151
|
Zhao T, Wang M, Zhao X, Weng S, Qian K, Shi K, Gu Y, Ying W, Qian X, Zhang Y. YTHDF2 Inhibits the Migration and Invasion of Lung Adenocarcinoma by Negatively Regulating the FAM83D-TGFβ1-SMAD2/3 Pathway. Front Oncol 2022; 12:763341. [PMID: 35186724 PMCID: PMC8847186 DOI: 10.3389/fonc.2022.763341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE YTH domain family 2 (YTHDF2) is an important N6-methyladenosine (m6A) reader, but its role in lung adenocarcinoma remains elusive. This study assessed its function in lung adenocarcinoma. METHODS YTHDF2 expression in lung adenocarcinoma was explored using public databases, such as The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumour Analysis Consortium (CPTAC). The effect of YTHDF2 on a lung adenocarcinoma cell line was explored by performing cytological and molecular experiments. Molecules downstream of YTHDF2 were identified using proteomics, and the related pathways were verified through cytological and molecular biology experiments. RESULTS YTHDF2 expression was upregulated in lung adenocarcinoma, and patients with high YTHDF2 expression experienced prolonged overall survival. In two lung cancer cell lines, YTHDF2 knockdown inhibited proliferation but promoted migration, invasion, and the epithelial-mesenchymal transition. The proteomic analysis identified 142 molecules downstream of YTHDF2, and 11 were closely related to survival. Further experiments revealed that YTHDF2 inhibited expression of the family with sequence similarity 83D (FAM83D)-TGFβ1-SMAD2/3 pathway components. This study is the first to show that YTHDF2 regulated the downstream TGFβ1-SMAD2/3 pathway through FAM83D in lung adenocarcinoma. CONCLUSION YTHDF2 inhibits the migration and invasion of lung adenocarcinoma cells by regulating the FAM83D-TGFβ1-pSMAD2/3 pathway, which may play an important role in lung cancer metastasis.
Collapse
Affiliation(s)
- Teng Zhao
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mingchao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xin Zhao
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuang Weng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Kun Qian
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kejian Shi
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanfei Gu
- Department of Oncology, United Family New Hope Oncology Center, Beijing, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
152
|
Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, Qi Q, Tiwari AK, Chen JX, Zhang DM, Chen ZS. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer 2022; 21:52. [PMID: 35164788 PMCID: PMC8842557 DOI: 10.1186/s12943-022-01510-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Abnormal N6-methyladenosine (m6A) modification is closely associated with the occurrence, development, progression and prognosis of cancer, and aberrant m6A regulators have been identified as novel anticancer drug targets. Both traditional medicine-related approaches and modern drug discovery platforms have been used in an attempt to develop m6A-targeted drugs. Here, we provide an update of the latest findings on m6A modification and the critical roles of m6A modification in cancer progression, and we summarize rational sources for the discovery of m6A-targeted anticancer agents from traditional medicines and computer-based chemosynthetic compounds. This review highlights the potential agents targeting m6A modification for cancer treatment and proposes the advantage of artificial intelligence (AI) in the discovery of m6A-targeting anticancer drugs. Three stages of m6A-targeting anticancer drug discovery: traditional medicine-based natural products, modern chemical modification or synthesis, and artificial intelligence (AI)-assisted approaches for the future.
Collapse
Affiliation(s)
- Li-Juan Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wei-Qing Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Shu-Ran Fan
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Min-Feng Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ming Qi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Yu Lyu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qi Qi
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH, USA
| | - Jia-Xu Chen
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
153
|
Methyltransferase like 7B is a potential therapeutic target for reversing EGFR-TKIs resistance in lung adenocarcinoma. Mol Cancer 2022; 21:43. [PMID: 35144642 PMCID: PMC8830004 DOI: 10.1186/s12943-022-01519-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/21/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Identification of potential novel targets for reversing resistance to Epidermal Growth Factor Receptor (EGFR)-tyrosine kinase inhibitors (EGFR-TKIs) holds great promise for the treatment of relapsed lung adenocarcinoma (LUAD). In the present study, we aim to investigate the role of methyltransferase-like 7B (METTL7B) in inducing EGFR-TKIs resistance in LUAD and whether it could be a therapeutic target for reversing the resistance. METHODS METTL7B-overexpressed LUAD cell lines, gefitinib and osimertinib-resistant Cell-Derived tumor Xenograft (CDX) and Patient-Derived tumor Xenograft (PDX) mouse models were employed to evaluate the role of METTL7B in TKIs resistance. Ultraperformance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) was used to identify the metabolites regulated by METTL7B. Methylated RNA immunoprecipitation (MeRIP)-qPCR analysis was performed to measure the N6-methyladenosine (m6A) status of mRNA of METTL7B targeted genes. Gold nanocluster-assisted delivery of siRNA targeting METTL7B (GNC-siMETTL7B) was applied to evaluate the effect of METTL7B in TKIs resistance. RESULTS Increased expression of METTL7B was found in TKIs-resistant LUAD cells and overexpression of METTL7B in LUAD cells induced TKIs resistance both in vitro and in vivo. Activated ROS-metabolism was identified in METTL7B-overexpressed LUAD cells, accompanied with upregulated protein level of GPX4, HMOX1 and SOD1 and their enzymatic activities. Globally elevated m6A levels were found in METTL7B-overexpressed LUAD cells, which was reduced by knock-down of METTL7B. METTL7B induced m6A modification of GPX4, HMOX1 and SOD1 mRNA. Knock-down of METTL7B by siRNA re-sensitized LUAD cells to gefitinib and osimertinib both in vitro and in vivo. CONCLUSIONS This study uncovered a new critical link in METTL7B, glutathione metabolism and drug resistance. Our findings demonstrated that METTL7B inhibitors could be used for reversing TKIs resistance in LUAD patients.
Collapse
|
154
|
Yuan Y, Jiang X, Tang L, Wang J, Zhang D, Cho WC, Duan L. FOXM1/lncRNA TYMSOS/miR-214-3p-Mediated High Expression of NCAPG Correlates With Poor Prognosis and Cell Proliferation in Non-Small Cell Lung Carcinoma. Front Mol Biosci 2022; 8:785767. [PMID: 35211508 PMCID: PMC8862726 DOI: 10.3389/fmolb.2021.785767] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the most common cancer with high mortality. Increasing evidence has demonstrated that nonstructural maintenance of chromosomes condensin I complex subunit G (NCAPG) plays a crucial role in the progression of human cancers. However, the biological function and underlying mechanism of NCAPG in non-small cell lung cancer (NSCLC) are still unclear. Here, we utilized diverse public databases to analyze the expression of NCAPG in pan-cancer. We found that NCAPG was highly expressed in various human cancers, especially in NSCLC. NCAPG expression was significantly positively correlated with poor clinical-pathological features, poor prognosis, tumor mutational burden, DNA microsatellite instability, and immune cell infiltration in NSCLC. In addition, our results showed that depletion of NCAPG significantly inhibited NSCLC cell proliferation, migration, and self-renewal abilities, yet these could be reversed by adding microRNA (miRNA)-214-3p. Knockdown of long noncoding RNA (lncRNA) thymidylate synthetase opposite strand (TYMSOS) also inhibits the NSCLC cell proliferation, migration, and self-renewal abilities. In summary, our findings demonstrated that the crucial roles of the FOXM1/lncRNA-TYMSOS/miRNA-214-3p/NCAPG axis in NSCLC may shed light on how NCAPG may act as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yixiao Yuan
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiulin Jiang
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/ Kunming Institute of Zoology, Kunming, China
| | - Lin Tang
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Wang
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dahang Zhang
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
| | - Lincan Duan
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
155
|
Zhi Y, Zhang S, Zi M, Wang Y, Liu Y, Zhang M, Shi L, Yan Q, Zeng Z, Xiong W, Zhi K, Gong Z. Potential applications of N 6 -methyladenosine modification in the prognosis and treatment of cancers via modulating apoptosis, autophagy, and ferroptosis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1719. [PMID: 35114735 DOI: 10.1002/wrna.1719] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
N6 -methyladenosine (m6 A) is one of the most abundant modifications determining the fate of RNA. Currently, m6 A modification is tightly connected with tumorigenesis and presents novel promise in clinical applications. Regulated cell death (RCD) is a programmed mechanism that plays a complicated role in malignant transition. Regarding the main forms of RCD, aberrant levels of m6 A modification have been detected during the progression of apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis in several diseases. However, few reviews have elucidated the correlation between m6 A-modified RCD and carcinogenesis. In this review, we summarize the regulators of m6 A methylation and their functions in carcinogenesis through an overview of m6 A-modified RCD. Additionally, we assume the potential role of m6 A modification regulators as novel biomarkers for chemotherapies and precision medicine. Furthermore, we review the controversies and conflicts in m6 A explorations and predict future orientations of m6 A-modified RCD for clinical applications. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Yuan Zhi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Moxin Zi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yian Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yuhang Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Mi Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
156
|
Guo X, Fang Y, Guo C, Jia Q, Chi Z, Li J, Qin R, Tian J, Fan R. Qa-1b functions as an oncogenic factor in mouse melanoma cells. J Dermatol Sci 2022; 105:159-169. [DOI: 10.1016/j.jdermsci.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 12/20/2022]
|
157
|
Beer MA, Kane RA, Micheletti SJ, Kozakiewicz CP, Storfer A. Landscape genomics of the streamside salamander: Implications for species management in the face of environmental change. Evol Appl 2022; 15:220-236. [PMID: 35233244 PMCID: PMC8867708 DOI: 10.1111/eva.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022] Open
Abstract
Understanding spatial patterns of genetic differentiation and local adaptation is critical in a period of rapid environmental change. Climate change and anthropogenic development have led to population declines and shifting geographic distributions in numerous species. The streamside salamander, Ambystoma barbouri, is an endemic amphibian with a small geographic range that predominantly inhabits small, ephemeral streams. As A. barbouri is listed as near-threatened by the IUCN, we describe range-wide patterns of genetic differentiation and adaptation to assess the species' potential to respond to environmental change. We use outlier scans and genetic-environment association analyses to identify genomic variation putatively underlying local adaptation across the species' geographic range. We find evidence for adaptation with a polygenic architecture and a set of candidate SNPs that identify genes putatively contributing to local adaptation. Our results build on earlier work that suggests that some A. barbouri populations are locally adapted despite evidence for asymmetric gene flow between the range core and periphery. Taken together, the body of work describing the evolutionary genetics of range limits in A. barbouri suggests that the species may be unlikely to respond naturally to environmental challenges through a range shift or in situ adaptation. We suggest that management efforts such as assisted migration may be necessary in future.
Collapse
Affiliation(s)
- Marc A. Beer
- School of Biological SciencesWashington State UniversityPullmanWashingtonUSA
| | - Rachael A. Kane
- School of Biological SciencesWashington State UniversityPullmanWashingtonUSA
| | | | | | - Andrew Storfer
- School of Biological SciencesWashington State UniversityPullmanWashingtonUSA
| |
Collapse
|
158
|
Li Y, Zhang X, Cai J, Ren L, Liu B, Wu M, Lu W, Li R, Zhang C, Huang C, Tong J, Liu A, Zheng Y, Ren D, Guo Y, Huang Y. The pathological tissue expression pattern and clinical significance of m6A-regulatory genes in non-small cell lung cancer. J Gene Med 2022; 24:e3397. [PMID: 34751492 DOI: 10.1002/jgm.3397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Aberrant expression of m6A-related proteins contributes to the occurrence and progression of non-small cell lung cancer (NSCLC). Current studies mainly focus on single m6A regulatory genes and their underlying mechanisms, and the expression of multiple m6A regulatory proteins in NSCLC remains unclear. Therefore, it is necessary to systematically examine these proteins, particularly in clinical specimens. METHODS Bioinformatic analysis was used to determine the expression of m6A regulatory genes and their correlation with common gene mutations, such as TP53, EGFR and KRAS, using The Cancer Genome Atlas (TCGA) and the AE-meta databases. Immunohistochemistry was employed to analyze the protein expression of m6A regulatory proteins in 61 benign lung tissues and 316 NSCLC tissues. Statistical analysis was performed to calculate the correlation between the expression of m6A regulatory proteins and clinicopathological features, survival, and common gene mutations in lung carcinoma patients. RESULTS Analysis of the mRNA levels of 13 core m6A regulators, using information from TCGA and the AE-meta databases, revealed that YTHDF1 levels were upregulated in NSCLC compared to those in adjacent normal tissues. Immunohistochemical staining showed that the expression of METTL3, ALKBH5, YTHDC2 and YTHDF1 was significantly upregulated in NSCLC tissues. Further analyses demonstrated a positive correlation between differentially expressed m6A regulatory proteins, including METTL3, ALKBH5, YTHDC2 and YTHDF1, and the poor clinicopathological features and survival of NSCLC patients. According to the statistics of NSCLC patients enrolled in the present study, the protein levels of METTL3 in patients with EGFR exon-19 mutation were higher than those in patients with wild-type EGFR. CONCLUSIONS Our results indicate that m6A regulators, including METTL3, ALKBH5, YTHDC2 and YTHDF1, could serve as predictive markers of NSCLC, which will facilitate the early detection and diagnosis of NSCLC.
Collapse
Affiliation(s)
- Yujie Li
- Department of Pulmonary and Critical Care Medicine, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Junchao Cai
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Liangliang Ren
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Baoyi Liu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Meimei Wu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Wenjie Lu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Ronggang Li
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Chunlai Zhang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Chaowen Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Jinzhai Tong
- Department of Pulmonary and Critical Care Medicine, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Aibin Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zheng
- Department of Research and Development, Guangdong Research Institute of Genetic Diagnostic and Engineering Technologies for Thalassemia, Hybribio Limited, Guangzhou, China
| | - Dong Ren
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yubiao Guo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanming Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| |
Collapse
|
159
|
Ma L, Xue X, Zhang X, Yu K, Xu X, Tian X, Miao Y, Meng F, Liu X, Guo S, Qiu S, Wang Y, Cui J, Guo W, Li Y, Xia J, Yu Y, Wang J. The essential roles of m 6A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:36. [PMID: 35078505 PMCID: PMC8788079 DOI: 10.1186/s13046-021-02200-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022]
Abstract
Background Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Patient prognosis is poor, and the existing therapeutic strategies for LUAD are far from satisfactory. Recently, targeting N6-methyladenosine (m6A) modification of RNA has been suggested as a potential strategy to impede tumor progression. However, the roles of m6A modification in LUAD tumorigenesis is unknown. Methods Global m6A levels and expressions of m6A writers, erasers and readers were evaluated by RNA methylation assay, dot blot, immunoblotting, immunohistochemistry and ELISA in human LUAD, mouse models and cell lines. Cell viability, 3D-spheroid generation, in vivo LUAD formation, experiments in cell- and patient-derived xenograft mice and survival analysis were conducted to explore the impact of m6A on LUAD. The RNA-protein interactions, translation, putative m6A sites and glycolysis were explored in the investigation of the mechanism underlying how m6A stimulates tumorigenesis. Results The elevation of global m6A level in most human LUAD specimens resulted from the combined upregulation of m6A writer methyltransferase 3 (METTL3) and downregulation of eraser alkB homolog 5 (ALKBH5). Elevated global m6A level was associated with a poor overall survival in LUAD patients. Reducing m6A levels by knocking out METTL3 and overexpressing ALKBH5 suppressed 3D-spheroid generation in LUAD cells and intra-pulmonary tumor formation in mice. Mechanistically, m6A-dependent stimulation of glycolysis and tumorigenesis occurred via enolase 1 (ENO1). ENO1 mRNA was m6A methylated at 359 A, which facilitated it’s binding with the m6A reader YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and resulted in enhanced translation of ENO1. ENO1 positively correlated with METTL3 and global m6A levels, and negatively correlated with ALKBH5 in human LUAD. In addition, m6A-dependent elevation of ENO1 was associated with LUAD progression. In preclinical models, tumors with a higher global m6A level showed a more sensitive response to the inhibition of pan-methylation, glycolysis and ENO activity in LUAD. Conclusions The m6A-dependent stimulation of glycolysis and tumorigenesis in LUAD is at least partially orchestrated by the upregulation of METTL3, downregulation of ALKBH5, and stimulation of YTHDF1-mediated ENO1 translation. Blocking this mechanism may represent a potential treatment strategy for m6A-dependent LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02200-5.
Collapse
Affiliation(s)
- Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China.,Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Xiangfei Xue
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Keke Yu
- Department of Bio-bank, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Xin Xu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Xiaoting Tian
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Yayou Miao
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Fanyu Meng
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Xiaoxin Liu
- Nursing Department, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Susu Guo
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Shiyu Qiu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Yikun Wang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Jiangtao Cui
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Wanxin Guo
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - You Li
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Jinjing Xia
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China.
| | - Yongchun Yu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China.
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China. .,Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China. .,Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China.
| |
Collapse
|
160
|
Nanoparticle-Induced m6A RNA Modification: Detection Methods, Mechanisms and Applications. NANOMATERIALS 2022; 12:nano12030389. [PMID: 35159736 PMCID: PMC8839700 DOI: 10.3390/nano12030389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
With the increasing application of nanoparticles (NPs) in medical and consumer applications, it is necessary to ensure their safety. As m6A (N6-methyladenosine) RNA modification is one of the most prevalent RNA modifications involved in many diseases and essential biological processes, the relationship between nanoparticles and m6A RNA modification for the modulation of these events has attracted substantial research interest. However, there is limited knowledge regarding the relationship between nanoparticles and m6A RNA modification, but evidence is beginning to emerge. Therefore, a summary of these aspects from current research on nanoparticle-induced m6A RNA modification is timely and significant. In this review, we highlight the roles of m6A RNA modification in the bioimpacts of nanoparticles and thus elaborate on the mechanisms of nanoparticle-induced m6A RNA modification. We also summarize the dynamic regulation and biofunctions of m6A RNA modification. Moreover, we emphasize recent advances in the application perspective of nanoparticle-induced m6A RNA modification in medication and toxicity of nanoparticles to provide a potential method to facilitate the design of nanoparticles by deliberately tuning m6A RNA modification.
Collapse
|
161
|
Tai J, Wang L, Guo H, Yan Z, Liu J. Prognostic implications of N 6-methyladenosine RNA regulators in breast cancer. Sci Rep 2022; 12:1222. [PMID: 35075167 PMCID: PMC8786853 DOI: 10.1038/s41598-022-05125-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
Abstract
The significance of N6-methyladenosine (m6A) RNA modifications in the progression of breast cancer (BC) has been recognised. However, their potential role and mechanism of action in the tumour microenvironment (TME) and immune response has not been demonstrated. Thus, the role of m6A regulators and their downstream target gene components in BC remain to be explored. In this study, we used a series of bioinformatics methods and experiments to conduct exploratory research on the possible role of m6A regulators in BC. First, two regulatory modes of immune activation and inactivation were determined by tumour classification. The TME, immune cell infiltration, and gene set variation analysis results confirmed the reliability of this pattern. The prognostic model of the m6A regulator was established by the least absolute shrinkage and selection operator and univariate and multivariate Cox analyses, with the two regulators most closely related to survival verified by real-time quantitative reverse transcription polymerase chain reaction. Next, the prognostic m6A regulator identified in the model was crossed with the differential copy number of variant genes in invasive BC (IBC), and it was determined that YTHDF1 was a hub regulator. Subsequently, single-cell analysis revealed the expression patterns of m6A regulators in different IBC cell populations and found that YTHDF1 had significantly higher expression in immune-related IBC cells. Therefore, we selected the intersection of the BC differential expression gene set and the differential expression gene set of a cell line with knocked-down YTHDF1 in literature to identify downstream target genes of YTHDF1, in which we found IFI6, EIR, and SPTBN1. A polymerase chain reaction was conducted to verify the results. Finally, we confirmed the role of YTHDF1 as a potential prognostic biomarker through pan-cancer analysis. Furthermore, our findings revealed that YTHDF1 can serve as a new molecular marker for BC immunotherapy.
Collapse
Affiliation(s)
- Jiaojiao Tai
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Linbang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hao Guo
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Ziqiang Yan
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China.
| | - Jingkun Liu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China.
| |
Collapse
|
162
|
Song W, Fei F, Qiao F, Weng Z, Yang Y, Cao B, Yue J, Xu J, Zheng M, Li J. ALKBH5-mediated N 6-methyladenosine modification of TRERNA1 promotes DLBCL proliferation via p21 downregulation. Cell Death Dis 2022; 8:25. [PMID: 35031597 PMCID: PMC8760254 DOI: 10.1038/s41420-022-00819-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
Long noncoding RNAs (lncRNAs) have crucial functions in the tumorigenesis and metastasis of cancers. N6-methyladenosine (m6A) modification of RNA is an important epigenetic regulatory mechanism in various malignancies. Nevertheless, the mechanism of m6A-modified lncRNA in diffuse large B cell lymphoma (DLBCL) has remained poorly defined. In the present study, we showed that lncRNA TRERNA1 was associated with the poor prognosis of DLBCL patients. TRERNA1 with internal m6A modification was highly correlated with the demethylase ALKBH5 expression. We further demonstrated that TRERNA1 was a potential downstream target of ALKBH5-mediated m6A modification by m6A-RNA sequencing and m6A-RIP assays. Decreased m6A methylation of TRERNA1 regulated by ALKBH5 was shown to regulate cell proliferation in vitro and in vivo. The results of mechanism analyses revealed that TRERNA1 recruited EZH2 to epigenetically silence the expression of the cyclin-dependent kinases inhibitor p21 by H3K27me3 modification of its promoter region. In addition, ALKBH5 further inhibited p21 expression. Taken together, our results elucidate the functional roles and epigenetic alterations of TRERNA1 through m6A modification in DLBCL. TRERNA1, the expression of which is upregulated by ALKBH5, acts as a scaffold that decreases p21 expression. The results of the present study provide novel targets for the diagnosis and treatment of DLBCL.
Collapse
Affiliation(s)
- Wei Song
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Anhui Province Key Laboratory of Translational Cancer Research (Bengbu Medical College), Bengbu, 233030, China.
| | - Fei Fei
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fengchang Qiao
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health care Hospital, Nanjing, 210001, China
| | - Zuyi Weng
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuanxun Yang
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Bei Cao
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jing Yue
- Department of Gynaecology and Obstetrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jiaxuan Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Meihong Zheng
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Juan Li
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
163
|
Abstract
Metabolic reprogramming is one of the main characteristics of malignant tumors, which is due to the flexible changes of cell metabolism that can meet the needs of cell growth and maintain the homeostasis of tissue environments. Cancer cells can obtain metabolic adaptation through a variety of endogenous and exogenous signaling pathways, which can not only promote the growth of malignant cancer cells, but also start the transformation process of cells to adapt to tumor microenvironment. Studies show that m6A RNA methylation is widely involved in the metabolic recombination of tumor cells. In eukaryotes, m6A methylation is the most abundant modification in mRNA, which is involved in almost all the RNA cycle stages, including regulation the transcription, maturation, translation, degradation and stability of mRNA. M6A RNA methylation can be involved in the regulation of physiological and pathological processes, including cancer. In this review, we discuss the role of m6A RNA methylation modification plays in tumor metabolism-related molecules and pathways, aiming to show the importance of targeting m6A in regulating tumor metabolism.
Collapse
Affiliation(s)
- Yuanyuan An
- Gynecological Mini-Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou Street, Dongcheng District, Beijing, 100006 China
| | - Hua Duan
- Gynecological Mini-Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou Street, Dongcheng District, Beijing, 100006 China
| |
Collapse
|
164
|
Xu P, Hu K, Zhang P, Sun ZG, Zhang N. Hypoxia-mediated YTHDF2 overexpression promotes lung squamous cell carcinoma progression by activation of the mTOR/AKT axis. Cancer Cell Int 2022; 22:13. [PMID: 34996459 PMCID: PMC8742419 DOI: 10.1186/s12935-021-02368-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is a dynamic and reversible internal RNA structure of eukaryotic mRNA. YTH domain family 2 (YTHDF2), an m6A-specific reader YTH domain family, plays fundamental roles in several types of cancer. However, the function of YTHDF2 in lung squamous cell carcinoma (LUSC) remains elusive. METHODS The knockdown and overexpression of YTHDF2 in LUSC cells were conducted to detect the biological characteristics of YTHDF2. In vivo assays, the role of YTHDF2 in tumor growth was further uncovered. In vitro assays, YTHDF2 was confirmed to be involved in activating the mTOR/AKT signaling and YTHDF2 overexpression induced the EMT process in LUSC. Clinically, immunohistochemical staining revealed the relationship between YTHDF2 expression levels and the clinicopathological characteristics of lung squamous cell carcinoma patients. Moreover, quantitative PCR (qPCR), western blot, CCK8 assay, transwell assay, and wound-healing assay were used to detect the expression level and function of YTHDF2 under hypoxia exposure in LUSC cells. RESULTS The results showed that hypoxia-mediated YTHDF2 overexpression promotes cell proliferation and invasion by activating the mTOR/AKT axis, and YTHDF2 overexpression induces the EMT process in LUSC. Moreover, YTHDF2 is closely associated with pN (pN- 37.0%, pN + 73.9%; P = 0.002) and pTNM stage (pI 50.0%, PII 43.3%, pIIIa 80.6%; P = 0.007), ultimately resulting in poor survival for LUSC patients. CONCLUSION In brief, the results highlight high-YTHDF2 expression predicted a worse prognosis of LUSC, while hypoxia-mediated YTHDF2 overexpression promotes lung squamous cell carcinoma progression by activation of the mTOR/AKT signaling pathway.
Collapse
Affiliation(s)
- Peng Xu
- Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shangdong, China
| | - Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053, Shangdong, China
| | - Ping Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shangdong, China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shangdong, China.
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shangdong, China.
| |
Collapse
|
165
|
Zhang Q, Xu K. The role of regulators of RNA m6A methylation in lung cancer. Genes Dis 2022; 10:495-504. [DOI: 10.1016/j.gendis.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
|
166
|
Ma Y, Zhang H. Genomics and Prognosis Analysis of N 6-Methyladenosine Regulators in Lung Adenocarcinoma. Front Genet 2021; 12:746666. [PMID: 34956315 PMCID: PMC8697852 DOI: 10.3389/fgene.2021.746666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/11/2021] [Indexed: 12/09/2022] Open
Abstract
Objective: N6-methyladenosine (m6A) modification is involved in modulating various biological processes in human cancers. But the implication of m6A modification in lung adenocarcinoma (LUAD) is still unclear. Hence, this study conducted a comprehensive analysis of the expression and clinical implication of m6A regulators in LUAD. Methods: Consensus clustering analysis of 502 LUAD samples in the TCGA dataset was presented based on the expression profiles of 20 m6A regulators using ConsensusClusterPlus package. Overall survival (OS), activation of signaling pathways and tumor immunity (immune/stromal score, tumor purity, expression of HLA and immune checkpoints, and immune cell infiltration) were compared between m6A modification patterns. The m6A-related genes between patterns were identified and prognostic m6A-related genes were imported into LASSO-cox regression analysis. The m6A risk score was developed and its prognostic implication was evaluated and externally verified in the GSE30219 and GSE72094 dataset. Furthermore, a nomogram that contained independent prognostic indicators was established, followed by external verification. Results: Two m6A modification patterns were clustered across LUAD based on the expression similarity of the m6A regulators via consensus clustering analysis, with distinct OS, activation of signaling pathways and tumor immunity. Totally, 213 m6A-related genes that were identified by comparing two patterns were significantly related to LUAD prognosis. By LASSO method, we constructed the m6A risk score that was a reliable and independent prognostic factor for LUAD. Patients with low m6A risk score displayed a prominent survival advantage. After incorporating independent clinical features, we developed the prognostic nomogram that exhibited high predictive accuracy and the best clinical net benefit for OS. Conclusion: Collectively, our study may provide a clinically useful tool for precise prognostic management and optimization of immunotherapeutic strategies for LUAD patients.
Collapse
Affiliation(s)
- Yanpin Ma
- Department of Oncology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Huping Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
167
|
Teng Y, Wang B, Shang D, Yang N. Identification and Validation of an Immune and Ferroptosis-Combined Index for Non-Small Cell Lung Cancer. Front Genet 2021; 12:764869. [PMID: 34917129 PMCID: PMC8669617 DOI: 10.3389/fgene.2021.764869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Non-small cell lung cancer (NSCLC) is among the major health problems around the world. Reliable biomarkers for NSCLC are still needed in clinical practice. We aimed to develop a novel ferroptosis- and immune-based index for NSCLC. Methods: The training and testing datasets were obtained from TCGA and GEO databases, respectively. Immune- and ferroptosis-related genes were identified and used to establish a prognostic model. Then, the prognostic and therapeutic potential of the established index was evaluated. Results: Intimate interaction of immune genes with ferroptosis genes was observed. A total of 32 prognosis-related signatures were selected to develop a predictive model for NSCLC using LASSO Cox regression. Patients were classified into the high- and low-risk group based on the risk score. Patients in the low-risk group have better OS in contrast with that in the high-risk group in independent verification datasets. Besides, patients with a high risk score have shorter OS in all subgroups (T, N, and M0 subgroups) and pathological stages (stage I, II, and III). The risk score was positively associated with Immune Score, Stromal Score, and Ferroptosis Score in TCGA and GEO cohorts. A differential immune cell infiltration between the high-risk and the low-risk groups was also observed. Finally, we explored the significance of our model in tumor-related pathways, and different enrichment levels in the therapeutic pathway were observed between the high- and low-risk groups. Conclusion: The present study developed an immune and ferroptosis-combined index for the prognosis of NSCLC.
Collapse
Affiliation(s)
- Yang Teng
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Wang
- Department of General Surgery in Songbei, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Desi Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ning Yang
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of General Surgery in Songbei, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
168
|
Chen Z, Zhong X, Xia M, Zhong J. The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1270-1279. [PMID: 34853726 PMCID: PMC8609105 DOI: 10.1016/j.omtn.2021.10.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
YTHDF1 is the most versatile and powerful reader protein of N6-methyladenosine (m6A)-modified RNA, and it can recognize both G(m6A)C and A(m6A)C RNAs as ligands without sequence selectivity. YTHDF1 regulates target gene expression by different mechanisms, such as promoting translation or regulating the stability of mRNA. Numerous studies have shown that YTHDF1 plays an important role in tumor biology and nontumor lesions by mediating the protein translation of important genes or by affecting the expression of key factors involved in many important cell signaling pathways. Therefore, in this review we focus on some of the roles of YTHDF1 in tumor biology and diseases.
Collapse
Affiliation(s)
- Zuyao Chen
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Xiaolin Zhong
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Min Xia
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Jing Zhong
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| |
Collapse
|
169
|
Liu X, Zuo X, Ma L, Wang Q, Zhu L, Li L, Zhao X. Integrated Analysis of the m6A-Related lncRNA Identified lncRNA ABALON/miR-139-3p/ NOB1 Axis Was Involved in the Occurrence of Lung Cancer. Cancer Manag Res 2021; 13:8707-8722. [PMID: 34849026 PMCID: PMC8627251 DOI: 10.2147/cmar.s339032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Background Lung cancer has the characteristics of early metastasis, high recurrence, and high mortality rate despite emerging advances in diagnostic. Early diagnosis can significantly improve the patient’s chances of cure and survival. Purpose This study aimed to identify and assess a prognostic lncRNA/miRNA/gene signature in patients with lung cancer. Methods Pearson correlation analysis, univariate Cox analysis and LASSO Cox analysis were used to construct a lung cancer prognostic risk model based on m6A-related lncRNA. The interaction between lncRNA-miRNA-gene was verified by luciferase reporter gene experiment. Results The Pearson correlation analysis determined that 1655 lncRNAs significantly correlated with the expression of m6A genes. A lung cancer prognostic risk model, including 14 m6A-related lncRNAs, was constructed through univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) Cox analysis. ABALON was identified as the key lncRNA through cluster analysis and gene expression difference analysis. Conclusion It was experimentally verified that ABALON acted as a competing endogenous RNA by sponging miR-139-3p and indirectly regulated the expression of NOB1. This study provided a new biological target for the early diagnosis of lung cancer and a new direction for studying the mechanism of lung cancer.
Collapse
Affiliation(s)
- Xinhong Liu
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Xin Zuo
- Department of Gastroenterology, The Sixth People's Hospital of Chongqing, Chongqing, People's Republic of China
| | - Lijun Ma
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Qin Wang
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Lilan Zhu
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Li Li
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| |
Collapse
|
170
|
Prevalence of Blastocystis infection in free-range Tibetan sheep and Tibetan goats in the Qinghai-Tibetan Plateau in China. One Health 2021; 13:100347. [PMID: 34820500 PMCID: PMC8600063 DOI: 10.1016/j.onehlt.2021.100347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/30/2021] [Accepted: 11/07/2021] [Indexed: 12/03/2022] Open
Abstract
Blastocystis is one of the most common enteric parasites in humans and domestic animals. For Tibetan sheep and Tibetan goats, the traditional grazing methods still occupy a dominant position, and the close contact between humans and domestic animals increases the risk of infection by Blastocystis between herdsmen and livestock. However, less pertinent information is available for Tibetan sheep or Tibetan goats. In this study, 880 fecal specimens from Tibetan sheep and Tibetan goats were collected from 6 sampling sites in Tibet to test for Blastocystis using the polymerase chain reaction and sequencing analysis of the partial SSU rRNA gene. The infection rate of Blastocystis was 8.55% for Tibetan sheep (53/620) and 8.46% for Tibetan goats (22/260). The genetic analysis of 53 positive samples from Tibetan sheep identified 4 known subtypes (ST4, ST5, ST10, and ST14). Four known subtypes (ST1, ST5, ST6, and ST10) were identified in Tibetan goats. ST10 was the dominant subtype in Tibetan sheep and Tibetan goats, accounting for 65.33% (49/75) of total subtypes. ST1, ST4, ST5, and ST6 were recognized as belonging to zoonotic subtypes. This report provides a detailed data on the prevalence and subtype distribution of Blastocystis in Tibetan sheep and Tibetan goats in Tibet, which enriches the epidemiological data of Blastocystis infection in Tibetan sheep and Tibetan goats in China. Our results indicated that Tibetan sheep and Tibetan goats can be infected with multiple Blastocystis subtypes, including zoonotic subtypes. More research is needed among humans, livestock and wild animals in Tibet to better understand their role in the spread of Blastocystis. And, One Health measures need to be taken to control and prevent its zoonotic transmission. Tibetan sheep and Tibetan goats were examined the Blastocystis for the first time. Subtypes ST4, ST5, ST10, ST14 in Tibetan sheep and subtypes ST1, ST5, ST6, ST10 in Tibetan goats were identified separately. Four potential zoonotic subtypes (ST1, ST4, ST5, ST6) were detected in this article.
Collapse
|
171
|
Jiang X, He Y, Shen Q, Duan L, Yuan Y, Tang L, Shi Y, Liu B, Zhai H, Shi P, Yang C, Chen Y. RETSAT Mutation Selected for Hypoxia Adaptation Inhibits Tumor Growth. Front Cell Dev Biol 2021; 9:744992. [PMID: 34805153 PMCID: PMC8601408 DOI: 10.3389/fcell.2021.744992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
Hypoxia occurs not only in natural environments including high altitude, underground burrows and deep sea, but also in human pathological conditions, such as hypoxic solid tumors. It has been well documented that hypoxia related signaling pathway is associated with a poor clinical outcome. Our group has recently identified multiple novel genes critical for solid tumor growth comparing the genome-wide convergent/parallel sequence evolution of highland mammals. Among them, a single mutation on the retinol saturase gene (RETSAT) containing amino acid switch from glutamine (Q) to arginine (R) at the position 247 was identified. Here, we demonstrate that RETSAT is mostly downregulated in multiple types of human cancers, whose lower expression correlates with worse clinical outcome. We show that higher expression of RETSAT is positively associated with immune infiltration in different human cancers. Furthermore, we identify that the promoter region of RETSAT is highly methylated, which leads to its decreased expressions in tumor tissues comparing to normal tissues. Furthermore, we show that RETSAT knockdown promotes, while its overexpression inhibits, the cell proliferation ability of mouse embryonic fibroblasts (MEFs) and B16 in vitro. In addition, the mice carrying homozygous Q247R mutation (RETSATR/R) is more resistant to xenograft tumor formation, as well as DMBA/TPA induced cutaneous keratinocyte carcinoma formation, compared to littermate wild-type (RETSATQ/Q) mice. Mechanistic study uncovers that the oncogenic factor, the prolyl isomerase (PPIase) Pin1 and its related downstream signaling pathway, were both markedly repressed in the mutant mice compared to the wild-type mice. In summary, these results suggest that interdisciplinary study between evolution and tumor biology can facilitate identification of novel molecular events essential for hypoxic solid tumor growth in the future.
Collapse
Affiliation(s)
- Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yaomei He
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiushuo Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Lincan Duan
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yixiao Yuan
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Tang
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yulin Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Baiyang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Haoqing Zhai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Cuiping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
172
|
Guo J, Zheng J, Zhang H, Tong J. RNA m6A methylation regulators in ovarian cancer. Cancer Cell Int 2021; 21:609. [PMID: 34794452 PMCID: PMC8600856 DOI: 10.1186/s12935-021-02318-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification of mammalian mRNAs and plays a vital role in many diseases, especially tumours. In recent years, m6A has become the topic of intense discussion in epigenetics. M6A modification is dynamically regulated by methyltransferases, demethylases and RNA-binding proteins. Ovarian cancer (OC) is a common but highly fatal malignancy in female. Increasing evidence shows that changes in m6A levels and the dysregulation of m6A regulators are associated with the occurrence, development or prognosis of OC. In this review, the latest studies on m6A and its regulators in OC have been summarized, and we focus on the key role of m6A modification in the development and progression of OC. Additionally, we also discuss the potential use of m6A modification and its regulators in the diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Jialu Guo
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jianfeng Zheng
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Affiliated Hangzhou Hospital, Nanjing Medical University, 310008, Hangzhou, Zhejiang Province, People's Republic of China
| | - Huizhi Zhang
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jinyi Tong
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China. .,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
173
|
Overview of human 20 alpha-hydroxysteroid dehydrogenase (AKR1C1): Functions, regulation, and structural insights of inhibitors. Chem Biol Interact 2021; 351:109746. [PMID: 34780792 DOI: 10.1016/j.cbi.2021.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
Human aldo-keto reductase family 1C1 (AKR1C1) is an important enzyme involved in human hormone metabolism, which is mainly responsible for the metabolism of progesterone in the human body. AKR1C1 is highly expressed and has an important relationship with the occurrence and development of various diseases, especially some cancers related to hormone metabolism. Nowadays, many inhibitors against AKR1C1 have been discovered, including some synthetic compounds and natural products, which have certain inhibitory activity against AKR1C1 at the target level. Here we briefly reviewed the physiological and pathological functions of AKR1C1 and the relationship with the disease, and then summarized the development of AKR1C1 inhibitors, elucidated the interaction between inhibitors and AKR1C1 through molecular docking results and existing co-crystal structures. Finally, we discussed the design ideals of selective AKR1C1 inhibitors from the perspective of AKR1C1 structure, discussed the prospects of AKR1C1 in the treatment of human diseases in terms of biomarkers, pre-receptor regulation and single nucleotide polymorphisms, aiming to provide new ideas for drug research targeting AKR1C1.
Collapse
|
174
|
Zhang C, Li N, Liu YY, Yuan T, Yang S, Wang XP. Cox15 is a novel oncogene that required for lung cancer cell proliferation. Biochem Biophys Res Commun 2021; 578:70-76. [PMID: 34547626 DOI: 10.1016/j.bbrc.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 01/28/2023]
Abstract
Lung cancer is one of the most malignant and prevalent tumors and accounts for the vast majority of cancer death worldwide. However, the molecular mechanisms underlying lung cancer progression are poorly understood. Here, we reveal that both transcription and protein expression levels of Cox15 were increased in lung cancer. Nrf2 specifically binds to the Cox15 promoter and triggers Cox15 expression at the transcriptional level. Cox15 functions as a novel oncogene that facilitates lung cancer cell proliferation. Additionally, Aripiprazole, a potent inhibitor of Cox15, executives profoundly suppressive effects on lung cancers cells growth and tumor progression in vivo and in vitro through exerting therapeutic effects. Taken together, our results unravel that Cox15 holds great potential to act as a prognostic molecule for lung cancer patients' prognosis in the future.
Collapse
Affiliation(s)
- Cong Zhang
- The First Stationed Outpatiend Department, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, 250031, China
| | - Ning Li
- General Practice Department of Medicine Section, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, 250031, China
| | - Ying-Ying Liu
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Tian Yuan
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Song Yang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xiang-Peng Wang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
175
|
The m 6A "reader" YTHDF1 promotes osteogenesis of bone marrow mesenchymal stem cells through translational control of ZNF839. Cell Death Dis 2021; 12:1078. [PMID: 34772913 PMCID: PMC8590051 DOI: 10.1038/s41419-021-04312-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 02/04/2023]
Abstract
N6-methyladenosine (m6A) is required for differentiation of human bone marrow mesenchymal stem cells (hBMSCs). However, its intrinsic mechanisms are largely unknown. To identify the possible role of m6A binding protein YTHDF1 in hBMSCs osteogenesis in vivo, we constructed Ythdf1 KO mice and showed that depletion of Ythdf1 would result in decreased bone mass in vivo. Both deletion of Ythdf1 in mouse BMSCs and shRNA-mediated knockdown of YTHDF1 in hBMSCs prevented osteogenic differentiation of cells in vitro. Using methylated RNA immunoprecipitation (Me-RIP) sequencing and RIP-sequencing, we found that ZNF839 (a zinc finger protein) served as a target of YTHDF1. We also verified its mouse homolog, Zfp839, was translationally regulated by Ythdf1 in an m6A-dependent manner. Zfp839 potentiated BMSC osteogenesis by interacting with and further enhancing the transcription activity of Runx2. These findings should improve our understanding of the mechanism of BMSC osteogenesis regulation and provide new ideas for the prevention and treatment of osteoporosis.
Collapse
|
176
|
Chen C, Guo Y, Guo Y, Wu X, Si C, Xu Y, Kang Q, Sun Z. m6A Modification in Non-Coding RNA: The Role in Cancer Drug Resistance. Front Oncol 2021; 11:746789. [PMID: 34745970 PMCID: PMC8564146 DOI: 10.3389/fonc.2021.746789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer drug resistance has always been a major difficulty in cancer therapy. In the face of drug pressure, resistant cancer cells show complex molecular mechanisms including epigenetic changes to maintain survival. Studies prove that cancer cells exhibit abnormal m6A modification after acquiring drug resistance. m6A modification in the target RNA including non-coding RNA can be a controller to determine the fate and metabolism of RNA by regulating their stability, subcellular localization, or translation. In particular, m6A-modified non-coding RNA plays multiple roles in multiple drug-resistant cancer cells, which can be a target for cancer drug resistance. Here, we provide an overview of the complex regulatory mechanisms of m6A-modified non-coding RNA in cancer drug resistance, and we discuss its potential value and challenges in clinical applications.
Collapse
Affiliation(s)
- Chen Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Yuying Guo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaxin Guo
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaoke Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaohua Si
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiaozhen Kang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
177
|
Liu M, Zhao Z, Cai Y, Bi P, Liang Q, Yan Y, Xu Z. YTH domain family: potential prognostic targets and immune-associated biomarkers in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:24205-24218. [PMID: 34747720 PMCID: PMC8610120 DOI: 10.18632/aging.203674] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common high malignancy with insidious onset, invasive fast-growing, high recurrence rate and fatality. YTH domain family plays essential roles in development of HCC. However, the biological function of YTH domain family in HCC have not been clarified. Here, through evaluating the expression profiles of YTH domain family, we found that upregulated YTHDF1 might be more significant and valuable in development and progression of HCC. There was a strong correlation between YTHDC1, YTHDF1 and YTHDF2 and pathological stage of HCC patients. Kaplan-Meier plotter revealed that HCC patients with high level of YTHDF1 and YTHDF2 were highly related to a shorter overall survival time, and low level of YTHDF1 (p = 0.0017) has an important association with a longer progression-free survival time. Genetic alterations using cBioPortal revealed that the alteration rates of YTHDF3 were the highest. We also found that the functions of YTH domain family were linked to several cancer-associated pathways, including peptidyl-serine modification, peptidyl-tyrosine modification and negative regulation of cellular component movement. TIMER database indicated that the YTH domain family had a strong relationship with the infiltration of six types of immune cells (macrophages, neutrophils, CD8+ T-cells, B-cells, CD4+ T-cells and dendritic cells). Next, Ualcan databases revealed that the global methylation levels of YTHDC1 was higher in HCC patients, while YTHDF2 was lower in HCC patients. In conclusion, our findings will enhance the understanding of YTH domain family in HCC pathology, and provide novel insights into YTH-targeted therapy for HCC patients.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Nuclear Medicine (PET-CT Central), Xiangya Hospital, Central South University, Changsha, China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Bi
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
178
|
Dong B, Wu C, Li SH, Huang L, Zhang C, Wu B, Sheng Y, Liu Y, Ye G, Qi Y. Correlation of m6A methylation with immune infiltrates and poor prognosis in non-small cell lung cancer via a comprehensive analysis of RNA expression profiles. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1465. [PMID: 34734017 PMCID: PMC8506701 DOI: 10.21037/atm-21-4248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022]
Abstract
Background Non-small cell lung cancer (NSCLC) is a common type of lung cancer with a poor prognosis. N6-methyladenosine (m6A) methylation, which is a reversible ribonucleic acid (RNA) modification, plays an important role in the occurrence and development of NSCLC. However, the potential effect of m6A methylation on immune infiltrates and prognosis remains unclear. Methods In this study, a weighted gene co-expression network analysis was used to screen out messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs) that were co-expressed with m6A regulators. Additionally, 2 molecular subtypes (Clusters 1 and 2) were determined via consensus clustering. Subsequently, a prognostic risk model was constructed using both co-expressed mRNAs and ncRNAs. Based on the risk scores calculated by the prognostic model, the patients were divided into the high-risk group or low-risk group. Finally, the altered patterns of the tumor immune microenvironments (TIMEs) between the 2 stratification methods were thoroughly investigated, and a gene set enrichment analysis was conducted to further examine the potential mechanism. Results Patients in Cluster 1 had lower immunoscores, higher programmed death-ligand 1 (PD-L1) expression, and shorter overall survival (OS) compared to patients in Cluster 2. A further investigation based on the prognostic model revealed that the PD-L1 expression levels of patients in the high-risk group were significantly upregulated, and the immunoscores were lower than those in the low-risk group. The immune cells with a high infiltration in Cluster 1 showed a significant positive correlation with the risk score; those with low infiltration showed a significant negative correlation. The hallmarks of the Myelocytomatosis viral oncogene (MYC) targets, the second Gap/Mitosis (G2/M) checkpoint, E2 transcription Factor (E2F) targets, glycolysis, deoxyribonucleic acid (DNA) repair, and unfolded protein response were significantly enriched in Cluster 1, the low-immunoscore group, and the high-risk group. Conclusions This study revealed that m6A methylation is closely related to the poor prognosis of NSCLC patients via interference with the TIME, which suggests that m6A may play a role in optimizing individualized immunotherapy management and improving prognosis.
Collapse
Affiliation(s)
- Bo Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunli Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hao Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunyang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinliang Sheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guanchao Ye
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
179
|
Omotoso O, Gladyshev VN, Zhou X. Lifespan Extension in Long-Lived Vertebrates Rooted in Ecological Adaptation. Front Cell Dev Biol 2021; 9:704966. [PMID: 34733838 PMCID: PMC8558438 DOI: 10.3389/fcell.2021.704966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023] Open
Abstract
Contemporary studies on aging and longevity have largely overlooked the role that adaptation plays in lifespan variation across species. Emerging evidence indicates that the genetic signals of extended lifespan may be maintained by natural selection, suggesting that longevity could be a product of organismal adaptation. The mechanisms of adaptation in long-lived animals are believed to account for the modification of physiological function. Here, we first review recent progress in comparative biology of long-lived animals, together with the emergence of adaptive genetic factors that control longevity and disease resistance. We then propose that hitchhiking of adaptive genetic changes is the basis for lifespan changes and suggest ways to test this evolutionary model. As individual adaptive or adaptation-linked mutations/substitutions generate specific forms of longevity effects, the cumulative beneficial effect is largely nonrandom and is indirectly favored by natural selection. We consider this concept in light of other proposed theories of aging and integrate these disparate ideas into an adaptive evolutionary model, highlighting strategies in decoding genetic factors of lifespan control.
Collapse
Affiliation(s)
- Olatunde Omotoso
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| |
Collapse
|
180
|
Shen M, Li Y, Wang Y, Shao J, Zhang F, Yin G, Chen A, Zhang Z, Zheng S. N 6-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells. Redox Biol 2021; 47:102151. [PMID: 34607160 PMCID: PMC8495178 DOI: 10.1016/j.redox.2021.102151] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis is a recently identified non-apoptotic form of cell death characterized by iron-dependent lipid peroxidation. However, the underlying exact mechanisms remain poorly understood. Here, we report that the total levels of N6-methyladenosine (m6A) modification are evidently increased upon exposure to ferroptosis-inducing compounds due to the upregulation of methylase METTL4 and the downregulation of demethylase FTO. Interestingly, RNA-seq shows that m6A modification appears to trigger autophagy activation by stabilizing BECN1 mRNA, which may be the potential mechanism for m6A modification-enhanced HSC ferroptosis. Importantly, YTHDF1 is identified as a key m6A reader protein for BECN1 mRNA stability, and knockdown of YTHDF1 could prevent BECN1 plasmid-induced HSC ferroptosis. Noteworthy, YTHDF1 promotes BECN1 mRNA stability and autophagy activation via recognizing the m6A binding site within BECN1 coding regions. In mice, erastin treatment alleviates liver fibrosis by inducing HSC ferroptosis. HSC-specific inhibition of m6A modification could impair erastin-induced HSC ferroptosis in murine liver fibrosis. Moreover, we retrospectively analyzed the effect of sorafenib on HSC ferroptosis and m6A modification in advanced fibrotic patients with hepatocellular carcinoma (HCC) receiving sorafenib monotherapy. Attractively, the m6A modification upregulation, autophagy activation, and ferroptosis induction occur in human HSCs. Overall, these findings reveal novel signaling pathways and molecular mechanisms of ferroptosis, and also identify m6A modification-dependent ferroptosis as a potential target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Min Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guoping Yin
- Department of Anesthesiology, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis. MO, 63104, USA
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
181
|
Li W, Chen G, Feng Z, Zhu B, Zhou L, Zhang Y, Mai J, Jiang C, Zeng J. YTHDF1 promotes the proliferation, migration, and invasion of prostate cancer cells by regulating TRIM44. Genes Genomics 2021; 43:1413-1421. [PMID: 34677810 PMCID: PMC8606387 DOI: 10.1007/s13258-021-01175-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022]
Abstract
Background Prostate cancer (PCa) is one of the most common malignancies in men. YTHDF1 may play an important role in promoting PCa progression, but there is no reports to date on YTHDF1 function in PCa. Objective This study explored whether YTHDF1 could regulate TRIM44 in PCa cells. Methods By querying the TCGA database, we evaluated YTHDF1 expression in PCa, the OS and DFS of YTHDF1, and the correlation between YTHDF1 and TRIM44 in PCa. We constructed vectors to interfere with YTHDF1 expression and overexpress TRIM44 to examine the role of YTHDF1 and TRIM44 in PCa cells. Differentially expressed mRNAs were identified by mRNA sequencing. The levels of YTHDF1, TRIM44, LGR4, SGTA, DDX20, and FZD8 were measured by qRT-PCR and WB was used to determine YTHDF1 and TRIM44 expression. A CCK-8 assay was used to assess cell proliferation. A Transwell chamber assay was used measure cell migration and invasion ability. Results YTHDF1 was highly expressed in both Pca tissues and cells. PCa patient prognosis with high YTHDF1 expression was relatively poor. Cell function experiments showed that inhibiting YTHDF1 expression decreased cell proliferation, migration, and invasion. RNA sequencing analysis revealed that YTHDF1 may promote PCa cell proliferation, migration, and invasion by modulating TRIM44 expression. Cell function experiments further verified that YTHDF1 promoted PCa cell proliferation, migration, and invasion by regulating TRIM44. Conclusions YTHDF1 enhances PCa cell proliferation, migration, and invasion by regulating TRIM44.
Collapse
Affiliation(s)
- Weijian Li
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Gaohuang Chen
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Zhenyu Feng
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Baoyi Zhu
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Lilin Zhou
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Yuying Zhang
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Junyan Mai
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Chonghe Jiang
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Jianwen Zeng
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China. .,Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500, Guangdong, China.
| |
Collapse
|
182
|
Multi-omics analysis of m 6A modification-related patterns based on m 6A regulators and tumor microenvironment infiltration in lung adenocarcinoma. Sci Rep 2021; 11:20921. [PMID: 34686691 PMCID: PMC8536683 DOI: 10.1038/s41598-021-00272-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023] Open
Abstract
Epigenetic modifications, especially N6-methyladenosine (m6A) modification, play a key role in tumor microenvironment (TME) infiltration. However, the regulatory role of m6A modification in the TME of lung adenocarcinoma (LUAD) remains unclear. A total of 2506 patients with LUAD were included in the analysis and divided into different groups according to distinct m6A modification-related patterns based on 23 m6A regulators. A comprehensive analysis was performed to explore TME infiltration in different m6A modification-related patterns. Principal component analysis was performed to obtain the m6Ascore and to quantify m6A modification-related patterns in different individuals. Three distinct m6A modification-related patterns were identified by 23 m6A regulators. The pathway enrichment analysis showed that m6Acluster-A was associated with immune activation; m6Acluster-B was associated with carcinogenic activation; m6Acluster-C was prominently related to substance metabolism. M6Acluster-A was remarkably rich in TME-infiltrating immune cells and patients with this pattern showed a survival advantage. The m6Ascore could predict TME infiltration, tumor mutation burden (TMB), the effect of tumor immunotherapy, and the prognosis of patients in LUAD. High m6Ascore was characterized by increased TME infiltration, reduced TMB, and survival advantage. Patients with a high m6Ascore exhibited significantly improved clinical response to anti-cytotoxic T lymphocyte antigen-4 (anti-CTLA4) immunotherapy. This study explored the regulatory mechanisms of TME infiltration in LUAD. The comprehensive analysis of m6A modification-related patterns may contribute to the development of individualized immunotherapy and the improvement of the overall effectiveness of immunotherapy for LUAD patients.
Collapse
|
183
|
Zhang RN, Wu DM, Wu LP, Gao GW. LncRNA LINC00337 sponges mir-1285-3p to promote proliferation and metastasis of lung adenocarcinoma cells by upregulating YTHDF1. Cancer Cell Int 2021; 21:550. [PMID: 34663343 PMCID: PMC8524958 DOI: 10.1186/s12935-021-02253-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Emerging studies have shown that long noncoding RNAs (lncRNAs) predominantly function in the carcinogenesis of multiple developing human tumors. The current study aimed to investigate the underlying mechanisms of LINC00337 in lung adenocarcinoma. METHODS We analyzed TCGA and GTEx datasets and chose LINC00337 as the research object. Cell proliferation, cell apoptosis, cell cycle, migration, and invasion were detected in the gain and loss experiments of LINC00337 both in vitro and in vivo. Moreover, RNA pull-down, luciferase reporter assays, western blotting analysis, and rescue experiments were performed to investigate the underlying molecular mechanisms of LINC00337 function. RESULTS LINC00337 expression was remarkably upregulated in lung adenocarcinoma. In addition, LINC00337 knockdown was shown to repress cell migration, invasion, and proliferation, as well as the cell cycle, and gear up apoptosis in lung adenocarcinoma in vitro and in vivo. With respect to the mechanism, LINC00337 knockdown boosted miR-1285-3p expression and then restrained YTHDF1 expression post-transcriptionally. Crucially, both miR-1285-3p decrement and YTHDF1 overexpression successfully reversed the influence on cell proliferation, migration, invasion, and apoptosis caused by LINC00337 shRNA. CONCLUSIONS These results suggest that LINC00337 acts as an oncogenic lncRNA, targeting miR-1285-3p and regulating YTHDF1 expression, to promote the progression of lung adenocarcinoma.
Collapse
Affiliation(s)
- Ru-Nan Zhang
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China.
| | - Dong-Mei Wu
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| | - Li-Ping Wu
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| | - Guo-Wei Gao
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| |
Collapse
|
184
|
Qu N, Bo X, Li B, Ma L, Wang F, Zheng Q, Xiao X, Huang F, Shi Y, Zhang X. Role of N6-Methyladenosine (m 6A) Methylation Regulators in Hepatocellular Carcinoma. Front Oncol 2021; 11:755206. [PMID: 34692544 PMCID: PMC8529104 DOI: 10.3389/fonc.2021.755206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Liver cancer is the fifth most common malignant tumor in terms of incidence and the third leading cause of cancer-related mortality globally. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Although great progress has been made in surgical techniques, hepatic artery chemoembolization, molecular targeting and immunotherapy, the prognosis of liver cancer patients remains very poor. N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic cells and regulates various stages of the RNA life cycle. Many studies have reported that the abnormal expression of m6A-related regulators in HCC represent diagnostic and prognostic markers and potential therapeutic targets. In this review, firstly, we introduce the latest research on m6A-related regulators in detail. Next, we summarize the mechanism of each regulator in the pathogenesis and progression of HCC. Finally, we summarize the potential diagnostic, prognostic and therapeutic value of the regulators currently reported in HCC.
Collapse
Affiliation(s)
- Nanfang Qu
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiaotong Bo
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Bin Li
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lei Ma
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Feng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qinghua Zheng
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xuhua Xiao
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Fengmei Huang
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yuanyuan Shi
- Department of Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xuemei Zhang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
185
|
Zhang L, Zhang J, Jin Y, Yao G, Zhao H, Qiao P, Wu S. Nrf2 Is a Potential Modulator for Orchestrating Iron Homeostasis and Redox Balance in Cancer Cells. Front Cell Dev Biol 2021; 9:728172. [PMID: 34589492 PMCID: PMC8473703 DOI: 10.3389/fcell.2021.728172] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is an essential trace mineral element in almost all living cells and organisms. However, cellular iron metabolism pathways are disturbed in most cancer cell types. Cancer cells have a high demand of iron. To maintain rapid growth and proliferation, cancer cells absorb large amounts of iron by altering expression of iron metabolism related proteins. However, iron can catalyze the production of reactive oxygen species (ROS) through Fenton reaction. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an important player in the resistance to oxidative damage by inducing the transcription of antioxidant genes. Aberrant activation of Nrf2 is observed in most cancer cell types. It has been revealed that the over-activation of Nrf2 promotes cell proliferation, suppresses cell apoptosis, enhances the self-renewal capability of cancer stem cells, and even increases the chemoresistance and radioresistance of cancer cells. Recently, several genes involving cellular iron homeostasis are identified under the control of Nrf2. Since cancer cells require amounts of iron and Nrf2 plays pivotal roles in oxidative defense and iron metabolism, it is highly probable that Nrf2 is a potential modulator orchestrating iron homeostasis and redox balance in cancer cells. In this hypothesis, we summarize the recent findings of the role of iron and Nrf2 in cancer cells and demonstrate how Nrf2 balances the oxidative stress induced by iron through regulating antioxidant enzymes and iron metabolism. This hypothesis provides new insights into the role of Nrf2 in cancer progression. Since ferroptosis is dependent on lipid peroxide and iron accumulation, Nrf2 inhibition may dramatically increase sensitivity to ferroptosis. The combination of Nrf2 inhibitors with ferroptosis inducers may exert greater efficacy on cancer therapy.
Collapse
Affiliation(s)
- Lingyan Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanqing Jin
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
186
|
Meng J, Huang X, Qiu Y, Yu M, Lu J, Yao J. Characterization of m6A-Related Genes Landscape in Skin Cutaneous Melanoma to Aid Immunotherapy and Assess Prognosis. Int J Gen Med 2021; 14:5345-5361. [PMID: 34522131 PMCID: PMC8434882 DOI: 10.2147/ijgm.s328522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023] Open
Abstract
Background Skin cutaneous melanoma (SKCM) is the most malignant tumor among skin cancers. Immunotherapy has shown a great role in the advantageous prognosis of SKCM. However, only a small percentage of people can benefit from immunotherapy. To date, there has been insufficient evidence to reveal the prognostic value of m6A in SKCM and its relationship with the infiltration of immune cells and the efficacy of immunotherapy. Methods Here, we synthetically analyzed 23 m6A regulators from SKCM samples collected from the TCGA and GEO databases. We defined three m6A modification patterns and constructed m6A scores using principal component analysis (PCA). Results We found significant differences in overall survival (OS) and immune infiltration between different m6A subclusters. Besides, m6A score was positively correlated with regulatory T-cell and helper T-cell content, which may account for the association of high m6A scores with superior prognosis. Multivariate Cox regression analysis revealed that the m6A score was an independent prognostic indicator. Moreover, patients with high m6A scores showed a better response to immunotherapy, and this result was further validated in two independent immunotherapy cohorts receiving anti-PD-1/PD-L1 therapy. Conclusion The findings suggested the m6A score can screen suitable candidates for immunotherapy and can predict immunotherapy response. This analysis of different m6A patterns in a large sample of SKCM expanded our understanding of TME and provided new ideas for prognostic assessment and personalized immunotherapy strategies for SKCM patients.
Collapse
Affiliation(s)
- Jinzhi Meng
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xing Huang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yue Qiu
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Miao Yu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jinfeng Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jun Yao
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
187
|
Cross-Talk between Oxidative Stress and m 6A RNA Methylation in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6545728. [PMID: 34484567 PMCID: PMC8416400 DOI: 10.1155/2021/6545728] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/03/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. Excessive ROS levels are an important factor in tumor development. Damage stimulation and excessive activation of oncogenes cause elevated ROS production in cancer, accompanied by an increase in the antioxidant capacity to retain redox homeostasis in tumor cells at an increased level. Although moderate concentrations of ROS produced in cancer cells contribute to maintaining cell survival and cancer progression, massive ROS accumulation can exert toxicity, leading to cancer cell death. RNA modification is a posttranscriptional control mechanism that regulates gene expression and RNA metabolism, and m6A RNA methylation is the most common type of RNA modification in eukaryotes. m6A modifications can modulate cellular ROS levels through different mechanisms. It is worth noting that ROS signaling also plays a regulatory role in m6A modifications. In this review, we concluded the effects of m6A modification and oxidative stress on tumor biological functions. In particular, we discuss the interplay between oxidative stress and m6A modifications.
Collapse
|
188
|
Zhang Z, Zhang C, Luo Y, Zhang G, Wu P, Sun N, He J. RNA N 6 -methyladenosine modification in the lethal teamwork of cancer stem cells and the tumor immune microenvironment: Current landscape and therapeutic potential. Clin Transl Med 2021; 11:e525. [PMID: 34586737 PMCID: PMC8473646 DOI: 10.1002/ctm2.525] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 12/18/2022] Open
Abstract
N6 -methyladenosine (m6 A), the newest and most prevalent layer of internal epigenetic modification in eukaryotic mRNA, has been demonstrated to play a critical role in cancer biology. Increasing evidence has highlighted that the interaction between cancer stem cells (CSCs) and the tumor immune microenvironment (TIME) is the root cause of tumorigenesis, metastasis, therapy resistance, and recurrence. In recent studies, the m6 A modification has been tightly linked to this CSC-TIME interplay, participating in the regulation of CSCs and TIME remolding. Interestingly, the m6 A modification has also been identified as a novel decisive factor in the efficacy of immunotherapies-particularly anti-PD-1/PD-L1 monotherapies-by changing the plasticity of the TIME. Given the functional importance of the m6 A modification in the crosstalk between CSCs and the TIME, targeting m6 A regulators will open new avenues to overcome therapeutic resistance, especially for immune checkpoint-based immunotherapy. In the present review, we summarize the current landscape of m6 A modifications in CSCs and the TIME, and also prospect the underling role of m6 A modifications at the crossroads of CSCs and the TIME for the first time. Additionally, to provide the possibility of modulating m6 A modifications as an emerging therapeutic strategy, we also explore the burgeoning inhibitors and technologies targeting m6 A regulators. Lastly, considering recent advances in m6 A-seq technologies and cancer drug development, we propose the future directions of m6 A modification in clinical applications, which may not only help to improve individualized monitoring and therapy but also provide enhanced and durable responses in patients with insensitive tumors.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuejun Luo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
189
|
Hu Y, Pan Q, Wang M, Ai X, Yan Y, Tian Y, Jing Y, Tang P, Jiang J. m 6A RNA Methylation Regulator YTHDF1 Correlated With Immune Microenvironment Predicts Clinical Outcomes and Therapeutic Efficacy in Breast Cancer. Front Med (Lausanne) 2021; 8:667543. [PMID: 34434939 PMCID: PMC8380833 DOI: 10.3389/fmed.2021.667543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: Increasing evidence highlights the roles of N6-methyladenosine (m6A) and its regulators in oncogenesis. Herein, this study observed the associations of m6A regulators with breast cancer. Methods: RNA-seq profiles of breast cancer were retrieved from the Cancer Genome Atlas (TCGA) database. The expression of m6A regulators was analyzed in tumor and normal tissues. Their expression correlations were analyzed by Spearson test. Overall survival (OS) analysis of these regulators was then presented. Gene set enrichment analysis (GSEA) was performed in high and low YTHDF1 expression groups. The correlations of YTHDF1 expression with immune cells and tumor mutation burden (TMB) were calculated in breast cancer samples. Somatic variation was assessed in high and low YTHDF1 expression groups. Results: Most of m6A regulators were abnormally expressed in breast cancer compared to normal tissues. At the mRNA levels, there were closely relationships between them. Among them, YTHDF1 up-regulation was significantly related to undesirable prognosis (p = 0.025). GSEA results showed that high YTHDF1 expression was associated with cancer-related pathways. Furthermore, YTHDF1 expression was significantly correlated with T cells CD4 memory activated, NK cells activated, monocytes, and macrophages. There were higher TMB scores in YTHDF1 up-regulation group than its down-regulation group. Missense mutation and non-sense mutation were the most frequent mutation types. Conclusion: Our findings suggested that dysregulated m6A regulator YTHDF1 was predictive of survival outcomes as well as response to immunotherapy of breast cancer, and were closely related to immune microenvironment.
Collapse
Affiliation(s)
- Ying Hu
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Qinwen Pan
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Minghao Wang
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Xiang Ai
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Yuzhao Yan
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Yuan Tian
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Yuting Jing
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Peng Tang
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Jun Jiang
- Department of Breast Surgery, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| |
Collapse
|
190
|
Hu K, Yao L, Yan Y, Zhou L, Li J. Comprehensive Analysis of YTH Domain Family in Lung Adenocarcinoma: Expression Profile, Association with Prognostic Value, and Immune Infiltration. DISEASE MARKERS 2021; 2021:2789481. [PMID: 34497675 PMCID: PMC8420974 DOI: 10.1155/2021/2789481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND All YTH domain family members are m6A reader proteins accounting for the methylation modulation involved in the process of tumorgenesis and tumor progression. However, the expression profiles and roles of the YTH domain family in lung adenocarcinoma (LUAD) remain to be further illustrated. METHODS GEPIA2 and TNMplot databases were used to generate the expression profiles of the YTH family. Kaplan-Meier plotter database was employed to analysis the prognostic value of the YTH family. Coexpression profiles and genetic alterations analysis of the YTH family were undertaken using the cBioPortal database. YTH family protein-associated protein-protein interaction (PPI) network was identified by using STRING. Functional enrichment analysis was performed with the help of the WebGestalt database. The correlation analysis between the YTH family and immune cell infiltration in LUAD was administrated by using the TIMER2.0 database. RESULTS mRNA expression of YTHDC1 and YTHDC2 was significantly lower in LUAD, whereas YTHDF1, YTHDF2, and YTHDF3 with apparently higher expression. YTHDF2 expression was observed to be the highest in the nonsmoker subgroup, and its expression gradually decreased with the increased severity of smoking habit. LUAD patients with low expression of YTHDC2, YTHDF1, and YTHDF2 were correlated with a better overall survival (OS) time. The YTHDF1 genetic alteration rate was 26%, which was the highest in the YTH family. The major cancer-associated functions of YTH family pointed in the direction of immunomodulation, especially antigen processing and presentation. Most of the YTH family members were significantly correlated with the infiltration of CD4+ T cells, CD8+ T cells, macrophages, and neutrophils, indicating the deep involvement of the YTH domain family in the immune cell infiltration in LUAD. CONCLUSION The molecular and expression profiles of the YTH family were dysregulated in LUAD. YTH family members (especially YTHDC2) were promising biomarkers and potential therapeutic targets that may bring benefit for the patients with LUAD.
Collapse
Affiliation(s)
- Kuan Hu
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Lei Yao
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Lei Zhou
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| |
Collapse
|
191
|
Malovic E, Ealy A, Kanthasamy A, Kanthasamy AG. Emerging Roles of N6-Methyladenosine (m6A) Epitranscriptomics in Toxicology. Toxicol Sci 2021; 181:13-22. [PMID: 33616673 PMCID: PMC8599717 DOI: 10.1093/toxsci/kfab021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Epitranscriptomics, the study of chemically modified RNAs, is a burgeoning field being explored in a variety of scientific disciplines. Of the currently known epitranscriptomic modifications, N6-methyladenosine (m6A) methylation is the most abundant. The m6A modification is predominantly regulated by 3 tiers of protein modulators classified as writers, erasers, and readers. Depending upon cellular needs, these proteins function to deposit, remove, or read the methyl modifications on cognate mRNAs. Many environmental chemicals including heavy metals, pesticides, and other toxic pollutants, are all known to perturb transcription and translation machinery to exert their toxic responses. As such, we herein review how the m6A modification may be affected under different toxicological paradigms. Furthermore, we discuss how toxicants can affect the 3 tiers of regulation directly, and how these effects influence the m6A-modified mRNAs. Lastly, we highlight the disparities between published findings and theories, especially those concerning the m6A reader tier of regulation. In the far-reaching field of toxicology, m6A epitranscriptomics provides another enticing avenue to explore new mechanisms and therapies for a diverse range of environmentally linked disorders and diseases.
Collapse
Affiliation(s)
- Emir Malovic
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, Iowa 50011
| | - Alyssa Ealy
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, Iowa 50011
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, Iowa 50011
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
192
|
Tsuchiya K, Yoshimura K, Inoue Y, Iwashita Y, Yamada H, Kawase A, Watanabe T, Tanahashi M, Ogawa H, Funai K, Shinmura K, Suda T, Sugimura H. YTHDF1 and YTHDF2 are associated with better patient survival and an inflamed tumor-immune microenvironment in non-small-cell lung cancer. Oncoimmunology 2021; 10:1962656. [PMID: 34408926 PMCID: PMC8366544 DOI: 10.1080/2162402x.2021.1962656] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
The human YTH domain family (YTHDF) proteins are RNA-binding proteins that recognize N6-methyladenosine (m6A), facilitating various biological processes via m6A RNA modification. How these molecules associate with non-small-cell lung cancer (NSCLC) molecular mechanisms remain unclear. The protein expression levels of YTHDF1 and YTHDF2 in 603 cases of resected NSCLC were evaluated using immunohistochemistry. We analyzed the associations of these attributes with patient characteristics and survival. We also assessed four subsets of lymphocytes (PD-1+, CD8+, Foxp3+, and CD45RO+) as tumor-infiltrating lymphocytes (TILs) in the tumor nest and in the surrounding stroma separately. In addition, we investigated differentially expressed genes and the expression of PD-L1 in YTHDF1- and YTHDF2-deprived lung cancer cells. The expressions of both YTHDF1 and YTHDF2 were less in the advanced-stage tumors than in the early-stage tumors. The expressions of both YTHDF1 and YTHDF2 were also independent favorable prognostic factors for recurrence-free survival (HR, 0.745; 95% CI, 0.562-0.984 for YTHDF1; HR, 0.683; 95% CI, 0.503-0.928 for YTHDF2). The TIL densities of almost all four lymphocyte subsets in the stroma were significantly higher in the tumors with high YTHDF1 and YTHDF2 expression. In vitro, YTHDF1 and YTHDF2 knockdown in cells upregulated tumor PD-L1 expression and altered multiple immune-related genes. High expressions of both YTHDF1 and YTHDF2 are associated with a favorable prognostic outcome of NSCLC patients, a greater amount of TILs, and downregulation of PD-L1. YTHDF1 and YTHDF2 could be novel prognostic and druggable targets related to the tumor-immune microenvironment in lung cancers.
Collapse
Affiliation(s)
- Kazuo Tsuchiya
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akikazu Kawase
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takuya Watanabe
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Masayuki Tanahashi
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Hiroshi Ogawa
- Department of Pathology, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
193
|
Recent advances of m 6A methylation modification in esophageal squamous cell carcinoma. Cancer Cell Int 2021; 21:421. [PMID: 34376206 PMCID: PMC8353866 DOI: 10.1186/s12935-021-02132-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, with the development of RNA sequencing technology and bioinformatics methods, the epigenetic modification of RNA based on N6-methyladenosine (m6A) has gradually become a research hotspot in the field of bioscience. m6A is the most abundant internal modification in eukaryotic messenger RNAs (mRNAs). m6A methylation modification can dynamically and reversibly regulate RNA transport, localization, translation and degradation through the interaction of methyltransferase, demethylase and reading protein. m6A methylation can regulate the expression of proto-oncogenes and tumor suppressor genes at the epigenetic modification level to affect tumor occurrence and metastasis. The morbidity and mortality of esophageal cancer (EC) are still high worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common tissue subtype of EC. This article reviews the related concepts, biological functions and recent advances of m6A methylation in ESCC, and looks forward to the prospect of m6A methylation as a new diagnostic biomarker and potential therapeutic target for ESCC.
Collapse
|
194
|
Liu Y, Lin H, Hua R, Zhang J, Cheng J, Li S, Zhou H, Zhuo Z, Bian J. Impact of YTHDF1 gene polymorphisms on Wilms tumor susceptibility: A five-center case-control study. J Clin Lab Anal 2021; 35:e23875. [PMID: 34151473 PMCID: PMC8373325 DOI: 10.1002/jcla.23875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Wilms tumor is the most frequent renal malignancy in children. YTHDF1 is associated with the development of several kinds of cancers, yet whether common variants of the YTHDF1 gene influence Wilms tumor risk is unknown. We present, here, a hospital-based case-control study specifically designed to investigate the role of YTHDF1 genetic variants on Wilms tumor. METHODS We successfully genotyped samples of 408 Wilms tumor cases and 1198 controls which were collected from five hospitals across China. The unconditional logistic regression was adopted to analyze the contributions of YTHDF1 gene single nucleotide polymorphisms (SNPs) to the risk of Wilms tumor. The odds ratio (OR) and 95% confidence interval (CI) were generated to evaluate the conferring risk of YTHDF1 gene SNPs (rs6011668 C>T, rs6090311 A>G). RESULTS Neither of the two SNPs could contribute to the risk of Wilms tumor. A negative association was also detected in the combined effects of protective genotypes on Wilms tumor risk. The stratification analysis revealed that compared with those with CC genotype, rs6011668 CT/TT genotype was associated with increased Wilms tumor risk in those ≤18 months (OR = 1.54, 95% CI = 1.02-2.30, p = 0.038), and with decreased Wilms tumor risk in those >18 months (OR = 0.70, 95% CI = 0.50-0.97, p = 0.034). CONCLUSION Our present work sheds some light on the potential role of YTHDF1 gene polymorphisms on Wilms tumor risk.
Collapse
Affiliation(s)
- Yanfei Liu
- Department of PathologyXi'an Children’s Hospital, The Affiliated Children’s Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Huiran Lin
- Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Rui‐Xi Hua
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children’s Medical CenterGuangzhouChina
| | - Jiao Zhang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jiwen Cheng
- Department of Pediatric SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Suhong Li
- Department of PathologyChildren Hospital and Women Health Center of ShanxiTaiyuanChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhenjian Zhuo
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children’s Medical CenterGuangzhouChina
| | - Jun Bian
- Department of General SurgeryXi'an Children’s Hospital, Xi'an Jiaotong University Affiliated Children’s HospitalXi'anChina
| |
Collapse
|
195
|
Decoding m 6A mRNA methylation by reader proteins in cancer. Cancer Lett 2021; 518:256-265. [PMID: 34339799 DOI: 10.1016/j.canlet.2021.07.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022]
Abstract
N6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic mRNAs, regulates gene expression at the post-transcriptional level. The reader proteins of m6A, mainly YTH domain-containing proteins, specifically recognize m6A-modified mRNAs and regulate their metabolism. Recent studies have highlighted essential roles of m6A readers in the initiation and development of human cancers. In this review, we summarize recent findings about the biological functions of YTH domain proteins in cancers, the underlying mechanisms, and clinical implications. Gene expression reprogramming by dysregulated m6A reader proteins offers potential targets for cancer treatment, while targeted m6A editors and readers provide tools to manipulate m6A metabolism in cancers.
Collapse
|
196
|
Hu L, Wang J, Huang H, Yu Y, Ding J, Yu Y, Li K, Wei D, Ye Q, Wang F, Shen B, Chen J, Fulton DJR, Chen F. YTHDF1 Regulates Pulmonary Hypertension through Translational Control of MAGED1. Am J Respir Crit Care Med 2021; 203:1158-1172. [PMID: 33465322 DOI: 10.1164/rccm.202009-3419oc] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rationale: Posttranscriptional modifications are implicated in vascular remodeling of pulmonary hypertension (PH). m6A (N6-methyladenosine) is an abundant RNA modification that is involved in various biological processes. Whether m6A RNA modification and m6A effector proteins play a role in pulmonary vascular remodeling and PH has not been demonstrated.Objectives: To determine whether m6A modification and m6A effectors contribute to the pathogenesis of PH.Methods: m6A modification and YTHDF1 expression were measured in human and experimental PH samples. RNA immunoprecipitation analysis and m6A sequencing were employed to screen m6A-marked transcripts. Genetic approaches were employed to assess the respective roles of YTHDF1 and MAGED1 in PH. Primary cell isolation and cultivation were used for function analysis of pulmonary artery smooth muscle cells (PASMCs).Measurements and Main Results: Elevated m6A levels and increased YTHDF1 protein expression were found in human and rodent PH samples as well as in hypoxic PASMCs. The deletion of YTHDF1 ameliorated PASMC proliferation, phenotype switch, and PH development both in vivo and in vitro. m6A RNA immunoprecipitation analysis identified MAGED1 as an m6A-regulated gene in PH, and genetic ablation of MAGED1 improved vascular remodeling and hemodynamic parameters in SU5416/hypoxia mice. YTHDF1 recognized and promoted translation of MAGED1 in an m6A-dependent manner that was absent in METTL3-deficient PASMCs. In addition, MAGED1 silencing inhibited hypoxia-induced proliferation of PASMCs through downregulating PCNA.Conclusions: YTHDF1 promotes PASMC proliferation and PH by enhancing MAGED1 translation. This study identifies the m6A RNA modification as a novel mediator of pathological changes in PASMCs and PH.
Collapse
Affiliation(s)
- Li Hu
- Department of Forensic Medicine
| | | | | | | | | | | | - Kai Li
- Department of Forensic Medicine
| | - Dong Wei
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi, China; and
| | | | - Fangzhu Wang
- State Key Laboratory of Reproductive Medicine, and
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, and
| | - Jingyu Chen
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi, China; and
| | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Feng Chen
- Department of Forensic Medicine.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
197
|
Bonnet S, Gomez D. RNA Methylation: A New Regulator of Vascular Remodeling in Pulmonary Hypertension. Am J Respir Crit Care Med 2021; 203:1060-1062. [PMID: 33636090 PMCID: PMC8314911 DOI: 10.1164/rccm.202011-4185ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sébastien Bonnet
- Pulmonary Hypertension Research Group Centre de recherche de l'institut Universitaire de Cardiologie et de pneumologie de Quebec Québec, Quebec, Canada.,Department of Medicine Université Laval Québec, Quebec, Canada
| | - Delphine Gomez
- Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania and.,Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute Pittsburgh, Pennsylvania
| |
Collapse
|
198
|
Hypoxia in Lung Cancer Management: A Translational Approach. Cancers (Basel) 2021; 13:cancers13143421. [PMID: 34298636 PMCID: PMC8307602 DOI: 10.3390/cancers13143421] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hypoxia is a common feature of lung cancers. Nonetheless, no guidelines have been established to integrate hypoxia-associated biomarkers in patient management. Here, we discuss the current knowledge and provide translational novel considerations regarding its clinical detection and targeting to improve the outcome of patients with non-small-cell lung carcinoma of all stages. Abstract Lung cancer represents the first cause of death by cancer worldwide and remains a challenging public health issue. Hypoxia, as a relevant biomarker, has raised high expectations for clinical practice. Here, we review clinical and pathological features related to hypoxic lung tumours. Secondly, we expound on the main current techniques to evaluate hypoxic status in NSCLC focusing on positive emission tomography. We present existing alternative experimental approaches such as the examination of circulating markers and highlight the interest in non-invasive markers. Finally, we evaluate the relevance of investigating hypoxia in lung cancer management as a companion biomarker at various lung cancer stages. Hypoxia could support the identification of patients with higher risks of NSCLC. Moreover, the presence of hypoxia in treated tumours could help clinicians predict a worse prognosis for patients with resected NSCLC and may help identify patients who would benefit potentially from adjuvant therapies. Globally, the large quantity of translational data incites experimental and clinical studies to implement the characterisation of hypoxia in clinical NSCLC management.
Collapse
|
199
|
Xu W, Tian X, Liu W, Anwaier A, Su J, Zhu W, Wan F, Shi G, Wei G, Qu Y, Zhang H, Ye D. m 6A Regulator-Mediated Methylation Modification Model Predicts Prognosis, Tumor Microenvironment Characterizations and Response to Immunotherapies of Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:709579. [PMID: 34295828 PMCID: PMC8290143 DOI: 10.3389/fonc.2021.709579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND This study aims to establish an N6-methyladenosine (m6A) RNA methylation regulators-mediated methylation model and explore its role in predicting prognostic accuracy of immune contexture and characterizations of clear cell renal cell carcinoma (ccRCC). METHODS The m6A modification subclasses (m6AMS) were identified by unsupervised cluster analysis and three clusters were determined by consensus clustering algorithm in a discovering cohort. Testing and real-world validation cohorts were used to identify predictive responses for immune checkpoint therapies (ICTs) of m6AMS. RESULTS Prognostic implications landscape of m6A regulators in cancers and its differential expression levels in ccRCC patients were identified. Based on discovering cohort, ccRCC were automatically divided into three m6AMS, and cluster 3 showed significant worse survival than cluster 1/2. Importantly, it was found that the immune checkpoint molecules expression was significantly elevated in cluster 3. Besides, m6A scoreLow group (cluster 1&2) have significantly elevated TIDE score compared with m6A scoreHigh group (cluster 3). There was conspicuous tertiary lymphoid tissue, aggressive phenotype, elevated glycolysis, expression of PD-L1, abundance of CD8+ T cells, CD4+ FOXP3+ Treg cells and TCRn immune cells infiltration in the high m6A score group. Interestingly, there are significantly increased patients with clinical benefit in m6A scoreHigh group in 368 patients receiving ICTs from testing IMvigor210 (n = 292) and validation FUSCC (n = 55) cohorts. CONCLUSION Our discovery highlights the relationship between tumor epigenetic heterogeneity and immune contexture. Immune-rejection cluster 3 has pro-tumorigenic immune infiltration, and shows significant clinical benefits for ccRCC patients receiving ICTs, enabling patient selection for future clinical treatment.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wangrui Liu
- Department of Urology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaqi Su
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenkai Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gaomeng Wei
- Department of Urology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
200
|
Lou X, Ning J, Liu W, Li K, Qian B, Xu D, Wu Y, Zhang D, Cui W. YTHDF1 Promotes Cyclin B1 Translation through m 6A Modulation and Contributes to the Poor Prognosis of Lung Adenocarcinoma with KRAS/TP53 Co-Mutation. Cells 2021; 10:cells10071669. [PMID: 34359836 PMCID: PMC8305181 DOI: 10.3390/cells10071669] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
KRAS and TP53 mutations are the two most common driver mutations in patients with lung adenocarcinoma (LUAD), and they appear to reduce latency and increase metastatic proclivity when a KRAS and TP53 co-mutation (KRAS/TP53-mut) occurs. However, the molecular mechanism involved is unclear. N6-methyladenosine (m6A), the most abundant RNA modification in mammal mRNAs, plays a critical role in tumorigenesis. Here, we used genomic and transcriptomic data and found that only LUAD patients with KRAS/TP53-mut, but not an individual mutation, appeared to exhibit poor overall survival when compared with patients without KRAS and TP53 mutation (wildtype). Subsequently, we analyzed the differential expression of the 15-m6A-related genes in LUAD with different mutations and found that YTHDF1 was the most upregulated in KRAS/TP53-mut patients and associated with their adverse prognosis. Bioinformatics and experimental evidence indicated that elevated YTHDF1 functionally promoted the translation of cyclin B1 mRNA in an m6A-dependent manner, thereby facilitating the tumor proliferation and poor prognosis of LUAD with KRAS/TP53-mut. Furthermore, the concurrent increase in YTHDF1 and cyclin B1 was confirmed by immunohistochemistry staining in patients with co-occurring KRAS/TP53 mutations. YTHDF1 was correlated with an unfavorable clinical stage and tumor size. Collectively, we identified and confirmed a novel “YTHDF1–m6A–cyclin B1 translation” axis as an essential molecular pathway for the prognosis of KRAS/TP53-mut LUAD.
Collapse
Affiliation(s)
- Xiaoying Lou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (X.L.); (K.L.); (D.X.); (Y.W.)
| | - Jinfeng Ning
- The Thoracic Department of Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, China;
| | - Wei Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, China;
| | - Kexin Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (X.L.); (K.L.); (D.X.); (Y.W.)
| | - Benheng Qian
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou 325027, China;
| | - Danfei Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (X.L.); (K.L.); (D.X.); (Y.W.)
| | - Yue Wu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (X.L.); (K.L.); (D.X.); (Y.W.)
| | - Donghong Zhang
- Center for Molecular and Translational Medicine, Research Science Center, Georgia State University, Atlanta, GA 30303, USA
- Correspondence: (D.Z.); (W.C.)
| | - Wei Cui
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (X.L.); (K.L.); (D.X.); (Y.W.)
- Correspondence: (D.Z.); (W.C.)
| |
Collapse
|