151
|
Wong EK, Marchbank KJ, Lomax-Browne H, Pappworth IY, Denton H, Cooke K, Ward S, McLoughlin AC, Richardson G, Wilson V, Harris CL, Morgan BP, Hakobyan S, McAlinden P, Gale DP, Maxwell H, Christian M, Malcomson R, Goodship TH, Marks SD, Pickering MC, Kavanagh D, Cook HT, Johnson SA. C3 Glomerulopathy and Related Disorders in Children: Etiology-Phenotype Correlation and Outcomes. Clin J Am Soc Nephrol 2021; 16:1639-1651. [PMID: 34551983 PMCID: PMC8729419 DOI: 10.2215/cjn.00320121] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Membranoproliferative GN and C3 glomerulopathy are rare and overlapping disorders associated with dysregulation of the alternative complement pathway. Specific etiologic data for pediatric membranoproliferative GN/C3 glomerulopathy are lacking, and outcome data are based on retrospective studies without etiologic data. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A total of 80 prevalent pediatric patients with membranoproliferative GN/C3 glomerulopathy underwent detailed phenotyping and long-term follow-up within the National Registry of Rare Kidney Diseases (RaDaR). Risk factors for kidney survival were determined using a Cox proportional hazards model. Kidney and transplant graft survival was determined using the Kaplan-Meier method. RESULTS Central histology review determined 39 patients with C3 glomerulopathy, 31 with immune-complex membranoproliferative GN, and ten with immune-complex GN. Patients were aged 2-15 (median, 9; interquartile range, 7-11) years. Median complement C3 and C4 levels were 0.31 g/L and 0.14 g/L, respectively; acquired (anticomplement autoantibodies) or genetic alternative pathway abnormalities were detected in 46% and 9% of patients, respectively, across all groups, including those with immune-complex GN. Median follow-up was 5.18 (interquartile range, 2.13-8.08) years. Eleven patients (14%) progressed to kidney failure, with nine transplants performed in eight patients, two of which failed due to recurrent disease. Presence of >50% crescents on the initial biopsy specimen was the sole variable associated with kidney failure in multivariable analysis (hazard ratio, 6.2; 95% confidence interval, 1.05 to 36.6; P<0.05). Three distinct C3 glomerulopathy prognostic groups were identified according to presenting eGFR and >50% crescents on the initial biopsy specimen. CONCLUSIONS Crescentic disease was a key risk factor associated with kidney failure in a national cohort of pediatric patients with membranoproliferative GN/C3 glomerulopathy and immune-complex GN. Presenting eGFR and crescentic disease help define prognostic groups in pediatric C3 glomerulopathy. Acquired abnormalities of the alternative pathway were commonly identified but not a risk factor for kidney failure.
Collapse
Affiliation(s)
- Edwin K.S. Wong
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Renal Medicine, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Kevin J. Marchbank
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hannah Lomax-Browne
- Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | - Isabel Y. Pappworth
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Harriet Denton
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Katie Cooke
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sophie Ward
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy-Claire McLoughlin
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Grant Richardson
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Valerie Wilson
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Claire L. Harris
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - B. Paul Morgan
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Svetlana Hakobyan
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Paul McAlinden
- Research and Development Department, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London, United Kingdom
| | | | - Martin Christian
- Nottingham Children’s Hospital, Queens Medical Centre, Nottingham, United Kingdom
| | - Roger Malcomson
- Histopathology Department, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Timothy H.J. Goodship
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Stephen D. Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Matthew C. Pickering
- Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | - David Kavanagh
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Renal Medicine, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - H. Terence Cook
- Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | - Sally A. Johnson
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Paediatric Nephrology, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
152
|
Sun J, Wang L, Yang W, Li Y, Jin Y, Wang L, Song L. A novel C-type lectin activates the complement cascade in the primitive oyster Crassostrea gigas. J Biol Chem 2021; 297:101352. [PMID: 34715129 PMCID: PMC8605247 DOI: 10.1016/j.jbc.2021.101352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
The ancient origin of the lectin pathway of the complement system can be traced back to protochordates (such as amphioxus and tunicates) by the presence of components such as ficolin, glucose-binding lectin, mannose-binding lectin-associated serine protease (MASP), and C3. Evidence for a more primitive origin is offered in the present study on the Pacific oyster Crassostrea gigas. C3 protein in C. gigas (CgC3) was found to be cleaved after stimulation with the bacteria Vibrio splendidus. In addition, we identified a novel C-type lectin (defined as CgCLec) with a complement control protein (CCP) domain, which recognized various pathogen-associated molecular patterns (PAMPs) and bacteria. This protein was involved in the activation of the complement system by binding CgMASPL-1 to promote cleavage of CgC3. The production of cytokines and antibacterial peptides, as well as the phagocytotic ratio of haemocytes in CgCLec-CCP-, CgMASPL-1-, or CgC3-knockdown oysters, decreased significantly after V. splendidus stimulation. Moreover, this activated CgC3 participated in perforation of bacterial envelopes and inhibiting survival of the infecting bacteria. These results collectively suggest that there existed an ancient lectin pathway in molluscs, which was activated by a complement cascade to regulate the production of immune effectors, phagocytosis, and bacterial lysis.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Yingnan Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China.
| |
Collapse
|
153
|
Haydock L, Garneau AP, Tremblay L, Yen HY, Gao H, Harrisson R, Isenring P. Genetic abnormalities in biopsy-proven, adult-onset hemolytic uremic syndrome and C3 glomerulopathy. J Mol Med (Berl) 2021; 100:269-284. [PMID: 34714369 PMCID: PMC8770394 DOI: 10.1007/s00109-021-02102-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022]
Abstract
Abstract Atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G) have been linked to mutations in many of the proteins that are involved in alternative complement pathway activation. Age and etiology confounded, the prevalence of such mutations has been reported to be over 30 to 50% in these diseases. However, the cohorts studied included many children or individuals with a familial history of complement-related disorders and genetic tests were usually limited to exome sequencing of known causative or risk-associated genes. In this study, a retrospective adult cohort of 35 patients with biopsy-proven thrombotic microangiopathy (the largest in Canada) and 10 patients with C3 glomerulopathy was tested through an extended exome panel to identify causative defects in associated or candidate genes including those of the alternative and terminal complement pathways. A variant of unknown significance was also analyzed for pathogenicity through in vitro studies. To our surprise, the prevalence of known causative or risk-associated variants in either of these cohorts was found to be less than ~ 15% overall. However, the panel used and analyses carried out allowed to identify novel variants of potential clinical significance and a number of candidate genes. The prevalence of known genetic defects in adult-onset aHUS and C3G is thus probably much lower than 30 to 50%. Our results also point towards the importance of investigating diseases of the alternative complement pathway through extended exome panels and in vitro analyses. Key messages The alternative complement pathway plays a major role in the pathogenesis of hemolytic uremic syndrome and C3 glomerulopathy. Based on previous studies, both disorders have been commonly linked to variants in the various intermediates that sustain or regulate this pathway. The prevalence of such mutations in the adult-onset and sporadic forms of these diseases is probably much lower than expected based on larger series. The sporadic forms of complementopathies are likely to involve additional genes that are yet to be uncovered.
Supplementary information The online version contains supplementary material available at 10.1007/s00109-021-02102-1.
Collapse
Affiliation(s)
- Ludwig Haydock
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC, G1R2J6, Canada
| | - Alexandre P Garneau
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC, G1R2J6, Canada.,Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montréal, 900, rue Saint-Denis, Montreal, QC, H2X 0A9, Canada
| | - Laurence Tremblay
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC, G1R2J6, Canada
| | - Hai-Yun Yen
- Fulgent Genetics, Temple City, CA, 91780, USA
| | - Hanlin Gao
- Fulgent Genetics, Temple City, CA, 91780, USA
| | - Raphaël Harrisson
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC, G1R2J6, Canada
| | - Paul Isenring
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC, G1R2J6, Canada.
| |
Collapse
|
154
|
Abdul-Aziz R, Deng R, Liu L, Tarsi S, Waz WR, Wu X. Complete Renal Recovery in Pediatric Patient with C3 Glomerulonephritis: A Case Report. Case Rep Nephrol Dial 2021; 11:261-269. [PMID: 34703825 PMCID: PMC8460949 DOI: 10.1159/000518714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/26/2021] [Indexed: 12/03/2022] Open
Abstract
C3 glomerulonephritis (C3GN) is a rare kidney disease resulting from dysregulation of the alternative complement cascade. Without treatment, approximately 70% of affected children and 30–50% of affected adults will develop worsening of proteinuria and progress to end-stage renal disease within 10 years of diagnosis. Here, we describe a 9-year-old Sudanese girl with no significant past medical history who presented to the Emergency Department with a 2-month history of fatigue, poor oral intake, and worsening facial and lower extremity edema, and subsequently found to have anemia, hypoalbuminemia, microscopic hematuria, and proteinuria. Additional laboratory testing revealed that the patient had low C3, high C3 nephritic factor (C3NeF), and high factor H. Renal function was normal. The diagnosis of C3GN was confirmed by renal biopsy. The patient was treated with ACE inhibitor, mycophenolate mofetil (600 mg per m<sup>2</sup> per dose, every 12 h), in combination with “pulse” methylprednisolone at 30 mg/kg/day IV bolus (maximum 1 g) for 3 consecutive days, followed by 2 months of daily oral prednisolone (2 mg/kg/day) and alternate-day prednisolone weaning from 1 mg/kg to 0.1 mg/kg for additional 12 months. Mycophenolate was continued throughout her treatment course and for maintenance therapy. In response to treatment, anemia, microscopic hematuria, hypoalbuminemia, and proteinuria resolved. Complete complement profile before and at 6 months therapy showed normalization of C3NeF, complement regulatory factor H and C3. This present case provides evidence of the full responsiveness of a rare form of complement dysregulation C3GN to a combination of mycophenolate and corticosteroids. The disease has NOT recurred in >2 years after initial presentation.
Collapse
Affiliation(s)
- Rabheh Abdul-Aziz
- Oishei Children's Hospital of Buffalo, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Rong Deng
- Oishei Children's Hospital of Buffalo, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Lin Liu
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Shauna Tarsi
- Oishei Children's Hospital of Buffalo, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Wayne R Waz
- Oishei Children's Hospital of Buffalo, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Xiaoyan Wu
- Oishei Children's Hospital of Buffalo, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
155
|
Poppelaars F, Faria B, Schwaeble W, Daha MR. The Contribution of Complement to the Pathogenesis of IgA Nephropathy: Are Complement-Targeted Therapies Moving from Rare Disorders to More Common Diseases? J Clin Med 2021; 10:4715. [PMID: 34682837 PMCID: PMC8539100 DOI: 10.3390/jcm10204715] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022] Open
Abstract
Primary IgA nephropathy (IgAN) is a leading cause of chronic kidney disease and kidney failure for which there is no disease-specific treatment. However, this could change, since novel therapeutic approaches are currently being assessed in clinical trials, including complement-targeting therapies. An improved understanding of the role of the lectin and the alternative pathway of complement in the pathophysiology of IgAN has led to the development of these treatment strategies. Recently, in a phase 2 trial, treatment with a blocking antibody against mannose-binding protein-associated serine protease 2 (MASP-2, a crucial enzyme of the lectin pathway) was suggested to have a potential benefit for IgAN. Now in a phase 3 study, this MASP-2 inhibitor for the treatment of IgAN could mark the start of a new era of complement therapeutics where common diseases can be treated with these drugs. The clinical development of complement inhibitors requires a better understanding by physicians of the biology of complement, the pathogenic role of complement in IgAN, and complement-targeted therapies. The purpose of this review is to provide an overview of the role of complement in IgAN, including the recent discovery of new mechanisms of complement activation and opportunities for complement inhibitors as the treatment of IgAN.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands; (B.F.); (M.R.D.)
| | - Bernardo Faria
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands; (B.F.); (M.R.D.)
- Nephrology and Infectious Disease R&D Group, INEB, Institute of Investigation and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Wilhelm Schwaeble
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK;
| | - Mohamed R. Daha
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands; (B.F.); (M.R.D.)
- Department of Nephrology, Leiden University Medical Center, University of Leiden, 2300 RC Leiden, The Netherlands
| |
Collapse
|
156
|
Abstract
Complement is an evolutionarily conserved system which is important in the defense against microorganisms and also in the elimination of modified or necrotic elements of the body. Complement is activated in a cascade type manner and activation and all steps of cascade progression are tightly controlled and regulatory interleaved with many processes of inflammatory machinery. Overshooting of the complement system due to dysregulation can result in the two prototypes of primary complement mediated renal diseases: C3 glomerulopathy and thrombotic microangiopathy. Apart from these, complement also is highly activated in many other inflammatory native kidney diseases, such as membranous nephropathy, ANCA-associated necrotizing glomerulonephritis, and IgA nephropathy. Moreover, it likely plays an important role also in the transplant setting, such as in antibody-mediated rejection or in hematopoietic stem cell transplant associated thrombotic microangiopathy. In this review, these glomerular disorders are discussed with regard to the role of complement in their pathogenesis. The consequential, respective clinical trials for complement inhibitory therapy strategies for these diseases are described.
Collapse
|
157
|
Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM, Cook HT, Fervenza FC, Gibson KL, Glassock RJ, Jayne DR, Jha V, Liew A, Liu ZH, Mejía-Vilet JM, Nester CM, Radhakrishnan J, Rave EM, Reich HN, Ronco P, Sanders JSF, Sethi S, Suzuki Y, Tang SC, Tesar V, Vivarelli M, Wetzels JF, Floege J. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int 2021; 100:S1-S276. [PMID: 34556256 DOI: 10.1016/j.kint.2021.05.021] [Citation(s) in RCA: 1092] [Impact Index Per Article: 273.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
|
158
|
Klinkhammer BM, Lammers T, Mottaghy FM, Kiessling F, Floege J, Boor P. Non-invasive molecular imaging of kidney diseases. Nat Rev Nephrol 2021; 17:688-703. [PMID: 34188207 PMCID: PMC7612034 DOI: 10.1038/s41581-021-00440-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
In nephrology, differential diagnosis or assessment of disease activity largely relies on the analysis of glomerular filtration rate, urinary sediment, proteinuria and tissue obtained through invasive kidney biopsies. However, currently available non-invasive functional parameters, and most serum and urine biomarkers, cannot capture intrarenal molecular disease processes specifically. Moreover, although histopathological analyses of kidney biopsy samples enable the visualization of pathological morphological and molecular alterations, they only provide information about a small part of the kidney and do not allow longitudinal monitoring. These limitations not only hinder understanding of the dynamics of specific disease processes in the kidney, but also limit the targeting of treatments to active phases of disease and the development of novel targeted therapies. Molecular imaging enables non-invasive and quantitative assessment of physiological or pathological processes by combining imaging technologies with specific molecular probes. Here, we discuss current preclinical and clinical molecular imaging approaches in nephrology. Non-invasive visualization of the kidneys through molecular imaging can be used to detect and longitudinally monitor disease activity and can therefore provide companion diagnostics to guide clinical trials, as well as the safe and effective use of drugs.
Collapse
Affiliation(s)
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
- Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
- Department of Targeted Therapeutics, University of Twente, Enschede, Netherlands
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jürgen Floege
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany.
- Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
159
|
Bomback AS, Appel GB, Gipson DS, Hladunewich MA, Lafayette R, Nester CM, Parikh SV, Smith RJH, Trachtman H, Heeger PS, Ram S, Rovin BH, Ali S, Arceneaux N, Ashoor I, Bailey-Wickins L, Barratt J, Beck L, Cattran DC, Cravedi P, Erkan E, Fervenza F, Frazer-Abel AA, Fremeaux-Bacchi V, Fuller L, Gbadegesin R, Hogan JJ, Kiryluk K, le Quintrec-Donnette M, Licht C, Mahan JD, Pickering MC, Quigg R, Rheault M, Ronco P, Sarwal MM, Sethna C, Spino C, Stegall M, Vivarelli M, Feldman DL, Thurman JM. Improving Clinical Trials for Anticomplement Therapies in Complement-Mediated Glomerulopathies: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. Am J Kidney Dis 2021; 79:570-581. [PMID: 34571062 DOI: 10.1053/j.ajkd.2021.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
Blocking the complement system as a therapeutic strategy has been proposed for numerous glomerular diseases but presents myriad questions and challenges, not the least of which is demonstrating efficacy and safety. In light of these potential issues and because there are an increasing number of anticomplement therapy trials either planned or under way, the National Kidney Foundation facilitated an all-virtual scientific workshop entitled "Improving Clinical Trials for Anti-Complement Therapies in Complement-Mediated Glomerulopathies." Attended by patient representatives and experts in glomerular diseases, complement physiology, and clinical trial design, the aim of this workshop was to develop standards applicable for designing and conducting clinical trials for anticomplement therapies across a wide spectrum of complement-mediated glomerulopathies. Discussions focused on study design, participant risk assessment and mitigation, laboratory measurements and biomarkers to support these studies, and identification of optimal outcome measures to detect benefit, specifically for trials in complement-mediated diseases. This report summarizes the discussions from this workshop and outlines consensus recommendations.
Collapse
Affiliation(s)
- Andrew S Bomback
- Division of Nephrology, Columbia University Irving Medical Center, New York.
| | - Gerald B Appel
- Division of Nephrology, New York University Langone Health, New York
| | - Debbie S Gipson
- Department of Pediatrics, Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | | | | | - Carla M Nester
- Division of Nephrology, University of Iowa, Iowa City, Iowa
| | - Samir V Parikh
- Division of Nephrology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Richard J H Smith
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Howard Trachtman
- Division of Nephrology, New York University Langone Health, New York
| | - Peter S Heeger
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Brad H Rovin
- Division of Nephrology, The Ohio State University College of Medicine, Columbus, Ohio
| | | | | | - Isa Ashoor
- Division of Nephrology, Louisiana State University Health, New Orleans, Louisiana
| | | | | | - Laurence Beck
- Division of Nephrology, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel C Cattran
- Division of Nephrology, University of Toronto, Toronto, ON, Canada
| | - Paolo Cravedi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York
| | - Elif Erkan
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Ashley A Frazer-Abel
- Division of Nephrology, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | | - Jonathan J Hogan
- Division of Nephrology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Krzysztof Kiryluk
- Division of Nephrology, Columbia University Irving Medical Center, New York
| | | | - Christoph Licht
- Division of Nephrology, University of Toronto, Toronto, ON, Canada
| | - John D Mahan
- Division of Nephrology, The Ohio State University College of Medicine, Columbus, Ohio
| | | | - Richard Quigg
- Division of Nephrology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Michelle Rheault
- Division of Nephrology, University of Minnesota, Minneapolis, Minnesota
| | - Pierre Ronco
- Division of Nephrology, Sorbonne Université, Université Pierre et Marie Curie, Paris
| | - Minnie M Sarwal
- Division of Nephrology, University of California, San Francisco, California
| | - Christine Sethna
- Division of Nephrology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Cathie Spino
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | | | - Marina Vivarelli
- Division of Nephrology, Bambino Gesu Children's Hospital, Rome, Italy
| | | | - Joshua M Thurman
- Division of Nephrology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
160
|
Nakagawa N, Mizuno M, Kato S, Maruyama S, Sato H, Nakaya I, Sugiyama H, Fujimoto S, Miura K, Matsumura C, Gotoh Y, Suzuki H, Kuroki A, Yoshino A, Nakatani S, Hiromura K, Yamamoto R, Yokoyama H, Narita I, Isaka Y. Demographic, clinical characteristics and treatment outcomes of immune-complex membranoproliferative glomerulonephritis and C3 glomerulonephritis in Japan: A retrospective analysis of data from the Japan Renal Biopsy Registry. PLoS One 2021; 16:e0257397. [PMID: 34520493 PMCID: PMC8439563 DOI: 10.1371/journal.pone.0257397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
The reclassification of membranoproliferative glomerulonephritis (MPGN) into immune-complex MPGN (IC-MPGN) and C3 glomerulopathy (C3G) based on immunofluorescence findings in kidney biopsies has provided insights into these two distinct diseases. C3G is further classified into dense deposit disease and C3 glomerulonephritis (C3GN) based on electron micrographic findings. Although these diseases have poor outcomes, limited Japanese literature confined to small, single-center cohorts exist on these diseases. We retrospectively analyzed 81 patients with MPGN type I and III from 15 hospitals in the Japan Renal Biopsy Registry to compare demographic, clinical characteristics and treatment outcomes of patients with IC-MPGN to those with C3GN. Of the 81 patients reviewed by immunofluorescence findings in kidney biopsies, 67 patients had IC-MPGN and 14 patients had C3GN. Age at diagnosis and systolic and diastolic pressure were higher and proteinuria and impaired renal function were significantly more prevalent in patients with IC-MPGN than those with C3GN. About 80% of the patients in both groups were treated with immunosuppressive therapy. At last follow-up (median 4.8 years), complete remission rate of proteinuria was significantly higher in patients with C3GN (64.3%) than in those with IC-MPGN (29.9%; P = 0.015). The renal survival rate was lower in patients with IC-MPGN when compared to C3GN (73.1% vs. 100%; log-rank, P = 0.031). Systolic blood pressure and renal function at baseline were independent predictors of progression to end-stage kidney disease. The overall prognosis of patients with C3GN is more favorable than for patients with IC-MPGN.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Division of Cardiology, Nephrology, Pulmonology and Neurology, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
- * E-mail:
| | - Masashi Mizuno
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sawako Kato
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Sato
- Clinical Pharmacology and Therapeutics, Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Izaya Nakaya
- Department of Nephrology and Rheumatology, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Hitoshi Sugiyama
- Department of Human Resource Development of Dialysis Therapy for Kidney Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shouichi Fujimoto
- Faculty of Medicine, Department of Hemovascular Medicine and Artificial Organs, University of Miyazaki, Miyazaki, Japan
| | - Kenichiro Miura
- Department of Pediatric Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Chieko Matsumura
- Department of Pediatrics, National Hospital Organization Chibahigashi National Hospital, Chiba, Japan
| | - Yoshimitsu Gotoh
- Department of Pediatric Nephrology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | - Hitoshi Suzuki
- Faculty of Medicine, Department of Nephrology, Juntendo University, Tokyo, Japan
| | - Aki Kuroki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Atsunori Yoshino
- Department of Nephrology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Keiju Hiromura
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryohei Yamamoto
- Health and Counseling Center, Osaka University, Toyonaka, Japan
| | - Hitoshi Yokoyama
- Department of Nephrology, Kanazawa Medical University School of Medicine, Uchinada, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
161
|
Barratt J, Weitz I. Complement Factor D as a Strategic Target for Regulating the Alternative Complement Pathway. Front Immunol 2021; 12:712572. [PMID: 34566967 PMCID: PMC8458797 DOI: 10.3389/fimmu.2021.712572] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
The complement system is central to first-line defense against invading pathogens. However, excessive complement activation and/or the loss of complement regulation contributes to the development of autoimmune diseases, systemic inflammation, and thrombosis. One of the three pathways of the complement system, the alternative complement pathway, plays a vital role in amplifying complement activation and pathway signaling. Complement factor D, a serine protease of this pathway that is required for the formation of C3 convertase, is the rate-limiting enzyme. In this review, we discuss the function of factor D within the alternative pathway and its implication in both healthy physiology and disease. Because the alternative pathway has a role in many diseases that are characterized by excessive or poorly mediated complement activation, this pathway is an enticing target for effective therapeutic intervention. Nonetheless, although the underlying disease mechanisms of many of these complement-driven diseases are quite well understood, some of the diseases have limited treatment options or no approved treatments at all. Therefore, in this review we explore factor D as a strategic target for advancing therapeutic control of pathological complement activation.
Collapse
Affiliation(s)
- Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- John Walls Renal Unit, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| | - Ilene Weitz
- Jane Anne Nohl Division of Hematology, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
162
|
Kaynar K, Güvercin B, Safarlı S, Mungan S, Şahin M. C3 glomerulonephritis accompanied with lupus nephritis. Nefrologia 2021; 41:595-597. [PMID: 36165144 DOI: 10.1016/j.nefroe.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/20/2020] [Indexed: 06/16/2023] Open
Affiliation(s)
- Kubra Kaynar
- Department of Nephrology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| | - Beyhan Güvercin
- Department of Nephrology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Sahile Safarlı
- Department of Internal MedicineSchool of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Sevdegül Mungan
- Department of Pathology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mustafa Şahin
- Department of Internal MedicineSchool of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
163
|
Fernandez-Ruiz R, Blank RB, Wu M, Belmont HM. C3 glomerulonephritis and systemic lupus erythematosus: A report of a patient treated with eculizumab and review of the literature. Lupus 2021; 30:1671-1678. [PMID: 34192954 DOI: 10.1177/09612033211027938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Activation of the complement pathway by immune complexes is a key feature of systemic lupus erythematosus (SLE) and SLE glomerulonephritis, which translates into low levels of C3 and C4 during active disease. C3 glomerulonephritis (C3GN) is part of a broader group of rare renal diseases, the C3 glomerulopathies, characterized by prominent C3 accumulation in the glomeruli with minimal to no immunoglobulin (Ig) deposition secondary to dysregulation of the alternative pathway of the complement system. Distinguishing lupus nephritis from other complement-mediated kidney disorders, including C3GN, represents a diagnostic challenge with potential therapeutic implications. METHODS We report an unusual case of a 55-year-old woman with SLE and previous biopsy-proven class IV lupus nephritis, subsequently diagnosed with C3GN. Furthermore, we review the available literature published from January 2010-March 2021 on the clinical features and management of C3GN in the setting of SLE. RESULTS In addition to our case, very few reports exist in the literature regarding C3GN in association with SLE. The underlying pathogenic mechanism of C3GN consists of dysregulation of the alternative pathway of the complement system, either due to genetic variation in complement-related genes or to acquired autoantibodies targeting C3 or C5 convertases; the latter mechanism could explain the occurrence of C3GN in the setting of autoimmune diseases, although it was not definitively identified in our patient or others with SLE. Similar to some of the previous reports, after suboptimal renal response on mycophenolate mofetil and rituximab, our patient has been successfully treated with eculizumab, thus far with >50% improvement in proteinuria. CONCLUSIONS C3GN represents an additional mechanism of renal injury in SLE mediated by alternative complement pathway dysregulation. Although rare, patients with SLE and persistent proteinuria with very low C3 would benefit from expedited renal biopsy to evaluate for C3GN as well as genetic testing, since this entity could require a different therapeutic approach.
Collapse
Affiliation(s)
- Ruth Fernandez-Ruiz
- Division of Rheumatology, New York University Grossman School of Medicine, New York, USA
| | - Rebecca B Blank
- Division of Rheumatology, New York University Grossman School of Medicine, New York, USA
| | - Ming Wu
- Department of Pathology, New York University Grossman School of Medicine, New York, USA
| | - H Michael Belmont
- Division of Rheumatology, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
164
|
Michels MAHM, van de Kar NCAJ, van Kraaij SAW, Sarlea SA, Gracchi V, Engels FAPT, Dorresteijn EM, van der Deure J, Duineveld C, Wetzels JFM, van den Heuvel LPWJ, Volokhina EB. Different Aspects of Classical Pathway Overactivation in Patients With C3 Glomerulopathy and Immune Complex-Mediated Membranoproliferative Glomerulonephritis. Front Immunol 2021; 12:715704. [PMID: 34456924 PMCID: PMC8386118 DOI: 10.3389/fimmu.2021.715704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The rare and heterogeneous kidney disorder C3 glomerulopathy (C3G) is characterized by dysregulation of the alternative pathway (AP) of the complement system. C3G is often associated with autoantibodies stabilizing the AP C3 convertase named C3 nephritic factors (C3NeF). The role of classical pathway (CP) convertase stabilization in C3G and related diseases such as immune complex-mediated membranoproliferative glomerulonephritis (IC-MPGN) remains largely unknown. Here, we investigated the CP convertase activity in patients with C3G and IC-MPGN. Using a refined two-step hemolytic assay, we measured the stability of CP convertases directly in the serum of 52 patients and 17 healthy controls. In four patients, CP convertase activity was prolonged compared to healthy controls, i.e. the enzymatic complex was stabilized. In three patients (2 C3G, 1 IC-MPGN) the convertase stabilization was caused by immunoglobulins, indicating the presence of autoantibodies named C4 nephritic factors (C4NeFs). Importantly, the assay also enabled detection of non-immunoglobulin-mediated stabilization of the CP convertase in one patient with C3G. Prolonged CP convertase activity coincided with C3NeF activity in all patients and for up to 70 months of observation. Crucially, experiments with C3-depleted serum showed that C4NeFs stabilized the CP C3 convertase (C4bC2a), that does not contain C3NeF epitopes. All patients with prolonged CP convertase activity showed clear signs of complement activation, i.e. lowered C3 and C5 levels and elevated levels of C3d, C3bc, C3bBbP, and C5b-9. In conclusion, this work provides new insights into the diverse aspects and (non-)immunoglobulin nature of factors causing CP convertase overactivity in C3G/IC-MPGN.
Collapse
Affiliation(s)
- Marloes A H M Michels
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nicole C A J van de Kar
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sanne A W van Kraaij
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sebastian A Sarlea
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Valentina Gracchi
- Department of Pediatric Nephrology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Flore A P T Engels
- Department of Pediatric Nephrology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Eiske M Dorresteijn
- Department of Pediatric Nephrology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Caroline Duineveld
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jack F M Wetzels
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lambertus P W J van den Heuvel
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Pediatrics/Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, University Hospitals Leuven, Leuven, Belgium
| | - Elena B Volokhina
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
165
|
Khan A, Shang N, Petukhova L, Zhang J, Shen Y, Hebbring SJ, Moncrieffe H, Kottyan LC, Namjou-Khales B, Knevel R, Raychaudhuri S, Karlson EW, Harley JB, Stanaway IB, Crosslin D, Denny JC, Elkind MS, Gharavi AG, Hripcsak G, Weng C, Kiryluk K. Medical Records-Based Genetic Studies of the Complement System. J Am Soc Nephrol 2021; 32:2031-2047. [PMID: 33941608 PMCID: PMC8455263 DOI: 10.1681/asn.2020091371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/09/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Genetic variants in complement genes have been associated with a wide range of human disease states, but well-powered genetic association studies of complement activation have not been performed in large multiethnic cohorts. METHODS We performed medical records-based genome-wide and phenome-wide association studies for plasma C3 and C4 levels among participants of the Electronic Medical Records and Genomics (eMERGE) network. RESULTS In a GWAS for C3 levels in 3949 individuals, we detected two genome-wide significant loci: chr.1q31.3 (CFH locus; rs3753396-A; β=0.20; 95% CI, 0.14 to 0.25; P=1.52x10-11) and chr.19p13.3 (C3 locus; rs11569470-G; β=0.19; 95% CI, 0.13 to 0.24; P=1.29x10-8). These two loci explained approximately 2% of variance in C3 levels. GWAS for C4 levels involved 3998 individuals and revealed a genome-wide significant locus at chr.6p21.32 (C4 locus; rs3135353-C; β=0.40; 95% CI, 0.34 to 0.45; P=4.58x10-35). This locus explained approximately 13% of variance in C4 levels. The multiallelic copy number variant analysis defined two structural genomic C4 variants with large effect on blood C4 levels: C4-BS (β=-0.36; 95% CI, -0.42 to -0.30; P=2.98x10-22) and C4-AL-BS (β=0.25; 95% CI, 0.21 to 0.29; P=8.11x10-23). Overall, C4 levels were strongly correlated with copy numbers of C4A and C4B genes. In comprehensive phenome-wide association studies involving 102,138 eMERGE participants, we cataloged a full spectrum of autoimmune, cardiometabolic, and kidney diseases genetically related to systemic complement activation. CONCLUSIONS We discovered genetic determinants of plasma C3 and C4 levels using eMERGE genomic data linked to electronic medical records. Genetic variants regulating C3 and C4 levels have large effects and multiple clinical correlations across the spectrum of complement-related diseases in humans.
Collapse
Affiliation(s)
- Atlas Khan
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Ning Shang
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Lynn Petukhova
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Jun Zhang
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Yufeng Shen
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Scott J. Hebbring
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, Wisconsin
| | - Halima Moncrieffe
- Department of Pediatrics, Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Leah C. Kottyan
- Department of Pediatrics, Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Bahram Namjou-Khales
- Department of Pediatrics, Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Rachel Knevel
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
- Centre for Genetics and Genomics Versus Arthritis, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Elizabeth W. Karlson
- Division of Rheumatology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - John B. Harley
- Department of Pediatrics, Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Ian B. Stanaway
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, Washington
| | - David Crosslin
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, Washington
| | - Joshua C. Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee
| | - Mitchell S.V. Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - George Hripcsak
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Chunhua Weng
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
166
|
Seshan SV, Salvatore SP. Recurrent Glomerular Diseases in Renal Transplantation with Focus on Role of Electron Microscopy. GLOMERULAR DISEASES 2021; 1:205-236. [PMID: 36751386 PMCID: PMC9677743 DOI: 10.1159/000517259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/12/2021] [Indexed: 11/19/2022]
Abstract
Background The common causes of renal transplant complications include active or chronic rejection process, infections, and toxicity but also recurrent or de novo diseases, which play an important role in affecting long-term graft function or graft loss. Summary Recurrent disease in renal transplantation is defined as recurrence of the original kidney disease leading to end-stage kidney disease. They comprise a heterogeneous group of predominantly glomerular and some tubulointerstitial and vascular lesions, which include primary kidney diseases (e.g., focal segmental glomerulosclerosis, membranous glomerulonephritis, and IgA nephropathy) or those secondary to systemic autoimmune, metabolic, and infectious processes that can range from subclinical to clinically overt acute, subacute, or chronic clinical presentations. In addition to the knowledge of prior renal disease and routine/periodic serum and urine testing for kidney function, a complete transplant renal biopsy examination is essential in the identification and differentiation of these diseases. The time of onset and severity of these diseases depend on the underlying etiopathogenetic mechanisms and the varied rates of recurrence in the early or late posttransplant period, often being modified by the current immunosuppressive protocols and other donor and recipient predisposing characteristics. Key Messages Transplant kidney biopsy findings provide diagnostic accuracy and prognostic information regarding the potential for reversibility along with detection of unsuspected or clinically symptomatic recurrent diseases, with any concomitant rejection process or toxicity, for appropriate therapeutic decision-making. Routine electron microscopy in transplant kidney biopsies is a valuable tool in recognizing fully developed or early/subtle features of evolving recurrent diseases, often during the subclinical phases, in for cause or surveillance allograft biopsies.
Collapse
|
167
|
Knoers N, Antignac C, Bergmann C, Dahan K, Giglio S, Heidet L, Lipska-Ziętkiewicz BS, Noris M, Remuzzi G, Vargas-Poussou R, Schaefer F. Genetic testing in the diagnosis of chronic kidney disease: recommendations for clinical practice. Nephrol Dial Transplant 2021; 37:239-254. [PMID: 34264297 PMCID: PMC8788237 DOI: 10.1093/ndt/gfab218] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 11/20/2022] Open
Abstract
The overall diagnostic yield of massively parallel sequencing–based tests in patients with chronic kidney disease (CKD) is 30% for paediatric cases and 6–30% for adult cases. These figures should encourage nephrologists to frequently use genetic testing as a diagnostic means for their patients. However, in reality, several barriers appear to hinder the implementation of massively parallel sequencing–based diagnostics in routine clinical practice. In this article we aim to support the nephrologist to overcome these barriers. After a detailed discussion of the general items that are important to genetic testing in nephrology, namely genetic testing modalities and their indications, clinical information needed for high-quality interpretation of genetic tests, the clinical benefit of genetic testing and genetic counselling, we describe each of these items more specifically for the different groups of genetic kidney diseases and for CKD of unknown origin.
Collapse
Affiliation(s)
- Nine Knoers
- Department of Genetics, University Medical Centre Groningen, The Netherlands
| | - Corinne Antignac
- Institut Imagine (Inserm U1163) et Département de Génétique, 24 bd du Montparnasse, 75015, Paris, France
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany.,Department of Medicine, Nephrology, University Hospital Freiburg, Germany
| | - Karin Dahan
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, B-1200, Brussels, Belgium.,Center of Human Genetics, Institut de Pathologie et de Génétique, Avenue Lemaître, 25, B-6041, Gosselies, Belgium
| | - Sabrina Giglio
- Unit of Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Laurence Heidet
- Service de Néphrologie Pédiatrique, Hôpital Universitaire Necker-Enfants Malades, 149 rue de Sèvres, 75743, Paris, Cedex 15, France
| | - Beata S Lipska-Ziętkiewicz
- BSL-Z - ORCID 0000-0002-4169-9685, Centre for Rare Diseases, Medical University of Gdansk, Gdansk, Poland.,Clinical Genetics Unit, Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Rosa Vargas-Poussou
- Département de Génétique, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75908, Paris, Cedex 15, France
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Germany
| | | |
Collapse
|
168
|
von Willebrand factor variants in C3 glomerulopathy: A Chinese cohort study. Clin Immunol 2021; 229:108794. [PMID: 34245915 DOI: 10.1016/j.clim.2021.108794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022]
Abstract
C3 glomerulopathy (C3G) is a rare renal disease characterized by predominant glomerular C3 staining. Complement alternative pathway dysregulation due to inherited complement defects is associated with C3G. To identify novel C3G-related genes, we screened 86 genes in the complement, coagulation and endothelial systems in 35 C3G patients by targeted genomic enrichment and massively parallel sequencing. Surprisingly, the most frequently mutated gene was VWF. Patients with VWF variants had significantly higher proteinuria levels, higher crescent formation and lower factor H (FH) levels. We further selected two VWF variants to transiently express the von Willebrand factor (vWF) protein, we found that vWF expression from the c.1519A > G variant was significantly reduced. In vitro results further indicated that vWF could regulate complement activation, as it could bind to FH and C3b, act as a cofactor for factor I-mediated cleavage of C3b. Thus, we speculated that vWF might be involved in the pathogenesis of C3G.
Collapse
|
169
|
Abstract
The complement cascade is an evolutionary ancient innate immune defense system, playing a major role in the defense against infections. Its function in maintaining host homeostasis on activated cells has been emphasized by the crucial role of its overactivation in ever growing number of diseases, such as atypical hemolytic uremic syndrome (aHUS), autoimmune diseases as systemic lupus erythematosus (SLE), C3 glomerulopathies (C3GN), age-related macular degeneration (AMD), graft rejection, Alzheimer disease, and cancer, to name just a few. The last decade of research on complement has extended its implication in many pathological processes, offering new insights to potential therapeutic targets and asserting the necessity of reliable, sensitive, specific, accurate, and reproducible biomarkers to decipher complement role in pathology. We need to evaluate accurately which pathway or role should be targeted pharmacologically, and optimize treatment efficacy versus toxicity. This chapter is an introduction to the role of complement in human diseases and the use of complement-related biomarkers in the clinical practice. It is a part of a book intending to give reliable and standardized methods to evaluate complement according to nowadays needs and knowledge.
Collapse
|
170
|
Aradottir SS, Kristoffersson AC, Roumenina LT, Bjerre A, Kashioulis P, Palsson R, Karpman D. Factor D Inhibition Blocks Complement Activation Induced by Mutant Factor B Associated With Atypical Hemolytic Uremic Syndrome and Membranoproliferative Glomerulonephritis. Front Immunol 2021; 12:690821. [PMID: 34177949 PMCID: PMC8222914 DOI: 10.3389/fimmu.2021.690821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
Complement factor B (FB) mutant variants are associated with excessive complement activation in kidney diseases such as atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathy and membranoproliferative glomerulonephritis (MPGN). Patients with aHUS are currently treated with eculizumab while there is no specific treatment for other complement-mediated renal diseases. In this study the phenotype of three FB missense variants, detected in patients with aHUS (D371G and E601K) and MPGN (I242L), was investigated. Patient sera with the D371G and I242L mutations induced hemolysis of sheep erythrocytes. Mutagenesis was performed to study the effect of factor D (FD) inhibition on C3 convertase-induced FB cleavage, complement-mediated hemolysis, and the release of soluble C5b-9 from glomerular endothelial cells. The FD inhibitor danicopan abrogated C3 convertase-associated FB cleavage to the Bb fragment in patient serum, and of the FB constructs, D371G, E601K, I242L, the gain-of-function mutation D279G, and the wild-type construct, in FB-depleted serum. Furthermore, the FD-inhibitor blocked hemolysis induced by the D371G and D279G gain-of-function mutants. In FB-depleted serum the D371G and D279G mutants induced release of C5b-9 from glomerular endothelial cells that was reduced by the FD-inhibitor. These results suggest that FD inhibition can effectively block complement overactivation induced by FB gain-of-function mutations.
Collapse
Affiliation(s)
| | | | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anna Bjerre
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pavlos Kashioulis
- Department of Molecular and Clinical Medicine/Nephrology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Runolfur Palsson
- Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
171
|
Casiraghi F, Ordonez PYR, Azzollini N, Todeschini M, Rottoli D, Donadelli R, Gramignoli R, Benigni A, Noris M, Remuzzi G. Amnion epithelial cells are an effective source of factor H and prevent kidney complement deposition in factor H-deficient mice. Stem Cell Res Ther 2021; 12:332. [PMID: 34112227 PMCID: PMC8194190 DOI: 10.1186/s13287-021-02386-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Complement factor H (FH) is the main plasma regulator of the alternative pathway of complement. Genetic and acquired abnormalities in FH cause uncontrolled complement activation amplifying, with the consequent accumulation of complement components on the renal glomeruli. This leads to conditions such as C3 glomerulopathy (C3G) and atypical hemolytic uremic syndrome (aHUS). There is no effective therapy for these diseases. Half of the patients progress to end-stage renal disease and the condition recurs frequently in transplanted kidneys. Combined liver/kidney transplantation is a valid option for these patients, but the risks of the procedure and donor organ shortages hamper its clinical application. Therefore, there is an urgent need for alternative strategies for providing a normal FH supply. Human amnion epithelial cells (hAEC) have stem cell characteristics, including the capability to differentiate into hepatocyte-like cells in vivo.Here, we administered hAEC into the livers of newborn Cfh-/- mice, which spontaneously developed glomerular complement deposition and renal lesions resembling human C3G. hAEC engrafted at low levels in the livers of Cfh-/- mice and produced sufficient human FH to prevent complement activation and glomerular C3 and C9 deposition. However, long-term engraftment was not achieved, and eventually hAEC elicited a humoral immune response in immunocompetent Cfh-/- mice.hAEC cell therapy could be a valuable therapeutic option for patients undergoing kidney transplantation in whom post-transplant immunosuppression may protect allogeneic hAEC from rejection, while allogeneic cells provide normal FH to prevent disease recurrence.
Collapse
Affiliation(s)
- Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via GB Camozzi 3, 24020, Ranica, Bergamo, Italy.
| | | | - Nadia Azzollini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via GB Camozzi 3, 24020, Ranica, Bergamo, Italy
| | - Marta Todeschini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via GB Camozzi 3, 24020, Ranica, Bergamo, Italy
| | - Daniela Rottoli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via GB Camozzi 3, 24020, Ranica, Bergamo, Italy
| | - Roberta Donadelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via GB Camozzi 3, 24020, Ranica, Bergamo, Italy
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via GB Camozzi 3, 24020, Ranica, Bergamo, Italy
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via GB Camozzi 3, 24020, Ranica, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via GB Camozzi 3, 24020, Ranica, Bergamo, Italy
| |
Collapse
|
172
|
Song H, Zhang M, Li X, Xu F, Zhang D, Zhu X, Zhang J, Qin W, Shi S, Wen J. Generation and Characterization of Mouse Models of C3 Glomerulonephritis With CFI D288G and P467S Mutations. Front Physiol 2021; 12:649801. [PMID: 34149444 PMCID: PMC8209374 DOI: 10.3389/fphys.2021.649801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
C3 glomerulopathy (C3GP) is a disease entity caused by abnormality of the complement alternative pathway (AP) and characterized by C3 deposition in glomeruli. Many variations or mutations of complement factors are believed to underlie the susceptibility to C3GP, but there is a lack of experimental evidence. We have recently reported a patient with C3 glomerulonephritis (C3GN) and compound heterozygosity of two novel variations in the complement factor (CFI). Here, we generated a mouse model to mimic the CFI variations for studying pathogenicity of CFI variations in C3GN development. We used the CRISPR/Cas9 system to make mutant mouse lines that carried D288G and P467S mutations in CFI, respectively, and crossed them to generate mice with compound heterozygosity of CFI D288G and P467S. The mice were all normal in either SPF (specific pathogen free) or regular environment. When treated with lipopolysaccharides (LPS), a bacterial endotoxin that mimics infection and sepsis, the mice developed albuminuria, kidney function impairment, and C3 glomerular deposition at levels comparable with the wild-type mice. The mice with other genotypes concerning CFI D288G and P467S were also tested in parallel. Unexpectedly, we found that the D288G homozygotes all developed severe mesangial deposition of C3 in the LPS model, indicating that CFI D288G variation was involved in the C3 deposition, a key feature of C3GN. The mouse lines generated in the present study can be used to further study the role of CFI variations in C3GN development; in addition, they may be used to screen and test infections and environmental factors capable of triggering C3GN.
Collapse
Affiliation(s)
- Hui Song
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xue Li
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Xu
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Difei Zhang
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaodong Zhu
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiong Zhang
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weisong Qin
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shaolin Shi
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiqiu Wen
- National Clinical Research Center for Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
173
|
Lemaire M, Noone D, Lapeyraque AL, Licht C, Frémeaux-Bacchi V. Inherited Kidney Complement Diseases. Clin J Am Soc Nephrol 2021; 16:942-956. [PMID: 33536243 PMCID: PMC8216622 DOI: 10.2215/cjn.11830720] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the past 20 years, we have witnessed tremendous advances in our ability to diagnose and treat genetic diseases of the kidney caused by complement dysregulation. Staggering progress was realized toward a better understanding of the genetic underpinnings and pathophysiology of many forms of atypical hemolytic uremic syndrome (aHUS) and C3-dominant glomerulopathies that are driven by complement system abnormalities. Many of these seminal discoveries paved the way for the design and characterization of several innovative therapies, some of which have already radically improved patients' outcomes. This review offers a broad overview of the exciting developments that have occurred in the recent past, with a particular focus on single-gene (or Mendelian), complement-driven aHUS and C3-dominant glomerulopathies that should be of interest to both nephrologists and kidney researchers. The discussion is restricted to genes with robust associations with both aHUS and C3-dominant glomerulopathies (complement factor H, complement component 3, complement factor H-related proteins) or only aHUS (complement factor B, complement factor I, and membrane cofactor protein). Key questions and challenges are highlighted, along with potential avenues for future directions.
Collapse
Affiliation(s)
- Mathieu Lemaire
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada,Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Damien Noone
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Laure Lapeyraque
- Division of Nephrology, Sainte-Justine University Hospital Center, Montreal, Quebec, Canada,Department of Pediatrics, Faculty of Medicine, University of Montréal, Québec, Canada
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada,Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Laboratory of Immunology, Paris, France
| |
Collapse
|
174
|
Lemaire M, Noone D, Lapeyraque AL, Licht C, Frémeaux-Bacchi V. Inherited Kidney Complement Diseases. CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY : CJASN 2021. [PMID: 33536243 DOI: 10.2215/cjn.11830720)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In the past 20 years, we have witnessed tremendous advances in our ability to diagnose and treat genetic diseases of the kidney caused by complement dysregulation. Staggering progress was realized toward a better understanding of the genetic underpinnings and pathophysiology of many forms of atypical hemolytic uremic syndrome (aHUS) and C3-dominant glomerulopathies that are driven by complement system abnormalities. Many of these seminal discoveries paved the way for the design and characterization of several innovative therapies, some of which have already radically improved patients' outcomes. This review offers a broad overview of the exciting developments that have occurred in the recent past, with a particular focus on single-gene (or Mendelian), complement-driven aHUS and C3-dominant glomerulopathies that should be of interest to both nephrologists and kidney researchers. The discussion is restricted to genes with robust associations with both aHUS and C3-dominant glomerulopathies (complement factor H, complement component 3, complement factor H-related proteins) or only aHUS (complement factor B, complement factor I, and membrane cofactor protein). Key questions and challenges are highlighted, along with potential avenues for future directions.
Collapse
Affiliation(s)
- Mathieu Lemaire
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada .,Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada.,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Damien Noone
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Laure Lapeyraque
- Division of Nephrology, Sainte-Justine University Hospital Center, Montreal, Quebec, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montréal, Québec, Canada
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada.,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Laboratory of Immunology, Paris, France
| |
Collapse
|
175
|
Abstract
While the complement cascade is an important component of the innate immune system, uncontrolled activation can cause severe disease. This concept is illustrated by the prototypical complement-mediated renal disease atypical haemolytic uraemic syndrome (aHUS), which causes renal failure if untreated but when managed with the complement inhibitor eculizumab leaves the patient vulnerable to infection with encapsulated organisms. Complement activation is also implicated in the pathogenesis of many other renal and non-renal diseases, necessitating an understanding of complement biology and diagnostics. We review renal diseases in which complement over-activation is known to cause tissue injury; aHUS and C3 glomerulopathy. We also discuss the contribution of complement more widely to the pathophysiology of renal disease, and highlight the significance and side effects of anti-complement therapy relevant to the general physician.
Collapse
Affiliation(s)
| | | | - Neil S Sheerin
- Freeman Hospital, Newcastle upon Tyne, UK and Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
176
|
Willrich MAV, Braun KMP, Moyer AM, Jeffrey DH, Frazer-Abel A. Complement testing in the clinical laboratory. Crit Rev Clin Lab Sci 2021; 58:447-478. [PMID: 33962553 DOI: 10.1080/10408363.2021.1907297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The complement system is the human's first line of defense against microbial pathogens because of its important housekeeping and infection/inflammation roles. It is composed of a series of soluble and cell-bound proteins that are activated in a cascade effect, similar to the coagulation pathways. There are different pattern recognizing molecules that activate the complement system in response to stimuli or threats, acting through three initiation pathways: classical, lectin, and alternative. All three activation pathways converge at the C3 component and share the terminal pathway. The main outputs of the complement system action are lytic killing of microbes, the release of pro-inflammatory anaphylatoxins, and opsonization of targets. Laboratory testing is relevant in the setting of suspected complement deficiencies, as well as in the emerging number of diseases related to dysregulation (over-activation) of complement. Most common assays measure complement lytic activity and the different complement component concentrations. Specialized testing includes the evaluation of autoantibodies against complement components, activation fragments, and genetic studies. In this review, we cover laboratory testing for complement and the conditions with complement involvement, as well as current challenges in the field.
Collapse
Affiliation(s)
| | - Karin M P Braun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David H Jeffrey
- Exsera Biolabs, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ashley Frazer-Abel
- Exsera Biolabs, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
177
|
Coltoff A, Bomback A, Shirazian S, Lentzsch S, Bhutani D. Treatment of Monoclonal Gammopathy-associated C3 Glomerulopathy With Daratumumab-based Therapy. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:e674-e677. [PMID: 34023209 DOI: 10.1016/j.clml.2021.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/02/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Alexander Coltoff
- Department of Medicine, Division of Hematology and Oncology, Columbia University
| | - Andrew Bomback
- Department of Medicine, Division of Nephrology, Columbia University, New York, NY
| | - Shayan Shirazian
- Department of Medicine, Division of Nephrology, Columbia University, New York, NY
| | - Suzanne Lentzsch
- Department of Medicine, Division of Hematology and Oncology, Columbia University
| | - Divaya Bhutani
- Department of Medicine, Division of Hematology and Oncology, Columbia University.
| |
Collapse
|
178
|
Poppelaars F, Goicoechea de Jorge E, Jongerius I, Baeumner AJ, Steiner MS, Józsi M, Toonen EJM, Pauly D, the SciFiMed consortium. A Family Affair: Addressing the Challenges of Factor H and the Related Proteins. Front Immunol 2021; 12:660194. [PMID: 33868311 PMCID: PMC8044877 DOI: 10.3389/fimmu.2021.660194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammation is a common denominator of diseases. The complement system, an intrinsic part of the innate immune system, is a key driver of inflammation in numerous disorders. Recently, a family of proteins has been suggested to be of vital importance in conditions characterized by complement dysregulation: the human Factor H (FH) family. This group of proteins consists of FH, Factor H-like protein 1 and five Factor H-related proteins. The FH family has been linked to infectious, vascular, eye, kidney and autoimmune diseases. In contrast to FH, the functions of the other highly homologous proteins are largely unknown and, hence, their role in the different disease-specific pathogenic mechanisms remains elusive. In this perspective review, we address the major challenges ahead in this emerging area, including 1) the controversies about the functional roles of the FH protein family, 2) the discrepancies in quantification of the FH protein family, 3) the unmet needs for validated tools and 4) limitations of animal models. Next, we also discuss the opportunities that exist for the immunology community. A strong multidisciplinary approach is required to solve these obstacles and is only possible through interdisciplinary collaboration between biologists, chemists, geneticists and physicians. We position this review in light of our own perspective, as principal investigators of the SciFiMed Consortium, a consortium aiming to create a comprehensive analytical system for the quantitative and functional assessment of the entire FH protein family.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Elena Goicoechea de Jorge
- Department of Immunology, Faculty of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Antje J. Baeumner
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | | | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Experimental Ophthalmology, University Marburg, Marburg, Germany
| | | |
Collapse
|
179
|
Caravaca-Fontán F, Díaz-Encarnación M, Cabello V, Ariceta G, Quintana LF, Marco H, Barros X, Ramos N, Rodríguez-Mendiola N, Cruz S, Fernández-Juárez G, Rodríguez A, de José AP, Rabasco C, Rodado R, Fernández L, Gómez VP, Ávila A, Bravo L, Espinosa N, Allende N, Sanchez de la Nieta MD, Rodríguez E, Olea T, Melgosa M, Huerta A, Miquel R, Mon C, Fraga G, de Lorenzo A, Draibe J, Cano-Megías M, González F, Shabaka A, López-Rubio ME, Fenollosa MÁ, Martín-Penagos L, Da Silva I, Titos JA, de Córdoba SR, de Jorge EG, Praga M. Longitudinal change in proteinuria and kidney outcomes in C3 glomerulopathy. Nephrol Dial Transplant 2021; 37:1270-1280. [PMID: 33779754 DOI: 10.1093/ndt/gfab075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION The association between a change in proteinuria over time and its impact in kidney prognosis has not been analyzed in C3 glomerulopathy. This study aims to investigate the association between the longitudinal change in proteinuria and the risk of kidney failure. METHODS Retrospective, multicenter observational cohort study in 35 nephrology departments belonging to the Spanish Group for the Study of Glomerular Diseases (GLOSEN). Patients diagnosed with C3 glomerulopathy between 1995 and 2020 were enrolled. A joint modeling of linear mixed-effects models was applied to assess the underlying trajectory of a repeatedly measured proteinuria, and a Cox model to evaluate the association of this trajectory with the risk of kidney failure. RESULTS The study group consisted of 85 patients, 70 C3 glomerulonephritis and 15 dense deposit disease, with a median age of 26 years (range 13-41). During a median follow-up of 42 months, 25 patients reached kidney failure. The longitudinal change in proteinuria showed a strong association with the risk of this outcome, with a doubling of proteinuria levels resulting in a 2.5-fold increase of the risk. A second model showed that a ≥ 50% proteinuria reduction over time was significantly associated with a lower risk of kidney failure (HR: 0.79; 95% CI : 0.56-0.97; p < 0.001). This association was also found when the ≥50% proteinuria reduction was observed within the first 6 and 12 months of follow-up. CONCLUSION The longitudinal change in proteinuria is strongly associated with the risk of kidney failure. The change in proteinuria over time can provide clinicians a dynamic prediction of kidney outcomes.
Collapse
Affiliation(s)
- Fernando Caravaca-Fontán
- Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Virginia Cabello
- Department of Nephrology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Gema Ariceta
- Department of Pediatric Nephrology, Hospital Universitario Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Luis F Quintana
- Department of Nephrology and Renal Transplantation, Hospital Clinic de Barcelona; Department of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Helena Marco
- Department of Nephrology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Xoana Barros
- Department of Nephrology, Hospital Universitario Doctor Josep Trueta, Gerona, Spain
| | - Natalia Ramos
- Department of Nephrology, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | | | - Sonia Cruz
- Department of Nephrology, Hospital Universitario Juan Ramón Jiménez, Huelva, Spain
| | - Gema Fernández-Juárez
- Department of Nephrology, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Adela Rodríguez
- Department of Pediatric Nephrology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Ana Pérez de José
- Department of Nephrology, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Cristina Rabasco
- Department of Nephrology, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Raquel Rodado
- Department of Nephrology, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Loreto Fernández
- Department of Nephrology, Complejo Hospitalario de Navarra, Navarra, Spain
| | - Vanessa Pérez Gómez
- Department of Nephrology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Ana Ávila
- Department of Nephrology, Hospital Universitario Doctor Peset, Valencia, Spain
| | - Luis Bravo
- Department of Nephrology, Hospital Universitario A Coruña, La Coruña, Spain
| | - Natalia Espinosa
- Pediatric Nephrology Unit, Hospital Universitario Son Espases, Balearic Islands Health Research Institute (IdISBa), . Palma de Mallorca, Spain
| | - Natalia Allende
- Department of Nephrology, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | | | - Eva Rodríguez
- Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Teresa Olea
- Department of Nephrology, Hospital Universitario La Paz, Madrid, Spain
| | - Marta Melgosa
- Department of Pediatric Nephrology, Hospital Universitario La Paz, Madrid, Spain
| | - Ana Huerta
- Department of Nephrology, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Rosa Miquel
- Department of Nephrology, Hospital Universitario Canarias, Tenerife, Spain
| | - Carmen Mon
- Department of Nephrology, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - Gloria Fraga
- Department of Pediatric Nephrology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alberto de Lorenzo
- Department of Nephrology, Hospital Universitario de Getafe, Madrid, Spain
| | - Juliana Draibe
- Department of Nephrology, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Marta Cano-Megías
- Department of Nephrology, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Fayna González
- Department of Nephrology, Hospital Doctor Negrín, Gran Canaria, Spain
| | - Amir Shabaka
- Department of Nephrology, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | | | | | - Luis Martín-Penagos
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Iara Da Silva
- Department of Nephrology, Fundación Puigvert, Barcelona, Spain
| | - Juana Alonso Titos
- Department of Nephrology, Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | - Santiago Rodríguez de Córdoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid and Centro de Investigación Biomédica en Red en Enfermedades Raras, Madrid, Spain
| | - Elena Goicoechea de Jorge
- Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Immunology, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Praga
- Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.,Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
180
|
Steinberg AG, Fox LC, Bender S, Batrouney A, Juneja S, Sirac C, Touchard G, Blombery P, Finlay MJ, Bridoux F, Barbour TD. Proliferative Glomerulonephritis With Fibrils, Monoclonal κ Light Chain, and C3 Deposits. Am J Kidney Dis 2021; 78:459-463. [PMID: 33774080 DOI: 10.1053/j.ajkd.2021.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/07/2021] [Indexed: 11/11/2022]
Abstract
There is increasing recognition of monoclonal gammopathy as a cause of proliferative glomerulonephritis (GN), including cases in which glomerular deposition of monoclonal immunoglobulin is demonstrated. Recently, proliferative GN with monoclonal immunoglobulin deposits (PGNMID) has incorporated a light chain variant of the disease (termed PGNMID-LC). Intriguingly, glomerular co-deposition of C3 is found in addition to monotypic light chain, implying complement activation via the alternative pathway (AP). We present a unique case of proliferative GN in a 42-year-old man who presented with nephrotic syndrome and was found to have κ light chain multiple myeloma. Immune staining of the glomerulus was positive only for κ light chain and C3, with the striking appearance of nonamyloid fibrils on electron microscopy. Following clonally targeted therapy for myeloma, the renal clinical abnormalities resolved completely. We present detailed molecular studies for light chain and complement and consider local mechanisms whereby monoclonal κ light chain fibrils may have triggered AP activation within the glomerulus.
Collapse
Affiliation(s)
- Adam G Steinberg
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria, Australia.
| | - Lucy C Fox
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Sebastien Bender
- Centre National de la Recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges, Limoges, France
| | - Ahida Batrouney
- Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Surender Juneja
- Department of Hematology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Christophe Sirac
- Centre National de la Recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges, Limoges, France
| | - Guy Touchard
- Service de Néphrologie, Hémodialyse et Transplantation Rénale, CIC INSERM 1402, Centre de référence pour l'amylose AL et autres maladies par dépôt d'immunoglobulines monoclonales, CHU Poitiers, Poitiers, France
| | - Piers Blombery
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Moira J Finlay
- Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Frank Bridoux
- Centre National de la Recherche Scientifique UMR CNRS 7276/INSERM U1262, Université de Limoges, Limoges, France; Service de Néphrologie, Hémodialyse et Transplantation Rénale, CIC INSERM 1402, Centre de référence pour l'amylose AL et autres maladies par dépôt d'immunoglobulines monoclonales, CHU Poitiers, Poitiers, France
| | - Thomas D Barbour
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
181
|
Angeletti A, Cantarelli C, Petrosyan A, Andrighetto S, Budge K, D'Agati VD, Hartzell S, Malvi D, Donadei C, Thurman JM, Galešić-Ljubanović D, He JC, Xiao W, Campbell KN, Wong J, Fischman C, Manrique J, Zaza G, Fiaccadori E, La Manna G, Fribourg M, Leventhal J, Da Sacco S, Perin L, Heeger PS, Cravedi P. Loss of decay-accelerating factor triggers podocyte injury and glomerulosclerosis. J Exp Med 2021; 217:151976. [PMID: 32717081 PMCID: PMC7478737 DOI: 10.1084/jem.20191699] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Kidney glomerulosclerosis commonly progresses to end-stage kidney failure, but pathogenic mechanisms are still poorly understood. Here, we show that podocyte expression of decay-accelerating factor (DAF/CD55), a complement C3 convertase regulator, crucially controls disease in murine models of adriamycin (ADR)-induced focal and segmental glomerulosclerosis (FSGS) and streptozotocin (STZ)-induced diabetic glomerulosclerosis. ADR induces enzymatic cleavage of DAF from podocyte surfaces, leading to complement activation. C3 deficiency or prevention of C3a receptor (C3aR) signaling abrogates disease despite DAF deficiency, confirming complement dependence. Mechanistic studies show that C3a/C3aR ligations on podocytes initiate an autocrine IL-1β/IL-1R1 signaling loop that reduces nephrin expression, causing actin cytoskeleton rearrangement. Uncoupling IL-1β/IL-1R1 signaling prevents disease, providing a causal link. Glomeruli of patients with FSGS lack DAF and stain positive for C3d, and urinary C3a positively correlates with the degree of proteinuria. Together, our data indicate that the development and progression of glomerulosclerosis involve loss of podocyte DAF, triggering local, complement-dependent, IL-1β–induced podocyte injury, potentially identifying new therapeutic targets.
Collapse
Affiliation(s)
- Andrea Angeletti
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Division of Nephrology, Dialysis, Transplantation, Giannina Gaslini Children's Hospital, Genoa, Italy
| | - Chiara Cantarelli
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Dipartimento di Medicina e Chirurgia Università di Parma, UO Nefrologia, Azienda Ospedaliera-Universitaria Parma, Parma, Italy
| | - Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Children's Hospital Los Angeles, Los Angeles, CA.,Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, CA
| | - Sofia Andrighetto
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Kelly Budge
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vivette D D'Agati
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Susan Hartzell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Deborah Malvi
- "F. Addarii" Institute of Oncology and Transplantation Pathology, Bologna University, Bologna, Italy
| | - Chiara Donadei
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Policlinico Sant'Orsola-Malpighi, Bologna, Italy
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | | | - John Cijiang He
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wenzhen Xiao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kirk N Campbell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jenny Wong
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Clara Fischman
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joaquin Manrique
- Nephrology Service, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Enrico Fiaccadori
- Dipartimento di Medicina e Chirurgia Università di Parma, UO Nefrologia, Azienda Ospedaliera-Universitaria Parma, Parma, Italy
| | - Gaetano La Manna
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Policlinico Sant'Orsola-Malpighi, Bologna, Italy
| | - Miguel Fribourg
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jeremy Leventhal
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Children's Hospital Los Angeles, Los Angeles, CA.,Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, CA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Children's Hospital Los Angeles, Los Angeles, CA.,Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, CA
| | - Peter S Heeger
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
182
|
Pediatric C3 glomerulopathy: a 12-year single-center experience. Pediatr Nephrol 2021; 36:601-610. [PMID: 33000324 DOI: 10.1007/s00467-020-04768-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/07/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Complement component 3 glomerulopathy (C3G) is a disease with limited data in children. We aimed to compare childhood C3G cases with adults. We also studied subgroups of pediatric C3G and predictors of poor outcome. METHODS This is a 12-year retrospective, single-center cohort, observational study. All cases of C3G were defined based on the 2013 consensus guidelines. RESULTS C3G was diagnosed in 162 patients (119 adults, 43 pediatric) predominantly affecting males. With varied light microscopic patterns, pediatric C3G cases were categorized as follows: 23 C3 glomerulonephritis (C3GN) and 11 dense deposit disease (DDD) on electron microscopy. The pediatric DDD patients were relatively younger with more severe disease at presentation (more crescents in biopsy) but with lesser chronicity in biopsy compared with pediatric C3GN patients; however, both had a similar outcome. On comparing pediatric and adult C3G cases, adults had lower median eGFR and a higher degree of chronicity in the biopsy. The prognosis of C3G was better in pediatric patients. Predictors of kidney failure in pediatric C3G were low eGFR (HR = 0.82, p = 0.05) and severe interstitial fibrosis/tubular atrophy (HR = 1.05, p = 0.02). CONCLUSIONS Electron microscopy-based subgroups of pediatric C3G differ in clinical presentation and course of the disease but have similar prognosis and long-term outcomes. Pediatric C3G differs from adult C3G with respect to presentation, laboratory results, biopsy features, treatment, and outcome, and as such, it should be considered as a separate entity rather than a smaller version of adult C3G.
Collapse
|
183
|
Therapy and outcomes of C3 glomerulopathy and immune-complex membranoproliferative glomerulonephritis. Pediatr Nephrol 2021; 36:591-600. [PMID: 32886193 DOI: 10.1007/s00467-020-04736-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Data on therapy and outcome of dense deposit disease (DDD), C3 glomerulonephritis (C3GN), and immune-complex MPGN (IC-MPGN) in children are limited. METHODS In this retrospective single-center study from 2007 to 2019, kidney biopsies were reviewed to include patients aged <18-years with C3 glomerulopathy and IC-MPGN. Initial immunosuppression comprised prednisolone, mycophenolate mofetil (n = 51), tacrolimus (n = 11), and/or IV cyclophosphamide (n = 20). Clinicopathological features, response to therapy, and adverse outcome (eGFRcr < 15 mL/min/1.73 m2 or death) were evaluated. RESULTS A total of 92 patients were classified as DDD (n = 48, 52.2%), C3GN (n = 26, 28.3%), and IC-MPGN (n = 18, 19.6%) by immunohistochemistry and electron microscopy; 8 patients with DDD were misclassified as IC-MPGN on immunofluorescence. At last follow-up (median 4.3 years), complete or partial remission occurred in 28.5, 36.1, and 16.7% patients with DDD, C3GN, and IC-MPGN, respectively. Serum albumin at onset < 2.5 g/dL (HR = 0.29, P = 0.005) and persistently low serum C3 (HR = 0.34, P = 0.02) were associated with lack of remission. The 5-year kidney survival was 62.6, 85.5, and 88.5% in patients with DDD, C3GN, and IC-MPGN, respectively (log-rank, P = 0.006). Presentation as rapidly progressive GN (HR = 11.2, P < 0.001), age > 10 years at onset (HR = 4.0, P = 0.004), and DDD (HR = 4.2, P = 0.02) were independently associated with adverse outcome; achieving remission was protective (HR = 0.04; P < 0.001). CONCLUSION Outcome in patients with C3 glomerulopathy and IC-MPGN was unsatisfactory, and only a small proportion of patients achieved complete or partial remission. Patients with DDD were more likely to present with rapidly progressive GN and were at higher risk of adverse outcomes, including kidney failure.
Collapse
|
184
|
Rodriguez-Iturbe B. Autoimmunity in Acute Poststreptococcal GN: A Neglected Aspect of the Disease. J Am Soc Nephrol 2021; 32:534-542. [PMID: 33531351 PMCID: PMC7920173 DOI: 10.1681/asn.2020081228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Acute poststreptococcal GN (APSGN) is the prototype of immune complex GN and is associated with manifestations of autoimmune reactivity that have been neglected as epiphenomena. Recently, studies have demonstrated transient antifactor B autoantibodies that activate the alternative complement pathway, bringing self-immunity to a central position in the pathogenesis of APSGN. Therefore, examining other manifestations of autoimmunity that have been reported in association with poststreptococcal GN is of interest. This article reviews the renal and extrarenal manifestations of autoimmune reactivity in APSGN and considers their potential relevance in modifying the usually benign clinical course of the disease. It also discusses related aspects of the nephritogenic antigens, complement activation, and genetic elements associated with immune reactivity and their potential relevance to the familial incidence of the disease.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Department of Nephrology, Instituto Nacional de Nutrición y Ciencias Médicas "Salvador Zubirán" and Instituto Nacional de Cardiología "Ignacio Chávez," Mexico City, Mexico
| |
Collapse
|
185
|
Zarantonello A, Pedersen H, Laursen NS, Andersen GR. Nanobodies Provide Insight into the Molecular Mechanisms of the Complement Cascade and Offer New Therapeutic Strategies. Biomolecules 2021; 11:biom11020298. [PMID: 33671302 PMCID: PMC7922070 DOI: 10.3390/biom11020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/22/2023] Open
Abstract
The complement system is part of the innate immune response, where it provides immediate protection from infectious agents and plays a fundamental role in homeostasis. Complement dysregulation occurs in several diseases, where the tightly regulated proteolytic cascade turns offensive. Prominent examples are atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria and Alzheimer’s disease. Therapeutic intervention targeting complement activation may allow treatment of such debilitating diseases. In this review, we describe a panel of complement targeting nanobodies that allow modulation at different steps of the proteolytic cascade, from the activation of the C1 complex in the classical pathway to formation of the C5 convertase in the terminal pathway. Thorough structural and functional characterization has provided a deep mechanistic understanding of the mode of inhibition for each of the nanobodies. These complement specific nanobodies are novel powerful probes for basic research and offer new opportunities for in vivo complement modulation.
Collapse
Affiliation(s)
- Alessandra Zarantonello
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (A.Z.); (H.P.)
| | - Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (A.Z.); (H.P.)
| | - Nick S. Laursen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Gregers R. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (A.Z.); (H.P.)
- Correspondence: ; Tel.: +45-30256646
| |
Collapse
|
186
|
Koopman JJE, van Essen MF, Rennke HG, de Vries APJ, van Kooten C. Deposition of the Membrane Attack Complex in Healthy and Diseased Human Kidneys. Front Immunol 2021; 11:599974. [PMID: 33643288 PMCID: PMC7906018 DOI: 10.3389/fimmu.2020.599974] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
The membrane attack complex-also known as C5b-9-is the end-product of the classical, lectin, and alternative complement pathways. It is thought to play an important role in the pathogenesis of various kidney diseases by causing cellular injury and tissue inflammation, resulting in sclerosis and fibrosis. These deleterious effects are, consequently, targeted in the development of novel therapies that inhibit the formation of C5b-9, such as eculizumab. To clarify how C5b-9 contributes to kidney disease and to predict which patients benefit from such therapy, knowledge on deposition of C5b-9 in the kidney is essential. Because immunohistochemical staining of C5b-9 has not been routinely conducted and never been compared across studies, we provide a review of studies on deposition of C5b-9 in healthy and diseased human kidneys. We describe techniques to stain deposits and compare the occurrence of deposits in healthy kidneys and in a wide spectrum of kidney diseases, including hypertensive nephropathy, diabetic nephropathy, membranous nephropathy, IgA nephropathy, lupus nephritis, C3 glomerulopathy, and thrombotic microangiopathies such as the atypical hemolytic uremic syndrome, vasculitis, interstitial nephritis, acute tubular necrosis, kidney tumors, and rejection of kidney transplants. We summarize how these deposits are related with other histological lesions and clinical characteristics. We evaluate the prognostic relevance of these deposits in the light of possible treatment with complement inhibitors.
Collapse
Affiliation(s)
- Jacob J E Koopman
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mieke F van Essen
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Helmut G Rennke
- Division of Renal Pathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Aiko P J de Vries
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Cees van Kooten
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
187
|
Kaynar K, Güvercin B, Safarlı S, Mungan S, Şahin M. C3 glomerulonephritis accompanied with lupus nephritis. Nefrologia 2021. [PMID: 33413802 DOI: 10.1016/j.nefro.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Kubra Kaynar
- Department of Nephrology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| | - Beyhan Güvercin
- Department of Nephrology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Sahile Safarlı
- Department of Internal MedicineSchool of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Sevdegül Mungan
- Department of Pathology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mustafa Şahin
- Department of Internal MedicineSchool of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
188
|
Turkmen K, Baloglu I, Ozer H. C3 glomerulopathy and atypical hemolytic uremic syndrome: an updated review of the literature on alternative complement pathway disorders. Int Urol Nephrol 2021; 53:2067-2080. [PMID: 33389509 DOI: 10.1007/s11255-020-02729-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022]
Abstract
The complement system plays a significant role within the pathological process of C3 glomerulopathy (C3GP) and atypical hemolytic uremic syndrome (aHUS). In daily practice, clinicians should differentiate the subgroups of C3GP because of they should apply different treatment modalities. In the past, C3GP was considered as a part of membranoproliferative glomerulonephritis (MPGN). MPGN is defined as glomerular capillary thickening secondary to the synthesis of the new glomerular basement membrane and mesangial cellular hyperplasia with mesangial matrix expansion. Atypical hemolytic uremic syndrome is an ultra-rare disease that can be outlined by the triad of Coombs negative microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. Recent advances demonstrated that these diseases share common abnormalities of the control of the alternative complement system. Therefore, nowadays, most researchers advocate that there may be overlap in the pathogenesis of C3GP and aHUS. This review will provide recent novel mechanisms and treatment options in these diseases. For the purposes that we mentioned above and to help clinicians, we aimed to describe the etiology, pathophysiology, and treatment of C3GP and aHUS in this comprehensive review.
Collapse
Affiliation(s)
- Kultigin Turkmen
- Department of Nephrology, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey.
| | - Ismail Baloglu
- Department of Nephrology, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Hakan Ozer
- Department of Nephrology, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| |
Collapse
|
189
|
Abstract
C3 nephritic Factor (C3NeF) is autoantibody that binds neoepitopes of the C3 convertase C3bBb, resulting in a stabilization of the enzyme. First functional characterizations of C3NeF were performed by hemolytic assays using preactivated sheep erythrocytes (bearing C3b). Sheep erythrocytes are beforehand sensitized with an anti-sheep red blood cell stroma antibody produced in rabbit (hemolysin). Sensitized sheep erythrocytes will initiate cascade complement activation via the classic pathway, followed by alternative pathway amplification loop, resulting in C3b covalent binding to cell surface. Sheep erythrocytes bearing C3b permit the alternative pathway exploration, in particular decay of alternative pathway C3 convertase.
Collapse
Affiliation(s)
- Melchior Chabannes
- INSERM, UMR_S 1138, Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France
| | - Véronique Frémeaux-Bacchi
- INSERM, UMR_S 1138, Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France
- Service d'Immunologie, Hôpital européen Georges Pompidou, APHP, Paris, France
| | - Sophie Chauvet
- INSERM, UMR_S 1138, Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France.
- Service de Néphrologie, Hôpital européen Georges Pompidou, APHP, Paris, France.
| |
Collapse
|
190
|
Michels MAHM, van de Kar NCAJ, Volokhina EB, van den Heuvel BLPWJ. Functional Hemolytic Test for Complement Alternative Pathway Convertase Activity. Methods Mol Biol 2021; 2227:83-96. [PMID: 33847933 DOI: 10.1007/978-1-0716-1016-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The complement system is a key part of innate immunity. However, if the system becomes dysregulated, damage to healthy host cells can occur, especially to the glomerular cells of the kidney. The convertases of the alternative pathway of the complement system play a crucial role in complement activation. In healthy conditions, their activity is strictly regulated. In patients with diseases caused by complement alternative pathway dysregulation, such as C3 glomerulopathy and atypical hemolytic uremic syndrome, factors can be present in the blood that disturb this delicate balance, leading to convertase overactivity. Such factors include C3 nephritic factors, which are autoantibodies against the C3 convertase that prolong its activity, or genetic variants resulting in a stabilized convertase complex. This chapter describes a method in which the activity and stability of the alternative pathway convertases can be measured to detect aberrant serum factors causing convertase overactivity.
Collapse
Affiliation(s)
- Marloes A H M Michels
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicole C A J van de Kar
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena B Volokhina
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert L P W J van den Heuvel
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Pediatrics/Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium.
- Department of Development and Regeneration, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
191
|
Kitchlu A, Jhaveri KD, Wadhwani S, Deshpande P, Harel Z, Kishibe T, Henriksen K, Wanchoo R. A Systematic Review of Immune Checkpoint Inhibitor-Associated Glomerular Disease. Kidney Int Rep 2021; 6:66-77. [PMID: 33426386 PMCID: PMC7783581 DOI: 10.1016/j.ekir.2020.10.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/01/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are increasingly used to treat cancers. Kidney immune-related adverse events (IRAEs) are now well recognized, with the incidence of IRAEs ranging from 2% to 5%. Most of the initial data related to kidney IRAEs have focused on acute interstitial nephritis (AIN). There are minimal data on the types and relative frequencies of glomerular diseases associated with ICIs, their treatment, and outcomes. METHODS We performed a systematic review and meta-analysis of all biopsy-proven published cases/series of glomerular pathology associated with ICIs. We searched the MEDLINE, EMBASE, and Cochrane databases from inception to February 2020. We abstracted patient-level data, including demographics, cancer and ICI therapy details, and characteristics of kidney injury. RESULTS After screening, 27 articles with 45 cases of biopsy-confirmed ICI-associated glomerular disease were identified. Several lesion types were observed, with the most frequent being pauci-immune glomerulonephritis (GN) and renal vasculitis (27%), podocytopathies (24%), and complement 3 GN (C3GN; 11%). Concomitant AIN was reported in 41%. Most patients had ICIs discontinued (88%), and nearly all received corticosteroid treatment (98%). Renal replacement therapy (RRT) was required in 25%. Most patients had full (31%) or partial (42%) recovery from acute kidney injury (AKI), although 19% remained dialysis-dependent, and approximately one-third died. Complete or partial remission of proteinuria was achieved in 45% and 38%, respectively. CONCLUSION Multiple forms of ICI-associated glomerular disease have been described. Pauci-immune GN, podocytopathies, and C3GN are the most frequently reported lesions. ICI-associated glomerular disease may be associated with poor kidney and mortality outcomes. Oncologists and nephrologists must be aware of glomerular pathologies associated with ICIs and consider obtaining a kidney biopsy specimen when features atypical for AIN are present.
Collapse
Affiliation(s)
- Abhijat Kitchlu
- Department of Medicine, Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kenar D. Jhaveri
- Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, New York, USA
- The Glomerular Center at Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, New York, USA
| | - Shikha Wadhwani
- Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois, USA
| | - Priya Deshpande
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ziv Harel
- Division of Nephrology, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Teruko Kishibe
- Library Services, Unity Health Toronto, Toronto, Ontario, Canada
| | - Kammi Henriksen
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Rimda Wanchoo
- Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, New York, USA
- The Glomerular Center at Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, New York, USA
| |
Collapse
|
192
|
Cavanaugh C, Okusa MD. The Evolving Role of Novel Biomarkers in Glomerular Disease: A Review. Am J Kidney Dis 2021; 77:122-131. [DOI: 10.1053/j.ajkd.2020.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023]
|
193
|
Andreoli SP. 50 Years Ago in TheJournalofPediatrics: Hypocomplementemic Glomerulonephritis. J Pediatr 2021; 228:23. [PMID: 33342492 DOI: 10.1016/j.jpeds.2020.07.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sharon P Andreoli
- Byron P. and Francis D. Emeritus Professor of Pediatric Nephrology, Division of Pediatric Nephrology, James Whitcomb Riley Hospital for Children, Indianapolis, Indiana
| |
Collapse
|
194
|
Caravaca-Fontán F, Trujillo H, Alonso M, Díaz-Encarnación M, Cabello V, Ariceta G, Quintana LF, Marco H, Barros X, Ramos N, Rodríguez-Mendiola N, Cruz S, Fernández-Juárez G, Rodríguez E, de la Cerda F, Pérez de José A, López I, Fernández L, Pérez Gómez V, Ávila A, Bravo L, Lumbreras J, Allende N, Sanchez de la Nieta MD, Olea T, Melgosa M, Huerta A, Miquel R, Mon C, Fraga G, de Lorenzo A, Draibe J, González F, Shabaka A, Illescas ML, Calvo C, Oviedo V, Da Silva I, Goicoechea de Jorge E, Caravaca F, Praga M. Validation of a Histologic Scoring Index for C3 Glomerulopathy. Am J Kidney Dis 2020; 77:684-695.e1. [PMID: 33359150 DOI: 10.1053/j.ajkd.2020.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022]
Abstract
RATIONALE & OBJECTIVE A previous study that evaluated associations of kidney biopsy findings with disease progression in patients with C3 glomerulopathy (C3G) proposed a prognostic histologic index (C3G-HI) that has not yet been validated. Our objective was to validate the performance of the C3G-HI in a new patient population. STUDY DESIGN Multicenter, retrospective cohort study. SETTING & PARTICIPANTS 111 patients fulfilling diagnostic criteria of C3G between January 1995 and December 2019, from 33 nephrology departments belonging to the Spanish Group for the Study of Glomerular Diseases (GLOSEN). PREDICTORS Demographic, clinical parameters, C3G-HI total activity score, and the C3G-HI total chronicity score. OUTCOME Time to kidney failure. ANALYTICAL APPROACH Intraclass correlation coefficients and κ statistic were used to summarize inter-rater reproducibility for assessment of histopathology in kidney biopsies. The nonlinear relationships of risk of kidney failure with the total activity score and total chronicity score were modeled using Cox proportional hazards analysis that incorporated cubic splines. RESULTS The study group included 93 patients with C3 glomerulonephritis and 18 with dense-deposit disease. Participants had an overall meanage of 35±22 (SD) years. Forty-eight patients (43%) developed kidney failure after a mean follow-up of 65±27 months. The overall inter-rater reproducibility was very good for the total activity score (intraclass correlation coefficient [ICC]=0.63) and excellent for total chronicity score (ICC=0.89). Baseline estimated glomerular filtration rate (eGFR), 24-hour proteinuria, and treatment with immunosuppression were the main determinants of kidney failure in a model with only clinical variables. Only tubular atrophy and interstitial fibrosis were identified as predictors in a model with histological variables. When the total activity score and total chronicity score were added to the model, only the latter was identified as an independent predictor of kidney failure. LIMITATIONS Only a subset of the kidney biopsies was centrally reviewed. Residual confounding. CONCLUSIONS We validated the performance of C3G-HI as a predictor of kidney failure in patients with C3G. The total chronicity score was the principal histologic correlate of kidney failure.
Collapse
Affiliation(s)
- Fernando Caravaca-Fontán
- Instituto de Investigación Hospital 12 de octubre (i+12), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Hernando Trujillo
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marina Alonso
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Virginia Cabello
- Department of Nephrology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Gema Ariceta
- Department of Pediatric Nephrology, Hospital Universitario Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Luis F Quintana
- Department of Nephrology, Hospital Clinic de Barcelona Department of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Helena Marco
- Department of Nephrology, Hospital Universitario Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Xoana Barros
- Department of Nephrology, Hospital Universitario Doctor Josep Trueta, Gerona, Spain
| | - Natalia Ramos
- Department of Nephrology, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | | | - Sonia Cruz
- Department of Nephrology, Hospital Universitario Juan Ramón Jiménez, Huelva, Spain
| | - Gema Fernández-Juárez
- Department of Nephrology, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Eva Rodríguez
- Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Francisco de la Cerda
- Department of Pediatric Nephrology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Ana Pérez de José
- Department of Nephrology, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Inmaculada López
- Department of Nephrology, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Loreto Fernández
- Department of Nephrology, Complejo Hospitalario de Navarra, Navarra, Spain
| | - Vanessa Pérez Gómez
- Department of Nephrology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Ana Ávila
- Department of Nephrology, Hospital Universitario Doctor Peset, Valencia, Spain
| | - Luis Bravo
- Department of Nephrology, Hospital Universitario A Coruña, La Coruña, Spain
| | - Javier Lumbreras
- Pediatric Nephrology Unit, Hospital Universitario Son Espases, Balearic Islands Health Research Institute (IdISBa), Palma de Mallorca, Spain
| | - Natalia Allende
- Department of Nephrology, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | | | - Teresa Olea
- Department of Nephrology, Hospital Universitario La Paz, Madrid, Spain
| | - Marta Melgosa
- Department of Pediatric Nephrology, Hospital Universitario La Paz, Madrid, Spain
| | - Ana Huerta
- Department of Nephrology, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Rosa Miquel
- Department of Nephrology, Hospital Universitario Canarias, Tenerife, Spain
| | - Carmen Mon
- Department of Nephrology, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - Gloria Fraga
- Department of Pediatric Nephrology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alberto de Lorenzo
- Department of Nephrology, Hospital Universitario de Getafe, Madrid, Spain
| | - Juliana Draibe
- Department of Nephrology, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Fayna González
- Department of Nephrology, Hospital Doctor Negrín, Gran Canaria, Spain
| | - Amir Shabaka
- Department of Nephrology, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Maria Luisa Illescas
- Department of Nephrology, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Consuelo Calvo
- Department of Nephrology, Hospital General Universitario de Castellón, Castellón, Spain
| | - Victoria Oviedo
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Iara Da Silva
- Department of Nephrology, Fundación Puigvert, Barcelona, Spain
| | - Elena Goicoechea de Jorge
- Department of Immunlogy, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid and Centro de Investigación Biomédica en Red en Enfermedades Raras, Madrid, Spain
| | - Francisco Caravaca
- Department of Nephrology, Hospital Universitario de Badajoz, Badajoz, Spain
| | - Manuel Praga
- Instituto de Investigación Hospital 12 de octubre (i+12), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain; Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | | |
Collapse
|
195
|
Zhang Y, Ghiringhelli Borsa N, Shao D, Dopler A, Jones MB, Meyer NC, Pitcher GR, Taylor AO, Nester CM, Schmidt CQ, Smith RJH. Factor H Autoantibodies and Complement-Mediated Diseases. Front Immunol 2020; 11:607211. [PMID: 33384694 PMCID: PMC7770156 DOI: 10.3389/fimmu.2020.607211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022] Open
Abstract
Factor H (FH), a member of the regulators-of-complement-activation (RCA) family of proteins, circulates in human plasma at concentrations of 180–420 mg/L where it controls the alternative pathway (AP) of complement in the fluid phase and on cell surfaces. When the regulatory function of FH is impaired, complement-mediated tissue injury and inflammation occur, leading to diseases such as atypical hemolytic uremic syndrome (a thrombotic microangiopathy or TMA), C3 glomerulopathy (C3G) and monoclonal gammopathy of renal significance (MGRS). A pathophysiological cause of compromised FH function is the development of autoantibodies to various domains of the FH protein. FH autoantibodies (FHAAs) are identified in 10.9% of patients with aHUS, 3.2% of patients with C3G, and rarely in patients with MGRS. The phenotypic variability of FHAA-mediated disease reflects both the complexity of FH and the epitope specificity of FHAA for select regions of the native protein. In this paper, we have characterized FHAA epitopes in a large cohort of patients diagnosed with TMA, C3G or MGRS. We explore the epitopes recognized by FHAAs in these diseases and the association of FHAAs with the genetic deletion of both copies of the CFHR1 gene to show how these disease phenotypes are associated with this diverse spectrum of autoantibodies.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Nicolo Ghiringhelli Borsa
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Dingwu Shao
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Arthur Dopler
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Michael B Jones
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Nicole C Meyer
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Gabriella R Pitcher
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Amanda O Taylor
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Carla M Nester
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
196
|
Ort M, Dingemanse J, van den Anker J, Kaufmann P. Treatment of Rare Inflammatory Kidney Diseases: Drugs Targeting the Terminal Complement Pathway. Front Immunol 2020; 11:599417. [PMID: 33362783 PMCID: PMC7758461 DOI: 10.3389/fimmu.2020.599417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The complement system comprises the frontline of the innate immune system. Triggered by pathogenic surface patterns in different pathways, the cascade concludes with the formation of a membrane attack complex (MAC; complement components C5b to C9) and C5a, a potent anaphylatoxin that elicits various inflammatory signals through binding to C5a receptor 1 (C5aR1). Despite its important role in pathogen elimination, priming and recruitment of myeloid cells from the immune system, as well as crosstalk with other physiological systems, inadvertent activation of the complement system can result in self-attack and overreaction in autoinflammatory diseases. Consequently, it constitutes an interesting target for specialized therapies. The paradigm of safe and efficacious terminal complement pathway inhibition has been demonstrated by the approval of eculizumab in paroxysmal nocturnal hematuria. In addition, complement contribution in rare kidney diseases, such as lupus nephritis, IgA nephropathy, atypical hemolytic uremic syndrome, C3 glomerulopathy, or antineutrophil cytoplasmic antibody-associated vasculitis has been demonstrated. This review summarizes the involvement of the terminal effector agents of the complement system in these diseases and provides an overview of inhibitors for complement components C5, C5a, C5aR1, and MAC that are currently in clinical development. Furthermore, a link between increased complement activity and lung damage in severe COVID-19 patients is discussed and the potential for use of complement inhibitors in COVID-19 is presented.
Collapse
Affiliation(s)
- Marion Ort
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland.,Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - John van den Anker
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.,Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, United States
| | - Priska Kaufmann
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
197
|
Meri S, Haapasalo K. Function and Dysfunction of Complement Factor H During Formation of Lipid-Rich Deposits. Front Immunol 2020; 11:611830. [PMID: 33363547 PMCID: PMC7753009 DOI: 10.3389/fimmu.2020.611830] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/09/2020] [Indexed: 01/19/2023] Open
Abstract
Complement-mediated inflammation or dysregulation in lipid metabolism are associated with the pathogenesis of several diseases. These include age-related macular degeneration (AMD), C3 glomerulonephritis (C3GN), dense deposit disease (DDD), atherosclerosis, and Alzheimer's disease (AD). In all these diseases, formation of characteristic lipid-rich deposits is evident. Here, we will discuss molecular mechanisms whereby dysfunction of complement, and especially of its key regulator factor H, could be involved in lipid accumulation and related inflammation. The genetic associations to factor H polymorphisms, the role of factor H in the resolution of inflammation in lipid-rich deposits, modification of macrophage functions, and complement-mediated clearance of apoptotic and damaged cells indicate that the function of factor H is crucial in limiting inflammation in these diseases.
Collapse
Affiliation(s)
- Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
198
|
Xu J, Nie H, He J, Wang X, Liao K, Tu L, Xiong Z. Using Machine Learning Modeling to Explore New Immune-Related Prognostic Markers in Non-Small Cell Lung Cancer. Front Oncol 2020; 10:550002. [PMID: 33215029 PMCID: PMC7665579 DOI: 10.3389/fonc.2020.550002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To find new immune-related prognostic markers for non-small cell lung cancer (NSCLC). METHODS We found GSE14814 is related to NSCLC in GEO database. The non-small cell lung cancer observation (NSCLC-OBS) group was evaluated for immunity and divided into high and low groups for differential gene screening according to the score of immune evaluation. A single factor COX regression analysis was performed to select the genes related to prognosis. A prognostic model was constructed by machine learning, and test whether the model has a test efficacy for prognosis. A chip-in-chip non-small cell lung cancer chemotherapy (NSCLC-ACT) sample was used as a validation dataset for the same validation and prognostic analysis of the model. The coexpression genes of hub genes were obtained by pearson analysis and gene enrichment, function enrichment and protein interaction analysis. The tumor samples of patients with different clinical stages were detected by immunohistochemistry and the expression difference of prognostic genes in tumor tissues of patients with different stages was compared. RESULTS By screening, we found that LYN, C3, COPG2IT1, HLA.DQA1, and TNFRSF17 is closely related to prognosis. After machine learning, we constructed the immune prognosis model from these 5 genes, and the model AUC values were greater than 0.9 at three time periods of 1, 3, and 5 years; the total survival period of the low-risk group was significantly better than that of the high-risk group. The results of prognosis analysis in ACT samples were consistent with OBS groups. The coexpression genes are mainly involved B cell receptor signaling pathway and are mainly enriched in apoptotic cell clearance. Prognostic key genes are highly correlated with PDCD1, PDCD1LG2, LAG3, and CTLA4 immune checkpoints. The immunohistochemical results showed that the expression of COPG2IT1 and HLA.DQA1 in stage III increased significantly and the expression of LYN, C3, and TNFRSF17 in stage III decreased significantly compared with that of stage I. The experimental results are consistent with the previous analysis. CONCLUSION LYN, C3, COPG2IT1, LA.DQA1, and NFRSF17 may be new immune markers to judge the prognosis of patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Jiasheng Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Han Nie
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiarui He
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinlu Wang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kaili Liao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Luxia Tu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenfang Xiong
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
199
|
Complement activity is regulated in C3 glomerulopathy by IgG-factor H fusion proteins with and without properdin targeting domains. Kidney Int 2020; 99:396-404. [PMID: 33129896 PMCID: PMC7863913 DOI: 10.1016/j.kint.2020.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 11/29/2022]
Abstract
C3 glomerulopathy is characterized by accumulation of complement C3 within glomeruli. Causes include, but are not limited to, abnormalities in factor H, the major negative regulator of the complement alternative pathway. Factor H-deficient (Cfh-/-) mice develop C3 glomerulopathy together with a reduction in plasma C3 levels. Using this model, we assessed the efficacy of two fusion proteins containing the factor H alternative pathway regulatory domains (FH1-5) linked to either a non-targeting mouse immunoglobulin (IgG-FH1-5) or to an anti-mouse properdin antibody (Anti-P-FH1-5). Both proteins increased plasma C3 and reduced glomerular C3 deposition to an equivalent extent, suggesting that properdin-targeting was not required for FH1-5 to alter C3 activation in either plasma or glomeruli. Following IgG-FH1-5 administration, plasma C3 levels temporally correlated with changes in factor B levels whereas plasma C5 levels correlated with changes in plasma properdin levels. Notably, the increases in plasma C5 and properdin levels persisted for longer than the increases in C3 and factor B. In Cfh-/- mice IgG-FH1-5 reduced kidney injury during accelerated serum nephrotoxic nephritis. Thus, our data demonstrate that IgG-FH1-5 restored circulating alternative pathway activity and reduced glomerular C3 deposition in Cfh-/- mice and that plasma properdin levels are a sensitive marker of C5 convertase activity in factor H deficiency. The immunoglobulin conjugated FH1-5 protein, through its comparatively long plasma half-life, may be a potential therapy for C3 glomerulopathy.
Collapse
|
200
|
Treatment of C3 Glomerulopathy in Adult Kidney Transplant Recipients: A Systematic Review. Med Sci (Basel) 2020; 8:medsci8040044. [PMID: 33096866 PMCID: PMC7712822 DOI: 10.3390/medsci8040044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND C3 glomerulopathy (C3G), a rare glomerular disease mediated by alternative complement pathway dysregulation, is associated with a high rate of recurrence and graft loss after kidney transplantation (KTx). We aimed to assess the efficacy of different treatments for C3G recurrence after KTx. METHODS Databases (MEDLINE, EMBASE, and Cochrane Database) were searched from inception through 3 May, 2019. Studies were included that reported outcomes of adult KTx recipients with C3G. Effect estimates from individual studies were combined using the random-effects, generic inverse variance method of DerSimonian and Laird., The protocol for this meta-analysis is registered with PROSPERO (no. CRD42019125718). RESULTS Twelve studies (7 cohort studies and 5 case series) consisting of 122 KTx patients with C3G (73 C3 glomerulonephritis (C3GN) and 49 dense deposit disease (DDD)) were included. The pooled estimated rates of allograft loss among KTx patients with C3G were 33% (95% CI: 12-57%) after eculizumab, 42% (95% CI: 2-89%) after therapeutic plasma exchange (TPE), and 81% (95% CI: 50-100%) after rituximab. Subgroup analysis based on type of C3G was performed. Pooled estimated rates of allograft loss in C3GN KTx patients were 22% (95% CI: 5-46%) after eculizumab, 56% (95% CI: 6-100%) after TPE, and 70% (95% CI: 24-100%) after rituximab. Pooled estimated rates of allograft loss in DDD KTx patients were 53% (95% CI: 0-100%) after eculizumab. Data on allograft loss in DDD after TPE (1 case series, 0/2 (0%) allograft loss at 6 months) and rituximab (1 cohort, 3/3 (100%) allograft loss) were limited. Among 66 patients (38 C3GN, 28 DDD) who received no treatment (due to stable allograft function at presentation and/or clinical judgment of physicians), pooled estimated rates of allograft loss were 32% (95% CI: 7-64%) and 53% (95% CI: 28-77%) for C3GN and DDD, respectively. Among treated C3G patients, data on soluble membrane attack complex of complement (sMAC) were limited to patients treated with eculizumab (N = 7). 80% of patients with elevated sMAC before eculizumab responded to treatment. In addition, all patients who responded to eculizumab had normal sMAC levels after post-eculizumab. CONCLUSIONS Our study suggests that the lowest incidence of allograft loss (33%) among KTX patients with C3G are those treated with eculizumab. Among those who received no treatment for C3G due to stable allograft function, there is a high incidence of allograft loss of 32% in C3GN and 53% in DDD. sMAC level may help to select good responders to eculizumab.
Collapse
|