation. Stem Cell Res Ther 2017; 8:264. [PMID: 29141683 PMCID: PMC5688648 DOI: 10.1186/s13287-017-0719-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/30/2017] [Indexed: 01/22/2023] Open
Abstract
Background Cell source plays a key role in cell-based cartilage repair and regeneration. Recent efforts in cell coculture have attempted to combine the advantages and negate the drawbacks of the constituent cell types. The aim of this study was to evaluate the chondrogenic outcome of articular chondrocytes (ACs) and infrapatellar fat pad (IPFP)-derived mesenchymal stem cells (MSCs) in direct coculture. Methods ACs and IPFP MSCs from the same patients with knee osteoarthritis (OA) were cocultured in monolayer and in pellets. The monocultures of each cell type were also used as controls. Morphological and histologic analysis, immunofluorescence staining, reverse transcription-polymerase chain reaction, and enzyme-linked immunosorbent assay were performed to characterize the chondrogenic differentiation of cocultures. Furthermore, the effects of chitosan/hyaluronic acid (CS/HA) nanoparticle exposure on the chondrogenesis of cocultures were examined. Results In both monolayer and pellet coculture, the hypertrophy of MSCs and the inflammatory activities of ACs were inhibited, although the chondrogenic production in coculture was not promoted compared with that in monoculture. In addition, the exposure of CS/HA nanoparticles to pellet coculture improved the production of type II collagen and aggrecan. Conclusions We demonstrate for the first time that pellet coculture of ACs and IPFP MSCs with CS/HA nanoparticles could promote chondrogenic outcome while preventing the inflammatory status of ACs and the hypertrophic differentiation of MSCs. These findings suggest that the combination of ACs, IPFP MSCs, and CS/HA might be useful in cartilage repair in knee OA.
Collapse
Affiliation(s)
- Shu Huang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jingfang Xiao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital and Key Laboratory of Tumor Immunopathology of the Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Yemiao Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital and Key Laboratory of Tumor Immunopathology of the Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weinan Zeng
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
187
|
Coculture of allogenic DBM and BMSCs in the knee joint cavity of rabbits for cartilage tissue engineering. Biosci Rep 2017; 37:BSR20170804. [PMID: 28931727 PMCID: PMC5968190 DOI: 10.1042/bsr20170804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/03/2017] [Accepted: 09/15/2017] [Indexed: 01/02/2023] Open
Abstract
The present study aims to assess coculture of allogenic decalcified bone matrix (DBM) and bone marrow mesenchymal stem cells (BMSCs) in the knee joint cavity of rabbits for cartilage tissue engineering. Rabbits were assigned to an in vitro group, an in vivo group, and a blank control group. At the 4th, 8th, and 12th week, samples from all groups were collected for hematoxylin–eosin (HE) staining and streptavidin–peroxidase (SP) method. The morphological analysis software was used to calculate the average absorbance value (A value). SP and flow cytometry demonstrated that BMSCs were induced into chondrocytes. DBM scaffold showed honeycomb-shaped porous and three-dimensional structure, while the surface pores are interlinked with the deep pores. At the 4th week, in the blank control group, DBM scaffold structure was clear, and cells analogous to chondrocytes were scattered in the interior of DBM scaffolds. At the 8th week, in the in vivo group, there were a large amount of cells, mainly mature chondrocytes, and the DBM scaffolds were partially absorbed. At the 12th week, in the in vitro group, the interior of scaffolds was filled up with chondrocytes with partial fibrosis, but arranged in disorder. In the in vivo group, the chondrocytes completely infiltrated into the interior of scaffolds and were arranged in certain stress direction. The in vivo group showed higher A value than the in vitro and blank control groups at each time point. Allogenic DBM combined BMSCs in the knee joint cavity of rabbits could provide better tissue-engineered cartilage than that cultivated in vitro.
Collapse
|
188
|
Alpha-Mangostin protects rat articular chondrocytes against IL-1β-induced inflammation and slows the progression of osteoarthritis in a rat model. Int Immunopharmacol 2017; 52:34-43. [DOI: 10.1016/j.intimp.2017.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/27/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022]
|
189
|
Pan T, Chen R, Wu D, Cai N, Shi X, Li B, Pan J. Alpha-Mangostin suppresses interleukin-1β-induced apoptosis in rat chondrocytes by inhibiting the NF-κB signaling pathway and delays the progression of osteoarthritis in a rat model. Int Immunopharmacol 2017; 52:156-162. [DOI: 10.1016/j.intimp.2017.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 12/30/2022]
|
190
|
Phull AR, Kim SJ. Fucoidan from Undaria pinnatifida regulates type II collagen and COX-2 expression via MAPK and PI3K pathways in rabbit articular chondrocytes. Biologia (Bratisl) 2017; 72:1362-1369. [DOI: 10.1515/biolog-2017-0158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/23/2017] [Indexed: 07/06/2024]
|
191
|
Li MH, Xiao R, Li JB, Zhu Q. Regenerative approaches for cartilage repair in the treatment of osteoarthritis. Osteoarthritis Cartilage 2017; 25:1577-1587. [PMID: 28705606 DOI: 10.1016/j.joca.2017.07.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/09/2017] [Accepted: 07/01/2017] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) as a debilitating affliction of joints currently affects millions of people and remains an unsolved problem. The disease involves multiple cellular and molecular pathways that converge on the progressive destruction of cartilage. Activation of cartilage regenerative potential and specific targeting pathogenic mediators have been the major focus of research efforts aimed at slowing the progression of cartilage degeneration and preserve joint function. This review will summarize recent key discoveries toward better understanding of the complex mechanisms behind OA development and highlight the latest advances in basic and clinical research in the approach for cartilage regeneration. Prospectively, more potent therapeutic strategies against progressive cartilage deterioration may use a combination of cytotherapy, pharmacotherapy, and bioscaffoldings for improved chondrogenic differentiation and stem/progenitor cell homing as well as the concomitant reduced enzymatic matrix degradation and inflammation. Further, treatments need to be provided with increased preciseness of targeted therapy. One might expect that the regenerative therapies could potentially control or even possibly cure OA if performed at early stages of the disease.
Collapse
Affiliation(s)
- M H Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - R Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - J B Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Q Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
192
|
Chang EY, Chen KC, Huang BK, Kavanaugh A. Adult Inflammatory Arthritides: What the Radiologist Should Know. Radiographics 2017; 36:1849-1870. [PMID: 27726745 DOI: 10.1148/rg.2016160011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Developments and improvements in knowledge are rapid and ongoing in both the radiologic and rheumatologic fields. During the past decade, the roles of imaging and the radiologist in the assessment and management of many inflammatory rheumatologic diseases have undergone several changes. To remain effective in patient care, the radiologist needs to be aware of these changes when recommending and interpreting imaging examinations for the referring physician. The goal of contemporary rheumatoid arthritis (RA) management is to redefine RA as a disease that is no longer characterized by erosions, which reflect established or long-standing untreated disease. Most cases of RA are now diagnosed clinically, but imaging increases diagnostic confidence, is superior to clinical examination for the detection of joint inflammation, and plays an important role in patient management. The concept of the seronegative spondyloarthritides has recently been redefined by the Assessment of SpondyloArthritis International Society (ASAS). This new set of ASAS classification criteria divides the spectrum of spondyloarthritis on the basis of predominantly axial skeletal clinical manifestations or predominantly peripheral skeletal clinical manifestations. For axial spondyloarthritis, magnetic resonance imaging and radiography play crucial roles for classification and diagnosis. For both peripheral spondyloarthritis and psoriatic arthritis, the radiologist can provide important information that influences classification and diagnosis, including documenting radiologic evidence of juxta-articular new bone formation, diagnosing sacroiliitis, or delineating the presence and extent of enthesitis and dactylitis. The radiologist's familiarity with recent classification criteria, in addition to the traditional diagnostic characteristics of the individual inflammatory arthritides, maximizes the productive interface between the radiologist and the rheumatologist. ©RSNA, 2016.
Collapse
Affiliation(s)
- Eric Y Chang
- From the Radiology Service, VA San Diego Healthcare System, 3350 La Jolla Village Dr, MC 114, San Diego, CA 92161 (E.Y.C., K.C.C.); and the Department of Radiology (E.Y.C., K.C.C., B.K.H.) and Division of Rheumatology, Allergy and Immunology, Department of Medicine (A.K.), University of California, San Diego Medical Center, San Diego, Calif
| | - Karen C Chen
- From the Radiology Service, VA San Diego Healthcare System, 3350 La Jolla Village Dr, MC 114, San Diego, CA 92161 (E.Y.C., K.C.C.); and the Department of Radiology (E.Y.C., K.C.C., B.K.H.) and Division of Rheumatology, Allergy and Immunology, Department of Medicine (A.K.), University of California, San Diego Medical Center, San Diego, Calif
| | - Brady K Huang
- From the Radiology Service, VA San Diego Healthcare System, 3350 La Jolla Village Dr, MC 114, San Diego, CA 92161 (E.Y.C., K.C.C.); and the Department of Radiology (E.Y.C., K.C.C., B.K.H.) and Division of Rheumatology, Allergy and Immunology, Department of Medicine (A.K.), University of California, San Diego Medical Center, San Diego, Calif
| | - Arthur Kavanaugh
- From the Radiology Service, VA San Diego Healthcare System, 3350 La Jolla Village Dr, MC 114, San Diego, CA 92161 (E.Y.C., K.C.C.); and the Department of Radiology (E.Y.C., K.C.C., B.K.H.) and Division of Rheumatology, Allergy and Immunology, Department of Medicine (A.K.), University of California, San Diego Medical Center, San Diego, Calif
| |
Collapse
|
193
|
Zheng W, Lin P, Ma Y, Shao X, Chen H, Chen D, Liu X, Li X, Ye H. Psoralen promotes the expression of cyclin D1 in chondrocytes via the Wnt/β-catenin signaling pathway. Int J Mol Med 2017; 40:1377-1384. [PMID: 28949389 PMCID: PMC5627873 DOI: 10.3892/ijmm.2017.3148] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/06/2017] [Indexed: 02/05/2023] Open
Abstract
Psoralen (PSO), the active ingredient of Fructus Psoraleae (FP) the dried ripe fruit of Psoralea corylifolia L., has been commonly used in traditional Chinese medicine (TCM) for the treatment of osteoarthritis (OA). We found that PSO activates cartilaginous cellular functions of rat chondrocytes in vitro. However, the effect of PSO on chondrocyte proliferation and the precise mechanisms involved remain to be elucidated. We investigated the effects of PSO on chondrocytes isolated from Sprague-Dawley (SD) rats and evaluated involvement of the Wnt/β-catenin signaling pathway. The viability of chondrocytes treated with PSO was increased in a dose- and time-dependent manner, as assessed by MTT assay. We found that the gene expression and protein levels of Wnt-4, Frizzled-2, β-catenin and cyclin D1 in the PSO-treated chondrocytes were significantly upregulated, while the gene expression and protein level of glycogen synthase kinase-3β (GSK-3β) were downregulated, compared with the untreated chondrocytes. By immunofluorescence, we also found that PSO induced β-catenin nuclear translocation. Importantly, the expression of β-catenin and cyclin D1 was partly inhibited by Dickkopf-1 (DKK-1), an inhibitor of the Wnt/β-catenin signaling pathway. Additionally, Col-II expression in chondrocytes was increased after treatment with PSO. Taken together, these results indicate that PSO promotes chondrocyte proliferation by activating the Wnt/β-catenin signaling pathway, and it may play an important role in the treatment of OA.
Collapse
Affiliation(s)
- Wenwei Zheng
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Pingdong Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yuhuan Ma
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiang Shao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Houhuang Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Da Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xianxiang Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hongzhi Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
194
|
Tu J, Stoner S, Fromm PD, Wang T, Chen D, Tuckermann J, Cooper MS, Seibel MJ, Zhou H. Endogenous glucocorticoid signaling in chondrocytes attenuates joint inflammation and damage. FASEB J 2017; 32:478-487. [PMID: 28928247 DOI: 10.1096/fj.201700659r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/05/2017] [Indexed: 01/10/2023]
Abstract
Previous studies demonstrated that endogenous glucocorticoid signaling in osteoblasts promotes inflammation in murine immune arthritis. The current study determined whether disruption of endogenous glucocorticoid signaling in chondrocytes also modulates the course and severity of arthritis. Tamoxifen-inducible chondrocyte-targeted glucocorticoid receptor-knockout (chGRKO) mice were generated by breeding GRflox/flox mice with tamoxifen-inducible collagen 2a1 Cre (Col2a1-CreERT2) mice. Antigen-induced arthritis (AIA) and K/BxN serum transfer-induced arthritis (STIA) were induced in both chGRKO mice and their Cre-negative GRflox/flox littermates [wild type (WT)]. Arthritis was assessed by measurement of joint swelling and histology of joints collected at d 14. Neutrophil activity and gene expression patterns associated with cartilage damage were also evaluated. In both arthritis models clinical (joint swelling) and histologic indices of inflammatory activity were significantly greater in chGRKO than in WT mice. The STIA model was characterized by early up-regulation of CXCR2/CXCR2 ligand gene expression in ankle tissues, and significant and selective expansion of splenic CXCR2+ neutrophils in chGRKO arthritic compared to WT arthritic mice. At later stages, gene expression of enzymes involved in cartilage degradation was up-regulated in chGRKO but not WT arthritic mice. Therefore, we summarize that chondrocytes actively mitigate local joint inflammation, cartilage degradation and systemic neutrophil activity via a glucocorticoid-dependent pathway.-Tu, J., Stoner, S., Fromm, P. D., Wang, T., Chen, D., Tuckermann, J., Cooper, M. S., Seibel, M. J., Zhou, H. Endogenous glucocorticoid signaling in chondrocytes attenuates joint inflammation and damage.
Collapse
Affiliation(s)
- Jinwen Tu
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia; .,Adrenal Steroid Laboratory, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Shihani Stoner
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia
| | - Phillip D Fromm
- Dendritic Cell Research, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia
| | - Tingyu Wang
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and
| | - Mark S Cooper
- Adrenal Steroid Laboratory, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology and Metabolism, Concord Hospital, Sydney, New South Wales, Australia
| | - Markus J Seibel
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology and Metabolism, Concord Hospital, Sydney, New South Wales, Australia
| | - Hong Zhou
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia; .,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology and Metabolism, Concord Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
195
|
Machida T, Nishida K, Nasu Y, Nakahara R, Ozawa M, Harada R, Horita M, Takeshita A, Kaneda D, Yoshida A, Ozaki T. Inhibitory effect of JAK inhibitor on mechanical stress-induced protease expression by human articular chondrocytes. Inflamm Res 2017; 66:999-1009. [PMID: 28752178 DOI: 10.1007/s00011-017-1083-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To investigate whether janus kinase (JAK) inhibitor exhibits a chondro-protective effect against mechanical stress-induced expression of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) and matrix metalloproteinase (MMPs) in human chondrocytes. MATERIALS AND METHODS Normal human articular chondrocytes were seeded onto stretch chambers and incubated with or without tofacitinib (1000 nM) for 12 h before mechanical stimulation or cytokine stimulation. Uni-axial cyclic tensile strain (CTS) (0.5 Hz, 10% elongation, 30 min) was applied and the gene expression levels of type II collagen α1 chain (COL2A1), aggrecan (ACAN), ADAMTS4, ADAMTS5, MMP13, and runt-related transcription factor 2 (RUNX-2) were examined by real-time polymerase chain reaction. Nuclear translocation of RUNX-2 and nuclear factor-κB (NF-κB) was examined by immunocytochemistry, and phosphorylation of mitogen-activated protein kinase (MAPK) and signaling transducer and activator of transcription (STAT) 3 was examined by western blotting. The concentration of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in the supernatant was examined by enzyme-linked immunosorbent assay. RESULTS COL2A1 and ACAN gene expression levels were decreased by CTS, but these catabolic effects were canceled by tofacitinib. Tofacitinib significantly down-regulated CTS-induced expression of ADAMTS4, ADAMTS5, MMP13, and RUNX2, and the release of IL-6 in supernatant by chondrocytes. Tofacitinib also reduced CTS-induced nuclear translocation of RUNX-2 and NF-κB, and phosphorylation of MAPK and STAT3. CONCLUSION Tofacitinib suppressed mechanical stress-induced expression of ADAMTS4, ADAMTS5, and MMP13 by human chondrocytes through inhibition of the JAK/STAT and MAPK cascades.
Collapse
Affiliation(s)
- Takahiro Machida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Keiichiro Nishida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan.
| | - Yoshihisa Nasu
- Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Ryuichi Nakahara
- Department of Musculoskeletal Traumatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Masatsugu Ozawa
- Department of Orthopaedic Surgery, Okayama City Hospital, 3-20-1 Kitanagaseomote-cho, Okayama, 700-8557, Japan
| | - Ryozo Harada
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Masahiro Horita
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Ayumu Takeshita
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Daisuke Kaneda
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| |
Collapse
|
196
|
Fan Q, Liu Z, Shen C, Li H, Ding J, Jin F, Sha L, Zhang Z. Microarray study of gene expression profile to identify new candidate genes involved in the molecular mechanism of leptin-induced knee joint osteoarthritis in rat. Hereditas 2017; 155:4. [PMID: 28690479 PMCID: PMC5496599 DOI: 10.1186/s41065-017-0039-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is one of the most prevalent chronic joint diseases while the precise genetic mechanism remains elusive. In this study, we investigated the gene expression profile in OA by microarray analysis. RESULTS Histopathological characteristics of OA cartilage were examined using a rat model of leptin-induced OA. Gene expression profile of leptin-induced articular cartilage and healthy rat cartilage were compared using genome-wide microarray hybridization. A total of 1857 genes differentially expressed genes (1197 upregulated and 660 downregulated) were identified, some of which are known to be associated with leptin-induced OA phenotype. These included genes related to MMPs, inflammatory factors, growth factors, apoptotic genes and osteogenic genes. In addition, upregulated expressions of some new candidate genes, which have hitherto fore not been linked to OA (such as BCL2L11) were detected in leptin-induced OA cartilage, which suggests that these genes might be important for OA molecular mechanism. CONCLUSION Our findings suggest that pathogenesis of leptin-induced OA involves modulation of expression of multiple genes, although the underlying molecular mechanisms need to be studied further. Further investigation of leptin-induced gene expression changes is needed to gain new insights into the molecular mechanism of OA pathogenesis.
Collapse
Affiliation(s)
- Qing Fan
- Departments of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, 1665 Kongjiang Road, Yangpu, Shanghai, 200092 China
| | - Zhu Liu
- Departments of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, 1665 Kongjiang Road, Yangpu, Shanghai, 200092 China
| | - Chao Shen
- Departments of Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, 200092 People's Republic of China
| | - Hai Li
- Departments of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, 1665 Kongjiang Road, Yangpu, Shanghai, 200092 China
| | - Jing Ding
- Departments of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, 1665 Kongjiang Road, Yangpu, Shanghai, 200092 China
| | - Fangchun Jin
- Departments of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, 1665 Kongjiang Road, Yangpu, Shanghai, 200092 China
| | - Lin Sha
- Departments of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, 1665 Kongjiang Road, Yangpu, Shanghai, 200092 China
| | - Ziming Zhang
- Departments of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, 1665 Kongjiang Road, Yangpu, Shanghai, 200092 China
| |
Collapse
|
197
|
Physiological concentrations of soluble uric acid are chondroprotective and anti-inflammatory. Sci Rep 2017; 7:2359. [PMID: 28539647 PMCID: PMC5443811 DOI: 10.1038/s41598-017-02640-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/13/2017] [Indexed: 01/18/2023] Open
Abstract
High uric acid levels are a risk factor for cardiovascular disorders and gout; however, the role of physiological concentrations of soluble uric acid (sUA) is poorly understood. This study aimed to clarify the effects of sUA in joint inflammation. Both cell cultures of primary porcine chondrocytes and mice with collagen-induced arthritis (CIA) were examined. We showed that sUA inhibited TNF-α- and interleukin (IL)-1β–induced inducible nitric oxide synthase, cyclooxygenase-2 and matrix metalloproteinase (MMP)-13 expression. Examination of the mRNA expression of several MMPs and aggrecanases confirmed that sUA exerts chondroprotective effects by inhibiting the activity of many chondro-destructive enzymes. These effects attenuated collagen II loss in chondrocytes and reduced proteoglycan degradation in cartilage explants. These results were reproduced in chondrocytes cultured in three-dimensional (3-D) alginate beads. Molecular studies revealed that sUA inhibited the ERK/AP-1 signalling pathway, but not the IκBα-NF-κB signalling pathway. Increases in plasma uric acid levels facilitated by the provision of oxonic acid, a uricase inhibitor, to CIA mice exerted both anti-inflammatory and arthroprotective effects in these animals, as demonstrated by their arthritis severity scores and immunohistochemical analysis results. Our study demonstrated that physiological concentrations of sUA displayed anti-inflammatory and chondroprotective effects both in vitro and in vivo.
Collapse
|
198
|
Peck Y, Leom LT, Low PFP, Wang DA. Establishment of an in vitro three-dimensional model for cartilage damage in rheumatoid arthritis. J Tissue Eng Regen Med 2017; 12:e237-e249. [PMID: 28079986 DOI: 10.1002/term.2399] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/15/2016] [Accepted: 01/09/2017] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to progressive joint destruction. To further understand the process of rheumatoid cartilage damage, an in vitro model consisting of an interactive tri-culture of synovial fibroblasts (SFs), LPS-stimulated macrophages and a primary chondrocyte-based tissue-engineered construct was established. The tissue-engineered construct has a composition similar to that of human cartilage, which is rich in collagen type II and proteoglycans. Data generated from this model revealed that healthy chondrocytes were activated in the presence of SFs and macrophages. The activated chondrocytes subsequently displayed aberrant behaviours as seen in a disease state such as increased apoptosis, decreased gene expression for matrix components such as type II collagen and aggrecan, increased gene expression for tissue-degrading enzymes (MMP-1, -3, -13 and ADAMTS-4, -5), and upregulation of inflammatory mediator gene expression (TNF-α, IL-1β, IL-6 and IKBKB). Additionally, the inclusion of SFs and macrophages in the model enabled both cell types to more closely replicate an in vivo role in mediating cartilage destruction. This is evidenced by extensive matrix loss, detected in the model through immunostaining and biochemical analysis. Subsequent drug treatment with celecoxib has shown that the model was able to respond to the therapeutic effects of this drug by reversing cartilage damage. This study showed that the model was able to recapitulate certain pathological features of an RA cartilage. If properly validated, this model potentially can be used for screening new therapeutic drugs and strategies, thereby contributing to the improvement of anti-rheumatic treatment. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yvonne Peck
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Li Ting Leom
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Pei Fen Patricia Low
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Dong-An Wang
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
199
|
Kloefkorn HE, Allen KD. Quantitative histological grading methods to assess subchondral bone and synovium changes subsequent to medial meniscus transection in the rat. Connect Tissue Res 2017; 58:373-385. [PMID: 27797605 PMCID: PMC5568641 DOI: 10.1080/03008207.2016.1251425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/16/2016] [Indexed: 02/03/2023]
Abstract
AIM OF THE STUDY The importance of the medial meniscus to knee health is demonstrated by studies which show meniscus injuries significantly increase the likelihood of developing osteoarthritis (OA), and knee OA can be modeled in rodents using simulated meniscus injuries. Traditionally, histological assessments of OA in these models have focused on damage to the articular cartilage; however, OA is now viewed as a disease of the entire joint as an organ system. The aim of this study was to develop quantitative histological measures of bone and synovial changes in a rat medial meniscus injury model of knee OA. MATERIALS AND METHODS To initiate OA, a medial meniscus transection (MMT) and a medial collateral ligament transection (MCLT) were performed in 32 male Lewis rats (MMT group). MCLT alone served as the sham procedure in 32 additional rats (MCLT sham group). At weeks 1, 2, 4, and 6 post-surgery, histological assessment of subchondral bone and synovium was performed (n = 8 per group per time point). RESULTS Trabecular bone area and the ossification width at the osteochondral interface increased in both the MMT and MCLT groups. Subintimal synovial cell morphology also changed in MMT and MCLT groups relative to naïve animals. CONCLUSIONS OA affects the joint as an organ system, and quantifying changes throughout an entire joint can improve our understanding of the relationship between joint destruction and painful OA symptoms following meniscus injury.
Collapse
Affiliation(s)
- Heidi E Kloefkorn
- a J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , Gainesville , FL , USA
| | - Kyle D Allen
- a J. Crayton Pruitt Family Department of Biomedical Engineering , University of Florida , Gainesville , FL , USA
| |
Collapse
|
200
|
YKL-40-Induced Inhibition of miR-590-3p Promotes Interleukin-18 Expression and Angiogenesis of Endothelial Progenitor Cells. Int J Mol Sci 2017; 18:ijms18050920. [PMID: 28448439 PMCID: PMC5454833 DOI: 10.3390/ijms18050920] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
YKL-40, also known as human cartilage glycoprotein-39 or chitinase-3-like-1, is a pro-inflammatory protein that is highly expressed in rheumatoid arthritis (RA) patients. Angiogenesis is a critical step in the pathogenesis of RA, promoting the infiltration of inflammatory cells into joints and providing oxygen and nutrients to RA pannus. In this study, we examined the effects of YKL-40 in the production of the pro-inflammatory cytokine interleukin-18 (IL-18), and the stimulation of angiogenesis and accumulation of osteoblasts. We observed that YKL-40 induces IL-18 production in osteoblasts and thereby stimulates angiogenesis of endothelial progenitor cells (EPCs). We found that this process occurs through the suppression of miR-590-3p via the focal adhesion kinase (FAK)/PI3K/Akt signaling pathway. YKL-40 inhibition reduced angiogenesis in in vivo models of angiogenesis: the chick embryo chorioallantoic membrane (CAM) and Matrigel plug models. We report that YKL-40 stimulates IL-18 expression in osteoblasts and facilitates EPC angiogenesis.
Collapse
|