151
|
Gao Y, Wen P, Cardé RT, Xu H, Huang Q. In addition to cryptochrome 2, magnetic particles with olfactory co-receptor are important for magnetic orientation in termites. Commun Biol 2021; 4:1121. [PMID: 34556782 PMCID: PMC8460727 DOI: 10.1038/s42003-021-02661-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/08/2021] [Indexed: 12/02/2022] Open
Abstract
The volatile trail pheromone is an ephemeral chemical cue, whereas the geomagnetic field (GMF) provides a stable positional reference. However, it is unclear whether and how the cryptic termites perceive the GMF for orientation in light or darkness until now. Here, we found that the two termite species, Reticulitermes chinensis and Odontotermes formosanus, use the GMF for orientation. Our silencing cryptochrome 2 (Cry2) impaired magnetic orientation in white light but had no significant impact in complete darkness, suggesting that Cry2 can mediate magnetic orientation in termites only under light. Coincidentally, the presence of magnetic particles enabled the magnetic orientation of termites in darkness. When knock-downing the olfactory co-receptor (Orco) to exclude the effect of trail pheromone, unexpectedly, we found that the Orco participated in termite magnetic orientation under both light and darkness. Our findings revealed a novel magnetoreception model depending on the joint action of radical pair, magnetic particle, and olfactory co-receptor. Gao et al. analyze the role of magnetoreceptor candidates cryptochrome 2 (Cry2), magnetic particles and olfactory coreceptor (Orco) in magnetic orientation in two termite species. They report that termites use Cry2 for directional preference in white light, magnetic particles in darkness, and Orco participates in termite magnetic orientation under both light and darkness.
Collapse
Affiliation(s)
- Yongyong Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Wen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan Province, 650223, China
| | - Ring T Cardé
- Department of Entomology, University of California Riverside, Riverside, CA, 92521, USA
| | - Huan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
152
|
Kashetsky T, Avgar T, Dukas R. The Cognitive Ecology of Animal Movement: Evidence From Birds and Mammals. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.724887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognition, defined as the processes concerned with the acquisition, retention and use of information, underlies animals’ abilities to navigate their local surroundings, embark on long-distance seasonal migrations, and socially learn information relevant to movement. Hence, in order to fully understand and predict animal movement, researchers must know the cognitive mechanisms that generate such movement. Work on a few model systems indicates that most animals possess excellent spatial learning and memory abilities, meaning that they can acquire and later recall information about distances and directions among relevant objects. Similarly, field work on several species has revealed some of the mechanisms that enable them to navigate over distances of up to several thousand kilometers. Key behaviors related to movement such as the choice of nest location, home range location and migration route are often affected by parents and other conspecifics. In some species, such social influence leads to the formation of aggregations, which in turn may lead to further social learning about food locations or other resources. Throughout the review, we note a variety of topics at the interface of cognition and movement that invite further investigation. These include the use of social information embedded in trails, the likely important roles of soundscapes and smellscapes, the mechanisms that large mammals rely on for long-distance migration, and the effects of expertise acquired over extended periods.
Collapse
|
153
|
Kralj S, Marchesan S. Bioinspired Magnetic Nanochains for Medicine. Pharmaceutics 2021; 13:1262. [PMID: 34452223 PMCID: PMC8398308 DOI: 10.3390/pharmaceutics13081262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used for medicine, both in therapy and diagnosis. Their guided assembly into anisotropic structures, such as nanochains, has recently opened new research avenues; for instance, targeted drug delivery. Interestingly, magnetic nanochains do occur in nature, and they are thought to be involved in the navigation and geographic orientation of a variety of animals and bacteria, although many open questions on their formation and functioning remain. In this review, we will analyze what is known about the natural formation of magnetic nanochains, as well as the synthetic protocols to produce them in the laboratory, to conclude with an overview of medical applications and an outlook on future opportunities in this exciting research field.
Collapse
Affiliation(s)
- Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
154
|
Togunov RR, Derocher AE, Lunn NJ, Auger‐Méthé M. Characterising menotactic behaviours in movement data using hidden Markov models. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ron R. Togunov
- Institute for the Oceans and Fisheries The University of British Columbia Vancouver BC Canada
- Department of Zoology The University of British Columbia Vancouver BC Canada
| | - Andrew E. Derocher
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| | - Nicholas J. Lunn
- Department of Biological Sciences University of Alberta Edmonton AB Canada
- Wildlife Research Division, Science and Technology Branch Environment and Climate Change Canada Edmonton AB Canada
| | - Marie Auger‐Méthé
- Institute for the Oceans and Fisheries The University of British Columbia Vancouver BC Canada
- Department of Statistics University of British Columbia Vancouver BC Canada
| |
Collapse
|
155
|
Montell C. Drosophila sensory receptors-a set of molecular Swiss Army Knives. Genetics 2021; 217:1-34. [PMID: 33683373 DOI: 10.1093/genetics/iyaa011] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Genetic approaches in the fruit fly, Drosophila melanogaster, have led to a major triumph in the field of sensory biology-the discovery of multiple large families of sensory receptors and channels. Some of these families, such as transient receptor potential channels, are conserved from animals ranging from worms to humans, while others, such as "gustatory receptors," "olfactory receptors," and "ionotropic receptors," are restricted to invertebrates. Prior to the identification of sensory receptors in flies, it was widely assumed that these proteins function in just one modality such as vision, smell, taste, hearing, and somatosensation, which includes thermosensation, light, and noxious mechanical touch. By employing a vast combination of genetic, behavioral, electrophysiological, and other approaches in flies, a major concept to emerge is that many sensory receptors are multitaskers. The earliest example of this idea was the discovery that individual transient receptor potential channels function in multiple senses. It is now clear that multitasking is exhibited by other large receptor families including gustatory receptors, ionotropic receptors, epithelial Na+ channels (also referred to as Pickpockets), and even opsins, which were formerly thought to function exclusively as light sensors. Genetic characterizations of these Drosophila receptors and the neurons that express them also reveal the mechanisms through which flies can accurately differentiate between different stimuli even when they activate the same receptor, as well as mechanisms of adaptation, amplification, and sensory integration. The insights gleaned from studies in flies have been highly influential in directing investigations in many other animal models.
Collapse
Affiliation(s)
- Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
156
|
Erdmann W, Kmita H, Kosicki JZ, Kaczmarek Ł. How the Geomagnetic Field Influences Life on Earth - An Integrated Approach to Geomagnetobiology. ORIGINS LIFE EVOL B 2021; 51:231-257. [PMID: 34363564 DOI: 10.1007/s11084-021-09612-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Earth is one of the inner planets of the Solar System, but - unlike the others - it has an oxidising atmosphere, relatively stable temperature, and a constant geomagnetic field (GMF). The GMF does not only protect life on Earth against the solar wind and cosmic rays, but it also shields the atmosphere itself, thus creating relatively stable environmental conditions. What is more, the GMF could have influenced the origins of life: organisms from archaea to plants and animals may have been using the GMF as a source of spatial information since the very beginning. Although the GMF is constant, it does undergo various changes, some of which, e.g. a reversal of the poles, weaken the field significantly or even lead to its short-term disappearance. This may result in considerable climatic changes and an increased frequency of mutations caused by the solar wind and cosmic radiation. This review analyses data on the influence of the GMF on different aspects of life and it also presents current knowledge in the area. In conclusion, the GMF has a positive impact on living organisms, whereas a diminishing or disappearing GMF negatively affects living organisms. The influence of the GMF may also be an important factor determining both survival of terrestrial organisms outside Earth and the emergence of life on other planets.
Collapse
Affiliation(s)
- Weronika Erdmann
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Hanna Kmita
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Jakub Z Kosicki
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
157
|
Lünemann DC, Thomas AR, Xu J, Bartölke R, Mouritsen H, De Sio A, Lienau C. Distinguishing between coherent and incoherent signals in excitation-emission spectroscopy. OPTICS EXPRESS 2021; 29:24326-24337. [PMID: 34614680 DOI: 10.1364/oe.428850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The separation of incoherent emission signals from coherent light scattering often poses a challenge in (time-resolved) microscopy or excitation-emission spectroscopy. While in spectro-microscopy with narrowband excitation this is commonly overcome using spectral filtering, it is less straightforward when using broadband Fourier-transform techniques that are now becoming commonplace in, e.g., single molecule or ultrafast nonlinear spectroscopy. Here we show that such a separation is readily achieved using highly stable common-path interferometers for both excitation and detection. The approach is demonstrated for suppression of scattering from flavin adenine dinucleotide (FAD) and weakly emissive cryptochrome 4 (Cry4) protein samples. We expect that the approach will be beneficial, e.g., for fluorescence lifetime or Raman-based imaging and spectroscopy of various samples, including single quantum emitters.
Collapse
|
158
|
|
159
|
Benitez-Paez F, Brum-Bastos VDS, Beggan CD, Long JA, Demšar U. Fusion of wildlife tracking and satellite geomagnetic data for the study of animal migration. MOVEMENT ECOLOGY 2021; 9:31. [PMID: 34116722 PMCID: PMC8196450 DOI: 10.1186/s40462-021-00268-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Migratory animals use information from the Earth's magnetic field on their journeys. Geomagnetic navigation has been observed across many taxa, but how animals use geomagnetic information to find their way is still relatively unknown. Most migration studies use a static representation of geomagnetic field and do not consider its temporal variation. However, short-term temporal perturbations may affect how animals respond - to understand this phenomenon, we need to obtain fine resolution accurate geomagnetic measurements at the location and time of the animal. Satellite geomagnetic measurements provide a potential to create such accurate measurements, yet have not been used yet for exploration of animal migration. METHODS We develop a new tool for data fusion of satellite geomagnetic data (from the European Space Agency's Swarm constellation) with animal tracking data using a spatio-temporal interpolation approach. We assess accuracy of the fusion through a comparison with calibrated terrestrial measurements from the International Real-time Magnetic Observatory Network (INTERMAGNET). We fit a generalized linear model (GLM) to assess how the absolute error of annotated geomagnetic intensity varies with interpolation parameters and with the local geomagnetic disturbance. RESULTS We find that the average absolute error of intensity is - 21.6 nT (95% CI [- 22.26555, - 20.96664]), which is at the lower range of the intensity that animals can sense. The main predictor of error is the level of geomagnetic disturbance, given by the Kp index (indicating the presence of a geomagnetic storm). Since storm level disturbances are rare, this means that our tool is suitable for studies of animal geomagnetic navigation. Caution should be taken with data obtained during geomagnetically disturbed days due to rapid and localised changes of the field which may not be adequately captured. CONCLUSIONS By using our new tool, ecologists will be able to, for the first time, access accurate real-time satellite geomagnetic data at the location and time of each tracked animal, without having to start new tracking studies with specialised magnetic sensors. This opens a new and exciting possibility for large multi-species studies that will search for general migratory responses to geomagnetic cues. The tool therefore has a potential to uncover new knowledge about geomagnetic navigation and help resolve long-standing debates.
Collapse
Affiliation(s)
- Fernando Benitez-Paez
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK
- The Alan Turing Institute British Library, England, London, UK
| | - Vanessa da Silva Brum-Bastos
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK
| | - Ciarán D Beggan
- British Geological Survey, Research Ave South, Riccarton, Edinburgh, Scotland, UK
| | - Jed A Long
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK
- Department of Geography and Environment, Western University, London, Ontario, Canada
| | - Urška Demšar
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK.
| |
Collapse
|
160
|
Zadeh-Haghighi H, Simon C. Entangled radicals may explain lithium effects on hyperactivity. Sci Rep 2021; 11:12121. [PMID: 34108537 PMCID: PMC8190433 DOI: 10.1038/s41598-021-91388-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
It is known that bipolar disorder and its lithium treatment involve the modulation of oxidative stress. Moreover, it has been observed that lithium's effects are isotope-dependent. Based on these findings, here we propose that lithium exerts its effects by influencing the recombination dynamics of a naturally occurring radical pair involving oxygen. We develop a simple model inspired by the radical-pair mechanism in cryptochrome in the context of avian magnetoreception and xenon-induced anesthesia. Our model reproduces the observed isotopic dependence in the lithium treatment of hyperactivity in rats. It predicts a magnetic-field dependence of the effectiveness of lithium, which provides one potential experimental test of our hypothesis. Our findings show that Nature might harness quantum entanglement for the brain's cognitive processes.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Quantum Alberta, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Quantum Alberta, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
161
|
Günther A, Dedek K, Haverkamp S, Irsen S, Briggman KL, Mouritsen H. Double Cones and the Diverse Connectivity of Photoreceptors and Bipolar Cells in an Avian Retina. J Neurosci 2021; 41:5015-5028. [PMID: 33893221 PMCID: PMC8197639 DOI: 10.1523/jneurosci.2495-20.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/03/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022] Open
Abstract
Double cones are the most common photoreceptor cell type in most avian retinas, but their precise functions remain a mystery. Among their suggested functions are luminance detection, polarized light detection, and light-dependent, radical pair-based magnetoreception. To better understand the function of double cones, it will be crucial to know how they are connected to the neural network in the avian retina. Here we use serial sectioning, multibeam scanning electron microscopy to investigate double-cone anatomy and connectivity with a particular focus on their contacts to other photoreceptor and bipolar cells in the chicken retina. We found that double cones are highly connected to neighboring double cones and with other photoreceptor cells through telodendria-to-terminal and telodendria-to-telodendria contacts. We also identified 15 bipolar cell types based on their axonal stratifications, photoreceptor contact pattern, soma position, and dendritic and axonal field mosaics. Thirteen of these 15 bipolar cell types contacted at least one or both members of the double cone. All bipolar cells were bistratified or multistratified. We also identified surprising contacts between other cone types and between rods and cones. Our data indicate a much more complex connectivity network in the outer plexiform layer of the avian retina than originally expected.SIGNIFICANCE STATEMENT Like in humans, vision is one of the most important senses for birds. Here, we present the first serial section multibeam scanning electron microscopy dataset from any bird retina. We identified many previously undescribed rod-to-cone and cone-to-cone connections. Surprisingly, of the 15 bipolar cell types we identified, 11 received input from rods and 13 of 15 received at least part of their input from double cones. Therefore, double cones seem to play many different and important roles in avian retinal processing, and the neural network and thus information processing in the outer retina are much more complex than previously expected. These fundamental findings will be very important for several fields of science, including vertebrate vision, avian magnetoreception, and comparative neuroanatomy.
Collapse
Affiliation(s)
- Anja Günther
- Neurosensorics/Animal Navigation, Institute for Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Karin Dedek
- Neurosensorics/Animal Navigation, Institute for Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Silke Haverkamp
- Department of Computational Neuroethology, Center of Advanced European Studies and Reasearch (caesar), 53175 Bonn, Germany
| | - Stephan Irsen
- Electron Microscopy and Analytics, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - Kevin L Briggman
- Department of Computational Neuroethology, Center of Advanced European Studies and Reasearch (caesar), 53175 Bonn, Germany
| | - Henrik Mouritsen
- Neurosensorics/Animal Navigation, Institute for Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
162
|
Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 2021; 594:535-540. [PMID: 34163056 DOI: 10.1038/s41586-021-03618-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Night-migratory songbirds are remarkably proficient navigators1. Flying alone and often over great distances, they use various directional cues including, crucially, a light-dependent magnetic compass2,3. The mechanism of this compass has been suggested to rely on the quantum spin dynamics of photoinduced radical pairs in cryptochrome flavoproteins located in the retinas of the birds4-7. Here we show that the photochemistry of cryptochrome 4 (CRY4) from the night-migratory European robin (Erithacus rubecula) is magnetically sensitive in vitro, and more so than CRY4 from two non-migratory bird species, chicken (Gallus gallus) and pigeon (Columba livia). Site-specific mutations of ErCRY4 reveal the roles of four successive flavin-tryptophan radical pairs in generating magnetic field effects and in stabilizing potential signalling states in a way that could enable sensing and signalling functions to be independently optimized in night-migratory birds.
Collapse
|
163
|
Tyagi T, Bhardwaj SK. Magnetic Compass Orientation in a Palaearctic-Indian Night Migrant, the Red-Headed Bunting. Animals (Basel) 2021; 11:ani11061541. [PMID: 34070376 PMCID: PMC8227375 DOI: 10.3390/ani11061541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary The earth’s magnetic field, celestial cues, and retention of geographical cues en route provide birds with compass knowledge during migration. The magnetic compass works on the direction of the magnetic field, specifically, the course of the field lines. We tested Red-headed Buntings in orientation cages in the evening during spring migration. Simulated overcast testing resulted in a northerly mean direction, while in clear skies, birds oriented in an NNW (north–northwest) direction. Buntings were exposed to 120° anticlockwise shifted magnetic fields under simulated overcast skies and responded by shifting their orientation accordingly. The results showed that this Palaearctic night migrant possesses a magnetic compass, as well as the fact that magnetic cues act as primary directional messengers. When birds were exposed to different environmental conditions at 22 °C and 38 °C temperatures under simulated overcast conditions, they showed a delay in Zugunruhe (migratory restlessness) at 22 °C, while an advance migratory restlessness was observed under 38 °C conditions. Hot and cold weather clearly influenced the timing of migrations in Red-headed Buntings, but not the direction. Abstract Red-headed Buntings (Emberiza bruniceps) perform long-distance migrations within their southerly overwintering grounds and breeding areas in the northern hemisphere. Long-distance migration demands essential orientation mechanisms. The earth’s magnetic field, celestial cues, and memorization of geographical cues en route provide birds with compass knowledge during migration. Birds were tested during spring migration for orientation under natural clear skies, simulated overcast skies at natural day length and temperature, simulated overcast at 22 °C and 38 °C temperatures, and in the deflected (−120°) magnetic field. Under clear skies, the Red-headed Buntings were oriented NNW (north–northwest); simulated overcast testing resulted in a northerly mean direction at local temperatures as well as at 22 °C and 38 °C. The Buntings reacted strongly in favor of the rotated magnetic field under the simulated overcast sky, demonstrating the use of a magnetic compass for migrating in a specific direction.
Collapse
|
164
|
Abstract
We demonstrate, by direct, single-cell imaging kinetic measurements, that endogenous autofluorescence in HeLa cells is sensitive to the application of external magnetic fields of 25 mT and less. We provide spectroscopic and mechanistic evidence that our findings can be explained in terms of magnetic field effects on photoinduced electron transfer reactions to flavins, through the radical pair mechanism. The observed magnetic field dependence is consistent with a triplet-born radical pair and a B1/2 value of 18.0 mT with a saturation value of 3.7%.
Collapse
|
165
|
Lindecke O, Holland RA, Pētersons G, Voigt CC. Corneal sensitivity is required for orientation in free-flying migratory bats. Commun Biol 2021; 4:522. [PMID: 33953327 PMCID: PMC8100159 DOI: 10.1038/s42003-021-02053-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/26/2021] [Indexed: 02/03/2023] Open
Abstract
The exact anatomical location for an iron particle-based magnetic sense remains enigmatic in vertebrates. For mammals, findings from a cornea anaesthesia experiment in mole rats suggest that it carries the primary sensors for magnetoreception. Yet, this has never been tested in a free-ranging mammal. Here, we investigated whether intact corneal sensation is crucial for navigation in migrating Nathusius' bats, Pipistrellus nathusii, translocated from their migratory corridor. We found that bats treated with corneal anaesthesia in both eyes flew in random directions after translocation and release, contrasting bats with a single eye treated, and the control group, which both oriented in the seasonally appropriate direction. Using a Y-maze test, we confirmed that light detection remained unaffected by topical anaesthesia. Therefore our results suggest the cornea as a possible site of magnetoreception in bats, although other conceivable effects of the anaesthetic are also explored. Furthermore, we demonstrate that the corneal based sense is of bilateral nature but can function in a single eye if necessary.
Collapse
Affiliation(s)
- Oliver Lindecke
- grid.418779.40000 0001 0708 0355Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany ,grid.14095.390000 0000 9116 4836AG Verhaltensbiologie, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Richard A. Holland
- grid.7362.00000000118820937School of Natural Sciences, Bangor University, Bangor, Gwynedd UK
| | - Gunārs Pētersons
- grid.22657.340000 0001 2169 9162Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Christian C. Voigt
- grid.418779.40000 0001 0708 0355Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany ,grid.14095.390000 0000 9116 4836AG Verhaltensbiologie, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
166
|
Amplification of weak magnetic field effects on oscillating reactions. Sci Rep 2021; 11:9615. [PMID: 33953230 PMCID: PMC8100163 DOI: 10.1038/s41598-021-88871-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
We explore the possibility that chemical feedback and autocatalysis in oscillating chemical reactions could amplify weak magnetic field effects on the rate constant of one of the constituent reactions, assumed to proceed via a radical pair mechanism. Using the Brusselator model oscillator, we find that the amplitude of limit cycle oscillations in the concentrations of reaction intermediates can be extraordinarily sensitive to minute changes in the rate constant of the initiation step. The relevance of such amplification to biological effects of 50/60 Hz electromagnetic fields is discussed.
Collapse
|
167
|
Cerritelli G, Benhamou S, Luschi P. Evaluating vector navigation in green turtles migrating in a dynamic oceanic environment. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1878281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Giulia Cerritelli
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa 56126, Italy
| | - Simon Benhamou
- CNRS, Montpellier, and Cogitamus Lab, Centre d’Écologie Fonctionnelle et Evolutive, Montpellier, France
| | - Paolo Luschi
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa 56126, Italy
| |
Collapse
|
168
|
Abstract
Species throughout the animal kingdom use the Earth's magnetic field (MF) to navigate using either or both of two mechanisms. The first relies on magnetite crystals in tissue where their magnetic moments align with the MF to transduce a signal transmitted to the central nervous system. The second and the subject of this paper involves cryptochrome (CRY) proteins located in cone photoreceptors distributed across the retina, studied most extensively in birds. According to the "Radical Pair Mechanism" (RPM), blue/UV light excites CRY's flavin cofactor (FAD) to generate radical pairs whose singlet-to-triplet interconversion rate is modulated by an external MF. The signaling product of the RPM produces an impression of the field across the retinal surface. In birds, the resulting signal on the optic nerve is transmitted along the thalamofugal pathway to the primary visual cortex, which projects to brain regions concerned with image processing, memory, and executive function. The net result is a bird's orientation to the MF's inclination: its vector angle relative to the Earth's surface. The quality of ambient light (e.g., polarization) provides additional input to the compass. In birds, the Type IV CRY isoform appears pivotal to the compass, given its positioning within retinal cones; a cytosolic location therein indicating no role in the circadian clock; relatively steady diurnal levels (unlike Type II CRY's cycling); and a full complement of FAD (essential for photosensitivity). The evidence indicates that mammalian Type II CRY isoforms play a light-independent role in the cellular molecular clock without a photoreceptive function.
Collapse
Affiliation(s)
| | - Joseph Brain
- Environmental Physiology, Molecular, and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
169
|
Shepherd S, Jackson CW, Sharkh SM, Aonuma H, Oliveira EE, Newland PL. Extremely Low-Frequency Electromagnetic Fields Entrain Locust Wingbeats. Bioelectromagnetics 2021; 42:296-308. [PMID: 33822398 DOI: 10.1002/bem.22336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 11/09/2022]
Abstract
Extremely low-frequency electromagnetic fields (ELF EMFs) have been shown to impact the behavior and physiology of insects. Recent studies have highlighted the need for more research to determine more specifically how they affect flying insects. Here, we ask how locust flight is affected by acute exposure to 50 Hz EMFs. We analyzed the flights of individual locusts tethered between a pair of copper wire coils generating EMFs of various frequency using high-speed video recording. The mean wingbeat frequency of tethered locusts was 18.92 ± 0.27 Hz. We found that acute exposure to 50 Hz EMFs significantly increased absolute change in wingbeat frequency in a field strength-dependent manner, with greater field strengths causing greater changes in wingbeat frequency. The effect of EMFs on wingbeat frequency depended on the initial wingbeat frequency of a locust, with locusts flying at a frequency lower than 20 Hz increasing their wingbeat frequency, while locusts flying with a wingbeat frequency higher than 20 Hz decreasing their wingbeat frequency. During the application of 50 Hz EMF, the wingbeat frequency was entrained to a 2:5 ratio (two wingbeat cycles to five EMF cycles) of the applied EMF. We then applied a range of ELF EMFs that were close to normal wingbeat frequency and found that locusts entrained to the exact frequency of the applied EMF. These results show that exposure to ELF EMFs lead to small but significant changes in wingbeat frequency in locusts. We discuss the biological implications of the coordination of insect flight in response to electromagnetic stimuli. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Sebastian Shepherd
- Biological Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | | | - Suleiman M Sharkh
- Mechatronics, Mechanical Engineering, University of Southampton, Highfield Campus, Southampton, UK
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Eugenio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brasil
| | - Philip L Newland
- Biological Sciences, University of Southampton, Highfield Campus, Southampton, UK
| |
Collapse
|
170
|
Chowdhury S, Fuller RA, Dingle H, Chapman JW, Zalucki MP. Migration in butterflies: a global overview. Biol Rev Camb Philos Soc 2021; 96:1462-1483. [PMID: 33783119 DOI: 10.1111/brv.12714] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/13/2023]
Abstract
Insect populations including butterflies are declining worldwide, and they are becoming an urgent conservation priority in many regions. Understanding which butterfly species migrate is critical to planning for their conservation, because management actions for migrants need to be coordinated across time and space. Yet, while migration appears to be widespread among butterflies, its prevalence, as well as its taxonomic and geographic distribution are poorly understood. The study of insect migration is hampered by their small size and the difficulty of tracking individuals over long distances. Here we review the literature on migration in butterflies, one of the best-known insect groups. We find that nearly 600 butterfly species show evidence of migratory movements. Indeed, the rate of 'discovery' of migratory movements in butterflies suggests that many more species might in fact be migratory. Butterfly migration occurs across all families, in tropical as well as temperate taxa; Nymphalidae has more migratory species than any other family (275 species), and Pieridae has the highest proportion of migrants (13%; 133 species). Some 13 lines of evidence have been used to ascribe migration status in the literature, but only a single line of evidence is available for 92% of the migratory species identified, with four or more lines of evidence available for only 10 species - all from the Pieridae and Nymphalidae. Migratory butterflies occur worldwide, although the geographic distribution of migration in butterflies is poorly resolved, with most data so far coming from Europe, USA, and Australia. Migration is much more widespread in butterflies than previously realised - extending far beyond the well-known examples of the monarch Danaus plexippus and the painted lady Vanessa cardui - and actions to conserve butterflies and insects in general must account for the spatial dependencies introduced by migratory movements.
Collapse
Affiliation(s)
- Shawan Chowdhury
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Richard A Fuller
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Hugh Dingle
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Jason W Chapman
- Biosciences, Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.,College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
171
|
Yang S, Zhou H, Dai W, Xiong J, Chen F. Effect of Static Magnetic Field on Monascus ruber M7 Based on Transcriptome Analysis. J Fungi (Basel) 2021; 7:256. [PMID: 33808107 PMCID: PMC8066190 DOI: 10.3390/jof7040256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
The effects of a static magnetic field (SMF) on Monascus ruber M7 (M. ruber M7) cultured on potato dextrose agar (PDA) plates under SMF treatment at different intensities (5, 10, and 30 mT) were investigated in this paper. The results revealed that, compared with the control (CK, no SMF treatment), the SMF at all tested intensities did not significantly influence the morphological characteristics of M. ruber M7, while the intracellular and extracellular Monascus pigments (MPs) and extracellular citrinin (CIT) of M. ruber M7 were increased at 10 and 30 mT SMF but there was no impact on the MPs and CIT at 5 mT SMF. The transcriptome data of M. ruber M7 cultured at 30 mT SMF on PDA for 3 and 7 d showed that the SMF could increase the transcriptional levels of some relative genes with the primary metabolism, including the carbohydrate metabolism, amino acid metabolism, and lipid metabolism, especially in the early growing period (3 d). SMF could also affect the transcriptional levels of the related genes to the biosynthetic pathways of MPs, CIT, and ergosterol, and improve the transcription of the relative genes in the mitogen-activated protein kinase (MAPK) signaling pathway of M. ruber M7. These findings provide insights into a comprehensive understanding of the effects of SMF on filamentous fungi.
Collapse
Affiliation(s)
- Shuyan Yang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (H.Z.); (W.D.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyi Zhou
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (H.Z.); (W.D.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weihua Dai
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (H.Z.); (W.D.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xiong
- College of Science, Huazhong Agricultural University, Wuhan 430070, China;
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (H.Z.); (W.D.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
172
|
Elmer LK, Madliger CL, Blumstein DT, Elvidge CK, Fernández-Juricic E, Horodysky AZ, Johnson NS, McGuire LP, Swaisgood RR, Cooke SJ. Exploiting common senses: sensory ecology meets wildlife conservation and management. CONSERVATION PHYSIOLOGY 2021; 9:coab002. [PMID: 33815799 PMCID: PMC8009554 DOI: 10.1093/conphys/coab002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 05/21/2023]
Abstract
Multidisciplinary approaches to conservation and wildlife management are often effective in addressing complex, multi-factor problems. Emerging fields such as conservation physiology and conservation behaviour can provide innovative solutions and management strategies for target species and systems. Sensory ecology combines the study of 'how animals acquire' and process sensory stimuli from their environments, and the ecological and evolutionary significance of 'how animals respond' to this information. We review the benefits that sensory ecology can bring to wildlife conservation and management by discussing case studies across major taxa and sensory modalities. Conservation practices informed by a sensory ecology approach include the amelioration of sensory traps, control of invasive species, reduction of human-wildlife conflicts and relocation and establishment of new populations of endangered species. We illustrate that sensory ecology can facilitate the understanding of mechanistic ecological and physiological explanations underlying particular conservation issues and also can help develop innovative solutions to ameliorate conservation problems.
Collapse
Affiliation(s)
- Laura K Elmer
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Christine L Madliger
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Chris K Elvidge
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Andrij Z Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, VA 23668, USA
| | - Nicholas S Johnson
- USGS, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, MI 49759, USA
| | - Liam P McGuire
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ronald R Swaisgood
- Institute for Conservation Research, San Diego Zoo Global, San Diego, CA 92027-7000, USA
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
173
|
Hunt RD, Ashbaugh RC, Reimers M, Udpa L, Saldana De Jimenez G, Moore M, Gilad AA, Pelled G. Swimming direction of the glass catfish is responsive to magnetic stimulation. PLoS One 2021; 16:e0248141. [PMID: 33667278 PMCID: PMC7935302 DOI: 10.1371/journal.pone.0248141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/21/2021] [Indexed: 12/19/2022] Open
Abstract
Several marine species have developed a magnetic perception that is essential for navigation and detection of prey and predators. One of these species is the transparent glass catfish that contains an ampullary organ dedicated to sense magnetic fields. Here we examine the behavior of the glass catfish in response to static magnetic fields which will provide valuable insight on function of this magnetic response. By utilizing state of the art animal tracking software and artificial intelligence approaches, we quantified the effects of magnetic fields on the swimming direction of glass catfish. The results demonstrate that glass catfish placed in a radial arm maze, consistently swim away from magnetic fields over 20 μT and show adaptability to changing magnetic field direction and location.
Collapse
Affiliation(s)
- Ryan D. Hunt
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Ryan C. Ashbaugh
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Mark Reimers
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Lalita Udpa
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Gabriela Saldana De Jimenez
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Michael Moore
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Assaf A. Gilad
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Radiology, Michigan State University, East Lansing, Michigan, United States of America
- Synthetic Biology Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Galit Pelled
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Radiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
174
|
Bao G. Magnetic Forces Enable Control of Biological Processes In Vivo. JOURNAL OF APPLIED MECHANICS 2021; 88:030801. [PMID: 34168385 PMCID: PMC8208485 DOI: 10.1115/1.4049331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 05/23/2023]
Abstract
Similar to mechanical forces that can induce profound biological effects, magnetic fields can have a broad range of implications to biological systems, from magnetoreception that allows an organism to detect a magnetic field to perceive direction, altitude, or location, to the use of heating induced by magnetic field for altering neuron activity. This review focuses on the application of magnetic forces generated by magnetic iron oxide nanoparticles (MIONs), which can also provide imaging contrast and mechanical/thermal energy in response to an external magnetic field, a special feature that distinguishes MIONs from other nanomaterials. The magnetic properties of MIONs offer unique opportunities for enabling control of biological processes under different magnetic fields. Here, we describe the approaches of utilizing the forces generated by MIONs under an applied magnetic field to control biological processes and functions, including the targeting of drug molecules to a specific tissue, increasing the vessel permeability for improving drug delivery, and activating a particular viral vector for spatial control of genome editing in vivo. The opportunities of using nanomagnets for a broad range of biomedical applications are briefly discussed.
Collapse
Affiliation(s)
- Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030
| |
Collapse
|
175
|
Moghram WI, Kruger A, Sander EA, Selby JC. Magnetic tweezers with magnetic flux density feedback control. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:034101. [PMID: 33820004 DOI: 10.1063/5.0039696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
In this work, we present a single-pole magnetic tweezers (MT) device designed for integration with substrate deformation tracking microscopy and/or traction force microscopy experiments intended to explore extracellular matrix rheology and human epidermal keratinocyte mechanobiology. Assembled from commercially available off-the-shelf electronics hardware and software, the MT device is amenable to replication in the basic biology laboratory. In contrast to conventional solenoid current-controlled MT devices, operation of this instrument is based on real-time feedback control of the magnetic flux density emanating from the blunt end of the needle core using a cascade control scheme and a digital proportional-integral-derivative (PID) controller. Algorithms that compensate for a spatially non-uniform remnant magnetization of the needle core that develops during actuation are implemented into the feedback control scheme. Through optimization of PID gain scheduling, the MT device exhibits magnetization and demagnetization response times of less than 100 ms without overshoot over a wide range of magnetic flux density setpoints. Compared to current-based control, magnetic flux density-based control allows for more accurate and precise magnetic actuation forces by compensating for temperature increases within the needle core due to heat generated by the applied solenoid currents. Near field calibrations validate the ability of the MT device to actuate 4.5 μm-diameter superparamagnetic beads with forces up to 25 nN with maximum relative uncertainties of ±30% for beads positioned between 2.5 and 40 µm from the needle tip.
Collapse
Affiliation(s)
- Waddah I Moghram
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Anton Kruger
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Edward A Sander
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - John C Selby
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
176
|
Nguyen TAT, Beetz MJ, Merlin C, el Jundi B. Sun compass neurons are tuned to migratory orientation in monarch butterflies. Proc Biol Sci 2021; 288:20202988. [PMID: 33622121 PMCID: PMC7935079 DOI: 10.1098/rspb.2020.2988] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Every autumn, monarch butterflies migrate from North America to their overwintering sites in Central Mexico. To maintain their southward direction, these butterflies rely on celestial cues as orientation references. The position of the sun combined with additional skylight cues are integrated in the central complex, a region in the butterfly's brain that acts as an internal compass. However, the central complex does not solely guide the butterflies on their migration but also helps monarchs in their non-migratory form manoeuvre on foraging trips through their habitat. By comparing the activity of input neurons of the central complex between migratory and non-migratory butterflies, we investigated how a different lifestyle affects the coding of orientation information in the brain. During recording, we presented the animals with different simulated celestial cues and found that the encoding of the sun was narrower in migratory compared to non-migratory butterflies. This feature might reflect the need of the migratory monarchs to rely on a precise sun compass to keep their direction during their journey. Taken together, our study sheds light on the neural coding of celestial cues and provides insights into how a compass is adapted in migratory animals to successfully steer them to their destination.
Collapse
Affiliation(s)
| | - M. Jerome Beetz
- University of Wuerzburg, Biocenter, Zoology II, Würzburg, Germany
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA
| | - Basil el Jundi
- University of Wuerzburg, Biocenter, Zoology II, Würzburg, Germany
| |
Collapse
|
177
|
Bolte P, Einwich A, Seth PK, Chetverikova R, Heyers D, Wojahn I, Janssen-Bienhold U, Feederle R, Hore P, Dedek K, Mouritsen H. Cryptochrome 1a localisation in light- and dark-adapted retinae of several migratory and non-migratory bird species: no signs of light-dependent activation. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2020.1870571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Petra Bolte
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Angelika Einwich
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Pranav K. Seth
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Raisa Chetverikova
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Dominik Heyers
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Irina Wojahn
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Department of Neuroscience, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Peter Hore
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Karin Dedek
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
178
|
Wilcox AAE, Newman AEM, Raine NE, Mitchell GW, Norris DR. Effects of early-life exposure to sublethal levels of a common neonicotinoid insecticide on the orientation and migration of monarch butterflies ( Danaus plexippus). J Exp Biol 2021; 224:jeb230870. [PMID: 33334898 DOI: 10.1242/jeb.230870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/08/2020] [Indexed: 01/05/2023]
Abstract
Migratory insects use a variety of innate mechanisms to determine their orientation and maintain correct bearing. For long-distance migrants, such as the monarch butterfly (Danaus plexippus), these journeys could be affected by exposure to environmental contaminants. Neonicotinoids are synthetic insecticides that work by affecting the nervous system of insects, resulting in impairment of their mobility, cognitive performance, and other physiological and behavioural functions. To examine how neonicotinoids might affect the ability of monarch butterflies to maintain a proper directional orientation on their ∼4000 km migration, we grew swamp milkweed (Asclepias incarnata) in soil that was either untreated (0 ng g-1: control) or mixed with low (15 ng g-1 of soil) or high (25 ng g-1 of soil) levels of the neonicotinoid clothianidin. Monarch caterpillars were raised on control or clothianidin-treated milkweed and, after pupation, either tested for orientation in a static flight simulator or radio-tracked in the wild during the autumn migration period. Despite clothianidin being detectable in milkweed tissue consumed by caterpillars, there was no evidence that clothianidin influenced the orientation, vector strength (i.e. concentration of direction data around the mean) or rate of travel of adult butterflies, nor was there evidence that morphological traits (i.e. mass and forewing length), testing time, wind speed or temperature impacted directionality. Although sample sizes for both flight simulator and radio-tracking tests were limited, our preliminary results suggest that clothianidin exposure during early caterpillar development does not affect the directed flight of adult migratory monarch butterflies or influence their orientation at the beginning of migration.
Collapse
Affiliation(s)
- Alana A E Wilcox
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Amy E M Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Greg W Mitchell
- Wildlife Research Division, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, ON K1A 0H3, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - D Ryan Norris
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Nature Conservancy of Canada, 245 Eglington Avenue East, Toronto, ON M4P 3J1, Canada
| |
Collapse
|
179
|
Kishkinev D, Packmor F, Zechmeister T, Winkler HC, Chernetsov N, Mouritsen H, Holland RA. Navigation by extrapolation of geomagnetic cues in a migratory songbird. Curr Biol 2021; 31:1563-1569.e4. [PMID: 33581072 DOI: 10.1016/j.cub.2021.01.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/06/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Displacement experiments have demonstrated that experienced migratory birds translocated thousands of kilometers away from their migratory corridor can orient toward and ultimately reach their intended destinations.1 This implies that they are capable of "true navigation," commonly defined2-4 as the ability to return to a known destination after displacement to an unknown location without relying on familiar surroundings, cues that emanate from the destination, or information collected during the outward journey.5-13 In birds, true navigation appears to require previous migratory experience5-7,14,15 (but see Kishkinev et al.16 and Piersma et al.17). It is generally assumed that, to correct for displacements outside the familiar area, birds initially gather information within their year-round distribution range, learn predictable spatial gradients of environmental cues within it, and extrapolate from those to unfamiliar magnitudes-the gradient hypothesis.6,9,18-22 However, the nature of the cues and evidence for actual extrapolation remain elusive. Geomagnetic cues (inclination, declination, and total intensity) provide predictable spatial gradients across large parts of the globe and could serve for navigation. We tested the orientation of long-distance migrants, Eurasian reed warblers, exposing them to geomagnetic cues of unfamiliar magnitude encountered beyond their natural distribution range. The birds demonstrated re-orientation toward their migratory corridor as if they were translocated to the corresponding location but only when all naturally occurring magnetic cues were presented, not when declination was changed alone. This result represents direct evidence for migratory birds' ability to navigate using geomagnetic cues extrapolated beyond their previous experience.
Collapse
Affiliation(s)
- Dmitry Kishkinev
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Florian Packmor
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | | | - Hans-Christoph Winkler
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Nikita Chernetsov
- Department of Vertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; Zoological Institute of the Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Henrik Mouritsen
- Research group 'Neurosensorik/Animal Navigation', Institute of Biology and Environmental Sciences, University of Oldenburg, 26111 Oldenburg, Germany; Research Center for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - Richard A Holland
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| |
Collapse
|
180
|
Wan G, Hayden AN, Iiams SE, Merlin C. Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies. Nat Commun 2021; 12:771. [PMID: 33536422 PMCID: PMC7859408 DOI: 10.1038/s41467-021-21002-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 01/05/2021] [Indexed: 11/09/2022] Open
Abstract
Many animals use the Earth's geomagnetic field for orientation and navigation. Yet, the molecular and cellular underpinnings of the magnetic sense remain largely unknown. A biophysical model proposed that magnetoreception can be achieved through quantum effects of magnetically-sensitive radical pairs formed by the photoexcitation of cryptochrome (CRY) proteins. Studies in Drosophila are the only ones to date to have provided compelling evidence for the ultraviolet (UV)-A/blue light-sensitive type 1 CRY (CRY1) involvement in animal magnetoreception, and surprisingly extended this discovery to the light-insensitive mammalian-like type 2 CRYs (CRY2s) of both monarchs and humans. Here, we show that monarchs respond to a reversal of the inclination of the Earth's magnetic field in an UV-A/blue light and CRY1, but not CRY2, dependent manner. We further demonstrate that both antennae and eyes, which express CRY1, are magnetosensory organs. Our work argues that only light-sensitive CRYs function in animal light-dependent inclination-based magnetic sensing.
Collapse
Affiliation(s)
- Guijun Wan
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA. .,Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| | - Ashley N Hayden
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA
| | - Samantha E Iiams
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA.,Genetics Interdisciplinary Program, Texas A&M University, College Station, TX, USA
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA. .,Genetics Interdisciplinary Program, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
181
|
Wan GJ, Jiang SL, Zhang M, Zhao JY, Zhang YC, Pan WD, Sword GA, Chen FJ. Geomagnetic field absence reduces adult body weight of a migratory insect by disrupting feeding behavior and appetite regulation. INSECT SCIENCE 2021; 28:251-260. [PMID: 32065478 DOI: 10.1111/1744-7917.12765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The geomagnetic field (GMF) is well documented for its essential role as a cue used in animal orientation or navigation. Recent evidence indicates that the absence of GMF (mimicked by the near-zero magnetic field, NZMF) can trigger stress-like responses such as reduced body weight, as we have previously shown in the brown planthopper, Nilaparvata lugens. In this study, we found that consistent with the significantly decreased body weight of newly emerged female (-14.67%) and male (-13.17%) adult N. lugens, the duration of the phloem ingestion feeding waveform was significantly reduced by 32.02% in 5th instar nymphs reared under the NZMF versus GMF. Interestingly, 5th instar nymphs that exhibited reduced feeding had significantly higher glucose levels (+16.98% and +20.05%; 24 h and 48 h after molting), which are associated with food aversion, and expression patterns of their appetite-related neuropeptide genes (neuropeptide F, down-regulated overall; short neuropeptide F, down-regulated overall; adipokinetic hormone, up-regulated overall; and adipokinetic hormone receptor, down-regulated overall) were also altered under the absence of GMF in a manner consistent with diminishing appetite. Moreover, the expressions of the potential magnetosensor cryptochromes (Crys) were found significantly altered under the absence of GMF, indicating the likely upstream signaling of the Cry-mediated magnetoreception mechanisms. These findings support the hypothesis that strong changes in GMF intensity can reduce adult body weight through affecting insect feeding behavior and underlying regulatory processes including appetite regulation. Our results highlight that GMF could be necessary for the maintenance of energy homeostasis in insects.
Collapse
Affiliation(s)
- Gui-Jun Wan
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Shou-Lin Jiang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ming Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing-Yu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ying-Chao Zhang
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei-Dong Pan
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX, U.S.A
| | - Fa-Jun Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
182
|
Electronic spin separation induced by nuclear motion near conical intersections. Nat Commun 2021; 12:700. [PMID: 33514700 PMCID: PMC7846775 DOI: 10.1038/s41467-020-20831-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022] Open
Abstract
Though the concept of Berry force was proposed thirty years ago, little is known about the practical consequences of this force as far as chemical dynamics are concerned. Here, we report that when molecular dynamics pass near a conical intersection, a massive Berry force can appear as a result of even a small amount of spin-orbit coupling (<10−3 eV), and this Berry force can in turn dramatically change pathway selection. In particular, for a simple radical reaction with two outgoing reaction channels, an exact quantum scattering solution in two dimensions shows that the presence of a significant Berry force can sometimes lead to spin selectivity as large as 100%. Thus, this article opens the door for organic chemists to start designing spintronic devices that use nuclear motion and conical intersections (combined with standard spin-orbit coupling) in order to achieve spin selection. Vice versa, for physical chemists, this article also emphasizes that future semiclassical simulations of intersystem crossing (which have heretofore ignored Berry force) should be corrected to account for the spin polarization that inevitably arises when dynamics pass near conical intersections. Spin polarization is at the basis of quantum information and underlies some natural processes, but many aspects still need to be explored. Here, the authors, by quantum mechanical computations, show that even a weak spin-orbit coupling near a conical intersection can induce large spin selection, with consequences for spin manipulation in photochemical or electrochemical reactions.
Collapse
|
183
|
Wong SY, Solov'yov IA, Hore PJ, Kattnig DR. Nuclear polarization effects in cryptochrome-based magnetoreception. J Chem Phys 2021; 154:035102. [PMID: 33499614 DOI: 10.1063/5.0038947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanism of the magnetic compass sense of migratory songbirds is thought to involve magnetically sensitive chemical reactions of light-induced radical pairs in cryptochrome proteins located in the birds' eyes. However, it is not yet clear whether this mechanism would be sensitive enough to form the basis of a viable compass. In the present work, we report spin dynamics simulations of models of cryptochrome-based radical pairs to assess whether accumulation of nuclear spin polarization in multiple photocycles could lead to significant enhancements in the sensitivity with which the proteins respond to the direction of the geomagnetic field. Although buildup of nuclear polarization appears to offer sensitivity advantages in the more idealized model systems studied, we find that these enhancements do not carry over to conditions that more closely resemble the situation thought to exist in vivo. On the basis of these simulations, we conclude that buildup of nuclear polarization seems unlikely to be a source of significant improvements in the performance of cryptochrome-based radical pair magnetoreceptors.
Collapse
Affiliation(s)
- Siu Ying Wong
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
| | - Ilia A Solov'yov
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
| | - P J Hore
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Daniel R Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
184
|
Ren Y, Hiscock HG, Hore PJ. Angular Precision of Radical Pair Compass Magnetoreceptors. Biophys J 2021; 120:547-555. [PMID: 33421412 PMCID: PMC7896030 DOI: 10.1016/j.bpj.2020.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 11/19/2022] Open
Abstract
The light-dependent magnetic compass sense of night-migratory songbirds is thought to rely on magnetically sensitive chemical reactions of radical pairs in cryptochrome proteins located in the birds' eyes. Recently, an information theory approach was developed that provides a strict lower bound on the precision with which a bird could estimate its head direction using only geomagnetic cues and a cryptochrome-based radical pair sensor. By means of this lower bound, we show here how the performance of the compass sense could be optimized by adjusting the orientation of cryptochrome molecules within photoreceptor cells, the distribution of cells around the retina, and the effects of the geomagnetic field on the photochemistry of the radical pair.
Collapse
Affiliation(s)
- Yi Ren
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Hamish G Hiscock
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - P J Hore
- Department of Chemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
185
|
Kimura S, Kimura S, Kato K, Teki Y, Nishihara H, Kusamoto T. A ground-state-dominated magnetic field effect on the luminescence of stable organic radicals. Chem Sci 2021; 12:2025-2029. [PMID: 34163964 PMCID: PMC8179284 DOI: 10.1039/d0sc05965j] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/16/2020] [Indexed: 11/21/2022] Open
Abstract
Organic radicals are an emerging class of luminophores possessing multiplet spin states and potentially showing spin-luminescence correlated properties. We investigated the mechanism of recently reported magnetic field sensitivity in the emission of a photostable luminescent radical, (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM) doped into host αH-PyBTM molecular crystals. The magnetic field (0-14 T), temperature (4.2-20 K), and the doping concentration (0.1, 4, 10, and 22 wt%) dependence on the time-resolved emission were examined by measuring emission decays of the monomer and excimer. Quantum mechanical simulations on the decay curves disclosed the role of the magnetic field; it dominantly affects the spin sublevel population of radical dimers in the ground states. This situation is distinctly different from that in conventional closed-shell luminophores, where the magnetic field modulates their excited-state spin multiplicity. Namely, the spin degree of freedom of ground-state open-shell molecules is a new key for achieving magnetic-field-controlled molecular photofunctions.
Collapse
Affiliation(s)
- Shun Kimura
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shojiro Kimura
- Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Ken Kato
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Yoshio Teki
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Research Center for Science and Technology, Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Tetsuro Kusamoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- SOKENDAI (The Graduate University for Advanced Studies) Shonan Village, Hayama 240-0193 Kanagawa Japan
| |
Collapse
|
186
|
Wilcox AAE, Newman AEM, Raine NE, Mitchell GW, Norris DR. Captive-reared migratory monarch butterflies show natural orientation when released in the wild. CONSERVATION PHYSIOLOGY 2021; 9:coab032. [PMID: 34386237 PMCID: PMC8355447 DOI: 10.1093/conphys/coab032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/27/2021] [Accepted: 04/14/2021] [Indexed: 05/08/2023]
Abstract
Eastern North American migratory monarch butterflies (Danaus plexippus) have faced sharp declines over the past two decades. Captive rearing of monarch butterflies is a popular and widely used approach for both public education and conservation. However, recent evidence suggests that captive-reared monarchs may lose their capacity to orient southward during fall migration to their Mexican overwintering sites, raising questions about the value and ethics of this activity undertaken by tens of thousands of North American citizens, educators, volunteers and conservationists each year. We raised offspring of wild-caught monarchs on swamp milkweed (Asclepias incarnata) indoors at 29°C during the day and 23°C at night (~77% RH, 18L:6D), and after eclosion, individuals were either tested in a flight simulator or radio tracked in the wild using an array of automated telemetry towers. While 26% (10/39) of monarchs tested in the flight simulator showed a weakly concentrated southward orientation, 97% (28/29) of the radio-tracked individuals that could be reliably detected by automated towers flew in a south to southeast direction from the release site and were detected at distances of up to 200 km away. Our results suggest that, although captive rearing of monarch butterflies may cause temporary disorientation, proper orientation is likely established after exposure to natural skylight cues.
Collapse
Affiliation(s)
- Alana A E Wilcox
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Corresponding author: Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Amy E M Newman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Greg W Mitchell
- Wildlife Research Division, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - D Ryan Norris
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Nature Conservancy of Canada, 245 Eglington Avenue East, Toronto, Ontario, M4P 3J1, Canada
| |
Collapse
|
187
|
Kappeler PM. Orientation in Time and Space. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
188
|
Zhai M, Yan X, Liu J, Long Z, Zhao S, Li W, Liu Y, Hai C. Electromagnetic Fields Ameliorate Insulin Resistance and Hepatic Steatosis by Modulating Redox Homeostasis and SREBP-1c Expression in db/db Mice. Diabetes Metab Syndr Obes 2021; 14:1035-1042. [PMID: 33727836 PMCID: PMC7954280 DOI: 10.2147/dmso.s294020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The prevalence of nonalcoholic fatty liver disease (NAFLD), which has recently become known as metabolic-associated fatty liver disease (MAFLD), has risen. However, pharmacotherapies for this disease have not been approved. Electromagnetic fields (EMFs) have excellent bioeffects on multiple diseases. However, the effects of EMFs on NAFLD are unknown. This study investigated the bioeffects of EMF exposure on insulin resistance, liver redox homeostasis and hepatic steatosis in db/db mice. METHODS Animals were sacrificed after EMF exposure for 8 weeks. The fasting blood glucose and insulin levels in the serum were tested. The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated by a formula. The levels of MDA, GSSG and GSH, biomarkers of redox, were assessed. The activities of CAT, SOD and GSH-Px were assessed. The body and liver weights were measured. Hepatic lipid accumulation was observed by Oil Red O staining. Hepatic CAT, GR, GSH-Px, SOD1, SOD2 and SREBP-1 expression was determined by Western blotting. RESULTS EMF exposure ameliorated insulin resistance and oxidative stress in the liver by downregulating the MDA and GSSG levels, increasing the reduced GSH levels, and promoting the GSH-Px levels in db/db mice. In addition, liver weight and triglyceride (TG) levels were reduced by EMF exposure. Simultaneously, EMF exposure improved hepatic steatosis by downregulating the protein expression of SREBP-1c. CONCLUSION The present findings suggest that EMF exposure has positive effects in the treatment of NAFLD.
Collapse
Affiliation(s)
- Mingming Zhai
- Department of Biomedical Engineering, Air Force Medical University, Xi’an, People’s Republic of China
| | - Xi Yan
- Department of Dermatology, The Second Affiliated Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Jiangzheng Liu
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, People’s Republic of China
| | - Zi Long
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, People’s Republic of China
| | - Siyan Zhao
- Institute of Nuclear Biological and Chemical Defence, Beijing, People’s Republic of China
| | - Wendan Li
- Institute of Nuclear Biological and Chemical Defence, Beijing, People’s Republic of China
| | - Ying Liu
- Institute of Nuclear Biological and Chemical Defence, Beijing, People’s Republic of China
- Ying Liu Institute of Nuclear Biological and Chemical Defence, No. 1, Yangfang Zhongxin North Street, Beijing, 102205, People’s Republic of China Email
| | - Chunxu Hai
- Department of Toxicology, Shanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, People’s Republic of China
- Correspondence: Chunxu Hai Air Force Medical University (AFMU), No. 169 Changle West Road, Xi’an, Shaanxi, 710032, People’s Republic of ChinaTel +86-29-84774879 Email
| |
Collapse
|
189
|
Guerra PA. The Monarch Butterfly as a Model for Understanding the Role of Environmental Sensory Cues in Long-Distance Migratory Phenomena. Front Behav Neurosci 2020; 14:600737. [PMID: 33343312 PMCID: PMC7744611 DOI: 10.3389/fnbeh.2020.600737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
The awe-inspiring annual migration of monarch butterflies (Danaus plexippus) is an iconic example of long-distance migratory phenomena in which environmental sensory cues help drive successful migration. In this mini-review article, I begin by describing how studies on monarch migration can provide us with generalizable information on how sensory cues can mediate key aspects of animal movement. I describe how environmental sensory cues can trigger the development and progression of the monarch migration, as well as inform sensory-based movement mechanisms in order to travel to and reach their goal destination, despite monarchs being on their maiden voyage. I also describe how sensory cues can trigger season-appropriate changes in migratory direction during the annual cycle. I conclude this mini-review article by discussing how contemporary environmental challenges threaten the persistence of the monarch migration. Environmental challenges such as climate change and shifting land use can significantly alter the sensory environments that monarchs migrate through, as well as degrade or eliminate the sources of sensory cues that are necessary for successful migration.
Collapse
Affiliation(s)
- Patrick A. Guerra
- Department of Biological Sciences, College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
190
|
Presti DE. Collaborative dialogue between Buddhism and science: A contribution to expanding a science of consciousness. J Comp Neurol 2020; 528:2804-2815. [PMID: 32012289 DOI: 10.1002/cne.24876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/06/2022]
Abstract
Investigation of consciousness (experience, mind, awareness, subjectivity) has become an accepted endeavor in contemporary neuroscience. However, current work is largely limited to study of neural correlates of consciousness. While this is interesting and important, it may not be sufficient to carry us to a place of truly new insight regarding consciousness. I argue that one element of expanding a science of consciousness is appreciation of the interdependent co-creation or enfolding of mind and world. Addressing this interdependence is an aspect of the collaborative engagement of the traditions of Buddhism and science-a project that is exploring how complementary worldviews and analytic procedures might further the development of an expanded science of mind. In this essay, written for a collection honoring the life and work of Jack Pettigrew, I describe his connection to this project.
Collapse
Affiliation(s)
- David E Presti
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| |
Collapse
|
191
|
Johnson ZV, Arrojwala MTS, Aljapur V, Lee T, Lancaster TJ, Lowder MC, Gu K, Stockert JI, Lecesne RL, Moorman JM, Streelman JT, McGrath PT. Automated measurement of long-term bower behaviors in Lake Malawi cichlids using depth sensing and action recognition. Sci Rep 2020; 10:20573. [PMID: 33239639 PMCID: PMC7688978 DOI: 10.1038/s41598-020-77549-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/12/2020] [Indexed: 11/08/2022] Open
Abstract
In the wild, behaviors are often expressed over long time periods in complex and dynamic environments, and many behaviors include direct interaction with the environment itself. However, measuring behavior in naturalistic settings is difficult, and this has limited progress in understanding the mechanisms underlying many naturally evolved behaviors that are critical for survival and reproduction. Here we describe an automated system for measuring long-term bower construction behaviors in Lake Malawi cichlid fishes, in which males use their mouths to sculpt sand into large species-specific structures for courtship and mating. We integrate two orthogonal methods, depth sensing and action recognition, to simultaneously track the developing bower structure and the thousands of individual sand manipulation behaviors performed throughout construction. By registering these two data streams, we show that behaviors can be topographically mapped onto a dynamic 3D sand surface through time. The system runs reliably in multiple species, across many aquariums simultaneously, and for up to weeks at a time. Using this system, we show strong differences in construction behavior and bower form that reflect species differences in nature, and we gain new insights into spatial, temporal, social dimensions of bower construction, feeding, and quivering behaviors. Taken together, our work highlights how low-cost tools can automatically quantify behavior in naturalistic and social environments over long timescales in the lab.
Collapse
Affiliation(s)
- Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Vineeth Aljapur
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tyrone Lee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tucker J Lancaster
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mark C Lowder
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Karen Gu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Joseph I Stockert
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Rachel L Lecesne
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jean M Moorman
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Department of Computer Science, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
192
|
Levasseur KE, Stapleton SP, Quattro JM. Precise natal homing and an estimate of age at sexual maturity in hawksbill turtles. Anim Conserv 2020. [DOI: 10.1111/acv.12657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- K. E. Levasseur
- Department of Biological Sciences University of South Carolina Columbia SC USA
- Jumby Bay Hawksbill Project St John’s Antigua and Barbuda
| | - S. P. Stapleton
- Jumby Bay Hawksbill Project St John’s Antigua and Barbuda
- Department of Fisheries, Wildlife and Conservation Biology University of Minnesota St. Paul MN USA
| | - J. M. Quattro
- Department of Biological Sciences University of South Carolina Columbia SC USA
| |
Collapse
|
193
|
Lee VK, David JM, Huerkamp MJ. Micro- and Macroenvironmental Conditions and Stability of Terrestrial Models. ILAR J 2020; 60:120-140. [PMID: 33094820 DOI: 10.1093/ilar/ilaa013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 04/28/2020] [Accepted: 05/20/2020] [Indexed: 01/15/2023] Open
Abstract
Environmental variables can have profound effects on the biological responses of research animals and the outcomes of experiments dependent on them. Some of these influences are both predictable and unpredictable in effect, many are challenging to standardize, and all are influenced by the planning and conduct of experiments and the design and operation of the vivarium. Others are not yet known. Within the immediate environment where the research animal resides, in the vivarium and in transit, the most notable of these factors are ambient temperature, relative humidity, gaseous pollutant by-products of animal metabolism and physiology, dust and particulates, barometric pressure, electromagnetic fields, and illumination. Ambient temperatures in the animal housing environment, in particular those experienced by rodents below the thermoneutral zone, may introduce degrees of stress and thermoregulatory compensative responses that may complicate or invalidate study measurements across a broad array of disciplines. Other factors may have more subtle and specific effects. It is incumbent on scientists designing and executing experiments and staff responsible for animal husbandry to be aware of, understand, measure, systematically record, control, and account for the impact of these factors on sensitive animal model systems to ensure the quality and reproducibility of scientific studies.
Collapse
Affiliation(s)
- Vanessa K Lee
- Department of Pathology and Laboratory Medicine and Division of Animal Resources, School of Medicine, Emory University, Atlanta, Georgia
| | - John M David
- Translational Medicine Department, Vertex Pharmaceuticals, Boston, Massachusetts
| | - Michael J Huerkamp
- Department of Pathology and Laboratory Medicine and Division of Animal Resources, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
194
|
Luschi P, Sözbilen D, Cerritelli G, Ruffier F, Başkale E, Casale P. A biphasic navigational strategy in loggerhead sea turtles. Sci Rep 2020; 10:18130. [PMID: 33093603 PMCID: PMC7581759 DOI: 10.1038/s41598-020-75183-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022] Open
Abstract
The homing journeys of nine loggerhead turtles translocated from their nesting beach to offshore release sites, were reconstructed through Argos and GPS telemetry while their water-related orientation was simultaneously recorded at high temporal resolution by multi-sensor data loggers featuring a three-axis magnetic sensor. All turtles managed to return to the nesting beach area, although with indirect routes encompassing an initial straight leg not precisely oriented towards home, and a successive homebound segment carried out along the coast. Logger data revealed that, after an initial period of disorientation, turtles were able to precisely maintain a consistent direction for several hours while moving in the open sea, even during night-time. Their water-related headings were in accordance with the orientation of the resulting route, showing little or no effect of current drift. This study reveals a biphasic homing strategy of displaced turtles involving an initial orientation weakly related to home and a successive shift to coastal navigation, which is in line with the modern conceptual framework of animal migratory navigation as deriving from sequential mechanisms acting at different spatial scales.
Collapse
Affiliation(s)
- Paolo Luschi
- Department of Biology, University of Pisa, Pisa, Italy.
| | - Dogan Sözbilen
- Department of Veterinary, Acıpayam Vocational School, Pamukkale University, Denizli, Turkey
| | | | | | - Eyup Başkale
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, Denizli, Turkey
| | - Paolo Casale
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
195
|
Hong G, Pachter R, Essen LO, Ritz T. Electron transfer and spin dynamics of the radical-pair in the cryptochrome from Chlamydomonas reinhardtii by computational analysis. J Chem Phys 2020; 152:065101. [PMID: 32061221 DOI: 10.1063/1.5133019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In an effort to elucidate the origin of avian magnetoreception, it was postulated that a radical-pair formed in a cryptochrome upon light activation provided the basis for the mechanism that enables an inclination compass sensitive to the geomagnetic field. Photoreduction in this case involves formation of a flavin adenine dinucleotide (FAD)-tryptophan (TRP) radical-pair, following electron transfer within a conserved TRP triad in the cryptochrome. Recently, an animal-like cryptochrome from Chlamydomonas reinhardtii (CraCRY) was analyzed, demonstrating the role of a fourth aromatic residue, which serves as a terminal electron donor in the photoreduction pathway, resulting in the creation of a more distal radical-pair and exhibiting fast electron transfer. In this work, we investigated the electron transfer in CraCRY with a combination of free energy molecular dynamics (MD) simulations, frozen density functional theory, and QM/MM MD simulations, supporting the suggestion of a proton coupled electron transfer mechanism. Spin dynamics simulations discerned details on the dependence of the singlet yield on the direction of the external magnetic field for the [FAD•- TYRH•+] and [FAD•- TYR•] radical-pairs in CraCRY, in comparison with the previously modeled [FAD•- TRPH•+] radical-pair.
Collapse
Affiliation(s)
- Gongyi Hong
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Ruth Pachter
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Lars-Oliver Essen
- Department of Chemistry, Center for Synthetic Microbiology, Philipps University, Marburg 35032, Germany
| | - Thorsten Ritz
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
196
|
Cohen EB, Horton KG, Marra PP, Clipp HL, Farnsworth A, Smolinsky JA, Sheldon D, Buler JJ. A place to land: spatiotemporal drivers of stopover habitat use by migrating birds. Ecol Lett 2020; 24:38-49. [PMID: 33026159 DOI: 10.1111/ele.13618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
Abstract
Migrating birds require en route habitats to rest and refuel. Yet, habitat use has never been integrated with passage to understand the factors that determine where and when birds stopover during spring and autumn migration. Here, we introduce the stopover-to-passage ratio (SPR), the percentage of passage migrants that stop in an area, and use 8 years of data from 12 weather surveillance radars to estimate over 50% SPR during spring and autumn through the Gulf of Mexico and Atlantic coasts of the south-eastern US, the most prominent corridor for North America's migratory birds. During stopovers, birds concentrated close to the coast during spring and inland in forested landscapes during autumn, suggesting seasonal differences in habitat function and highlighting the vital role of stopover habitats in sustaining migratory communities. Beyond advancing understanding of migration ecology, SPR will facilitate conservation through identification of sites that are disproportionally selected for stopover by migrating birds.
Collapse
Affiliation(s)
- Emily B Cohen
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Ave NW, Washington, DC, 20008, USA
| | - Kyle G Horton
- Center of Avian Population Studies, Cornell Lab of Ornithology, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Peter P Marra
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Ave NW, Washington, DC, 20008, USA
| | - Hannah L Clipp
- Department of Entomology and Wildlife Ecology, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA
| | - Andrew Farnsworth
- Center of Avian Population Studies, Cornell Lab of Ornithology, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Jaclyn A Smolinsky
- Department of Entomology and Wildlife Ecology, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA
| | - Daniel Sheldon
- College of Information and Computer Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jeffrey J Buler
- Department of Entomology and Wildlife Ecology, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA
| |
Collapse
|
197
|
Carter CS, Huang SC, Searby CC, Cassaidy B, Miller MJ, Grzesik WJ, Piorczynski TB, Pak TK, Walsh SA, Acevedo M, Zhang Q, Mapuskar KA, Milne GL, Hinton AO, Guo DF, Weiss R, Bradberry K, Taylor EB, Rauckhorst AJ, Dick DW, Akurathi V, Falls-Hubert KC, Wagner BA, Carter WA, Wang K, Norris AW, Rahmouni K, Buettner GR, Hansen JM, Spitz DR, Abel ED, Sheffield VC. Exposure to Static Magnetic and Electric Fields Treats Type 2 Diabetes. Cell Metab 2020; 32:561-574.e7. [PMID: 33027675 PMCID: PMC7819711 DOI: 10.1016/j.cmet.2020.09.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/29/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
Aberrant redox signaling underlies the pathophysiology of many chronic metabolic diseases, including type 2 diabetes (T2D). Methodologies aimed at rebalancing systemic redox homeostasis have had limited success. A noninvasive, sustained approach would enable the long-term control of redox signaling for the treatment of T2D. We report that static magnetic and electric fields (sBE) noninvasively modulate the systemic GSH-to-GSSG redox couple to promote a healthier systemic redox environment that is reducing. Strikingly, when applied to mouse models of T2D, sBE rapidly ameliorates insulin resistance and glucose intolerance in as few as 3 days with no observed adverse effects. Scavenging paramagnetic byproducts of oxygen metabolism with SOD2 in hepatic mitochondria fully abolishes these insulin sensitizing effects, demonstrating that mitochondrial superoxide mediates induction of these therapeutic changes. Our findings introduce a remarkable redox-modulating phenomenon that exploits endogenous electromagneto-receptive mechanisms for the noninvasive treatment of T2D, and potentially other redox-related diseases.
Collapse
Affiliation(s)
- Calvin S Carter
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA.
| | - Sunny C Huang
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA; Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Charles C Searby
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Benjamin Cassaidy
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Michael J Miller
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA
| | - Wojciech J Grzesik
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ted B Piorczynski
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Thomas K Pak
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA; Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Susan A Walsh
- Department of Radiology, Division of Nuclear Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Michael Acevedo
- Department of Radiology, Division of Nuclear Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Qihong Zhang
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Ginger L Milne
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Antentor O Hinton
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Robert Weiss
- Department of Internal Medicine, Division of Cardiology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Kyle Bradberry
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Eric B Taylor
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Molecular Physiology and Biophysics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Adam J Rauckhorst
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Molecular Physiology and Biophysics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - David W Dick
- Department of Radiology, Division of Nuclear Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Vamsidhar Akurathi
- Department of Radiology, Division of Nuclear Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Kelly C Falls-Hubert
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Brett A Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Walter A Carter
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Kai Wang
- College of Public Health, Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Andrew W Norris
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Val C Sheffield
- Department of Pediatrics and Division of Medical Genetics and Genomics, University of Iowa Hospitals & Clinics, Iowa City, IA, USA.
| |
Collapse
|
198
|
Einwich A, Dedek K, Seth PK, Laubinger S, Mouritsen H. A novel isoform of cryptochrome 4 (Cry4b) is expressed in the retina of a night-migratory songbird. Sci Rep 2020; 10:15794. [PMID: 32978454 PMCID: PMC7519125 DOI: 10.1038/s41598-020-72579-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/28/2020] [Indexed: 01/22/2023] Open
Abstract
The primary sensory molecule underlying light-dependent magnetic compass orientation in migratory birds has still not been identified. The cryptochromes are the only known class of vertebrate proteins which could mediate this mechanism in the avian retina. Cryptochrome 4 of the night-migratory songbird the European robin (Erithacus rubecula; erCry4) has several of the properties needed to be the primary magnetoreceptor in the avian eye. Here, we report on the identification of a novel isoform of erCry4, which we named erCry4b. Cry4b includes an additional exon of 29 amino acids compared to the previously described form of Cry4, now called Cry4a. When comparing the retinal circadian mRNA expression pattern of the already known isoform erCry4a and the novel erCry4b isoform, we find that erCry4a is stably expressed throughout day and night, whereas erCry4b shows a diurnal mRNA oscillation. The differential characteristics of the two erCry4 isoforms regarding their 24-h rhythmicity in mRNA expression leads us to suggest that they might have different functions. Based on the 24-h expression pattern, erCry4a remains the more likely cryptochrome to be involved in radical-pair-based magnetoreception, but at the present time, an involvement of erCry4b cannot be excluded.
Collapse
Affiliation(s)
- Angelika Einwich
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Pranav Kumar Seth
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Sascha Laubinger
- Institute for Biology and Environmental Sciences, Evolutionäre Genetik der Pflanzen, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany. .,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.
| |
Collapse
|
199
|
Abstract
Animals can move thousands of kilometres in the ocean before returning with pinpoint accuracy to specific locations. How animals accomplish this feat continues to puzzle scientists. New research provides evidence for how turtles re-orientate during their migrations.
Collapse
Affiliation(s)
- Ana M M Sequeira
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
200
|
Long L, Johnson ZV, Li J, Lancaster TJ, Aljapur V, Streelman JT, McGrath PT. Automatic Classification of Cichlid Behaviors Using 3D Convolutional Residual Networks. iScience 2020; 23:101591. [PMID: 33083750 PMCID: PMC7553349 DOI: 10.1016/j.isci.2020.101591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Many behaviors that are critical for survival and reproduction are expressed over extended time periods. The ability to inexpensively record and store large volumes of video data creates new opportunities to understand the biological basis of these behaviors and simultaneously creates a need for tools that can automatically quantify behaviors from large video datasets. Here, we demonstrate that 3D Residual Networks can be used to classify an array of complex behaviors in Lake Malawi cichlid fishes. We first apply pixel-based hidden Markov modeling combined with density-based spatiotemporal clustering to identify sand disturbance events. After this, a 3D ResNet, trained on 11,000 manually annotated video clips, accurately (>76%) classifies the sand disturbance events into 10 fish behavior categories, distinguishing between spitting, scooping, fin swipes, and spawning. Furthermore, animal intent can be determined from these clips, as spits and scoops performed during bower construction are classified independently from those during feeding.
Collapse
Affiliation(s)
- Lijiang Long
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Junyu Li
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tucker J Lancaster
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vineeth Aljapur
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|