151
|
Lin G, Gao Z, Wu S, Zheng J, Guo X, Zheng X, Chen R. scRNA-seq revealed high stemness epithelial malignant cell clusters and prognostic models of lung adenocarcinoma. Sci Rep 2024; 14:3709. [PMID: 38355636 PMCID: PMC10867035 DOI: 10.1038/s41598-024-54135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the sole causes of death in lung cancer patients. This study combined with single-cell RNA-seq analysis to identify tumor stem-related prognostic models to predict the prognosis of lung adenocarcinoma, chemotherapy agents, and immunotherapy efficacy. mRNA expression-based stemness index (mRNAsi) was determined by One Class Linear Regression (OCLR). Differentially expressed genes (DEGs) were detected by limma package. Single-cell RNA-seq analysis in GSE123902 dataset was performed using Seurat package. Weighted Co-Expression Network Analysis (WGCNA) was built by rms package. Cell differentiation ability was determined by CytoTRACE. Cell communication analysis was performed by CellCall and CellChat package. Prognosis model was constructed by 10 machine learning and 101 combinations. Drug predictive analysis was conducted by pRRophetic package. Immune microenvironment landscape was determined by ESTIMATE, MCP-Counter, ssGSEA analysis. Tumor samples have higher mRNAsi, and the high mRNAsi group presents a worse prognosis. Turquoise module was highly correlated with mRNAsi in TCGA-LUAD dataset. scRNA analysis showed that 22 epithelial cell clusters were obtained, and higher CSCs malignant epithelial cells have more complex cellular communication with other cells and presented dedifferentiation phenomenon. Cellular senescence and Hippo signaling pathway are the major difference pathways between high- and low CSCs malignant epithelial cells. The pseudo-temporal analysis shows that cluster1, 2, high CSC epithelial cells, are concentrated at the end of the differentiation trajectory. Finally, 13 genes were obtained by intersecting genes in turquoise module, Top200 genes in hdWGCNA, DEGs in high- and low- mRNAsi group as well as DEGs in tumor samples vs. normal group. Among 101 prognostic models, average c-index (0.71) was highest in CoxBoost + RSF model. The high-risk group samples had immunosuppressive status, higher tumor malignancy and low benefit from immunotherapy. This work found that malignant tumors and malignant epithelial cells have high CSC characteristics, and identified a model that could predict the prognosis, immune microenvironment, and immunotherapy of LUAD, based on CSC-related genes. These results provided reference value for the clinical diagnosis and treatment of LUAD.
Collapse
Affiliation(s)
- GuoYong Lin
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - ZhiSen Gao
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - Shun Wu
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - JianPing Zheng
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - XiangQiong Guo
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - XiaoHong Zheng
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China
| | - RunNan Chen
- Department of Respiratory and Critical Illness Medicine, The First Hospital of Putian, Putian, 351100, China.
| |
Collapse
|
152
|
Qu S, Xu R, Yi G, Li Z, Zhang H, Qi S, Huang G. Patient-derived organoids in human cancer: a platform for fundamental research and precision medicine. MOLECULAR BIOMEDICINE 2024; 5:6. [PMID: 38342791 PMCID: PMC10859360 DOI: 10.1186/s43556-023-00165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/08/2023] [Indexed: 02/13/2024] Open
Abstract
Cancer is associated with a high degree of heterogeneity, encompassing both inter- and intra-tumor heterogeneity, along with considerable variability in clinical response to common treatments across patients. Conventional models for tumor research, such as in vitro cell cultures and in vivo animal models, demonstrate significant limitations that fall short of satisfying the research requisites. Patient-derived tumor organoids, which recapitulate the structures, specific functions, molecular characteristics, genomics alterations and expression profiles of primary tumors. They have been efficaciously implemented in illness portrayal, mechanism exploration, high-throughput drug screening and assessment, discovery of innovative therapeutic targets and potential compounds, and customized treatment regimen for cancer patients. In contrast to conventional models, tumor organoids offer an intuitive, dependable, and efficient in vitro research model by conserving the phenotypic, genetic diversity, and mutational attributes of the originating tumor. Nevertheless, the organoid technology also confronts the bottlenecks and challenges, such as how to comprehensively reflect intra-tumor heterogeneity, tumor microenvironment, tumor angiogenesis, reduce research costs, and establish standardized construction processes while retaining reliability. This review extensively examines the use of tumor organoid techniques in fundamental research and precision medicine. It emphasizes the importance of patient-derived tumor organoid biobanks for drug development, screening, safety evaluation, and personalized medicine. Additionally, it evaluates the application of organoid technology as an experimental tumor model to better understand the molecular mechanisms of tumor. The intent of this review is to explicate the significance of tumor organoids in cancer research and to present new avenues for the future of tumor research.
Collapse
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Rongyang Xu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- The First Clinical Medical College of Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Huayang Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
153
|
Blomberg R, Sompel K, Hauer C, Smith AJ, Peña B, Driscoll J, Hume PS, Merrick DT, Tennis MA, Magin CM. Hydrogel-Embedded Precision-Cut Lung Slices Model Lung Cancer Premalignancy Ex Vivo. Adv Healthc Mater 2024; 13:e2302246. [PMID: 37953708 PMCID: PMC10872976 DOI: 10.1002/adhm.202302246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Lung cancer is the leading global cause of cancer-related deaths. Although smoking cessation is the best prevention, 50% of lung cancer diagnoses occur in people who have quit smoking. Research into treatment options for high-risk patients is constrained to rodent models, which are time-consuming, expensive, and require large cohorts. Embedding precision-cut lung slices (PCLS) within an engineered hydrogel and exposing this tissue to vinyl carbamate, a carcinogen from cigarette smoke, creates an in vitro model of lung cancer premalignancy. Hydrogel formulations are selected to promote early lung cancer cellular phenotypes and extend PCLS viability to six weeks. Hydrogel-embedded PCLS are exposed to vinyl carbamate, which induces adenocarcinoma in mice. Analysis of proliferation, gene expression, histology, tissue stiffness, and cellular content after six weeks reveals that vinyl carbamate induces premalignant lesions with a mixed adenoma/squamous phenotype. Putative chemoprevention agents diffuse through the hydrogel and induce tissue-level changes. The design parameters selected using murine tissue are validated with hydrogel-embedded human PCLS and results show increased proliferation and premalignant lesion gene expression patterns. This tissue-engineered model of human lung cancer premalignancy is the foundation for more sophisticated ex vivo models that enable the study of carcinogenesis and chemoprevention strategies.
Collapse
Affiliation(s)
- Rachel Blomberg
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
| | - Kayla Sompel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Caroline Hauer
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Alex J Smith
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brisa Peña
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
- Cardiovascular Institute & Adult Medical Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jennifer Driscoll
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Patrick S Hume
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Daniel T Merrick
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Meredith A Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
154
|
Sharma K, Dey S, Karmakar R, Rengan AK. A comprehensive review of 3D cancer models for drug screening and translational research. CANCER INNOVATION 2024; 3:e102. [PMID: 38948533 PMCID: PMC11212324 DOI: 10.1002/cai2.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 07/02/2024]
Abstract
The 3D cancer models fill the discovery gap of 2D cancer models and play an important role in cancer research. In addition to cancer cells, a range of other factors include the stroma, density and composition of extracellular matrix, cancer-associated immune cells (e.g., cancer-associated fibroblasts cancer cell-stroma interactions and subsequent interactions, and a number of other factors (e.g., tumor vasculature and tumor-like microenvironment in vivo) has been widely ignored in the 2D concept of culture. Despite this knowledge, the continued use of monolayer cell culture methods has led to the failure of a series of clinical trials. This review discusses the immense importance of tumor microenvironment (TME) recapitulation in cancer research, prioritizing the individual roles of TME elements in cancer histopathology. The TME provided by the 3D model fulfills the requirements of in vivo spatiotemporal arrangement, components, and is helpful in analyzing various different aspects of drug sensitivity in preclinical and clinical trials, some of which are discussed here. Furthermore, it discusses models for the co-assembly of different TME elements in vitro and focuses on their synergistic function and responsiveness as tumors. Furthermore, this review broadly describes of a handful of recently developed 3D models whose main focus is limited to drug development and their screening and/or the impact of this approach in preclinical and translational research.
Collapse
Affiliation(s)
- Karthikey Sharma
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| | - Sreenath Dey
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| | - Rounik Karmakar
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| | - Aravind Kumar Rengan
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| |
Collapse
|
155
|
Chen W, Lin F, Feng X, Yao Q, Yu Y, Gao F, Zhou J, Pan Q, Wu J, Yang J, Yu J, Cao H, Li L. MSC-derived exosomes attenuate hepatic fibrosis in primary sclerosing cholangitis through inhibition of Th17 differentiation. Asian J Pharm Sci 2024; 19:100889. [PMID: 38419761 PMCID: PMC10900800 DOI: 10.1016/j.ajps.2024.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/13/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) is an autoimmune cholangiopathy characterized by chronic inflammation of the biliary epithelium and periductal fibrosis, with no curative treatment available, and liver transplantation is inevitable for end-stage patients. Human placental mesenchymal stem cell (hpMSC)-derived exosomes have demonstrated the ability to prevent fibrosis, inhibit collagen production and possess immunomodulatory properties in autoimmune liver disease. Here, we prepared hpMSC-derived exosomes (ExoMSC) and further investigated the anti-fibrotic effects and detailed mechanism on PSC based on Mdr2-/- mice and multicellular organoids established from PSC patients. The results showed that ExoMSC ameliorated liver fibrosis in Mdr2-/- mice with significant collagen reduction in the preductal area where Th17 differentiation was inhibited as demonstrated by RNAseq analysis, and the percentage of CD4+IL-17A+T cells was reduced both in ExoMSC-treated Mdr2-/- mice (Mdr2-/--Exo) in vivo and ExoMSC-treated Th17 differentiation progressed in vitro. Furthermore, ExoMSC improved the hypersecretory phenotype and intercellular interactions in the hepatic Th17 microenvironment by regulating PERK/CHOP signaling as supported by multicellular organoids. Thus, our data demonstrate the anti-fibrosis effect of ExoMSC in PSC disease by inhibiting Th17 differentiation, and ameliorating the Th17-induced microenvironment, indicating the promising potential therapeutic role of ExoMSC in liver fibrosis of PSC or Th17-related diseases.
Collapse
Affiliation(s)
- Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Feiyan Lin
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jinfeng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| |
Collapse
|
156
|
Abstract
Molecular abnormalities that shape human neoplasms dissociate their phenotypic landscape from that of the healthy counterpart. Through the lens of a microscope, tumour pathology optically captures such aberrations projected onto a tissue slide and has categorized human epithelial neoplasms into distinct histological subtypes based on the diverse morphogenetic and molecular programmes that they manifest. Tumour histology often reflects tumour aggressiveness, patient prognosis and therapeutic vulnerability, and thus has been used as a de facto diagnostic tool and for making clinical decisions. However, it remains elusive how the diverse histological subtypes arise and translate into pleiotropic biological phenotypes. Molecular analysis of clinical tumour tissues and their culture, including patient-derived organoids, and add-back genetic reconstruction of tumorigenic pathways using gene engineering in culture models and rodents further elucidated molecular mechanisms that underlie morphological variations. Such mechanisms include genetic mutations and epigenetic alterations in cellular identity codes that erode hard-wired morphological programmes and histologically digress tumours from the native tissues. Interestingly, tumours acquire the ability to grow independently of the niche-driven stem cell ecosystem along with these morphological alterations, providing a biological rationale for histological diversification during tumorigenesis. This Review comprehensively summarizes our current understanding of such plasticity in the histological and lineage commitment fostered cooperatively by molecular alterations and the tumour environment, and describes basic and clinical implications for future cancer therapy.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiro Sato
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
157
|
Tan X, Kong D, Tao Z, Cheng F, Zhang B, Wang Z, Mei Q, Chen C, Wu K. Simultaneous inhibition of FAK and ROS1 synergistically repressed triple-negative breast cancer by upregulating p53 signalling. Biomark Res 2024; 12:13. [PMID: 38273343 PMCID: PMC10809663 DOI: 10.1186/s40364-024-00558-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype lacking effective targeted therapies, necessitating innovative treatment approaches. While targeting ROS proto-oncogene 1 (ROS1) with crizotinib has shown promise, resistance remains a limitation. Recent evidence links focal adhesion kinase (FAK) to drug resistance, prompting our study to assess the combined impact of FAK inhibitor IN10018 and crizotinib in TNBC and elucidate the underlying mechanisms. METHODS We employed the Timer database to analyze FAK and ROS1 mRNA levels in TNBC and adjacent normal tissues. Furthermore, we investigated the correlation between FAK, ROS1, and TNBC clinical prognosis using the GSE database. We conducted various in vitro assays, including cell viability, colony formation, flow cytometry, EdU assays, and western blotting. Additionally, TNBC xenograft and human TNBC organoid models were established to assess the combined therapy's efficacy. To comprehensively understand the synergistic anti-tumor mechanisms, we utilized multiple techniques, such as RNA sequencing, immunofluorescence, cell flow cytometry, C11-BODIPY staining, MDA assay, and GSH assay. RESULTS The Timer database revealed higher levels of FAK and ROS1 in TNBC tissues compared to normal tissues. Analysis of GEO databases indicated that patients with high FAK and ROS1 expression had the poorest prognosis. Western blotting confirmed increased p-FAK expression in crizotinib-resistant TNBC cells. In vitro experiments showed that the combination therapy down-regulated cyclin B1, p-Cdc2, and Bcl2 while up-regulating BAX, cleaved-Caspase-3, cleaved-Caspase-9, and cleaved PARP. In TNBC xenograft models, the tumor volume in the combination therapy group was 73% smaller compared to the control group (p < 0.0001). Additionally, the combination therapy resulted in a 70% reduction in cell viability in human TNBC organoid models (p < 0.0001). RNA sequencing analysis of TNBC cells and xenograft tumor tissues highlighted enrichment in oxidative stress, glutathione metabolism, and p53 pathways. The combined group displayed a fivefold rise in the reactive oxygen species level, a 69% decrease in the GSH/GSSG ratio, and a sixfold increase in the lipid peroxidation in comparison to the control group. Western blotting demonstrated p53 upregulation and SCL7A11 and GPX4 downregulation in the combination group. The addition of a p53 inhibitor reversed these effects. CONCLUSION Our study demonstrates that the combination of IN10018 and crizotinib shows synergistic antitumor effects in TNBC. Mechanistically, this combination inhibits cell proliferation, enhances apoptosis, and induces ferroptosis, which is associated with increased p53 levels.
Collapse
Affiliation(s)
- Ximin Tan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, China
| | - Zhuoli Tao
- Department of Breast and Thyroid Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fangling Cheng
- Hepatic Surgery Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | | | - Zaiqi Wang
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
158
|
Hicks WH, Gattie LC, Traylor JI, Davar D, Najjar YG, Richardson DO TE, McBrayer SK, Abdullah KG. Matched three-dimensional organoids and two-dimensional cell lines of melanoma brain metastases mirror response to targeted molecular therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576318. [PMID: 38328251 PMCID: PMC10849477 DOI: 10.1101/2024.01.18.576318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Purpose Despite significant advances in the treatment paradigm for patients with metastatic melanoma, melanoma brain metastasis (MBM) continues to represent a significant treatment challenge. The study of MBM is limited, in part, by shortcomings in existing preclinical models. Surgically eXplanted Organoids (SXOs) are ex vivo, three-dimensional cultures prepared from primary tissue samples with minimal processing that recapitulate genotypic and phenotypic features of parent tumors and are grown without artificial extracellular scaffolding. We aimed to develop the first matched patient-derived SXO and cell line models of MBM to investigate responses to targeted therapy. Methods MBM SXOs were created by a novel protocol incorporating techniques for establishing glioma and cutaneous melanoma organoids. A BRAFV600K-mutant and BRAF-wildtype MBM sample were collected directly from the operating room for downstream experiments. Organoids were cultured in an optimized culture medium without an artificial extracellular scaffold. Concurrently, matched patient-derived cell lines were created. Drug screens were conducted to assess treatment response in SXOs and cell lines. Results Organoid growth was observed within 3-4 weeks, and MBM SXOs retained histological features of the parent tissue, including pleomorphic epithelioid cells with abundant cytoplasm, large nuclei, focal melanin accumulation, and strong SOX10 positivity. After sufficient growth, organoids could be manually parcellated to increase the number of replicates. Matched SXOs and cell lines demonstrated sensitivity to BRAF and MEK inhibitors. Conclusion Here, we describe the creation of a scaffold-free organoid model of MBM. Further study using SXOs may improve the translational relevance of preclinical studies and enable the study of the metastatic melanoma tumor microenvironment.
Collapse
Affiliation(s)
- William H. Hicks
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Lauren C. Gattie
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Jeffrey I Traylor
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75235, USA
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Diwakar Davar
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Yana G. Najjar
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Timothy E. Richardson DO
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 11029, USA
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75235, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalil G. Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| |
Collapse
|
159
|
Kim D, Park J, Park HC, Zhang S, Park M, Park SA, Lee SH, Lee YS, Park JS, Jeun SS, Chung YJ, Ahn S. Establishment of tumor microenvironment-preserving organoid model from patients with intracranial meningioma. Cancer Cell Int 2024; 24:36. [PMID: 38238738 PMCID: PMC10795458 DOI: 10.1186/s12935-024-03225-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Although meningioma is the most common primary brain tumor, treatments rely on surgery and radiotherapy, and recurrent meningiomas have no standard therapeutic options due to a lack of clinically relevant research models. Current meningioma cell lines or organoids cannot reflect biological features of patient tumors since they undergo transformation along culture and consist of only tumor cells without microenvironment. We aim to establish patient-derived meningioma organoids (MNOs) preserving diverse cell types representative of the tumor microenvironment. METHODS The biological features of MNOs were evaluated using WST, LDH, and collagen-based 3D invasion assays. Cellular identities in MNOs were confirmed by immunohistochemistry (IHC). Genetic alteration profiles of MNOs and their corresponding parental tumors were obtained by whole-exome sequencing. RESULTS MNOs were established from four patients with meningioma (two grade 1 and two grade 2) at a 100% succession rate. Exclusion of enzymatic dissociation-reaggregation steps endowed MNOs with original histology and tumor microenvironment. In addition, we used a liquid media culture system instead of embedding samples into Matrigel, resulting in an easy-to-handle, cost-efficient, and time-saving system. MNOs maintained their functionality and morphology after long-term culture (> 9 wk) and repeated cryopreserving-recovery cycles. The similarities between MNOs and their corresponding parental tumors were confirmed by both IHC and whole-exome sequencing. As a representative application, we utilized MNOs in drug screening, and mifepristone, an antagonist of progesterone receptor, showed prominent antitumor efficacy with respect to viability, invasiveness, and protein expression. CONCLUSION Taken together, our MNO model overcame limitations of previous meningioma models and showed superior resemblance to parental tumors. Thus, our model could facilitate translational research identifying and selecting drugs for meningioma in the era of precision medicine.
Collapse
Affiliation(s)
- Dokyeong Kim
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junseong Park
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon-Chun Park
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Songzi Zhang
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Minyoung Park
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Soon A Park
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sug Hyung Lee
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youn Soo Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yeun-Jun Chung
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
160
|
Purev E, Bahmed K, Kosmider B. Alveolar Organoids in Lung Disease Modeling. Biomolecules 2024; 14:115. [PMID: 38254715 PMCID: PMC10813493 DOI: 10.3390/biom14010115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Lung organoids display a tissue-specific functional phenomenon and mimic the features of the original organ. They can reflect the properties of the cells, such as morphology, polarity, proliferation rate, gene expression, and genomic profile. Alveolar type 2 (AT2) cells have a stem cell potential in the adult lung. They produce and secrete pulmonary surfactant and proliferate to restore the epithelium after damage. Therefore, AT2 cells are used to generate alveolar organoids and can recapitulate distal lung structures. Also, AT2 cells in human-induced pluripotent stem cell (iPSC)-derived alveolospheres express surfactant proteins and other factors, indicating their application as suitable models for studying cell-cell interactions. Recently, they have been utilized to define mechanisms of disease development, such as COVID-19, lung cancer, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this review, we show lung organoid applications in various pulmonary diseases, drug screening, and personalized medicine. In addition, stem cell-based therapeutics and approaches relevant to lung repair were highlighted. We also described the signaling pathways and epigenetic regulation of lung regeneration. It is critical to identify novel regulators of alveolar organoid generations to promote lung repair in pulmonary diseases.
Collapse
Affiliation(s)
- Enkhee Purev
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Karim Bahmed
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
161
|
Mai S, Inkielewicz-Stepniak I. Graphene Oxide Nanoparticles and Organoids: A Prospective Advanced Model for Pancreatic Cancer Research. Int J Mol Sci 2024; 25:1066. [PMID: 38256139 PMCID: PMC10817028 DOI: 10.3390/ijms25021066] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pancreatic cancer, notorious for its grim 10% five-year survival rate, poses significant clinical challenges, largely due to late-stage diagnosis and limited therapeutic options. This review delves into the generation of organoids, including those derived from resected tissues, biopsies, pluripotent stem cells, and adult stem cells, as well as the advancements in 3D printing. It explores the complexities of the tumor microenvironment, emphasizing culture media, the integration of non-neoplastic cells, and angiogenesis. Additionally, the review examines the multifaceted properties of graphene oxide (GO), such as its mechanical, thermal, electrical, chemical, and optical attributes, and their implications in cancer diagnostics and therapeutics. GO's unique properties facilitate its interaction with tumors, allowing targeted drug delivery and enhanced imaging for early detection and treatment. The integration of GO with 3D cultured organoid systems, particularly in pancreatic cancer research, is critically analyzed, highlighting current limitations and future potential. This innovative approach has the promise to transform personalized medicine, improve drug screening efficiency, and aid biomarker discovery in this aggressive disease. Through this review, we offer a balanced perspective on the advancements and future prospects in pancreatic cancer research, harnessing the potential of organoids and GO.
Collapse
Affiliation(s)
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| |
Collapse
|
162
|
Lv J, Du X, Wang M, Su J, Wei Y, Xu C. Construction of tumor organoids and their application to cancer research and therapy. Theranostics 2024; 14:1101-1125. [PMID: 38250041 PMCID: PMC10797287 DOI: 10.7150/thno.91362] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Cancer remains a severe public health burden worldwide. One of the challenges hampering effective cancer therapy is that the existing cancer models hardly recapitulate the tumor microenvironment of human patients. Over the past decade, tumor organoids have emerged as an in vitro 3D tumor model to mimic the pathophysiological characteristics of parental tumors. Various techniques have been developed to construct tumor organoids, such as matrix-based methods, hanging drop, spinner or rotating flask, nonadhesive surface, organ-on-a-chip, 3D bioprinting, and genetic engineering. This review elaborated on cell components and fabrication methods for establishing tumor organoid models. Furthermore, we discussed the application of tumor organoids to cancer modeling, basic cancer research, and anticancer therapy. Finally, we discussed current limitations and future directions in employing tumor organoids for more extensive applications.
Collapse
Affiliation(s)
- Jiajing Lv
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Institute of Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Xuan Du
- Biopharma Industry Promotion Center Shanghai, Shanghai 201203, China
| | - Miaomiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Institute of Medicine, Shanghai University, Shanghai 200444, China
- Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
163
|
Duan X, Zhang T, Feng L, de Silva N, Greenspun B, Wang X, Moyer J, Martin ML, Chandwani R, Elemento O, Leach SD, Evans T, Chen S, Pan FC. A pancreatic cancer organoid platform identifies an inhibitor specific to mutant KRAS. Cell Stem Cell 2024; 31:71-88.e8. [PMID: 38151022 PMCID: PMC11022279 DOI: 10.1016/j.stem.2023.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
KRAS mutations, mainly G12D and G12V, are found in more than 90% of pancreatic ductal adenocarcinoma (PDAC) cases. The success of drugs targeting KRASG12C suggests the potential for drugs specifically targeting these alternative PDAC-associated KRAS mutations. Here, we report a high-throughput drug-screening platform using a series of isogenic murine pancreatic organoids that are wild type (WT) or contain common PDAC driver mutations, representing both classical and basal PDAC phenotypes. We screened over 6,000 compounds and identified perhexiline maleate, which can inhibit the growth and induce cell death of pancreatic organoids carrying the KrasG12D mutation both in vitro and in vivo and primary human PDAC organoids. scRNA-seq analysis suggests that the cholesterol synthesis pathway is upregulated specifically in the KRAS mutant organoids, including the key cholesterol synthesis regulator SREBP2. Perhexiline maleate decreases SREBP2 expression levels and reverses the KRAS mutant-induced upregulation of the cholesterol synthesis pathway.
Collapse
Affiliation(s)
- Xiaohua Duan
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lingling Feng
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Benjamin Greenspun
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA
| | - Xing Wang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jenna Moyer
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - M Laura Martin
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rohit Chandwani
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Steven D Leach
- Dartmouth Cancer Center, Dartmouth College, Hanover, NH 03755, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA.
| | - Fong Cheng Pan
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| |
Collapse
|
164
|
Fatemi N, Karimpour M, Bahrami H, Zali MR, Chaleshi V, Riccio A, Nazemalhosseini-Mojarad E, Totonchi M. Current trends and future prospects of drug repositioning in gastrointestinal oncology. Front Pharmacol 2024; 14:1329244. [PMID: 38239190 PMCID: PMC10794567 DOI: 10.3389/fphar.2023.1329244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Gastrointestinal (GI) cancers comprise a significant number of cancer cases worldwide and contribute to a high percentage of cancer-related deaths. To improve survival rates of GI cancer patients, it is important to find and implement more effective therapeutic strategies with better prognoses and fewer side effects. The development of new drugs can be a lengthy and expensive process, often involving clinical trials that may fail in the early stages. One strategy to address these challenges is drug repurposing (DR). Drug repurposing is a developmental strategy that involves using existing drugs approved for other diseases and leveraging their safety and pharmacological data to explore their potential use in treating different diseases. In this paper, we outline the existing therapeutic strategies and challenges associated with GI cancers and explore DR as a promising alternative approach. We have presented an extensive review of different DR methodologies, research efforts and examples of repurposed drugs within various GI cancer types, such as colorectal, pancreatic and liver cancers. Our aim is to provide a comprehensive overview of employing the DR approach in GI cancers to inform future research endeavors and clinical trials in this field.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Karimpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoda Bahrami
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
165
|
Wang H, Ning X, Zhao F, Zhao H, Li D. Human organoids-on-chips for biomedical research and applications. Theranostics 2024; 14:788-818. [PMID: 38169573 PMCID: PMC10758054 DOI: 10.7150/thno.90492] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
Human organoids-on-chips (OrgOCs) are the synergism of human organoids (HOs) technology and microfluidic organs-on-chips (OOCs). OOCs can mimic extrinsic characteristics of organs, such as environmental clues of living tissue, while HOs are more amenable to biological analysis and genetic manipulation. By spatial cooperation, OrgOCs served as 3D organotypic living models allowing them to recapitulate critical tissue-specific properties and forecast human responses and outcomes. It represents a giant leap forward from the regular 2D cell monolayers and animal models in the improved human ecological niche modeling. In recent years, OrgOCs have offered potential promises for clinical studies and advanced the preclinical-to-clinical translation in medical and industrial fields. In this review, we highlight the cutting-edge achievements in OrgOCs, introduce the key features of OrgOCs architectures, and share the revolutionary applications in basic biology, disease modeling, preclinical assay and precision medicine. Furthermore, we discuss how to combine a wide range of disciplines with OrgOCs and accelerate translational applications, as well as the challenges and opportunities of OrgOCs in biomedical research and applications.
Collapse
Affiliation(s)
- Hui Wang
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiufan Ning
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Feng Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Hui Zhao
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Dong Li
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
166
|
Chen H, Yang Y, Shi J, Yan T, Wang J, Yang Y, Lu Q, Feng H, Du J, Cao Z, Weygant N. Comparison of Surgical and Colonoscopy Tissue to Establish Colorectal Patient-derived Organoids. Curr Cancer Drug Targets 2024; 24:546-555. [PMID: 37997804 DOI: 10.2174/0115680096263866231024112120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Patient-derived organoids (PDOs) are ex vivo models that retain the functions and characteristics of individualized source tissues, including a simulated tumor microenvironment. However, the potential impact of undiscovered differences between tissue sources on PDO growth and progression remains unclear. OBJECTIVE This study aimed to compare the growth and condition of PDO models originating from surgical resection and colonoscopy and to provide practical insights for PDO studies. METHODS Tissue samples and relevant patient clinical information were collected to establish organoid models. PDOs were derived from both surgical and colonoscopy tissues. The growth of the organoids, including their state, size, and success rate of establishment, was recorded and analyzed. The activity of the organoids at the end stage of growth was detected using calcein-AM fluorescence staining. RESULTS The results showed that the early growth phase of 2/3 colonoscopy-derived organoids was faster compared to surgical PDOs, with a growth difference observed within 11-13 days of establishment. However, colonoscopy-derived organoids exhibited a diminished growth trend after this time. There were no significant differences observed in the terminal area and quantity between the two types of tissue-derived organoids. Immunofluorescence assays of the PDOs revealed that the surgical PDOs possessed a denser cell mass with relatively higher viability than colonoscopy-derived PDOs. CONCLUSION In the establishment of colorectal patient-derived organoids, surgically derived organoids require a slightly longer establishment period, while colonoscopy-derived organoids should be passaged prior to growth inhibition to preserve organoid viability.
Collapse
Affiliation(s)
- Hong Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yuping Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jinsen Shi
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Ting Yan
- Department of General Surgery, Second Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jun Wang
- Department of General Surgery, Second Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yuning Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Qin Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Hailan Feng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jian Du
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zhiyun Cao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Integrative Medicine, Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| |
Collapse
|
167
|
Arani RM, Yousefi N, Hamidieh AA, Gholizadeh F, Sisakht MM. Tumor Organoid as a Drug Screening Platform for Cancer Research. Curr Stem Cell Res Ther 2024; 19:1210-1250. [PMID: 37855289 DOI: 10.2174/011574888x268366230922080423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 10/20/2023]
Abstract
A number of studies have been conducted on the application of 3D models for drug discovery, drug sensitivity assessment, and drug toxicity. Most of these studies focused on disease modelling and attempted to control cellular differentiation, heterogeneity, and key physiological features to mimic organ reconstitution so that researchers could achieve an accurate response in drug evaluation. Recently, organoids have been used by various scientists due to their highly organotypic structure, which facilitates the translation from basic research to the clinic, especially in cancer research. With this tool, researchers can perform high-throughput analyses of compounds and determine the exact effect on patients based on their genetic variations, as well as develop personalized and combination therapies. Although there is a lack of standardization in organoid culture, patientderived organoids (PDOs) have become widely established and used for drug testing. In this review, we have discussed recent advances in the application of organoids and tumoroids not only in cancer research for drug screening but also in clinical trials to demonstrate the potential of organoids in translational medicine.
Collapse
Affiliation(s)
- Reyhaneh Mahbubi Arani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Gholizadeh
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mollapour Sisakht
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
168
|
Zhang W, Jin H, Lou S, Yang H, Dai X, Ma S. Microfluidic droplet encapsulation-guided organoid growth promotes parental tumor phenotype recapitulation. Int J Cancer 2024; 154:145-154. [PMID: 37622267 DOI: 10.1002/ijc.34706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
Patient-derived organoids are gaining incremental popularity in both basic sciences and translational applications toward precision medicine and revolutionized drug discovery. However, for tumor organoids, challenges remain in low rates of organoid growth and tumor cell purity, that is, recapitulation of tumor phenotypes in constructed organoids. Here, we report a method of microfluidic droplet encapsulation that provides structural guidance for tumor cell growth and organization, where they develop into tumor organoids with high purity and high rates of modeling success, as compared to the classical organoid modeling method, that is, non-engineered organoids. The modeling efficacy and organoid quality are examined in patient-derived samples, covering esophagus, lung and colorectal cancer tissues, all proving significance in droplet-engineered organoids, as demonstrated by histological examinations.
Collapse
Affiliation(s)
- Weijie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - He Jin
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China
| | - Shitong Lou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haowei Yang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China
| | - Xiaoyong Dai
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China
| | - Shaohua Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China
| |
Collapse
|
169
|
Zhang Y, Wu X, He P, Wu J, Gu X, Bendek M, Ötvös R, Szekely L. The D ~ Sense ex-vivo viability assay application in a patient with stage IV lung adenocarcinoma: a case report. J Med Case Rep 2023; 17:529. [PMID: 38142271 DOI: 10.1186/s13256-023-04277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/08/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND The treatment resistance is a problem for lung cancer. In this study, we used a vitro tissue culturing system to select a new therapy strategy for a patient with tyrosine kinase inhibitors (TKIs) resistance. CASE PRESENTATION A 42-year-old male Asian patient was diagnosed with advanced lung adenocarcinoma harboring an exon 19 deletion in the epidermal growth factor receptor (EGFR) gene. The patient was treated with Gefitinib, resulting in an almost complete remission for over a year. The patient relapsed after 13 months treatment, and received four cycles of chemotherapy. At 20 months, the patient had developed multiple lung metastases and a solitary cerebellar metastasis. An EGFR T790M mutation was identified in the peripheral blood sample. Subsequent treatment with Osimertinib resulted in a complete response of the intracranial metastasis. By 33 months, the patient had developed a mediastinal tumor mass that responded well to local radiotherapy. By 39 months, an EGFR C797S cis-mutation had been identified and the patient was treated with Brigatinib and Cetuximab. By 44 months, the tumor cells from the pleural effusion had been tested for sensitivity against 30 targeted and cytostatic drugs using the D ~ Sense ex-vivo viability assay. The assay identified 8 drugs with moderate to high sensitivity. Combination therapy of Gemcitabin and Lobaplatin had resulted in disease stabilization. CONCLUSIONS The case showed that individualized treatment aided by D ~ Sense ex-vivo viability assay can be a viable option for patients with advanced lung adenocarcinoma with pleural effusions.
Collapse
Affiliation(s)
- Yu Zhang
- Nanjing Chest Hospital, Nanjing, 210029, China
| | - Xiaoyuan Wu
- Nanjing Chest Hospital, Nanjing, 210029, China
| | - Ping He
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Jieyu Wu
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Stockholm, Sweden
| | - Xia Gu
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Matyas Bendek
- Department of Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital Huddinge, Huddinge, 14186, Stockholm, Sweden
| | - Rita Ötvös
- Department of Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital Huddinge, Huddinge, 14186, Stockholm, Sweden
| | - Laszlo Szekely
- Department of Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital Huddinge, Huddinge, 14186, Stockholm, Sweden.
| |
Collapse
|
170
|
Lee B, Lee C, Moon HM, Jo SY, Jang SJ, Suh YA. Repurposing Metabolic Inhibitors in the Treatment of Colon Adenocarcinoma Patient-Derived Models. Cells 2023; 12:2859. [PMID: 38132178 PMCID: PMC10742000 DOI: 10.3390/cells12242859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
The effect of agonists on AMP-activated protein kinase (AMPK), mainly metformin and phenformin, has been appreciated in the treatment of multiple types of tumors. Specifically, the antitumor activity of phenformin has been demonstrated in melanomas containing the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) activating mutation. In this report, we elucidated the synergistic antitumor effects of biguanides with metabolism inhibitors on colon tumors. Phenformin with 2-deoxy-D-glucose (2DG) inhibited tumor cell growth in cancer cell lines, including HT29 cells harboring BRAF- and p53-mutations. Biochemical analyses showed that two chemotherapeutics exerted cooperative effects to reduce tumor growth through cell cycle arrest, apoptosis, and autophagy. The drugs demonstrated activity against phosphorylated ERK and the gain-of-function p53 mutant protein. To demonstrate tumor regressive effects in vivo, we established patient-derived models, including xenograft (PDX) and organoids (PDO). Co-treatment of biguanides with chemotherapeutics efficiently reduced the growth of patient-derived colon models in comparison to treatment with a single agent. These results strongly suggest that significant therapeutic advantages would be achieved by combining AMPK activators such as phenformin and cancer metabolic inhibitors such as 2DG.
Collapse
Affiliation(s)
- Bora Lee
- Department of Biomedical Sciences, Asan Medical Center, The University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (B.L.); (H.-M.M.); (S.-Y.J.)
| | - ChuHee Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 38541, Republic of Korea;
| | - Hae-Min Moon
- Department of Biomedical Sciences, Asan Medical Center, The University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (B.L.); (H.-M.M.); (S.-Y.J.)
| | - Se-Young Jo
- Department of Biomedical Sciences, Asan Medical Center, The University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (B.L.); (H.-M.M.); (S.-Y.J.)
| | - Se Jin Jang
- Department of Biomedical Sciences, Asan Medical Center, The University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (B.L.); (H.-M.M.); (S.-Y.J.)
| | - Young-Ah Suh
- Department of Biomedical Sciences, Asan Medical Center, The University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (B.L.); (H.-M.M.); (S.-Y.J.)
| |
Collapse
|
171
|
Zhu Y, Ding Z, Wang Y, Wu Q, Chen D, Wang L, Li Y, Yao Y, Huang J, Li Y, Wang X, Lin Y, Guan T, Zeng H, Li C. BME-free primary patient-specific organoids obtained with a one-day mimicking method to replicate the corresponding tumor for personalized treatment options. Front Oncol 2023; 13:1239957. [PMID: 38162496 PMCID: PMC10757363 DOI: 10.3389/fonc.2023.1239957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction In cancer treatment, every minute counts. Due to the unpredictable behavior of cancer cells caused by continuous mutations, each cancer patient has a unique situation and may or may not respond to a specific drug or treatment. The process of finding an effective therapy can be time-consuming, but cancer patients do not have the luxury of time for trial and error. Therefore, a novel technology to fast generate a patient relevant organoid for the therapies selecting is urgently needed. Methods Utilizing the new organoid technology by specially dissolving the mesenchyme in tumor tissues acquired from cancer patients, we realized the work of creating patient-specific organoids (PSO) within one day. Results PSO properties reflect those of its respective original in vivo tumor tissue and can be utilized to perform various in vitro drug sensitivity tests to identify the most effective clinical treatment for patients. Additionally, PSO can aid in assessing the efficacy of immune cell therapies. Discussion Organoid technology has advanced significantly in recent years. However, current cancer organoid methods involve creating 3D tumor tissue from 2D cancer cells or cell clusters, primarily for cancer research purposes aimed at investigating related molecular and cellular mechanisms of tumor development. These methods are research-driven, not tailored towards clinical applications, and cannot provide personalized information for individual patients. PSO filled the gap of clinic-driven and time-saving method for the personalized therapies selecting to the cancer patients.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Gynecological Oncology, Tumor Hospital Affiliated to Medical College of Shantou University, Shantou, China
| | - Zhechun Ding
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Yini Wang
- Department of Gynecological Oncology, Tumor Hospital Affiliated to Medical College of Shantou University, Shantou, China
| | - Qing Wu
- Department of Gynecological Oncology, Tumor Hospital Affiliated to Medical College of Shantou University, Shantou, China
| | - Dongmei Chen
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Luanhong Wang
- Department of Gynecological Oncology, Tumor Hospital Affiliated to Medical College of Shantou University, Shantou, China
| | - Yuancheng Li
- Department of Gynecological Oncology, Tumor Hospital Affiliated to Medical College of Shantou University, Shantou, China
| | - Yao Yao
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Jiman Huang
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Yun Li
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Xiaojing Wang
- Department of Gynecological Oncology, Tumor Hospital Affiliated to Medical College of Shantou University, Shantou, China
| | - Yanchun Lin
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Tian Guan
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Haoyu Zeng
- Department of Cancer Research, Guangdong Procapzoom Biosciences, Inc., Guangzhou, Guangdong, China
| | - Congzhu Li
- Department of Gynecological Oncology, Tumor Hospital Affiliated to Medical College of Shantou University, Shantou, China
| |
Collapse
|
172
|
Dayton TL, Alcala N, Moonen L, den Hartigh L, Geurts V, Mangiante L, Lap L, Dost AFM, Beumer J, Levy S, van Leeuwaarde RS, Hackeng WM, Samsom K, Voegele C, Sexton-Oates A, Begthel H, Korving J, Hillen L, Brosens LAA, Lantuejoul S, Jaksani S, Kok NFM, Hartemink KJ, Klomp HM, Borel Rinkes IHM, Dingemans AM, Valk GD, Vriens MR, Buikhuisen W, van den Berg J, Tesselaar M, Derks J, Speel EJ, Foll M, Fernández-Cuesta L, Clevers H. Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites. Cancer Cell 2023; 41:2083-2099.e9. [PMID: 38086335 DOI: 10.1016/j.ccell.2023.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models.
Collapse
Affiliation(s)
- Talya L Dayton
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| | - Nicolas Alcala
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Laura Moonen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lisanne den Hartigh
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Veerle Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lise Mangiante
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lisa Lap
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Antonella F M Dost
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Sonja Levy
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Rachel S van Leeuwaarde
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Kris Samsom
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Catherine Voegele
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Alexandra Sexton-Oates
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lisa Hillen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Sylvie Lantuejoul
- Department of Biopathology, Pathology Research Platform- Synergie Lyon Cancer- CRCL, Centre Léon Bérard Unicancer, 69008 Lyon, France; Université Grenoble Alpes, Grenoble, France
| | - Sridevi Jaksani
- Hubrecht Organoid Technology, Utrecht 3584 CM, the Netherlands
| | - Niels F M Kok
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Koen J Hartemink
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Houke M Klomp
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Inne H M Borel Rinkes
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Anne-Marie Dingemans
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Menno R Vriens
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Wieneke Buikhuisen
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - José van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Margot Tesselaar
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Jules Derks
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ernst Jan Speel
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Matthieu Foll
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lynnette Fernández-Cuesta
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France.
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
173
|
Li H, Chen Z, Chen N, Fan Y, Xu Y, Xu X. Applications of lung cancer organoids in precision medicine: from bench to bedside. Cell Commun Signal 2023; 21:350. [PMID: 38057851 PMCID: PMC10698950 DOI: 10.1186/s12964-023-01332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 12/08/2023] Open
Abstract
As the leading cause of cancer-related mortality, lung cancer continues to pose a menacing threat to human health worldwide. Lung cancer treatment options primarily rely on chemoradiotherapy, surgery, targeted therapy, or immunotherapy. Despite significant progress in research and treatment, the 5-year survival rate for lung cancer patients is only 10-20%. There is an urgent need to develop more reliable preclinical models and valid therapeutic approaches. Patient-derived organoids with highly reduced tumour heterogeneity have emerged as a promising model for high-throughput drug screening to guide treatment of lung cancer patients. Organoid technology offers a novel platform for disease modelling, biobanking and drug development. The expected benefit of organoids is for cancer patients as the subsequent precision medicine technology. Over the past few years, numerous basic and clinical studies have been conducted on lung cancer organoids, highlighting the significant contributions of this technique. This review comprehensively examines the current state-of-the-art technologies and applications relevant to the formation of lung cancer organoids, as well as the potential of organoids in precision medicine and drug testing. Video Abstract.
Collapse
Affiliation(s)
- Huihui Li
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, Guangdong, China
| | - Ning Chen
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Oncology, The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yun Fan
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Xiaoling Xu
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
174
|
Obreque J, Vergara-Gómez L, Venegas N, Weber H, Owen GI, Pérez-Moreno P, Leal P, Roa JC, Bizama C. Advances towards the use of gastrointestinal tumor patient-derived organoids as a therapeutic decision-making tool. Biol Res 2023; 56:63. [PMID: 38041132 PMCID: PMC10693174 DOI: 10.1186/s40659-023-00476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
In December 2022 the US Food and Drug Administration (FDA) removed the requirement that drugs in development must undergo animal testing before clinical evaluation, a declaration that now demands the establishment and verification of ex vivo preclinical models that closely represent tumor complexity and that can predict therapeutic response. Fortunately, the emergence of patient-derived organoid (PDOs) culture has enabled the ex vivo mimicking of the pathophysiology of human tumors with the reassembly of tissue-specific features. These features include histopathological variability, molecular expression profiles, genetic and cellular heterogeneity of parental tissue, and furthermore growing evidence suggests the ability to predict patient therapeutic response. Concentrating on the highly lethal and heterogeneous gastrointestinal (GI) tumors, herein we present the state-of-the-art and the current methodology of PDOs. We highlight the potential additions, improvements and testing required to allow the ex vivo of study the tumor microenvironment, as well as offering commentary on the predictive value of clinical response to treatments such as chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Javiera Obreque
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Vergara-Gómez
- Centre of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Biomedicine and Translational Research Lab, Universidad de La Frontera, 4810296, Temuco, Chile
| | - Nicolás Venegas
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
| | - Helga Weber
- Centre of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Biomedicine and Translational Research Lab, Universidad de La Frontera, 4810296, Temuco, Chile
| | - Gareth I Owen
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Pérez-Moreno
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Pamela Leal
- Centre of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Biomedicine and Translational Research Lab, Universidad de La Frontera, 4810296, Temuco, Chile
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Bizama
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
175
|
Petpiroon N, Netkueakul W, Sukrak K, Wang C, Liang Y, Wang M, Liu Y, Li Q, Kamran R, Naruse K, Aueviriyavit S, Takahashi K. Development of lung tissue models and their applications. Life Sci 2023; 334:122208. [PMID: 37884207 DOI: 10.1016/j.lfs.2023.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The lungs are important organs that play a critical role in the development of specific diseases, as well as responding to the effects of drugs, chemicals, and environmental pollutants. Due to the ethical concerns around animal testing, alternative methods have been sought which are more time-effective, do not pose ethical issues for animals, do not involve species differences, and provide easy investigation of the pathobiology of lung diseases. Several national and international organizations are working to accelerate the development and implementation of structurally and functionally complex tissue models as alternatives to animal testing, particularly for the lung. Unfortunately, to date, there is no lung tissue model that has been accepted by regulatory agencies for use in inhalation toxicology. This review discusses the challenges involved in developing a relevant lung tissue model derived from human cells such as cell lines, primary cells, and pluripotent stem cells. It also introduces examples of two-dimensional (2D) air-liquid interface and monocultured and co-cultured three-dimensional (3D) culture techniques, particularly organoid culture and 3D bioprinting. Furthermore, it reviews development of the lung-on-a-chip model to mimic the microenvironment and physiological performance. The applications of lung tissue models in various studies, especially disease modeling, viral respiratory infection, and environmental toxicology will be also introduced. The development of a relevant lung tissue model is extremely important for standardizing and validation the in vitro models for inhalation toxicity and other studies in the future.
Collapse
Affiliation(s)
- Nalinrat Petpiroon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Woranan Netkueakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kanokwan Sukrak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Thailand Network Center on Air Quality Management: TAQM, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chen Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yin Liang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Mengxue Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yun Liu
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Qiang Li
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Rumaisa Kamran
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Keiji Naruse
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Ken Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan.
| |
Collapse
|
176
|
He J, Zhang C, Ozkan A, Feng T, Duan P, Wang S, Yang X, Xie J, Liu X. Patient-derived tumor models and their distinctive applications in personalized drug therapy. MECHANOBIOLOGY IN MEDICINE 2023; 1:100014. [PMID: 40395637 PMCID: PMC12082161 DOI: 10.1016/j.mbm.2023.100014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 05/22/2025]
Abstract
Tumor models in vitro are conventional methods for developing anti-cancer drugs, evaluating drug delivery, or calculating drug efficacy. However, traditional cell line-derived tumor models are unable to capture the tumor heterogeneity in patients or mimic the interaction between tumors and their surroundings. Recently emerging patient-derived preclinical cancer models, including of patient-derived xenograft (PDX) model, circulating tumor cell (CTC)-derived model, and tumor organoids-on-chips, are promising in personalized drug therapy by recapitulating the complexities and personalities of tumors and surroundings. These patient-derived models have demonstrated potential advantages in satisfying the rigorous demands of specificity, accuracy, and efficiency necessary for personalized drug therapy. However, the selection of suitable models is depending on the specific therapeutic requirements dictated by cancer types, progressions, or the assay scale. As an example, PDX models show remarkable advantages to reconstruct solid tumors in vitro to understand drug delivery and metabolism. Similarly, CTC-derived models provide a sensitive platform for drug testing in advanced-stage patients, while also facilitating the development of drugs aimed at suppressing tumor metastasis. Meanwhile, the demand for large-scale testing has promoted the development of tumor organoids-on-chips, which serves as an optimal tool for high-throughput drug screening. This review summarizes the establishment and development of PDX, CTC-derived models, and tumor organoids-on-chips and addresses their distinctive advantages in drug discovery, sensitive testing, and screening, which demonstrate the potential to aid in the selection of suitable models for fundamental cancer research and clinical trials, and further developing the personalized drug therapy.
Collapse
Affiliation(s)
- Jia He
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chunhe Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Alican Ozkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Tang Feng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peiyan Duan
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shuo Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xinrui Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
177
|
Wu T, Yu B, Xu Y, Du Z, Zhang Z, Wang Y, Chen H, Zhang LA, Chen R, Ma F, Gong W, Yu S, Qiu Z, Wu H, Xu X, Wang J, Li Z, Bian J. Discovery of Selective and Potent Macrocyclic CDK9 Inhibitors for the Treatment of Osimertinib-Resistant Non-Small-Cell Lung Cancer. J Med Chem 2023; 66:15340-15361. [PMID: 37870244 DOI: 10.1021/acs.jmedchem.3c01400] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Effectiveness of epidermal growth factor receptor (EGFR) inhibitors, including Osimertinib, for treating non-small-cell lung cancer (NSCLC) is limited due to the continuous emergence of drug resistance. Hence, it is urgent to develop new therapeutic approaches. CDK9, a key regulator of RNA transcription, has emerged as a promising target for the development of antitumor drugs due to its crucial role in modulating the levels of antiapoptotic protein Mcl-1. Herein, we present the synthesis, optimization, and evaluation of selective CDK9 inhibitors with a macrocyclic scaffold that effectively suppresses the growth of NSCLC cells. Notably, compound Z11, a potent CDK9 inhibitor (IC50 = 3.20 nM) with good kinase selectivity, significantly inhibits cell proliferation and colony formation and induces apoptosis in Osimertinib-resistant H1975 cells. Furthermore, Z11 demonstrates a significant suppression of tumor growth in six patient-derived organoids, including three organoids resistant to Osimertinib. Overall, Z11 served as a promising macrocycle-based CDK9 inhibitor for treating Osimertinib-resistant NSCLC.
Collapse
Affiliation(s)
- Tizhi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Bin Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yifan Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zekun Du
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhiming Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuxiao Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Haoming Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Li Ao Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Rui Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Feihai Ma
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Weihong Gong
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Sixian Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhixia Qiu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hongxi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xi Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jubo Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
178
|
Lee SY, Cho HJ, Choi J, Ku B, Moon SW, Moon MH, Kim KS, Hyun K, Kim TJ, Sung YE, Hwang Y, Lee E, Ahn DH, Choi JY, Lim JU, Park CK, Kim SW, Kim SJ, Koo IS, Jung WS, Lee SH, Yeo CD, Lee DW. Cancer organoid-based diagnosis reactivity prediction (CODRP) index-based anticancer drug sensitivity test in ALK-rearrangement positive non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res 2023; 42:309. [PMID: 37993887 PMCID: PMC10664561 DOI: 10.1186/s13046-023-02899-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Recently, cancer organoid-based drug sensitivity tests have been studied to predict patient responses to anticancer drugs. The area under curve (AUC) or IC50 value of the dose-response curve (DRC) is used to differentiate between sensitive and resistant patient's groups. This study proposes a multi-parameter analysis method (cancer organoid-based diagnosis reactivity prediction, CODRP) that considers the cancer stage and cancer cell growth rate, which represent the severity of cancer patients, in the sensitivity test. METHODS On the CODRP platform, patient-derived organoids (PDOs) that recapitulate patients with lung cancer were implemented by applying a mechanical dissociation method capable of high yields and proliferation rates. A disposable nozzle-type cell spotter with efficient high-throughput screening (HTS) has also been developed to dispense a very small number of cells due to limited patient cells. A drug sensitivity test was performed using PDO from the patient tissue and the primary cancer characteristics of PDOs were confirmed by pathological comparision with tissue slides. RESULTS The conventional index of drug sensitivity is the AUC of the DRC. In this study, the CODRP index for drug sensitivity test was proposed through multi-parameter analyses considering cancer cell proliferation rate, the cancer diagnosis stage, and AUC values. We tested PDOs from eight patients with lung cancer to verify the CODRP index. According to the anaplastic lymphoma kinase (ALK) rearrangement status, the conventional AUC index for the three ALK-targeted drugs (crizotinib, alectinib, and brigatinib) did not classify into sensitive and resistant groups. The proposed CODRP index-based drug sensitivity test classified ALK-targeted drug responses according to ALK rearrangement status and was verified to be consistent with the clinical drug treatment response. CONCLUSIONS Therefore, the PDO-based HTS and CODRP index drug sensitivity tests described in this paper may be useful for predicting and analyzing promising anticancer drug efficacy for patients with lung cancer and can be applied to a precision medicine platform.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - Hyeong Jun Cho
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jimin Choi
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - Bosung Ku
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - Seok Whan Moon
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Mi Hyoung Moon
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Kyung Soo Kim
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Kwanyong Hyun
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Yeoun Eun Sung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Yongki Hwang
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunyoung Lee
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Hyuck Ahn
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Uk Lim
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Songeui Multiplex Hall, Seoul, Republic of Korea
| | - In-Seong Koo
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Woo Seok Jung
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Sang-Hyun Lee
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea.
| | - Chang Dong Yeo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
179
|
Huang H, Pan Y, Huang J, Zhang C, Liao Y, Du Q, Qin S, Chen Y, Tan H, Chen M, Xu M, Xia M, Liu Y, Li J, Liu T, Zou Q, Zhou Y, Yuan L, Wang W, Liang Y, Pan CY, Liu J, Yao S. Patient-derived organoids as personalized avatars and a potential immunotherapy model in cervical cancer. iScience 2023; 26:108198. [PMID: 38026204 PMCID: PMC10679865 DOI: 10.1016/j.isci.2023.108198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Cervical cancer remains a significant health issue in developing countries. However, finding a preclinical model that accurately reproduces tumor characteristics is challenging. Therefore, we established a patient-derived organoids (PDOs) biobank containing 67 cases of heterogeneous cervical cancer that mimic the histopathological and genomic characteristics of parental tumors. The in vitro response of the organoids indicated their ability to capture the radiological heterogeneity of the patients. To model individual responses to adoptive T cell therapy (ACT), we expanded tumor-infiltrating lymphocytes (TILs) ex vivo and co-cultured them with paired organoids. The PDOs-TILs co-culture system demonstrates clear responses that correspond to established immunotherapy efficiency markers like the proportion of CTLs. This study supports the potential of the PDOs platform to guide treatment in prospective interventional trials in cervical cancer.
Collapse
Affiliation(s)
- Hua Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jiaming Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Shuhang Qin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yili Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Hao Tan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Ming Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Manman Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Meng Xia
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yunyun Liu
- Sun Yat-Sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Jie Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Tianyu Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Qiaojian Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yijia Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Li Yuan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Chao yun Pan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
180
|
Vazquez-Armendariz AI, Tata PR. Recent advances in lung organoid development and applications in disease modeling. J Clin Invest 2023; 133:e170500. [PMID: 37966116 PMCID: PMC10645385 DOI: 10.1172/jci170500] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Over the last decade, several organoid models have evolved to acquire increasing cellular, structural, and functional complexity. Advanced lung organoid platforms derived from various sources, including adult, fetal, and induced pluripotent stem cells, have now been generated, which more closely mimic the cellular architecture found within the airways and alveoli. In this regard, the establishment of novel protocols with optimized stem cell isolation and culture conditions has given rise to an array of models able to study key cellular and molecular players involved in lung injury and repair. In addition, introduction of other nonepithelial cellular components, such as immune, mesenchymal, and endothelial cells, and employment of novel precision gene editing tools have further broadened the range of applications for these systems by providing a microenvironment and/or phenotype closer to the desired in vivo scenario. Thus, these developments in organoid technology have enhanced our ability to model various aspects of lung biology, including pathogenesis of diseases such as chronic obstructive pulmonary disease, pulmonary fibrosis, cystic fibrosis, and infectious disease and host-microbe interactions, in ways that are often difficult to undertake using only in vivo models. In this Review, we summarize the latest developments in lung organoid technology and their applicability for disease modeling and outline their strengths, drawbacks, and potential avenues for future development.
Collapse
Affiliation(s)
- Ana I. Vazquez-Armendariz
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
- Department of Medicine V, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research and Institute for Lung Health, Giessen, Germany
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
181
|
Jain KG, Xi NM, Zhao R, Ahmad W, Ali G, Ji HL. Alveolar Type 2 Epithelial Cell Organoids: Focus on Culture Methods. Biomedicines 2023; 11:3034. [PMID: 38002035 PMCID: PMC10669847 DOI: 10.3390/biomedicines11113034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Lung diseases rank third in terms of mortality and represent a significant economic burden globally. Scientists have been conducting research to better understand respiratory diseases and find treatments for them. An ideal in vitro model must mimic the in vivo organ structure, physiology, and pathology. Organoids are self-organizing, three-dimensional (3D) structures originating from adult stem cells, embryonic lung bud progenitors, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). These 3D organoid cultures may provide a platform for exploring tissue development, the regulatory mechanisms related to the repair of lung epithelia, pathophysiological and immunomodulatory responses to different respiratory conditions, and screening compounds for new drugs. To create 3D lung organoids in vitro, both co-culture and feeder-free methods have been used. However, there exists substantial heterogeneity in the organoid culture methods, including the sources of AT2 cells, media composition, and feeder cell origins. This article highlights the currently available methods for growing AT2 organoids and prospective improvements to improve the available culture techniques/conditions. Further, we discuss various applications, particularly those aimed at modeling human distal lung diseases and cell therapy.
Collapse
Affiliation(s)
- Krishan Gopal Jain
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Nan Miles Xi
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660, USA;
| | - Runzhen Zhao
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Waqas Ahmad
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Gibran Ali
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Hong-Long Ji
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
182
|
Zhu L, Zhang J, Guo Q, Kuang J, Li D, Wu M, Mo Y, Zhang T, Gao X, Tan J. Advanced lung organoids and lung-on-a-chip for cancer research and drug evaluation: a review. Front Bioeng Biotechnol 2023; 11:1299033. [PMID: 38026900 PMCID: PMC10662056 DOI: 10.3389/fbioe.2023.1299033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Lung cancer has become the primary cause of cancer-related deaths because of its high recurrence rate, ability to metastasise easily, and propensity to develop drug resistance. The wide-ranging heterogeneity of lung cancer subtypes increases the complexity of developing effective therapeutic interventions. Therefore, personalised diagnostic and treatment strategies are required to guide clinical practice. The advent of innovative three-dimensional (3D) culture systems such as organoid and organ-on-a-chip models provides opportunities to address these challenges and revolutionise lung cancer research and drug evaluation. In this review, we introduce the advancements in lung-related 3D culture systems, with a particular focus on lung organoids and lung-on-a-chip, and their latest contributions to lung cancer research and drug evaluation. These developments include various aspects, from authentic simulations and mechanistic enquiries into lung cancer to assessing chemotherapeutic agents and targeted therapeutic interventions. The new 3D culture system can mimic the pathological and physiological microenvironment of the lung, enabling it to supplement or replace existing two-dimensional culture models and animal experimental models and realize the potential for personalised lung cancer treatment.
Collapse
Affiliation(s)
- Leqing Zhu
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Shenzhen Clinical Medical College, Southern Medical University, Shenzhen, China
| | - Jianhua Zhang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Quanwei Guo
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jun Kuang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Dongfang Li
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Mengxi Wu
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yijun Mo
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tao Zhang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai, China
| | - Jianfeng Tan
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
183
|
Gómez-Álvarez M, Agustina-Hernández M, Francés-Herrero E, Rodríguez-Eguren A, Bueno-Fernandez C, Cervelló I. Addressing Key Questions in Organoid Models: Who, Where, How, and Why? Int J Mol Sci 2023; 24:16014. [PMID: 37958996 PMCID: PMC10650475 DOI: 10.3390/ijms242116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Organoids are three-dimensional cellular structures designed to recreate the biological characteristics of the body's native tissues and organs in vitro. There has been a recent surge in studies utilizing organoids due to their distinct advantages over traditional two-dimensional in vitro approaches. However, there is no consensus on how to define organoids. This literature review aims to clarify the concept of organoids and address the four fundamental questions pertaining to organoid models: (i) What constitutes organoids?-The cellular material. (ii) Where do organoids grow?-The extracellular scaffold. (iii) How are organoids maintained in vitro?-Via the culture media. (iv) Why are organoids suitable in vitro models?-They represent reproducible, stable, and scalable models for biological applications. Finally, this review provides an update on the organoid models employed within the female reproductive tract, underscoring their relevance in both basic biology and clinical applications.
Collapse
Affiliation(s)
- María Gómez-Álvarez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Marcos Agustina-Hernández
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Emilio Francés-Herrero
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Clara Bueno-Fernandez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Irene Cervelló
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| |
Collapse
|
184
|
Iqbal W, Wang Y, Sun P, Zhou X. Modeling Liver Development and Disease in a Dish. Int J Mol Sci 2023; 24:15921. [PMID: 37958904 PMCID: PMC10650907 DOI: 10.3390/ijms242115921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Historically, biological research has relied primarily on animal models. While this led to the understanding of numerous human biological processes, inherent species-specific differences make it difficult to answer certain liver-related developmental and disease-specific questions. The advent of 3D organoid models that are either derived from pluripotent stem cells or generated from healthy or diseased tissue-derived stem cells have made it possible to recapitulate the biological aspects of human organs. Organoid technology has been instrumental in understanding the disease mechanism and complements animal models. This review underscores the advances in organoid technology and specifically how liver organoids are used to better understand human-specific biological processes in development and disease. We also discuss advances made in the application of organoid models in drug screening and personalized medicine.
Collapse
Affiliation(s)
- Waqas Iqbal
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Yaru Wang
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Pingnan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
185
|
Choi SY, Shim J, Gu DE, Kim SY, Kim HJ, Shin DY, Chung MK. Clonal evolution of long-term expanding head and neck cancer organoid: Impact on treatment response for personalized therapeutic screening. Oral Oncol 2023; 146:106571. [PMID: 37741019 DOI: 10.1016/j.oraloncology.2023.106571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVES In biobanking based on patient-derived organoids (PDO), the genetic stability of organoid lines is critical for the clinical relevance of PDO with parental tumors. However, data on mutational heterogeneity and clonal evolution of PDO and their effects on treatment response are insufficient. METHODS To investigate whether head and neck cancer organoids (HNCOs) could maintain the genetic characteristics of their original tumors and elucidate the clonal evolution process during a long-term passage, we performed targeted sequencing, covering 377 cancer-related genes and adopted a sub-clonal fraction model. To explore therapeutic response variability between an early and late passage (>passage 6), we generated dose-response curves for drugs and radiation using two HNCO lines. RESULTS Using 3D ex vivo organoid culture protocol, we successfully established 27 HNCOs from 39 patients with an overall success rate of 70% (27/39). Their mutational profiles were highly concordant, with three of the HNCOs analyzed showing greater than 70% concordance. Only one HNCO displayed less than 50% concordance. However, many of these organoid lines displayed clonal evolution during serial passaging, although major cancer driver genes and VAF distributions were shared between early and later passages. We also found that all late passages of HNCOs tended to be more sensitive to radiation than early passages, similar to drug response results. CONCLUSIONS We report the establishment of HNCO lines derived from 27 patients and demonstrate their genetic concordance with corresponding parental tumors. Furthermore, we show serial changes in mutational profiles of HNCO along with long passage culture and the impact of these clonal evolutions on response to radiotherapy.
Collapse
Affiliation(s)
- Sung Yong Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, National Cancer Center, Goyang, Republic of Korea
| | - Joonho Shim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Do-Eon Gu
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Soo Yoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Hye Jin Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Da-Yong Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Man Ki Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.
| |
Collapse
|
186
|
Tzeng YDT, Hsiao JH, Tseng LM, Hou MF, Li CJ. Breast cancer organoids derived from patients: A platform for tailored drug screening. Biochem Pharmacol 2023; 217:115803. [PMID: 37709150 DOI: 10.1016/j.bcp.2023.115803] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Breast cancer stands as the most prevalent and heterogeneous malignancy affecting women globally, posing a substantial health concern. Enhanced comprehension of tumor pathology and the development of novel therapeutics are pivotal for advancing breast cancer treatment. Contemporary breast cancer investigation heavily leans on in vivo models and conventional cell culture techniques. Nonetheless, these approaches often encounter high failure rates in clinical trials due to species disparities and tissue structure variations. To address this, three-dimensional cultivation of organoids, resembling organ-like structures, has emerged as a promising alternative. Organoids represent innovative in vitro models that mirror in vivo tissue microenvironments. They retain the original tumor's diversity and facilitate the expansion of tumor samples from diverse origins, facilitating the representation of varying tumor stages. Optimized breast cancer organoid models, under precise culture conditions, offer benefits including convenient sample acquisition, abbreviated cultivation durations, and genetic stability. These attributes ensure a faithful replication of in vivo traits of breast cancer cells. As intricate cellular entities boasting spatial arrangements, breast cancer organoid models harbor substantial potential in precision medicine, organ transplantation, modeling intricate diseases, gene therapy, and drug innovation. This review delivers an overview of organoid culture techniques and outlines future prospects for organoid modeling.
Collapse
Affiliation(s)
- Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jui-Hu Hsiao
- Department of Surgery, Kaohsiung Municipal Minsheng Hospital, Kaohsiung, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Center for Cancer Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan.
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
187
|
Tian H, Ren J, Mou R, Jia Y. Application of organoids in precision immunotherapy of lung cancer (Review). Oncol Lett 2023; 26:484. [PMID: 37818130 PMCID: PMC10561155 DOI: 10.3892/ol.2023.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/18/2023] [Indexed: 10/12/2023] Open
Abstract
In immunotherapy, the immune system is modulated in order to treat cancer. Traditional two dimensional in vitro models and in vivo animal models are insufficient to simulate the complex tumor microenvironment (TME) in the original tumor. As tumor immunotherapy involves the immune system, additional tumor mimic models, such as patient-derived organoids, are required for the evaluation of the efficacy of immunotherapy. Furthermore, non-tumor components and host tumor cells in the TME may interact to promote cancer incidence, progression, drug resistance and metastasis. It is possible to produce organoid models for lung cancer by retaining endogenous stromal components (e.g., multiple immune cell types), supplying cancer-associated fibroblasts and exogenous immune cells, constructing tumor vasculature and adding other biological or chemical components that emulate the TME. Therefore, the lung cancer organoid culture platform may facilitate preclinical testing of immunotherapy drugs for lung cancer by mimicking immunotherapy responses. The present review summarizes current lung cancer organoid culture methods for TME modeling and discusses the use of lung cancer-derived organoids for the detection of lung cancer immunotherapy and individualized cancer immunotherapy.
Collapse
Affiliation(s)
- Huichuan Tian
- Department of Medical Oncology, The First Teaching Hospital of Tianjin University of Chinese Medicine, Tianjin 300381, P.R. China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin 300381, P.R. China
| | - Jiajun Ren
- Department of Medical Oncology, The First Teaching Hospital of Tianjin University of Chinese Medicine, Tianjin 300381, P.R. China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin 300381, P.R. China
| | - Ruiyu Mou
- Department of Medical Oncology, The First Teaching Hospital of Tianjin University of Chinese Medicine, Tianjin 300381, P.R. China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin 300381, P.R. China
| | - Yingjie Jia
- Department of Medical Oncology, The First Teaching Hospital of Tianjin University of Chinese Medicine, Tianjin 300381, P.R. China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin 300381, P.R. China
| |
Collapse
|
188
|
Guan D, Liu X, Shi Q, He B, Zheng C, Meng X. Breast cancer organoids and their applications for precision cancer immunotherapy. World J Surg Oncol 2023; 21:343. [PMID: 37884976 PMCID: PMC10601270 DOI: 10.1186/s12957-023-03231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Immunotherapy is garnering increasing attention as a therapeutic strategy for breast cancer (BC); however, the application of precise immunotherapy in BC has not been fully studied. Further studies on BC immunotherapy have a growing demand for preclinical models that reliably recapitulate the composition and function of the tumor microenvironment (TME) of BC. However, the classic two-dimensional in vitro and animal in vivo models inadequately recapitulate the intricate TME of the original tumor. Organoid models which allow the regular culture of primitive human tumor tissue are increasingly reported that they can incorporate immune components. Therefore, organoid platforms can be used to replicate the BC-TME to achieve the immunotherapeutic reaction modeling and facilitate relevant preclinical trial. In this study, we have investigated different organoid culture methods for BC-TME modeling and their applications for precision immunotherapy in BC.
Collapse
Affiliation(s)
- Dandan Guan
- College of Medicine, Soochow University, Soochow, China
- General Surgery, Department of Breast Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema of Breast Cancer, Hangzhou, Zhejiang, China
| | - Xiaozhen Liu
- General Surgery, Department of Breast Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema of Breast Cancer, Hangzhou, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qingyang Shi
- Department of Urology, Haining Central Hospital, Haining Branch of Zhejiang Provincial People's Hospital, Jiaxing, Zhejiang, China
| | - Bangjie He
- Department of General Surgery, Traditional Chinese Medicine Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Chaopeng Zheng
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xuli Meng
- General Surgery, Department of Breast Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema of Breast Cancer, Hangzhou, Zhejiang, China.
| |
Collapse
|
189
|
Sun L, Wang X, He Y, Chen B, Shan B, Yang J, Wang R, Zeng X, Li J, Tan H, Liang R. Polyurethane scaffold-based 3D lung cancer model recapitulates in vivo tumor biological behavior for nanoparticulate drug screening. Regen Biomater 2023; 10:rbad091. [PMID: 37965109 PMCID: PMC10641150 DOI: 10.1093/rb/rbad091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 11/16/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Preclinical studies in lung cancer hold the promise of screening for effective antitumor agents, but mechanistic studies and drug discovery based on 2D cell models have a high failure rate in getting to the clinic. Thus, there is an urgent need to explore more reliable and effective in vitro lung cancer models. Here, we prepared a series of three-dimensional (3D) waterborne biodegradable polyurethane (WBPU) scaffolds as substrates to establish biomimetic tumor models in vitro. These 3D WBPU scaffolds were porous and could absorb large amounts of free water, facilitating the exchange of substances (nutrients and metabolic waste) and cell growth. The scaffolds at wet state could simulate the mechanics (elastic modulus ∼1.9 kPa) and morphology (porous structures) of lung tissue and exhibit good biocompatibility. A549 lung cancer cells showed adherent growth pattern and rapidly formed 3D spheroids on WBPU scaffolds. Our results showed that the scaffold-based 3D lung cancer model promoted the expression of anti-apoptotic and epithelial-mesenchymal transition-related genes, giving it a more moderate growth and adhesion pattern compared to 2D cells. In addition, WBPU scaffold-established 3D lung cancer model revealed a closer expression of proteins to in vivo tumor, including tumor stem cell markers, cell proliferation, apoptosis, invasion and tumor resistance proteins. Based on these features, we further demonstrated that the 3D lung cancer model established by the WBPU scaffold was very similar to the in vivo tumor in terms of both resistance and tolerance to nanoparticulate drugs. Taken together, WBPU scaffold-based lung cancer model could better mimic the growth, microenvironment and drug response of tumor in vivo. This emerging 3D culture system holds promise to shorten the formulation cycle of individualized treatments and reduce the use of animals while providing valid research data for clinical trials.
Collapse
Affiliation(s)
- Lu Sun
- Department of Targeting Therapy & Immunology; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaofei Wang
- Department of Medical Polymer Materials; Department of Artificial Organism, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Yushui He
- Department of Medical Polymer Materials; Department of Artificial Organism, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Boran Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Baoyin Shan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Jinlong Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Ruoran Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Xihang Zeng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Jiehua Li
- Department of Medical Polymer Materials; Department of Artificial Organism, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Hong Tan
- Department of Medical Polymer Materials; Department of Artificial Organism, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Ruichao Liang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| |
Collapse
|
190
|
Liu Y, Zhou Y, Chen P. Lung cancer organoids: models for preclinical research and precision medicine. Front Oncol 2023; 13:1293441. [PMID: 37941550 PMCID: PMC10628480 DOI: 10.3389/fonc.2023.1293441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023] Open
Abstract
Lung cancer is a malignancy with high incidence and mortality rates globally, and it has a 5-year survival rate of only 10%-20%. The significant heterogeneity in clinical presentation, histological features, multi-omics findings, and drug sensitivity among different lung cancer patients necessitate the development of personalized treatment strategies. The current precision medicine for lung cancer, primarily based on pathological and genomic multi-omics testing, fails to meet the needs of patients with clinically refractory lung cancer. Lung cancer organoids (LCOs) are derived from tumor cells within tumor tissues and are generated through three-dimensional tissue culture, enabling them to faithfully recapitulate in vivo tumor characteristics and heterogeneity. The establishment of a series of LCOs biobanks offers promising platforms for efficient screening and identification of novel targets for anti-tumor drug discovery. Moreover, LCOs provide supplementary decision-making factors to enhance the current precision medicine for lung cancer, thereby addressing the limitations associated with pathology-guided approaches in managing refractory lung cancer. This article presents a comprehensive review on the construction methods and potential applications of LCOs in both preclinical and clinical research. It highlights the significance of LCOs in biomarker exploration, drug resistance investigation, target identification, clinical precision drug screening, as well as microfluidic technology-based high-throughput drug screening strategies. Additionally, it discusses the current limitations and future prospects of this field.
Collapse
Affiliation(s)
- Yajing Liu
- School of Pharmacy, Qingdao University, Qingdao, China
- Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China
| | - Yanbing Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Pu Chen
- Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
191
|
Lê H, Deforges J, Hua G, Idoux-Gillet Y, Ponté C, Lindner V, Olland A, Falcoz PE, Zaupa C, Jain S, Quéméneur E, Benkirane-Jessel N, Balloul JM. In vitro vascularized immunocompetent patient-derived model to test cancer therapies. iScience 2023; 26:108094. [PMID: 37860774 PMCID: PMC10582498 DOI: 10.1016/j.isci.2023.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
This work describes a patient-derived tumoroid model (PDTs) to support precision medicine in lung oncology. The use of human adipose tissue-derived microvasculature and patient-derived peripheral blood mononuclear cells (PBMCs) permits to achieve a physiologically relevant tumor microenvironment. This study involved ten patients at various stages of tumor progression. The vascularized, immune-infiltrated PDT model could be obtained within two weeks, matching the requirements of the therapeutic decision. Histological and transcriptomic analyses confirmed that the main features from the original tumor were reproduced. The 3D tumor model could be used to determine the dynamics of response to antiangiogenic therapy and platinum-based chemotherapy. Antiangiogenic therapy showed a significant decrease in vascular endothelial growth factor (VEGF)-A expression, reflecting its therapeutic effect in the model. In an immune-infiltrated PDT model, chemotherapy showed the ability to decrease the levels of lymphocyte activation gene-3 protein (LAG-3), B and T lymphocyte attenuator (BTLA), and inhibitory receptors of T cells functions.
Collapse
Affiliation(s)
- Hélène Lê
- Transgene S.A, 400 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Jules Deforges
- Transgene S.A, 400 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
| | - Guoqiang Hua
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Ysia Idoux-Gillet
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Charlotte Ponté
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
- Hopitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Véronique Lindner
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Anne Olland
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
- Hopitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Pierre-Emanuel Falcoz
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
- Hopitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Cécile Zaupa
- Boehringer Ingelheim, 29 avenue Tony Garnier, 69007 Lyon, France
| | - Shreyansh Jain
- Transgene S.A, 400 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
| | - Eric Quéméneur
- Transgene S.A, 400 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
| | - Nadia Benkirane-Jessel
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Jean-Marc Balloul
- Transgene S.A, 400 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
192
|
Ntafoulis I, Kleijn A, Ju J, Jimenez-Cowell K, Fabro F, Klein M, Chi Yen RT, Balvers RK, Li Y, Stubbs AP, Kers TV, Kros JM, Lawler SE, Beerepoot LV, Kremer A, Idbaih A, Verreault M, Byrne AT, O'Farrell AC, Connor K, Biswas A, Salvucci M, Prehn JHM, Lambrechts D, Dilcan G, Lodi F, Arijs I, van den Bent MJ, Dirven CMF, Leenstra S, Lamfers MLM. Ex vivo drug sensitivity screening predicts response to temozolomide in glioblastoma patients and identifies candidate biomarkers. Br J Cancer 2023; 129:1327-1338. [PMID: 37620410 PMCID: PMC10575865 DOI: 10.1038/s41416-023-02402-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/13/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Patient-derived glioma stem-like cells (GSCs) have become the gold-standard in neuro-oncological research; however, it remains to be established whether loss of in situ microenvironment affects the clinically-predictive value of this model. We implemented a GSC monolayer system to investigate in situ-in vitro molecular correspondence and the relationship between in vitro and patient response to temozolomide (TMZ). METHODS DNA/RNA-sequencing was performed on 56 glioblastoma tissues and 19 derived GSC cultures. Sensitivity to TMZ was screened across 66 GSC cultures. Viability readouts were related to clinical parameters of corresponding patients and whole-transcriptome data. RESULTS Tumour DNA and RNA sequences revealed strong similarity to corresponding GSCs despite loss of neuronal and immune interactions. In vitro TMZ screening yielded three response categories which significantly correlated with patient survival, therewith providing more specific prediction than the binary MGMT marker. Transcriptome analysis identified 121 genes related to TMZ sensitivity of which 21were validated in external datasets. CONCLUSION GSCs retain patient-unique hallmark gene expressions despite loss of their natural environment. Drug screening using GSCs predicted patient response to TMZ more specifically than MGMT status, while transcriptome analysis identified potential biomarkers for this response. GSC drug screening therefore provides a tool to improve drug development and precision medicine for glioblastoma.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Anne Kleijn
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Jie Ju
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Kevin Jimenez-Cowell
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Federica Fabro
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Michelle Klein
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Romain Tching Chi Yen
- Information Technologies for Translational Medicine, Esch-Sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rutger K Balvers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Yunlei Li
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Andrew P Stubbs
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Trisha V Kers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Johan M Kros
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Sean E Lawler
- Dept of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Laurens V Beerepoot
- Department of Internal Medicine, Elisabeth-Tweesteden Hospital, Tilburg, Netherlands
| | - Andreas Kremer
- Information Technologies for Translational Medicine, Esch-Sur-Alzette, Luxembourg
| | - Ahmed Idbaih
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Maite Verreault
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alice C O'Farrell
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kate Connor
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Archita Biswas
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Diether Lambrechts
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Gonca Dilcan
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Francesca Lodi
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Ingrid Arijs
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Martin J van den Bent
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands.
| |
Collapse
|
193
|
Landon‐Brace N, Li NT, McGuigan AP. Exploring New Dimensions of Tumor Heterogeneity: The Application of Single Cell Analysis to Organoid-Based 3D In Vitro Models. Adv Healthc Mater 2023; 12:e2300903. [PMID: 37589373 PMCID: PMC11468421 DOI: 10.1002/adhm.202300903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Indexed: 08/18/2023]
Abstract
Modeling the heterogeneity of the tumor microenvironment (TME) in vitro is essential to investigating fundamental cancer biology and developing novel treatment strategies that holistically address the factors affecting tumor progression and therapeutic response. Thus, the development of new tools for both in vitro modeling, such as patient-derived organoids (PDOs) and complex 3D in vitro models, and single cell omics analysis, such as single-cell RNA-sequencing, represents a new frontier for investigating tumor heterogeneity. Specifically, the integration of PDO-based 3D in vitro models and single cell analysis offers a unique opportunity to explore the intersecting effects of interpatient, microenvironmental, and tumor cell heterogeneity on cell phenotypes in the TME. In this review, the current use of PDOs in complex 3D in vitro models of the TME is discussed and the emerging directions in the development of these models are highlighted. Next, work that has successfully applied single cell analysis to PDO-based models is examined and important experimental considerations are identified for this approach. Finally, open questions are highlighted that may be amenable to exploration using the integration of PDO-based models and single cell analysis. Ultimately, such investigations may facilitate the identification of novel therapeutic targets for cancer that address the significant influence of tumor-TME interactions.
Collapse
Affiliation(s)
- Natalie Landon‐Brace
- Institute of Biomedical EngineeringUniversity of Toronto200 College StreetTorontoM5S3E5Canada
| | - Nancy T. Li
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StTorontoM5S3E5Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied ChemistryInstitute of Biomedical EngineeringUniversity of Toronto200 College StTorontoM5S3E5Canada
| |
Collapse
|
194
|
Nizamoglu M, Joglekar MM, Almeida CR, Larsson Callerfelt AK, Dupin I, Guenat OT, Henrot P, van Os L, Otero J, Elowsson L, Farre R, Burgess JK. Innovative three-dimensional models for understanding mechanisms underlying lung diseases: powerful tools for translational research. Eur Respir Rev 2023; 32:230042. [PMID: 37495250 PMCID: PMC10369168 DOI: 10.1183/16000617.0042-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 07/28/2023] Open
Abstract
Chronic lung diseases result from alteration and/or destruction of lung tissue, inevitably causing decreased breathing capacity and quality of life for patients. While animal models have paved the way for our understanding of pathobiology and the development of therapeutic strategies for disease management, their translational capacity is limited. There is, therefore, a well-recognised need for innovative in vitro models to reflect chronic lung diseases, which will facilitate mechanism investigation and the advancement of new treatment strategies. In the last decades, lungs have been modelled in healthy and diseased conditions using precision-cut lung slices, organoids, extracellular matrix-derived hydrogels and lung-on-chip systems. These three-dimensional models together provide a wide spectrum of applicability and mimicry of the lung microenvironment. While each system has its own limitations, their advantages over traditional two-dimensional culture systems, or even over animal models, increases the value of in vitro models. Generating new and advanced models with increased translational capacity will not only benefit our understanding of the pathobiology of lung diseases but should also shorten the timelines required for discovery and generation of new therapeutics. This article summarises and provides an outline of the European Respiratory Society research seminar "Innovative 3D models for understanding mechanisms underlying lung diseases: powerful tools for translational research", held in Lisbon, Portugal, in April 2022. Current in vitro models developed for recapitulating healthy and diseased lungs are outlined and discussed with respect to the challenges associated with them, efforts to develop best practices for model generation, characterisation and utilisation of models and state-of-the-art translational potential.
Collapse
Affiliation(s)
- Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Both authors contributed equally
| | - Mugdha M Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Both authors contributed equally
| | - Catarina R Almeida
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | | | - Isabelle Dupin
- Centre de Recherche Cardio-thoracique de Bordeaux, Université de Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
| | - Olivier T Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, University Hospital of Bern, Bern, Switzerland
| | - Pauline Henrot
- Centre de Recherche Cardio-thoracique de Bordeaux, Université de Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
- Service d'exploration fonctionnelle respiratoire, CHU de Bordeaux, Pessac, France
| | - Lisette van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ramon Farre
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, The Netherlands
| |
Collapse
|
195
|
Weng G, Tao J, Liu Y, Qiu J, Su D, Wang R, Luo W, Zhang T. Organoid: Bridging the gap between basic research and clinical practice. Cancer Lett 2023; 572:216353. [PMID: 37599000 DOI: 10.1016/j.canlet.2023.216353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Nowadays, the diagnosis and treatment system of malignant tumors has increasingly tended to be more precise and personalized while the existing tumor models are still unable to fully meet the needs of clinical practice. Notably, the emerging organoid platform has been proven to have huge potential in the field of basic-translational medicine, which is expected to promote a paradigm shift in personalized medicine. Here, given the unique advantages of organoid platform, we mainly explore the prominent role of organoid models in basic research and clinical practice from perspectives of tumor biology, tumorigenic microbes-host interaction, clinical decision-making, and regenerative strategy. In addition, we also put forward some practical suggestions on how to construct a new generation of organoid platform, which is destined to vigorously promote the reform of basic-translational medicine.
Collapse
Affiliation(s)
- Guihu Weng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Dan Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Ruobing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
196
|
Zhang SL, Zhang CY, Chen YQ, Li YF, Xie Z, Zhang XC, Zhou Q, Zhong WZ, Huang J, Sun H, Zheng MY, Xiao FM, Yan HH, Lu DX, Lv ZY, Wu YL, Chen HJ, Yang JJ. Expression of EGFR-mutant proteins and genomic evolution in EGFR-mutant transformed small cell lung cancer. J Thorac Dis 2023; 15:4620-4635. [PMID: 37868836 PMCID: PMC10586967 DOI: 10.21037/jtd-23-161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/28/2023] [Indexed: 10/24/2023]
Abstract
Background The transformation of epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma (LUAD) into small cell lung cancer (SCLC) accounts for 3-14% of the resistance mechanism to EGFR tyrosine kinase inhibitors (TKIs). At present, there is no relevant research to explore the dynamic expression of EGFR-mutant proteins and genomic evolution in EGFR-mutant transformed SCLC/neuroendocrine carcinoma (NEC). Methods Genetic analysis and protein level analysis by next-generation sequencing (NGS), Whole-exome sequencing (WES) and immunohistochemistry were performed to explore expression of EGFR-mutant proteins and genomic evolution in EGFR-mutant transformed SCLC. The research used three patient-derived organoids (PDOs) to explore the efficacy of combo [chemotherapy (chemo) plus TKI or bevacizumab] treatment. According to the subsequent treatment regimens after SCLC/NEC transformation, 35 patients were divided into chemo (n=21) and combo (n=14) groups. Results EGFR L858R and EGFR E746-750 del protein expression by immunohistochemistry was 80.0% (4/5) and 100% (6/6), respectively (P=0.455) in initially-transformed tissues. Meanwhile, EGFR-mutant proteins were expressed in 85.7% (6/7) of dynamic rebiopsy tissues or effusion samples after the first transformation. Then, by the pathway enrichment analysis of tissue and plasma NGS, the EGFR-related pathways were still activated after SCLC/NEC transformation. Moreover, WES analysis revealed that transformed SCLC shared a common clonal origin from the baseline LUAD. The drug sensitivity of three PDOs demonstrated potent anti-cancer activity of EGFR-TKIs plus chemo, compared with chemo or TKI alone. There were significant differences in objective response rate (ORR) between the combo and chemo groups [42.9 % vs. 4.8%, P=0.010, 95% confidence interval (CI): 1.5-145.2]. Furthermore, the median post-transformation progression-free survival (pPFS) was significantly prolonged in the combo group, with 5.4 (95% CI: 3.4-7.4) versus 3.5 (95% CI: 2.7-4.3, P=0.012) months. Conclusions EGFR 19del or L858R-mutant proteins could be constantly expressed, and EGFR pathway still existed in EGFR-mutant transformed SCLC/NEC with a common clonal origin from the baseline LUAD. Taking together, these molecular characteristics potentially favored clinical efficacy in transformed SCLC/NEC treated with the combo regimen.
Collapse
Affiliation(s)
- Shi-Ling Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chan-Yuan Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Qing Chen
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Fa Li
- Department of Pathology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi Xie
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie Huang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hao Sun
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ming-Ying Zheng
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fa-Man Xiao
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong-Hong Yan
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dan-Xia Lu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Yi Lv
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
197
|
Zhang Y, Lu A, Zhuang Z, Zhang S, Liu S, Chen H, Yang X, Wang Z. Can Organoid Model Reveal a Key Role of Extracellular Vesicles in Tumors? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:5511-5527. [PMID: 37791321 PMCID: PMC10544113 DOI: 10.2147/ijn.s424737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Extracellular vesicles (EVs) are small membrane-bound vesicles that are released by cells into the extracellular environment. The role of EVs in tumors has been extensively studied, and they have been shown to play a crucial role in tumor growth, progression, and metastasis. Past research has mainly used 2D-cultured cell line models to investigate the role of EVs in tumors, which poorly simulate the tumor microenvironment. Organoid technology has gradually matured in recent years. Organoids are similar in composition and behavior to physiological cells and have the potential to recapitulate the architecture and function of the original tissue. It has been widely used in organogenesis, drug screening, gene editing, precision medicine and other fields. The integration of EVs and organoids has the potential to revolutionize the field of cancer research and represents a promising avenue for advancing our understanding of cancer biology and the development of novel therapeutic strategies. Here, we aimed to present a comprehensive overview of studies using organoids to study EVs in tumors.
Collapse
Affiliation(s)
- Yang Zhang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Anqing Lu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Central Transportation, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- West China School of Nursing, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Zixuan Zhuang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Su Zhang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Sicheng Liu
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Haining Chen
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xuyang Yang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ziqiang Wang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
198
|
Jeong SR, Kang M. Exploring Tumor-Immune Interactions in Co-Culture Models of T Cells and Tumor Organoids Derived from Patients. Int J Mol Sci 2023; 24:14609. [PMID: 37834057 PMCID: PMC10572813 DOI: 10.3390/ijms241914609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
The use of patient-derived tumor tissues and cells has led to significant advances in personalized cancer therapy and precision medicine. The advent of genomic sequencing technologies has enabled the comprehensive analysis of tumor characteristics. The three-dimensional tumor organoids derived from self-organizing cancer stem cells are valuable ex vivo models that faithfully replicate the structure, unique features, and genetic characteristics of tumors. These tumor organoids have emerged as innovative tools that are extensively employed in drug testing, genome editing, and transplantation to guide personalized therapy in clinical settings. However, a major limitation of this emerging technology is the absence of a tumor microenvironment that includes immune and stromal cells. The therapeutic efficacy of immune checkpoint inhibitors has underscored the importance of immune cells, particularly cytotoxic T cells that infiltrate the vicinity of tumors, in patient prognosis. To address this limitation, co-culture techniques combining tumor organoids and T cells have been developed, offering diverse avenues for studying individualized drug responsiveness. By integrating cellular components of the tumor microenvironment, including T cells, into tumor organoid cultures, immuno-oncology has embraced this technology, which is rapidly advancing. Recent progress in co-culture models of tumor organoids has allowed for a better understanding of the advantages and limitations of this novel model, thereby exploring its full potential. This review focuses on the current applications of organoid-T cell co-culture models in cancer research and highlights the remaining challenges that need to be addressed for its broader implementation in anti-cancer therapy.
Collapse
Affiliation(s)
- So-Ra Jeong
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Republic of Korea;
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Republic of Korea;
- Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul 06531, Republic of Korea
| |
Collapse
|
199
|
Shrestha J, Paudel KR, Nazari H, Dharwal V, Bazaz SR, Johansen MD, Dua K, Hansbro PM, Warkiani ME. Advanced models for respiratory disease and drug studies. Med Res Rev 2023; 43:1470-1503. [PMID: 37119028 PMCID: PMC10946967 DOI: 10.1002/med.21956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
The global burden of respiratory diseases is enormous, with many millions of people suffering and dying prematurely every year. The global COVID-19 pandemic witnessed recently, along with increased air pollution and wildfire events, increases the urgency of identifying the most effective therapeutic measures to combat these diseases even further. Despite increasing expenditure and extensive collaborative efforts to identify and develop the most effective and safe treatments, the failure rates of drugs evaluated in human clinical trials are high. To reverse these trends and minimize the cost of drug development, ineffective drug candidates must be eliminated as early as possible by employing new, efficient, and accurate preclinical screening approaches. Animal models have been the mainstay of pulmonary research as they recapitulate the complex physiological processes, Multiorgan interplay, disease phenotypes of disease, and the pharmacokinetic behavior of drugs. Recently, the use of advanced culture technologies such as organoids and lung-on-a-chip models has gained increasing attention because of their potential to reproduce human diseased states and physiology, with clinically relevant responses to drugs and toxins. This review provides an overview of different animal models for studying respiratory diseases and evaluating drugs. We also highlight recent progress in cell culture technologies to advance integrated models and discuss current challenges and present future perspectives.
Collapse
Affiliation(s)
- Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Hojjatollah Nazari
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Vivek Dharwal
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sajad Razavi Bazaz
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Matt D. Johansen
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of TechnologySydneyNew South WalesAustralia
- Faculty of Health, Australian Research Centre in Complementary & Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M. Hansbro
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Majid Ebrahimi Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
- Institute for Biomedical Materials and Devices, Faculty of ScienceUniversity of Technology SydneyUltimoNew South WalesAustralia
| |
Collapse
|
200
|
Zhao DK, Liang J, Huang XY, Shen S, Wang J. Organoids technology for advancing the clinical translation of cancer nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1892. [PMID: 37088100 DOI: 10.1002/wnan.1892] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 04/25/2023]
Abstract
The past decades have witnessed the rapid development and widespread application of nanomedicines in cancer treatment; however, the clinical translation of experimental findings has been low, as evidenced by the low percentage of commercialized nanomedicines. Incomplete understanding of nanomedicine-tumor interactions and inappropriate evaluation models are two important challenges limiting the clinical translation of cancer nanomedicines. Currently, nanomedicine-tumor interaction and therapeutic effects are mainly investigated using cell lines or mouse models, which do not recapitulate the complex tumor microenvironment in human patients. Thus, information obtained from cell lines and mouse models cannot provide adequate guidance for the rational redesign of nanomedicine. Compared with other preclinical models, tumor organoids constructed from patient-derived tumor tissues are superior in retaining the key histopathological, genetic, and phenotypic features of the parent tumor. We speculate that organoid technology would help elucidate nanomedicine-tumor interaction in the tumor microenvironment and guide the design of nanomedicine, making it a reliable tool to accurately predict drug responses in patients with cancer. This review highlighted the advantages of drug delivery systems in cancer treatment, challenges limiting the clinical translation of antitumor nanomedicines, and potential application of patient-derived organoids (PDO) in nanomedicine. We propose that combining organoids and nanotechnology would facilitate the development of safe and effective cancer nanomedicines and accelerate their clinical application. This review discussed the potential translational value of integrative research using organoids and cancer nanomedicine. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Dong-Kun Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Jie Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiao-Yi Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China
| |
Collapse
|