151
|
Le Foll B, Wertheim C, Goldberg SR. High reinforcing efficacy of nicotine in non-human primates. PLoS One 2007; 2:e230. [PMID: 17311094 PMCID: PMC1794142 DOI: 10.1371/journal.pone.0000230] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 01/24/2007] [Indexed: 11/18/2022] Open
Abstract
Although tobacco appears highly addictive in humans, there has been persistent controversy about the ability of its psychoactive ingredient nicotine to induce self-administration behavior in laboratory animals, bringing into question nicotine's role in reinforcing tobacco smoking. Because of ethical difficulties in inducing nicotine dependence in naïve human subjects, we explored reinforcing effects of nicotine in experimentally-naive non-human primates given access to nicotine for periods of time up to two years. Five squirrel monkeys with no experimental history were allowed to intravenously self-administer nicotine by pressing one of two levers. The number of presses on the active lever needed to obtain each injection was fixed (fixed-ratio schedule) or increased progressively with successive injections during the session (progressive-ratio schedule), allowing evaluation of both reinforcing and motivational effects of nicotine under conditions of increasing response cost. Over time, a progressive shift toward high rates of responding on the active lever, but not the inactive lever, developed. The monkeys' behavior was clearly directed toward nicotine self-administration, rather than presentation of environmental stimuli associated with nicotine injection. Both schedules of reinforcement revealed a high motivation to self-administer nicotine, with monkeys continuing to press the lever when up to 600 lever-presses were needed for each injection of nicotine. Thus, nicotine, by itself, in the absence of behavioral or drug-exposure history, is a robust and highly effective reinforcer of drug-taking behavior in a non-human primate model predictive of human behavior. This supports the use of nicotinic ligands for the treatment of smokers, and this novel preclinical model offers opportunities to test future medications for the treatment of nicotine dependence.
Collapse
Affiliation(s)
- Bernard Le Foll
- Preclinical Pharmacology Section, National Institute on Drug Abuse, National Institutes of Health-Department of Health and Human Services, Baltimore, Maryland, United States of America.
| | | | | |
Collapse
|
152
|
Abstract
Cigarette smokers tend to die prematurely from a number of diseases. Cigarette smoking is an important modifiable risk factor for cardiovascular morbidity and mortality. Despite the clear health benefits of smoking cessation, smokers usually find it difficult to stop and behavioral therapies often prove insufficient. Pharmacologic intervention may aid the process because of the addictive nature of nicotine. Nicotine replacement therapy, which is regarded as first-line therapy, was developed to overcome the symptoms of nicotine withdrawal that many patients find distressing. Different modes of administration include inhalation and buccal or transdermal absorption. The orally administered non-nicotine drugs varenicline and bupropion are also regarded as first-line treatments, either used alone or as an adjunct to nicotine replacement therapy. Second-line treatments include clonidine and nortriptyline. Other treatment strategies that have been examined include monoamine oxidase inhibitors and selective serotonin reuptake inhibitors; efficacy has yet to be proven definitively. A novel approach to treatment using the cannabinoid-1 receptor antagonist rimonabant is also under investigation.
Collapse
Affiliation(s)
- William H Frishman
- Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY 10595, USA.
| |
Collapse
|
153
|
López-Moreno JA, González-Cuevas G, Navarro M. The CB1 cannabinoid receptor antagonist rimonabant chronically prevents the nicotine-induced relapse to alcohol. Neurobiol Dis 2007; 25:274-83. [PMID: 17067804 DOI: 10.1016/j.nbd.2006.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 09/12/2006] [Accepted: 09/16/2006] [Indexed: 10/24/2022] Open
Abstract
Preclinical and clinical research shows that the cannabinoid brain receptor type 1 (CB(1)) modulates alcohol- and nicotine-related behaviors. Throughout the nicotine-induced relapse to alcohol, the rats were pre-treated for 10 days with the CB(1) cannabinoid receptor antagonist rimonabant (0, 0.03, 0.3 and 3.0 mg/kg i.p.). In this condition, a long-lasting nicotine-induced relapse to alcohol was observed, and this effect was reversed in a dose-dependent manner with rimonabant. Surprisingly, rats that were not exposed to nicotine developed tolerance to the effects of rimonabant from the sixth day. Also, 3.0 mg/kg of rimonabant reduced the responses for sucrose. Evaluation in the Elevated Plus-Maze after nicotine treatment did not reveal anxiogenic effects. Finally, at the conclusion of rimonabant treatment, a rapid reinstatement of alcohol consumption was detected. These results suggest that rimonabant can prevent the relapse to alcohol, even when an interaction with nicotine exists-the most frequent situation in human alcohol abuse.
Collapse
MESH Headings
- Alcohol-Induced Disorders, Nervous System/chemically induced
- Alcohol-Induced Disorders, Nervous System/drug therapy
- Alcohol-Induced Disorders, Nervous System/physiopathology
- Alcoholism/drug therapy
- Alcoholism/physiopathology
- Alcoholism/prevention & control
- Animals
- Anxiety Disorders/chemically induced
- Anxiety Disorders/drug therapy
- Anxiety Disorders/physiopathology
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Interactions/physiology
- Drug Synergism
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Nicotine/adverse effects
- Nicotinic Agonists/adverse effects
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Reinforcement, Psychology
- Rimonabant
- Secondary Prevention
- Substance Withdrawal Syndrome/drug therapy
- Substance Withdrawal Syndrome/metabolism
- Substance Withdrawal Syndrome/physiopathology
- Sucrose/pharmacology
Collapse
Affiliation(s)
- José Antonio López-Moreno
- Department of Psychobiology, Faculty of Psychology, Campus de Somosaguas, Complutense University of Madrid, 28223 Madrid, Spain.
| | | | | |
Collapse
|
154
|
Chaudhri N, Caggiula AR, Donny EC, Booth S, Gharib M, Craven L, Palmatier MI, Liu X, Sved AF. Self-administered and noncontingent nicotine enhance reinforced operant responding in rats: impact of nicotine dose and reinforcement schedule. Psychopharmacology (Berl) 2007; 190:353-62. [PMID: 16847680 PMCID: PMC2838240 DOI: 10.1007/s00213-006-0454-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 05/19/2006] [Indexed: 11/30/2022]
Abstract
RATIONALE Nicotine infusions that are self-administered (contingent) or response-independent (noncontingent) increase lever pressing for a reinforcing nonpharmacological stimulus in rats, suggesting that in addition to primary reinforcement, nicotine self-administration may result from nicotine enhancing the reinforcement derived from nonnicotine stimuli. OBJECTIVES Based on our previous research, in this study, we tested the hypothesis that contingent and noncontingent nicotine would equally elevate responding for a moderately reinforcing visual stimulus, across a range of nicotine doses on both fixed ratio and progressive ratio reinforcement schedules. MATERIALS AND METHODS The rats lever pressed for a visual stimulus with contingent nicotine, noncontingent nicotine, or contingent saline. Separate groups responded for saline or nicotine without the visual stimulus. Three doses of nicotine (0.01, 0.03, and 0.09 mg/kg per infusion, free base) were tested in a between-groups design. After responding on an escalating fixed ratio reinforcement schedule, the rats were tested on a progressive ratio schedule. RESULTS Compared to responding for the visual stimulus with saline, both contingent and noncontingent nicotine equally elevated lever pressing for the stimulus at each dose on fixed and progressive ratio schedules. In the absence of the stimulus, only the highest nicotine dose sustained self-administration. CONCLUSIONS The ability of noncontingent nicotine to elevate responding for a moderately reinforcing visual stimulus occurs across a range of doses, and both self-administered and noncontingent nicotine equally increase motivation to obtain the stimulus, as reflected by performance on a progressive ratio schedule. In the absence of a contingent stimulus, primary reinforcement from nicotine only supports self-administration at high nicotine doses in rats.
Collapse
Affiliation(s)
- Nadia Chaudhri
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
O'Dell LE, Chen SA, Smith RT, Specio SE, Balster RL, Paterson NE, Markou A, Zorrilla EP, Koob GF. Extended access to nicotine self-administration leads to dependence: Circadian measures, withdrawal measures, and extinction behavior in rats. J Pharmacol Exp Ther 2007; 320:180-93. [PMID: 17050784 DOI: 10.1124/jpet.106.105270] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study characterized nicotine intake, circadian patterns of food and water intake, precipitated somatic signs of withdrawal, and extinction of nicotine-seeking behavior in rats with 23-h access to intravenous self-administration (IVSA). Separate groups of animals were allowed access to nicotine IVSA (0.015, n = 9; 0.03, n = 14; 0.06, n = 16; mg/kg/0.1 ml infusion/s; fixed ratio 1) and trained to nosepoke for food and water 23 h/day for 40 consecutive days. Somatic signs of nicotine withdrawal were examined following saline or mecamylamine administration (1.5 mg/kg i.p.), and extinction of nicotine-seeking behavior was assessed. A dose-dependent decrease in lever responding and an increase in nicotine intake were observed, with the highest nicotine dose producing the lowest amount of lever responding and the highest amount of nicotine intake. Nicotine acutely reduced diurnal and nocturnal food intake, producing smaller and fewer meals, and an increased rate of eating. Differences in rate of nicotine intake between the light and dark phase decreased significantly, especially in rats receiving higher unit nicotine doses (0.03 and 0.06 mg/kg), along with long-term decreases in the circadian profile and amplitude of feeding. Mecamylamine precipitated robust withdrawal signs, the magnitude of which was positively correlated with the total amount of self-administered nicotine. Extinction of nicotine-seeking behavior was observed and was facilitated by removal of nicotine-associated cues. The results demonstrate that rats will self-administer nicotine to the point of producing dependence, as measured by somatic signs, resistance to extinction, and measures of food intake.
Collapse
Affiliation(s)
- Laura E O'Dell
- Department of Molecular and Integrative Neurosciences, SP30-2400, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Fattore L, Spano MS, Deiana S, Melis V, Cossu G, Fadda P, Fratta W. An endocannabinoid mechanism in relapse to drug seeking: A review of animal studies and clinical perspectives. ACTA ACUST UNITED AC 2007; 53:1-16. [DOI: 10.1016/j.brainresrev.2006.05.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 05/08/2006] [Accepted: 05/08/2006] [Indexed: 01/28/2023]
|
157
|
Abstract
Cigarette smoking is the primary cause of numerous preventable diseases; as such, the goals of smoking cessation are both to reduce health risks and to improve the quality of life. Currently, the first-line smoking cessation therapies include nicotine replacement products and bupropion. The nicotinic receptor partial agonist varenicline has recently been approved by the FDA for smoking cessation. A newer product currently under development and seeking approval by the FDA are nicotine vaccines. Clonidine and nortriptyline have demonstrated some efficacy but side effects may limit their use to second-line therapeutic products. Other therapeutic drugs that are under development include rimonabant, mecamylamine, monoamine oxidase inhibitors, and dopamine receptor D3 antagonists. Inhibitors of nicotine metabolism are also promising candidates for smoking reduction and cessation. In conclusion, promising new therapeutic products are emerging and they will provide smokers additional options to assist in achieving smoking cessation.
Collapse
Affiliation(s)
- Eric C K Siu
- Center for Addiction & Mental Health and Department of Pharmacology, University of Toronto, Toronto, Canada.
| | | |
Collapse
|
158
|
Abstract
Rimonabant is the first drug to target the endocannabinoid (CB) pathway by inhibiting the actions of anandamide and 2-archidonyl-glycerol on CB1 receptors. This review gives an overview of rimonabant and the CB system and how this system relates to obesity. Rimonabant blocks the central effects of this neurotransmitter pathway involved in obesity and weight control and also blocks the direct effects of CBs on adipocyte and hepatocyte metabolism. Blockade of CB1 receptors leads to a decrease in appetite and also has direct actions in adipose tissue and the liver to improve glucose, fat and cholesterol metabolism so improving insulin resistance, triglycerides and high-density lipoprotein cholesterol (HDL-C) and in some patients, blood pressure. The Rimonabant in Obesity (RIO) trials have shown that rimonabant induces weight loss > 5% in 30-40% of patients and > 10% in 10-20% above both a dietary run-in and long-term hypocaloric management over a 2 year period with a low level of drug-related side effects. Rimonabant therapy is associated with an extra 8-10% increase in HDL-C and a 10-30% reduction in triglycerides and improvements in insulin resistance, glycaemic control in patients with diabetes and also adipokines and cytokines including C-reactive protein over hypocaloric diet therapy. In addition rimonabant abolishes the weight gain associated with smoking cessation and improves the chances of quitting smoking. Thus rimonabant has major effects on both the metabolic syndrome and cardiovascular risk factors thus has the potential to reduce the risks of type 2 diabetes and cardiovascular disease associated with the cardiometabolic phenotype.
Collapse
|
159
|
Chaudhri N, Caggiula AR, Donny EC, Booth S, Gharib M, Craven L, Palmatier MI, Liu X, Sved AF. Operant responding for conditioned and unconditioned reinforcers in rats is differentially enhanced by the primary reinforcing and reinforcement-enhancing effects of nicotine. Psychopharmacology (Berl) 2006; 189:27-36. [PMID: 17019569 DOI: 10.1007/s00213-006-0522-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 07/15/2006] [Indexed: 11/30/2022]
Abstract
RATIONALE Nicotine self-administration in rats is modest when response-contingent nicotine infusions are delivered alone (primary reinforcement) but robust when nicotine infusions are combined with a mildly reinforcing non-pharmacological stimulus. Furthermore, response-independent (non-contingent) nicotine administration also elevates responding for that same non-pharmacological stimulus, suggesting that in addition to primary reinforcement, nicotine can enhance the incentive value of other reinforcers. OBJECTIVES In this study, we tested the hypothesis that the reinforcement-enhancing effects of non-contingent nicotine are more dependent on the reinforcing strength of the non-pharmacological stimulus than are the effects of contingent nicotine. MATERIALS AND METHODS A weakly reinforcing light-tone stimulus was established as a conditioned reinforcer by repeated pairings with sucrose for some rats, or by delivery in an explicitly unpaired design with sucrose to other rats. Subsequently, both groups lever pressed for the stimulus with contingent nicotine, non-contingent nicotine (0.06 mg kg(-1) per infusion, freebase), or non-contingent saline, according to fixed ratio and progressive ratio reinforcement schedules. RESULTS Compared to sucrose-unpaired training, repeated association with sucrose established the light-tone stimulus as a robust conditioned reinforcer. Contingent and non-contingent nicotine equally elevated responding for this conditioned stimulus. Conversely, for the less reinforcing (sucrose-unpaired) stimulus contingent nicotine more effectively elevated behavior compared to non-contingent nicotine. CONCLUSIONS The reinforcement-enhancing effect of nicotine increases behavior controlled by both conditioned and unconditioned reinforcers; however, for less salient stimuli associative processes derived from the primary reinforcing effects of contingent nicotine may also be important. These data suggest that nicotine present in tobacco may differentially modulate stimulus-driven behavior in smokers.
Collapse
Affiliation(s)
- Nadia Chaudhri
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Shoaib M. Effects of isoarecolone, a nicotinic receptor agonist in rodent models of nicotine dependence. Psychopharmacology (Berl) 2006; 188:252-7. [PMID: 16932923 DOI: 10.1007/s00213-006-0498-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 06/22/2006] [Indexed: 11/28/2022]
Abstract
RATIONALE The nicotinic receptor agonist, isoarecolone, has 'nicotine-like' subjective properties as detected by rats in a discrimination paradigm. However, isoarecolone lacks the intra-accumbens dopamine-releasing effects, a feature akin to most abused substances. In the five-choice serial reaction time task, isoarecolone can enhance attention and thus may be developed as a cognitive enhancer. OBJECTIVE The present experiments assess the dependence profile of isoarecolone in rodent models of nicotine dependence. METHOD AND RESULTS Tests for cross-substitution in which isoarecolone is substituted for nicotine [0.3 mg/kg/infusion (inf)] self-administration suggest isoarecolone to have nominal reinforcing properties (0.3 or 1.0 mg/kg/inf); intake of isoarecolone declined over three test sessions in which responding was no different from saline extinction, and behaviour was reinstated by re-presenting nicotine. In a model of nicotine-seeking behaviour, rats having been extinguished by removal of nicotine (0.03 mg/kg/inf) and associated cues, the presentation of priming doses of nicotine (0.1-0.4 mg/kg s.c.) with the cues robustly reinstated responding of nicotine-seeking behaviour. Tests with priming doses of isoarecolone (1-20 mg/kg s.c.) shown previously to generalise to nicotine in discrimination tests produced significant levels of reinstatement but the responses were significantly less compared to nicotine-induced reinstatement. CONCLUSION Overall, these results suggest that isoarecolone with its unique profile of behavioural activity should be further examined for treating chronic diseases that are characterised by attentional dysfunction.
Collapse
Affiliation(s)
- Mohammed Shoaib
- Psychobiology Research Laboratories, Newcastle Medical School, Newcastle University, Newcastle, NE2 4HH, UK.
| |
Collapse
|
161
|
Gould TJ. Nicotine and hippocampus-dependent learning: implications for addiction. Mol Neurobiol 2006; 34:93-107. [PMID: 17220532 PMCID: PMC2716133 DOI: 10.1385/mn:34:2:93] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 11/30/1999] [Accepted: 06/14/2006] [Indexed: 02/06/2023]
Abstract
Addiction is a complex disorder because many factors contribute to the development and maintenance of addiction. One factor is learning. For example, drug-context associations that develop during drug use could facilitate drug craving upon re-exposure to contexts previously associated with drugs. Additionally, deficits in cognitive processes associated with withdrawal could precipitate relapse in attempts to ameliorate those deficits. Because addiction and learning involve common neural areas and cell signaling cascades, addiction-related changes in processes underlying plasticity may contribute to addiction. This article examines similarities between addiction and learning at the behavioral, neural, and cellular levels, with emphasis on the neural substrates underlying the effects of acute nicotine, chronic nicotine, and withdrawal from chronic nicotine on hippocampus-dependent contextual learning.
Collapse
Affiliation(s)
- Thomas J Gould
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
162
|
Abstract
The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson's and Huntington's disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB(1) receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB(1) receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB(2) receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The growing number of preclinical studies and clinical trials with compounds that modulate the endocannabinoid system will probably result in novel therapeutic approaches in a number of diseases for which current treatments do not fully address the patients' need. Here, we provide a comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiological Studies, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 2S-24, Bethesda, MD 20892-9413, USA
| | | | | |
Collapse
|
163
|
Abstract
The prevalence of obesity, and the human and economic costs of the disease, creates a need for better therapeutics and better understanding of the physiological processes that balance energy intake and energy expenditure. Leptin is the primary signal from energy stores and exerts negative feedback effects on energy intake. In common obesity, leptin loses the ability to inhibit energy intake and increase energy expenditure; this is termed leptin resistance. This review discusses the evidence in support of leptin resistance in mouse models and humans and the possible mechanisms of leptin resistance.
Collapse
Affiliation(s)
- Pablo J Enriori
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | | | | | |
Collapse
|
164
|
Fagerström K, Balfour DJK. Neuropharmacology and potential efficacy of new treatments for tobacco dependence. Expert Opin Investig Drugs 2006; 15:107-16. [PMID: 16433591 DOI: 10.1517/13543784.15.2.107] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review considers some of the novel therapies that are under development for the treatment of tobacco dependence, outlines their efficacy in clinical studies and explains their mechanisms of action in terms of contemporary theories for the psychobiology of the dependence. It focuses on three treatments with differing mechanisms of action that are at different stages of clinical development. The first is varenicline, a partial agonist at the alpha4beta2 nicotinic receptors, which are thought to play a central role in the addiction to nicotine. Preclinically, this drug mimics the effects of nicotine on dopamine (DA) release in the nucleus accumbens when given alone but attenuates this response to a subsequent nicotine challenge and reduces nicotine self administration. Very encouraging results have been seen in the five clinical studies that have been reported with this drug. The second compound, rimonabant, is a cannabinoid CB1 receptor antagonist. Preclinically, this compound reduces nicotine self administration, DA turnover in nucleus accumbens and attenuates reinstatement of nicotine-seeking behaviour. Clinically, the drug is well tolerated but its effects on smoking cessation are equivocal. However, it has the valuable additional property of inhibiting post-cessation weight gain. Nicotine 'vaccines' are the final group of treatments considered, which involves raising antibodies in the blood that limit the amount of nicotine that penetrates into the brain, thereby reducing the psychopharmacological responses to the drug. The vaccines also reduce DA turnover in nucleus accumbens and reinstatement of nicotine-seeking behaviour after nicotine readministration. The three vaccines discussed are well tolerated and show signs of good efficacy; however, the increase in antibody titre, evoked by the treatment, shows significant inter-individual variation and is generally short lived. Thus, although this approach may provide a valuable aid to smoking cessation, it seems unlikely that it can be used for primary prevention.
Collapse
Affiliation(s)
- Karl Fagerström
- Smokers Information Centre and Fagerstrom Consulting, Berga Alle 1, Helsingborg, Sweden.
| | | |
Collapse
|
165
|
Kenny PJ, Markou A. Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology 2006; 31:1203-11. [PMID: 16192981 DOI: 10.1038/sj.npp.1300905] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nicotine is a major component of tobacco smoke contributing to the initiation and persistence of the harmful tobacco habit in human smokers. The reinforcing effects of nicotine likely arise through its ability to stimulate brain circuitry mediating the detection and experiencing of natural rewards. Nevertheless, remarkably little is known concerning the acute or long-lasting actions of nicotine on brain reward systems in vivo. Here, we investigated the effects of intravenously self-administered nicotine (0.03 mg/kg/infusion, free base) on the sensitivity of brain reward systems, reflected in alterations of intracranial self-stimulation (ICSS) thresholds in rats. Rats self-administered nicotine during 1 or 12 h daily sessions, with reward thresholds assessed 1 h before and 15 min after each self-administration session. Control rats remained nicotine naïve throughout. Nicotine self-administration increased the sensitivity of brain reward systems, detected by post-nicotine lowering of reward thresholds in 1 and 12 h rats. This nicotine-enhanced sensitivity of reward systems was reversed by the high-affinity nicotinic receptor antagonist dihydro-beta-erythroidine (DHbetaE; 3 mg/kg). Surprisingly, nicotine-induced excitation of reward systems persisted for at least 36 days after nicotine self-administration had ceased. Overall, these data demonstrate that rats can voluntarily consume quantities of nicotine sufficient to increase the sensitivity of brain reward systems, an action likely crucial in establishing and maintaining the nicotine habit. Moreover, self-administered nicotine resets the sensitivity of reward systems to a new increased level, thereby imprinting an indelible 'memory' of its effects in reward systems, an action that so far appears unique to nicotine among drugs of abuse.
Collapse
Affiliation(s)
- Paul J Kenny
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
166
|
Zaniewska M, McCreary AC, Przegaliński E, Filip M. Evaluation of the role of nicotinic acetylcholine receptor subtypes and cannabinoid system in the discriminative stimulus effects of nicotine in rats. Eur J Pharmacol 2006; 540:96-106. [PMID: 16730696 DOI: 10.1016/j.ejphar.2006.04.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/12/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
Male Wistar rats were trained to discriminate (-)-nicotine (0.4 mg/kg) from saline under a two-lever, fixed-ratio 10 schedule of water reinforcement. During test sessions the following drugs were coadministered with saline (substitution studies) or nicotine (0.025-0.4 mg/kg; combination studies): the alpha4beta2 nicotinic acetylcholine receptor subtype antagonist dihydro-beta-erythroidine (DHbetaE), the non-selective nicotinic acetylcholine receptor subtype antagonist mecamylamine, the alpha7 nicotinic acetylcholine receptor subtype antagonist methyllycaconitine (MLA), the alpha4beta2 nicotinic acetylcholine receptor subtype agonist 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine (5-IA), the cannabinoid CB1 receptor antagonist/partial agonist rimonabant, the cannabinoid CB2 receptor antagonist N-[(1S)-endo-1,3,3-trimethylbicyclo-[2.2.1]heptan-2-yl]5-(4-chloro-3-methyl-phenyl)-1-(4-methybenzyl)pyrazole-3-carboxamide (SR 144528), the cannabinoid CB1/2 receptor agonists (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)-phenyl]-trans-4-(3-hydroxy-propyl)cyclohexanol (CP 55,940) or R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]-pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-(1-naphthalenyl)-methanone mesylate (WIN 55,212-2), the endogenous cannabinoid agonist and non-competitive alpha7 nicotinic acetylcholine receptor subtype antagonist anandamide, the anandamide uptake and fatty acid amide hydrolase inhibitor N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM-404), the fatty acid amide hydrolase inhibitor cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB 597), AM-404+anandamide or URB 597+anandamide. 5-IA (0.01 mg/kg) fully substituted for nicotine, while other drugs were inactive. In combination studies, DHbetaE and mecamylamine dose-dependently attenuated the discriminative stimulus effects of nicotine and the full substitution of 5-IA, while MLA, rimonabant, SR 144528, CP 55,940, WIN 55,212-2, and URB 597 did not alter the nicotine cue. Pretreatment with AM-404+anandamide or URB 597+anandamide weakly enhanced nicotine-lever responding. Our pharmacological analyses demonstrates that the expression of nicotine discrimination is under the control of nicotinic acetylcholine receptor subtypes composed of alpha4beta2 (but not of alpha7) subunits. Furthermore, we excluded the involvement of either cannabinoid CB1 and CB2 receptors or increases in the endocannabinoid tone in the nicotine discrimination.
Collapse
MESH Headings
- Aconitine/analogs & derivatives
- Aconitine/pharmacology
- Animals
- Arachidonic Acids/pharmacology
- Azetidines/pharmacology
- Benzamides/pharmacology
- Benzoxazines
- Camphanes/pharmacology
- Cannabinoid Receptor Antagonists
- Carbamates/pharmacology
- Cyclohexanols/pharmacology
- Dihydro-beta-Erythroidine/pharmacology
- Discrimination Learning/drug effects
- Discrimination Learning/physiology
- Dose-Response Relationship, Drug
- Drug Synergism
- Endocannabinoids
- Male
- Mecamylamine/pharmacology
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Nicotine/pharmacology
- Nicotinic Agonists/pharmacology
- Nicotinic Antagonists/pharmacology
- Polyunsaturated Alkamides/pharmacology
- Pyrazoles/pharmacology
- Pyridines/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/physiology
- Receptors, Cannabinoid/physiology
- Receptors, Nicotinic/physiology
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna, Poland
| | | | | | | |
Collapse
|
167
|
Maldonado R, Valverde O, Berrendero F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci 2006; 29:225-32. [PMID: 16483675 DOI: 10.1016/j.tins.2006.01.008] [Citation(s) in RCA: 401] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 11/24/2005] [Accepted: 01/26/2006] [Indexed: 11/17/2022]
Abstract
Recent studies have shown that the endocannabinoid system is involved in the common neurobiological mechanism underlying drug addiction. This system participates in the primary rewarding effects of cannabinoids, nicotine, alcohol and opioids, through the release of endocannabinoids in the ventral tegmental area. Endocannabinoids are also involved in the motivation to seek drugs by a dopamine-independent mechanism, demonstrated for psychostimulants and opioids. The endocannabinoid system also participates in the common mechanisms underlying relapse to drug-seeking behaviour by mediating the motivational effects of drug-related environmental stimuli and drug re-exposure. In agreement, clinical trials have suggested that the CB(1) cannabinoid antagonist rimonabant can cause smoking cessation. Thus, CB(1) cannabinoid antagonists could represent a new generation of compounds to treat drug addiction.
Collapse
Affiliation(s)
- Rafael Maldonado
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Carrer Dr. Aiguader 80, 08003 Barcelona, Spain.
| | | | | |
Collapse
|
168
|
Balerio GN, Aso E, Maldonado R. Role of the cannabinoid system in the effects induced by nicotine on anxiety-like behaviour in mice. Psychopharmacology (Berl) 2006; 184:504-13. [PMID: 16416159 DOI: 10.1007/s00213-005-0251-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 10/11/2005] [Indexed: 02/05/2023]
Abstract
RATIONALE Acute behavioural effects and motivational responses induced by nicotine can be modulated by the endocannabinoid system supporting the existence of a physiological interaction between these two systems. OBJECTIVES The present study was designed to examine the possible involvement of the cannabinoid system in the anxiolytic- and anxiogenic-like responses induced by nicotine in mice. METHODS Animals were only exposed once to nicotine. The acute administration of low (0.05) or high (0.8 mg/kg, s.c.) doses of nicotine produced opposite effects in the elevated plus-maze, i.e. anxiolytic- and anxiogenic-like responses, respectively. The effects of the pretreatment with the CB1 cannabinoid receptor antagonist, rimonabant (0.25, 0.5 and 1 mg/kg, i.p.), and the cannabinoid agonist, delta9-tetrahydrocannabinol (delta9-THC, 0.1 mg/kg, ip), were evaluated on the anxiolytic- and anxiogenic-like responses induced by nicotine. RESULTS Rimonabant completely abolished nicotine-induced anxiolytic-like effects and increased the anxiogenic-like responses of nicotine, suggesting an involvement of CB1 receptors in these behavioural responses. On the other hand, delta9-THC failed to modify nicotine anxiolytic-like responses but attenuated its anxiogenic-like effects. In addition, the association of non-effective doses of delta9-THC and nicotine produced clear anxiolytic-like responses. CONCLUSIONS These results demonstrate that the endogenous cannabinoid system is involved in the regulation of nicotine anxiety-like behaviour in mice and provide new findings to support the use of cannabinoid antagonists in the treatment of tobacco addiction.
Collapse
Affiliation(s)
- Graciela N Balerio
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, C/ Doctor Aiguader 80, 08003 Barcelona, Spain
| | | | | |
Collapse
|
169
|
Chaudhri N, Caggiula AR, Donny EC, Palmatier MI, Liu X, Sved AF. Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology (Berl) 2006; 184:353-66. [PMID: 16240165 DOI: 10.1007/s00213-005-0178-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 08/24/2005] [Indexed: 11/30/2022]
Abstract
RATIONALE Although considerable progress has been made, we do not yet fully understand the behavioral and neurobiological basis of nicotine reinforcement, and without this knowledge, treatment strategies aimed at reducing smoking remain deficient. OBJECTIVES This review describes an original perspective on nicotine reinforcement, which arises from substantial evidence of complex interactions between nicotine and nonpharmacological stimuli. We hypothesize that nicotine reinforcement derives from at least two sources: (1) primary reinforcement, an action that requires response-dependent drug administration and is capable of conveying secondary reinforcing effects on associated stimuli, and (2) the reinforcement-enhancing effect of nicotine, which directly enhances behavior maintained by salient nonnicotine stimuli and does not require a contingent relationship between drug administration and reinforced operant responding. Although novel for nicotine, this hypothesis has origins in an extensive literature on the reinforcing effects of psychostimulants. Empirical support for this hypothesis, based largely on animal models of reinforcement, will be presented. CONCLUSIONS Animal models of drug reinforcement have evolved to reflect our growing awareness of the multidimensional nature of drug dependence in humans. Investigating the interaction between nicotine and nonpharmacological stimuli within the context of the drug self-administration paradigm in rats has generated new insights into the paradox of how nicotine, an apparently weak primary reinforcer, can sustain the robust behavior observed in self-administration and in smoking. The hypothesis presented in this paper--that nicotine acts as both a primary reinforcer and an enhancer of other nonnicotine reinforcers--provides important direction for future investigations into the neurobiology of nicotine reinforcement and treatments for smoking cessation.
Collapse
Affiliation(s)
- Nadia Chaudhri
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | |
Collapse
|
170
|
Liu X, Caggiula AR, Yee SK, Nobuta H, Poland RE, Pechnick RN. Reinstatement of nicotine-seeking behavior by drug-associated stimuli after extinction in rats. Psychopharmacology (Berl) 2006; 184:417-25. [PMID: 16163522 PMCID: PMC2810478 DOI: 10.1007/s00213-005-0134-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 07/18/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Smoking-related environmental stimuli have been implicated as an important factor in triggering relapse in abstinent tobacco smokers, and recent evidence indicates that drug-associated stimuli can reinstate nicotine-seeking in rats. However, there is little investigation on the factors that contribute to the latter effect. OBJECTIVE This study examined whether a nicotine-associated visual stimulus (VS) can reinstate nicotine-seeking after extinction in a response-reinstatement model of relapse, and whether the behavioral effects of the VS are sensitive to pharmacological blockade of nicotinic neurotransmission. It also determined whether active lever reassignment after food training influences nicotine self-administration and the VS-induced reinstatement. METHODS Male Sprague-Dawley rats were trained to self-administer nicotine (0.03 mg/kg/infusion, IV) and associate a VS with each nicotine infusion in 30 daily 1-h sessions. Half of the animals received nicotine infusions for responding at the same lever that previously delivered food; for the other half, infusions resulted from pressing the previously inactive lever during food training. Then, the nicotine-maintained response was extinguished by saline substitution and withholding the VS. One day after rats reached extinction criterion, the reinstatement tests were conducted where the VS was response-contingent represented without further delivery of nicotine. In pharmacological tests, a nicotinic antagonist, mecamylamine, was subcutaneously administered 30 min before reinstatement sessions. RESULTS Presentation of the nicotine-associated VS significantly reinstated responding at the previously drug-reinforced lever and pretreatment with mecamylamine effectively attenuated the response-reinstating effect of the VS. Additionally, animals showed similar profiles of nicotine-taking and nicotine-seeking behavior regardless of reassignment of the active lever after food training. CONCLUSIONS Nicotine self-administration and the VS-induced reinstatement of nicotine-seeking do not result from a lever bias due to prior experience for food reinforcement. Significantly, these results suggest that environmental stimuli associated with nicotine self-administration can effectively elicit nicotine-seeking behavior in abstinent subjects, that this effect is blocked by nicotine antagonism, and that the present procedures may be useful for studying neurobiological mechanisms of nicotine-seeking behavior and relapse.
Collapse
Affiliation(s)
- Xiu Liu
- Department of Psychology, University of Pittsburgh, 3131 Sennott Square, 210 South Bouquet Street, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | |
Collapse
|
171
|
Tonstad S. Rimonabant: a cannabinoid receptor blocker for the treatment of metabolic and cardiovascular risk factors. Nutr Metab Cardiovasc Dis 2006; 16:156-162. [PMID: 16487916 DOI: 10.1016/j.numecd.2005.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
AIMS The endocannabinoid system modulates synaptic neurotransmission centrally and peripherally and is involved in the brain pathways concerned with addiction, central regulation of body weight and adipose tissue function. The system is overactivated in animal models of obesity and nicotine use. This review discusses the role of rimonabant, a cannabinoid receptor 1 blocker, which has undergone Phase III clinical testing, in the treatment of obesity and tobacco dependence. DATA SYNTHESIS Results of Phase III clinical trials have shown that rimonabant has promising efficacy in the treatment of obesity, dyslipidaemia and diabetes associated with obesity, in preventing weight gain following smoking cessation, and possibly in smoking cessation. No critical problems with the tolerance and safety of the compound have appeared in studies to date. CONCLUSION Rimonabant may prove to be a useful aid in the treatment of the most widespread cardiometabolic risk factors.
Collapse
Affiliation(s)
- Serena Tonstad
- Department of Preventive Cardiology, Ullevål University Hospital, N-0407 Oslo, Norway.
| |
Collapse
|
172
|
Le Foll B, Goldberg SR. Nicotine as a typical drug of abuse in experimental animals and humans. Psychopharmacology (Berl) 2006; 184:367-81. [PMID: 16205918 DOI: 10.1007/s00213-005-0155-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 07/18/2005] [Indexed: 12/25/2022]
Abstract
RATIONALE AND BACKGROUND Tobacco use through cigarette smoking is the leading preventable cause of death in the developed world. Nicotine, a psychoactive component of tobacco, appears to play a major role in tobacco dependence, but reinforcing effects of nicotine often are difficult to demonstrate directly in controlled laboratory studies with animal or human subjects. OBJECTIVE To review the major findings obtained with various procedures developed to study dependence-related behavioral effects of nicotine in experimental animals and humans, i.e., drug self-administration, conditioned place preference, subjective reports of nicotine effects and nicotine discrimination, withdrawal signs, and ratings of drug withdrawal. RESULTS Nicotine can function as an effective reinforcer of drug-seeking and drug-taking behavior both in experimental animals and humans under appropriate conditions. Interruption of chronic nicotine exposure produces withdrawal symptoms that may contribute to relapse. Difficulties encountered in demonstrating reinforcing effects of nicotine under some conditions, relative to other drugs of abuse, may be due to weaker primary reinforcing effects of nicotine or to a more critical contribution of environmental stimuli to the maintenance of drug-seeking and drug-taking behavior with nicotine than with other drugs of abuse. Further experiments are also needed to delineate the role other chemical substances inhaled along with nicotine in tobacco smoke play in sustaining smoking behavior. CONCLUSION Nicotine acts as a typical drug of abuse in experimental animals and humans.
Collapse
Affiliation(s)
- Bernard Le Foll
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA.
| | | |
Collapse
|
173
|
Brunzell DH, Chang JR, Schneider B, Olausson P, Taylor JR, Picciotto MR. beta2-Subunit-containing nicotinic acetylcholine receptors are involved in nicotine-induced increases in conditioned reinforcement but not progressive ratio responding for food in C57BL/6 mice. Psychopharmacology (Berl) 2006; 184:328-38. [PMID: 16133126 DOI: 10.1007/s00213-005-0099-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 06/14/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Nicotine administration potentiates conditioned reinforcement in rats, an effect that persists for weeks after chronic exposure. Little is known regarding the nicotinic receptor subtypes that may mediate this effect. OBJECTIVE The purpose of this study was to determine whether beta2-subunit-containing nicotinic acetylcholine receptors (beta2*nAChRs) are necessary for lasting effects of nicotine on conditioned and primary reinforcement in mice. METHODS Beta2 knockout (beta2KO) and wild-type (WT) mice received 14 days of nicotine exposure (NIC, 200 microg/ml in 2% saccharin) or saccharin alone (SAC) in their drinking water. Five days later, mice received paired presentations of a conditioned stimulus (CS) with water unconditioned stimulus (US) or explicitly unpaired presentations of the CS and US during Pavlovian discriminative approach training. Training was followed by two conditioned reinforcement tests. Mice were subsequently tested for food-reinforced responding in the absence of explicit cues followed by a progressive ratio test. RESULTS During conditioned reinforcement testing, only mice in the paired condition showed increased responding in the CS-reinforced aperture over inactive apertures. WT-NIC mice showed enhanced conditioned reinforcement compared to WT-SAC animals. beta2KO-SAC mice showed elevated conditioned reinforcement compared to WT-SAC subjects, but beta2KO-NIC and beta2KO-SAC mice did not differ in responding with conditioned reinforcement. Prior nicotine exposure did not alter food-reinforced responding but resulted in elevated break points for food in both genotypes. CONCLUSION These data show that nicotine exposure enhances conditioned reinforcement in mice and indicate that beta2*nAChRs are necessary for nicotine-dependent enhancement of incentive aspects of motivation but not motivation for primary reinforcement measured by progressive ratio responding.
Collapse
Affiliation(s)
- Darlene H Brunzell
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA
| | | | | | | | | | | |
Collapse
|
174
|
Palmatier MI, Evans-Martin FF, Hoffman A, Caggiula AR, Chaudhri N, Donny EC, Liu X, Booth S, Gharib M, Craven L, Sved AF. Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology (Berl) 2006; 184:391-400. [PMID: 16249908 DOI: 10.1007/s00213-005-0183-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 08/29/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Nicotine has two effects on reinforcement in traditional self-administration paradigms. It serves as a primary reinforcer by increasing the probability of behaviors that result in nicotine delivery. However, nicotine also potently enhances behaviors that result in the delivery of nonpharmacological reinforcers. OBJECTIVES The present study sought to dissociate these two effects of nicotine on reinforcement. METHODS For one group of rats (2 lever), a nonpharmacological reinforcer [visual stimulus (VS)] was available for pressing one lever. Nicotine infusions were available for pressing a different lever. A second group (NIC + VS) received more traditional self-administration training; both the VS and nicotine were delivered for pressing a single active lever. Control groups received either nicotine infusions (NIC only) or VS presentations (VS only) for pressing the active lever. RESULTS Nicotine alone was a weak reinforcer; the VS alone was slightly more reinforcing than nicotine. When these two reinforcers were combined (NIC + VS), response rates were synergistically increased. For the 2-lever group, responding on the nicotine lever was weak, matching the response rates of rats receiving nicotine alone. However, responding on the VS lever was potently enhanced in this group; equaling the response rates for rats receiving both reinforcers for making a single response (NIC + VS). CONCLUSIONS These data indicate that the reinforcement-enhancing effects of nicotine are very potent even when only moderate quantities of the drug are self-administered. Moreover, they provide the first demonstration that the reinforcement-enhancing and primary reinforcing effects of nicotine can be dissociated behaviorally.
Collapse
Affiliation(s)
- Matthew I Palmatier
- Department of Psychology, University of Pittsburgh, 3137 Sennott Square, 210 S. Bouquet St., Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Jorge JC, Velázquez KT, Ramos-Ortolaza DL, Lorenzini I, Marrero J, Maldonado-Vlaar CS. A testosterone metabolite is rewarding to ovariectomized female rats. Behav Neurosci 2006; 119:1222-6. [PMID: 16300429 DOI: 10.1037/0735-7044.119.5.1222] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anabolic androgenic steroids have become a major class of drugs of abuse among a growing population of male and female adolescents. Although the rewarding and reinforcing properties of androgens have been demonstrated in male rodents, it is unknown whether these properties are apparent in female rats. In this study, conditioned place preference and self-administration paradigms showed that the endogenous androgen metabolite 3alphaDIOL is rewarding and reinforcing in ovariectomized female rats. Because 3alphaDIOL can be synthesized de novo in the brain, it is hypothesized that this neurosteroid provides a permissive neurochemical environment that modulates reward processes.
Collapse
Affiliation(s)
- Juan Carlos Jorge
- Department of Anatomy, Medical Sciences Campus, University of Puerto Rico, San Juan
| | | | | | | | | | | |
Collapse
|
176
|
Jobst EE, Enriori PJ, Sinnayah P, Cowley MA. Hypothalamic regulatory pathways and potential obesity treatment targets. Endocrine 2006; 29:33-48. [PMID: 16622291 DOI: 10.1385/endo:29:1:33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 11/30/1999] [Accepted: 11/08/2005] [Indexed: 12/25/2022]
Abstract
With an ever-growing population of obese people as well as comorbidities associated with obesity, finding effective weight loss strategies is more imperative than ever. One of the challenges in curbing the obesity crisis is designing successful strategies for long-term weight loss and weight-loss maintenance. Currently, weight-loss strategies include promotion of therapeutic lifestyle changes (diet and exercise), pharmacological therapy, and bariatric surgery. This review focuses on several pharmacological targets that activate central nervous system pathways that normally limit food intake and body weight. Though it is likely that no single therapy will prove effective for everyone, this review considers several recent pre-clinical targets, and several compounds that have been in human clinical trials.
Collapse
Affiliation(s)
- Erin E Jobst
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
177
|
Beardsley PM, Thomas BF. Current evidence supporting a role of cannabinoid CB1 receptor (CB1R) antagonists as potential pharmacotherapies for drug abuse disorders. Behav Pharmacol 2006; 16:275-96. [PMID: 16148435 DOI: 10.1097/00008877-200509000-00003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the discovery of the cannabinoid CB1 receptor (CB1R) in 1988, and subsequently of the CB2 receptor (CB2R) in 1993, there has been an exponential growth of research investigating the functions of the endocannabinoid system. The roles of CB1Rs have been of particular interest to behavioral pharmacologists because of their selective presence within the central nervous system (CNS) and because of their association with brain-reward circuits involving mesocorticolimbic dopamine systems. One potential role that has become of considerable recent focus is the ability of CB1Rs to modulate the effects of drugs of abuse. Many drugs of abuse elevate dopamine levels, and the ability of CB1R antagonists or inverse agonists to attenuate these elevations has suggested their potential application as pharmacotherapies for treating drug abuse disorders. With the identification of the selective CB1R antagonist, SR141716, in 1994, and its subsequent widespread availability, there has been a rapid expansion of research investigating its ability to modulate the effects of drugs of abuse. The preliminary clinical reports of its success in retarding relapse in tobacco users have accelerated this expansion. This report critically reviews preclinical and clinical studies involving the ability of CB1R antagonists to attenuate the effects of drugs of abuse, while providing an overview of the neuroanatomical and neurochemical points of contact between the endocannabinoid system and systems mediating abuse-related effects.
Collapse
Affiliation(s)
- P M Beardsley
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia 23298-0613, USA.
| | | |
Collapse
|
178
|
Adam J, Cowley PM, Kiyoi T, Morrison AJ, Mort CJW. Recent progress in cannabinoid research. PROGRESS IN MEDICINAL CHEMISTRY 2006; 44:207-329. [PMID: 16697899 DOI: 10.1016/s0079-6468(05)44406-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Julia Adam
- Organon Research, Newhouse, Lanarkshire, Scotland, UK
| | | | | | | | | |
Collapse
|
179
|
Le Foll B, Goldberg SR. Ethanol does not affect discriminative-stimulus effects of nicotine in rats. Eur J Pharmacol 2005; 519:96-102. [PMID: 16109399 DOI: 10.1016/j.ejphar.2005.06.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 06/27/2005] [Accepted: 06/30/2005] [Indexed: 11/23/2022]
Abstract
The effects of ethanol were evaluated in rats trained to discriminate 0.4 mg/kg of nicotine from saline under a fixed-ratio 10 schedule of food delivery. Ethanol (0.1-1 g/kg, i.p.) did not produce any nicotine-like discriminative effects and did not produce any shift in the dose-response curve for nicotine discrimination. Thus, the ability to discriminate nicotine's effects does not appear to be altered by ethanol administration. However, the high dose of 1 g/kg ethanol, given either alone or in combination with nicotine, markedly depressed food-maintained responding. This later effect was associated in some rats with an attenuation of the discriminative-stimulus effects of the training dose of nicotine. This suggests that previous reports of increased tobacco smoking following ethanol consumption in humans are connected, in some way, with an increase in motivation to consume nicotine that is produced by ethanol, rather than with a decrease in the subjective response to nicotine.
Collapse
Affiliation(s)
- Bernard Le Foll
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, 5500 Nathan Shock Drive, Baltimore, MD, USA.
| | | |
Collapse
|
180
|
Bryant CD, Zaki PA, Carroll FI, Evans CJ. Opioids and addiction: Emerging pharmaceutical strategies for reducing reward and opponent processes. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.cnr.2005.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
181
|
|
182
|
Kumari V, Postma P. Nicotine use in schizophrenia: the self medication hypotheses. Neurosci Biobehav Rev 2005; 29:1021-34. [PMID: 15964073 DOI: 10.1016/j.neubiorev.2005.02.006] [Citation(s) in RCA: 335] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 02/23/2005] [Indexed: 01/11/2023]
Abstract
The behavioural and cognitive effects of nicotine in schizophrenia have received much interest in recent years. The rate of smoking in patients with schizophrenia is estimated to be two- to four-fold the rate seen in the general population. Furthermore such patients favour stronger cigarettes and may also extract more nicotine from their cigarettes than other smokers. The question has been raised whether the widespread smoking behaviour seen in this patient group is in fact a manifestation of a common underlying physiology, and that these patients smoke in an attempt to self-medicate. We present an overview of the explanations for elevated rates of smoking in schizophrenia, with particular emphasis on the theories relating this behaviour to sensory gating and cognitive deficits in this disorder that have been viewed as major support for the self-medication hypotheses.
Collapse
Affiliation(s)
- Veena Kumari
- Department of Psychology, Institute of Psychiatry, London SE5 8AF, UK.
| | | |
Collapse
|
183
|
Forget B, Hamon M, Thiébot MH. Cannabinoid CB1 receptors are involved in motivational effects of nicotine in rats. Psychopharmacology (Berl) 2005; 181:722-34. [PMID: 15986197 DOI: 10.1007/s00213-005-0015-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE The endocannabinoid system plays a role in mediating the appetitive value of a variety of reinforcing compounds, either natural rewards or drugs of abuse, but little is known about its involvement in the incentive properties of nicotine. OBJECTIVES The objective of the study is to evaluate whether activation of CB1 cannabinoid receptors is necessary for the establishment and the short- and long-term expression of nicotine-induced conditioned place preference (CPP). This was studied in rats subjected to an unbiased, one-compartment place conditioning procedure, using the selective CB1 receptor antagonist, rimonabant, as a pharmacological tool. METHODS Wistar rats, given previous experience with nicotine in their home cage, were subjected to eight alternating nicotine (0.006-0.6 mg/kg s.c.) and saline pairings with distinct floor textures in an open field and given a test session, with no nicotine injection, in the open field whose floor was covered by two quadrants of the saline-paired texture and two quadrants of the nicotine-paired texture. Rimonabant (0.3-3 mg/kg i.p.) was administered 30 min before each nicotine (0.06 mg/kg) pairing to assess its effect on the establishment of nicotine-CPP. To study the effects of CB1 receptor blockade on short- and long-term expression of nicotine-CPP, rimonabant was administered as a single injection 30 min before the test session, conducted either 24 h, 3 weeks or 12 weeks after the last conditioning session. RESULTS Rats developed reliable and robust CPP to the 0.06- and 0.125-mg/kg doses of nicotine. Once established, CPP persisted for at least 12 weeks without additional exposure to nicotine and the test apparatus. Pre-pairing injections of rimonabant (3 mg/kg, but not lower doses) prevented the acquisition of nicotine-CPP, and a single pretest administration of rimonabant (3 mg/kg) abolished the expression of nicotine-CPP when the test session took place 24 h after the last conditioning session. However, rimonabant (3 mg/kg) did not antagonize the expression of nicotine-CPP when the test session was conducted 3 or 12 weeks after the acquisition phase. CONCLUSIONS The endocannabinoids are a necessary component in both the perception by rats of the motivational value of nicotine and the short-term capacity of nicotine-paired conditioned stimuli to elicit approach behaviour. In contrast, the acute blockade of CB1 receptors no longer impairs the long-term control of behaviour by nicotine-associated environmental cues. These data provide support to the notion that the blockade of CB1 receptors can oppose tobacco dependence, withdrawal and even relapse, though the time window of efficacy and/or the schedule of administration remain to be established.
Collapse
Affiliation(s)
- Benoît Forget
- INSERM U.677 (ex. U.288), Faculté de Médecine Pitié-Salpêtrière, 91 Boulevard de l'Hôpital, 75634, Paris Cedex 13, France
| | | | | |
Collapse
|
184
|
Abstract
Nicotine dependence is the leading preventable cause of adult morbidity and mortality in the world. New research on the treatment of this disorder ranges from studies evaluating access to treatment to studies elucidating the molecular mechanisms of nicotine addiction. As our understanding of the neurobiology of tobacco addiction grows, the number of potential therapeutic targets by which we can intervene in this pernicious disorder also increases. This paper presents an overview of recent research trends in the treatment of tobacco dependence. We review several novel mechanisms of action that may serve as therapeutic targets for the pharmacologic treatment of tobacco dependence, including drugs that affect monamine oxidase, selective nicotinic receptors, glutamate and gamma-aminobutyric acid receptors, and the endocannabinoid system. For each of these therapeutic targets, we discuss medications in development that affect these pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Debra S Harris
- Mental Health Care Line (116-A), Cincinnati Veterans Affairs Medical Center, 3200 Vine Street, Cincinnati, OH 45220, USA
| | | |
Collapse
|
185
|
Carai MAM, Colombo G, Gessa GL. Rimonabant: The first therapeutically relevant cannabinoid antagonist. Life Sci 2005; 77:2339-50. [PMID: 15935395 DOI: 10.1016/j.lfs.2005.04.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
The present paper synthetically reviews the multiple experimental lines of evidence indicating the ability of the prototypic cannabinoid CB(1) receptor antagonist, rimonabant (also known as SR 141716), to suppress the reinforcing/rewarding properties of different drugs of abuse, including cocaine, heroin, nicotine and alcohol, in laboratory rodents. This paper also reviews the data demonstrating that rimonabant reduces food intake and body weight in laboratory animals and humans. Taken together, the data reviewed here suggest that rimonabant may constitute a new and potentially effective medication for the treatment of drug addiction and obesity-related disorders.
Collapse
Affiliation(s)
- Mauro A M Carai
- Bernard B. Brodie Department of Neuroscience, University of Cagliari, Viale Diaz 182, I-09126 Cagliari (CA), Italy.
| | | | | |
Collapse
|
186
|
De Vries TJ, Schoffelmeer ANM. Cannabinoid CB1 receptors control conditioned drug seeking. Trends Pharmacol Sci 2005; 26:420-6. [PMID: 15992935 DOI: 10.1016/j.tips.2005.06.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/10/2005] [Accepted: 06/15/2005] [Indexed: 11/24/2022]
Abstract
Recent developments have implicated cannabinoid CB1 receptors as a novel target for a new class of therapeutic agents used to treat drug addiction. CB1 receptors are expressed in the motivational circuitry of the brain and modulate drug seeking. Blockade of the CB1 receptor is particularly effective in reducing cue-induced reinstatement of drug seeking, an animal analogue of cue-induced relapse in human addicts. These relapse-preventing properties are observed with different classes of abused drug (i.e. psychostimulants, opiates, nicotine and alcohol). In addition, recent evidence indicates a more general role of CB1 receptors in reward-related memories, which is consistent with the proposed role of endocannabinoids in memory-related plasticity. Relapse-preventing actions and inhibitory effects on weight gain were confirmed recently in clinical trials with the CB1 antagonist rimonabant. Collectively, these clinical and preclinical studies suggest that antagonists of CB1 receptors offer a novel approach in the treatment of addictive behaviours.
Collapse
Affiliation(s)
- Taco J De Vries
- Research Institute Neurosciences Vrije Universiteit, Center for Neurogenomics and Cognitive Research, Department of Medical Pharmacology, VU medical center, Van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands.
| | | |
Collapse
|
187
|
Le Foll B, Goldberg SR. Control of the reinforcing effects of nicotine by associated environmental stimuli in animals and humans. Trends Pharmacol Sci 2005; 26:287-93. [PMID: 15925703 DOI: 10.1016/j.tips.2005.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 03/15/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
Tobacco dependence through cigarette smoking is the leading preventable cause of death in the world and kills nearly 4 million people annually. Nicotine, a psychoactive component of tobacco, is thought to have a major role in tobacco dependence by acting directly as a reinforcer of drug-seeking and drug-taking behavior. However, recent findings obtained with two procedures that are used widely to assess reinforcing effects of drugs in experimental animals, intravenous drug self-administration and conditioned place-preference procedures, demonstrate that environmental factors have a major influence on the reinforcing effects of nicotine. Under some experimental conditions, nicotine is also self-administered reliably by humans. Environmental stimuli that have been associated previously with the self-administration of nicotine can reinstate extinguished drug-seeking behavior in animals and precipitate relapse to smoking behavior in ex-smokers. Innovative medications that target cannabinoid CB(1) and dopamine D(3) receptors and might block specifically the influence of such conditioned environmental stimuli in smokers are in development.
Collapse
Affiliation(s)
- Bernard Le Foll
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, NIH/DHHS, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
188
|
Le Foll B, Goldberg SR. Cannabinoid CB1 receptor antagonists as promising new medications for drug dependence. J Pharmacol Exp Ther 2005; 312:875-83. [PMID: 15525797 DOI: 10.1124/jpet.104.077974] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This review examines the development of cannabinoid CB(1) receptor antagonists as a new class of therapeutic agents for drug addiction. Abused drugs [alcohol, opiates, Delta(9)-tetrahydrocannabinol (Delta(9)-THC), and psychostimulants, including nicotine] elicit a variety of chronically relapsing disorders by interacting with endogenous neural pathways in the brain. In particular, they share the common property of activating mesolimbic dopamine brain reward systems, and virtually all abused drugs elevate dopamine levels in the nucleus accumbens. Cannabinoid CB(1) receptors are expressed in this brain reward circuit and modulate the dopamine-releasing effects of Delta(9)-THC and nicotine. Rimonabant (SR141716), a CB(1) receptor antagonist, blocks both the dopamine-releasing and discriminative and rewarding effects of Delta(9)-THC in animals. Blockade of CB(1) receptor activity by genetic invalidation also decreases rewarding effects of opiates and alcohol in animals. Although CB(1) receptor blockade is generally ineffective in reducing the self-administration of cocaine in rodents and primates, it reduces the reinstatement of extinguished cocaine-seeking behavior produced by cocaine-associated conditioned stimuli and cocaine-priming injections. Likewise, CB(1) receptor blockade is effective in reducing nicotine-seeking behavior induced by re-exposure to nicotine-associated stimuli. Some of these findings have been recently validated in humans. In clinical trials, Rimonabant blocks the subjective effects of Delta(9)-THC in humans and prevents relapse to smoking in exsmokers. Findings from both clinical and preclinical studies suggest that ligands blocking CB(1) receptors offer a novel approach for patients suffering from drug dependence that may be efficacious across different classes of abused drugs.
Collapse
Affiliation(s)
- Bernard Le Foll
- Preclinical Pharmacology Section, NIDA, NIH, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|