151
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
152
|
The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
153
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
154
|
Bhat K, Duhachek-Muggy S, Ramanathan R, Saki M, Alli C, Medina P, Damoiseaux R, Whitelegge J, McBride WH, Schaue D, Vlashi E, Pajonk F. 1-(4-nitrobenzenesulfonyl)-4-penylpiperazine increases the number of Peyer's patch-associated regenerating crypts in the small intestines after radiation injury. Radiother Oncol 2018; 132:8-15. [PMID: 30825974 DOI: 10.1016/j.radonc.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Exposure to lethal doses of radiation has severe effects on normal tissues. Exposed individuals experience a plethora of symptoms in different organ systems including the gastrointestinal (GI) tract, summarized as Acute Radiation Syndrome (ARS). There are currently no approved drugs for mitigating GI-ARS. A recent high-throughput screen performed at the UCLA Center for Medical Countermeasures against Radiation identified compounds containing sulfonylpiperazine groups with radiation mitigation properties to the hematopoietic system and the gut. Among these 1-[(4-Nitrophenyl)sulfonyl]-4-phenylpiperazine (Compound #5) efficiently mitigated gastrointestinal ARS. However, the mechanism of action and target cells of this drug is still unknown. In this study we examined if Compound #5 affects gut-associated lymphoid tissue (GALT) with its subepithelial domes called Peyer's patches. METHODS C3H mice were irradiated with 0 or 12 Gy total body irradiation (TBI). A single dose of Compound #5 or solvent was administered subcutaneously 24 h later. 48 h after irradiation the mice were sacrificed, and the guts examined for changes in the number of visible Peyer's patches. In some experiments the mice received 4 daily injections of treatment and were sacrificed 96 h after TBI. For immune histochemistry gut tissues were fixed in formalin and embedded in paraffin blocks. Sections were stained with H&E, anti-Ki67 or a TUNEL assay to assess the number of regenerating crypts, mitotic and apoptotic indices. Cells isolated from Peyer's patches were subjected to immune profiling using flow cytometry. RESULTS Compound #5 significantly increased the number of visible Peyer's patches when compared to its control in non-irradiated and irradiated mice. Additionally, assessment of total cells per Peyer's patch isolated from these mice demonstrated an overall increase in the total number of Peyer's patch cells per mouse in Compound #5-treated mice. In non-irradiated animals the number of CD11bhigh in Peyer's patches increased significantly. These Compound #5-driven increases did not coincide with a decrease in apoptosis or an increase in proliferation in the germinal centers inside Peyer's patches 24 h after drug treatment. A single dose of Compound #5 significantly increased the number of CD45+ cells after 12 Gy TBI. Importantly, 96 h after 12 Gy TBI Compound #5 induced a significant rise in the number of visible Peyer's patches and the number of Peyer's patch-associated regenerating crypts. CONCLUSION In summary, our study provides evidence that Compound #5 leads to an influx of immune cells into GALT, thereby supporting crypt regeneration preferentially in the proximity of Peyer's patches.
Collapse
Affiliation(s)
- Kruttika Bhat
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Sara Duhachek-Muggy
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Renuka Ramanathan
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Mohammad Saki
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Claudia Alli
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Paul Medina
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Robert Damoiseaux
- Molecular Screening Shared Resource, University of California at Los Angeles, USA; Jonsson Comprehensive Cancer Center at UCLA, USA
| | - Julian Whitelegge
- Molecular Screening Shared Resource, University of California at Los Angeles, USA; Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, USA
| | - William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA; Jonsson Comprehensive Cancer Center at UCLA, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA; Jonsson Comprehensive Cancer Center at UCLA, USA
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA; Jonsson Comprehensive Cancer Center at UCLA, USA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, USA; Jonsson Comprehensive Cancer Center at UCLA, USA.
| |
Collapse
|
155
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2018; 40:98-112. [PMID: 30579704 DOI: 10.1016/j.it.2018.11.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/18/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
Abstract
The mononuclear phagocyte system (MPS) is defined as a cell lineage in which committed marrow progenitors give rise to blood monocytes and tissue macrophages. Here, we discuss the concept of self-proscribed macrophage territories and homeostatic regulation of tissue macrophage abundance through growth factor availability. Recent studies have questioned the validity of the MPS model and argued that tissue-resident macrophages are a separate lineage seeded during development and maintained by self-renewal. We address this issue; discuss the limitations of inbred mouse models of monocyte-macrophage homeostasis; and summarize the evidence suggesting that during postnatal life, monocytes can replace resident macrophages in all major organs and adopt their tissue-specific gene expression. We conclude that the MPS remains a valid and accurate framework for understanding macrophage development and homeostasis.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
156
|
Permanent neuroglial remodeling of the retina following infiltration of CSF1R inhibition-resistant peripheral monocytes. Proc Natl Acad Sci U S A 2018; 115:E11359-E11368. [PMID: 30442669 PMCID: PMC6275537 DOI: 10.1073/pnas.1807123115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This work contributes to the understanding of the enigmatic progressive retinal damage following acute ocular surface injury. Clinical findings in patients suggest that such injuries can adversely affect the retina. This study demonstrates that corneal injury leads to rapid infiltration of blood-derived monocytes into the retina and to subsequent remodeling of the neuroglial system. In contrast to previously held belief, this study shows that the blood-derived monocytes engraft permanently into the retina and differentiate into microglia-like cells. Although these cells are morphologically indistinguishable from native microglia, they retain a distinct signature and insensitivity to CSF1R inhibition and exhibit a reactive phenotype which persists long after the noxious stimuli is removed, ultimately contributing to progressive neuroretinal degeneration. Previous studies have demonstrated that ocular injury can lead to prompt infiltration of bone-marrow–derived peripheral monocytes into the retina. However, the ability of these cells to integrate into the tissue and become microglia has not been investigated. Here we show that such peripheral monocytes that infiltrate into the retina after ocular injury engraft permanently, migrate to the three distinct microglia strata, and adopt a microglia-like morphology. In the absence of ocular injury, peripheral monocytes that repopulate the retina after depletion with colony-stimulating factor 1 receptor (CSF1R) inhibitor remain sensitive to CSF1R inhibition and can be redepleted. Strikingly, consequent to ocular injury, the engrafted peripheral monocytes are resistant to depletion by CSF1R inhibitor and likely express low CSF1R. Moreover, these engrafted monocytes remain proinflammatory, expressing high levels of MHC-II, IL-1β, and TNF-α over the long term. The observed permanent neuroglia remodeling after injury constitutes a major immunological change that may contribute to progressive retinal degeneration. These findings may also be relevant to other degenerative conditions of the retina and the central nervous system.
Collapse
|
157
|
Naik S, Larsen SB, Cowley CJ, Fuchs E. Two to Tango: Dialog between Immunity and Stem Cells in Health and Disease. Cell 2018; 175:908-920. [PMID: 30388451 PMCID: PMC6294328 DOI: 10.1016/j.cell.2018.08.071] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Abstract
Stem cells regenerate tissues in homeostasis and under stress. By taking cues from their microenvironment or "niche," they smoothly transition between these states. Immune cells have surfaced as prominent members of stem cell niches across the body. Here, we draw parallels between different stem cell niches to explore the context-specific interactions that stem cells have with tissue-resident and recruited immune cells. We also highlight stem cells' innate ability to sense and respond to stress and the enduring memory that forms from such encounters. This fascinating crosstalk holds great promise for novel therapies in inflammatory diseases and regenerative medicine.
Collapse
Affiliation(s)
- Shruti Naik
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Samantha B Larsen
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Christopher J Cowley
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
158
|
De Schepper S, Verheijden S, Aguilera-Lizarraga J, Viola MF, Boesmans W, Stakenborg N, Voytyuk I, Schmidt I, Boeckx B, Dierckx de Casterlé I, Baekelandt V, Gonzalez Dominguez E, Mack M, Depoortere I, De Strooper B, Sprangers B, Himmelreich U, Soenen S, Guilliams M, Vanden Berghe P, Jones E, Lambrechts D, Boeckxstaens G. Self-Maintaining Gut Macrophages Are Essential for Intestinal Homeostasis. Cell 2018; 175:400-415.e13. [DOI: 10.1016/j.cell.2018.07.048] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/26/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
|
159
|
Pridans C, Raper A, Davis GM, Alves J, Sauter KA, Lefevre L, Regan T, Meek S, Sutherland L, Thomson AJ, Clohisey S, Bush SJ, Rojo R, Lisowski ZM, Wallace R, Grabert K, Upton KR, Tsai YT, Brown D, Smith LB, Summers KM, Mabbott NA, Piccardo P, Cheeseman MT, Burdon T, Hume DA. Pleiotropic Impacts of Macrophage and Microglial Deficiency on Development in Rats with Targeted Mutation of the Csf1r Locus. THE JOURNAL OF IMMUNOLOGY 2018; 201:2683-2699. [PMID: 30249809 PMCID: PMC6196293 DOI: 10.4049/jimmunol.1701783] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
Abstract
We have produced Csf1r-deficient rats by homologous recombination in embryonic stem cells. Consistent with the role of Csf1r in macrophage differentiation, there was a loss of peripheral blood monocytes, microglia in the brain, epidermal Langerhans cells, splenic marginal zone macrophages, bone-associated macrophages and osteoclasts, and peritoneal macrophages. Macrophages of splenic red pulp, liver, lung, and gut were less affected. The pleiotropic impacts of the loss of macrophages on development of multiple organ systems in rats were distinct from those reported in mice. Csf1r-/- rats survived well into adulthood with postnatal growth retardation, distinct skeletal and bone marrow abnormalities, infertility, and loss of visceral adipose tissue. Gene expression analysis in spleen revealed selective loss of transcripts associated with the marginal zone and, in brain regions, the loss of known and candidate novel microglia-associated transcripts. Despite the complete absence of microglia, there was little overt phenotype in brain, aside from reduced myelination and increased expression of dopamine receptor-associated transcripts in striatum. The results highlight the redundant and nonredundant functions of CSF1R signaling and of macrophages in development, organogenesis, and homeostasis.
Collapse
Affiliation(s)
- Clare Pridans
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom; .,The University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Anna Raper
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Gemma M Davis
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Joana Alves
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Kristin A Sauter
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Tim Regan
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Stephen Meek
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Linda Sutherland
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Alison J Thomson
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom.,New World Laboratories, Laval, Quebec H7V 5B7, Canada
| | - Sara Clohisey
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Stephen J Bush
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom.,Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Rocío Rojo
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Zofia M Lisowski
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Robert Wallace
- Department of Orthopaedic Surgery, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Kathleen Grabert
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Kyle R Upton
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yi Ting Tsai
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Deborah Brown
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Lee B Smith
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.,Faculty of Science, University of Newcastle, Callaghan, New South Wales 2309, Australia; and
| | - Kim M Summers
- Mater Research-University of Queensland, Brisbane, Queensland 4101, Australia
| | - Neil A Mabbott
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Pedro Piccardo
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Michael T Cheeseman
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - Tom Burdon
- The Roslin Institute, The University of Edinburgh, Easter Bush EH25 9RG, United Kingdom
| | - David A Hume
- The University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom; .,Mater Research-University of Queensland, Brisbane, Queensland 4101, Australia
| |
Collapse
|
160
|
Lumelsky N, O'Hayre M, Chander P, Shum L, Somerman MJ. Autotherapies: Enhancing Endogenous Healing and Regeneration. Trends Mol Med 2018; 24:919-930. [PMID: 30213702 DOI: 10.1016/j.molmed.2018.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/09/2018] [Accepted: 08/17/2018] [Indexed: 12/31/2022]
Abstract
The promise of tissue engineering and regenerative medicine to reduce the burden of disease and improve quality of life are widely acknowledged. Traditional tissue engineering and regenerative medicine approaches rely on generation of tissue constructs in vitro for subsequent transplantation or injection of exogenously manipulated cells into a host. While promising, few such therapies have succeeded in clinical practice. Here, we propose that recent advances in stem cell and developmental biology, immunology, bioengineering, and material sciences, position us to develop a new generation of in vivo regenerative medicine therapies, which we term autotherapies. Autotherapies are strategies based on optimizing endogenous tissue responses and capitalizing on manipulation of stem cell niches and endogenous tissue microenvironments to enhance tissue healing and regeneration.
Collapse
Affiliation(s)
- Nadya Lumelsky
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 6701 Democracy Blvd., Bethesda, MD 20892-4878, USA.
| | - Morgan O'Hayre
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 6701 Democracy Blvd., Bethesda, MD 20892-4878, USA
| | - Preethi Chander
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 6701 Democracy Blvd., Bethesda, MD 20892-4878, USA
| | - Lillian Shum
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 6701 Democracy Blvd., Bethesda, MD 20892-4878, USA
| | - Martha J Somerman
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 6701 Democracy Blvd., Bethesda, MD 20892-4878, USA
| |
Collapse
|
161
|
Hamilton CA, Young R, Jayaraman S, Sehgal A, Paxton E, Thomson S, Katzer F, Hope J, Innes E, Morrison LJ, Mabbott NA. Development of in vitro enteroids derived from bovine small intestinal crypts. Vet Res 2018; 49:54. [PMID: 29970174 PMCID: PMC6029049 DOI: 10.1186/s13567-018-0547-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
Cattle are an economically important domestic animal species. In vitro 2D cultures of intestinal epithelial cells or epithelial cell lines have been widely used to study cell function and host-pathogen interactions in the bovine intestine. However, these cultures lack the cellular diversity encountered in the intestinal epithelium, and the physiological relevance of monocultures of transformed cell lines is uncertain. Little is also known of the factors that influence cell differentiation and homeostasis in the bovine intestinal epithelium, and few cell-specific markers that can distinguish the different intestinal epithelial cell lineages have been reported. Here we describe a simple and reliable procedure to establish in vitro 3D enteroid, or "mini gut", cultures from bovine small intestinal (ileal) crypts. These enteroids contained a continuous central lumen lined with a single layer of polarized enterocytes, bound by tight junctions with abundant microvilli on their apical surfaces. Histological and transcriptional analyses suggested that the enteroids comprised a mixed population of intestinal epithelial cell lineages including intestinal stem cells, enterocytes, Paneth cells, goblet cells and enteroendocrine cells. We show that bovine enteroids can be successfully maintained long-term through multiple serial passages without observable changes to their growth characteristics, morphology or transcriptome. Furthermore, the bovine enteroids can be cryopreserved and viable cultures recovered from frozen stocks. Our data suggest that these 3D bovine enteroid cultures represent a novel, physiologically-relevant and tractable in vitro system in which epithelial cell differentiation and function, and host-pathogen interactions in the bovine small intestine can be studied.
Collapse
Affiliation(s)
- Carly A Hamilton
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Rachel Young
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Siddharth Jayaraman
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Anuj Sehgal
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,College of Medical, Veterinary and Life Sciences, University of Glasgow, 5/20 Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Edith Paxton
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Sarah Thomson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Frank Katzer
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Jayne Hope
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Elisabeth Innes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Liam J Morrison
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|