151
|
Wang YH, Long HP, Zhang SX, Liu J, Zhao HQ, Yi J, Linga J. Network pharmacology-based and pharmacological evaluation of the effects of Curcumae Radix on cerebral ischemia–Reperfusion injury. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2023. [DOI: 10.4103/2311-8571.370154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
152
|
Deng YH, Zhong DY, Li L, Li HJ, Ma RM. Study on the mechanism and molecular docking verification of Buyang Huanwu decoction in treating diabetic foot. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2023. [DOI: 10.4103/2311-8571.370108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
153
|
Zhuang Z, Huang D, Sheng ZR, Ye ZJ, Jiang H, Yuan Y, Qin B, Zhao Y, Pan HF, Tang Y. Systems biology strategy and experimental validation to uncover the pharmacological mechanism of Xihuang Pill in treating non-small cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154491. [PMID: 36368285 DOI: 10.1016/j.phymed.2022.154491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for almost 85% of lung cancer-related deaths worldwide. Xihuang Pill (XHP) is a representative anticancer Chinese patented medicine used to treat NSCLC in China. However, to date, a systematic analysis of XHP's antitumour effects and its impact on the immune microenvironment has not been performed. PURPOSE Based on the systems biology strategy and experimental validation, the present study aimed to investigate the pharmacological mechanisms involved in treating NSCLC with XHP. METHODS A subcutaneous tumour model was established to evaluate XHP's tumour-inhibitory effect in BALB/c nude mice. RNA sequencing (RNA-seq) and bioinformatics analysis were conducted to identify differentially expressed genes (DEGs) and signalling pathways related to XHP treatment. Network analysis based on network pharmacology and protein-to-protein networks was applied to identify the compounds and genes targeted by XHP. External data from the TCGA-NSCLC cohort were used to verify the clinical significance of XHP-targeted genes in NSCLC. The expression of survival-related candidate genes after XHP treatment was verified via qPCR. The protein expression of calcium voltage-gated channel subunit alpha 1C (CACNA1C) in different NSCLC cell lines was analysed in the Human Protein Atlas database (HPA) and DepMap Portal. Using the Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data (ESTIMATE) algorithm and the single-sample gene set enrichment analysis (ssGSEA) algorithm uncovered the role of CACNA1C in the NSCLC tumour microenvironment (TME). RESULTS XHP (2 g/kg/d) significantly inhibited the growth of transplanted A549 tumours. RNA-seq identified a total of 529 DEGs (189 upregulated and 340 downregulated). In addition, 542 GO terms, 41 significant KEGG pathways, 9 upregulated hallmarks pathways, and 18 downregulated hallmark pathways were enriched. These GO terms and signalling pathways were closely related to cell proliferation, immunity, energy metabolism, and the inflammatory response of NSCLC. In addition, XHP's network pharmacology analysis identified 301 compounds and 1,432 target genes. A comprehensive strategic analysis identified CACNA1C as a promising gene by which XHP targets and regulates the TME of NSCLC, benefiting patient survival. CACNA1C expression was positively correlated with both the immune score and stromal score but negatively correlated with the tumour purity score. Additionally, CACNA1C expression was significantly correlated with the infiltration levels of 15 types of immune cells and the expression levels of 6 well-known checkpoint genes. CONCLUSIONS Our results show that by regulating the pathways associated with cell proliferation and immunity, XHP can suppress cancer cell growth in NSCLC. Additionally, XHP may increase the expression of CACNA1C to suppress immune cell infiltration and regulate the expression of checkpoint-related genes, thereby improving the overall survival of NSCLC patients.
Collapse
Affiliation(s)
- Zhenjie Zhuang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhou Rui Sheng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeng Jie Ye
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haimei Jiang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Yuan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Binyu Qin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua-Feng Pan
- Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Ying Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
154
|
Chen L, Ye T, Wang X, Han L, Wang T, Qi D, Cheng X. The Mechanisms Underlying the Pharmacological Effects of GuiPi Decoction on Major Depressive Disorder based on Network Pharmacology and Molecular Docking. Comb Chem High Throughput Screen 2023; 26:1701-1728. [PMID: 36045534 DOI: 10.2174/1386207325666220831152959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/12/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Major Depressive Disorder (MDD) is a common affective disorder. GuiPi decoction (GPD) is used to treat depression in China, Japan, and Korea. However, its effective ingredients and antidepressant mechanisms remain unclear. We attempted to reveal the potential mechanisms of GPD in the treatment of MDD by network pharmacology and molecular docking. In addition, we conducted an enzymatic activity assay to validate the results of molecular docking. METHODS GPD-related compounds and targets, and MDD-related targets were retrieved from databases and literature. The herb-compound-target network was constructed by Cytoscape. The protein- protein interaction network was built using the STRING database to find key targets of GPD on MDD. Enrichment analysis of shared targets was analyzed by MetaCore database to obtain the potential pathway and biological process of GPD on MDD. The main active compounds treating MDD were screened by molecular docking. The PDE4s inhibitors were screened and verified by an enzyme activity assay. RESULTS GPD contained 1222 ingredients and 190 potential targets for anti-MDD. Possible biological processes regulated by GPD were neurophysiological processes, blood vessel morphogenesis, Camp Responsive Element Modulator (CREM) pathway, and Androgen Receptor (AR) signaling crosstalk in MDD. Potential pathways in MDD associated with GPD include neurotransmission, cell differentiation, androgen signaling, and estrogen signaling. Fumarine, m-cresol, quercetin, betasitosterol, fumarine, taraxasterol, and lupeol in GPD may be the targets of SLC6A4, monoamine oxidase A (MAOA), DRD2, OPRM1, HTR3A, Albumin (ALB), and NTRK1, respectively. The IC50 values of trifolin targeting Phosphodiesterase (PDE) 4A and girinimbine targeting PDE4B1 were 73.79 μM and 31.86 μM, respectively. The IC50 values of girinimbine and benzo[a]carbazole on PDE4B2 were 51.62 μM and 94.61 μM, respectively. CONCLUSION Different compounds in GPD may target the same protein, and the same component in GPD can target multiple targets. These results suggest that the effects of GPD on MDD are holistic and systematic, unlike the pattern of one drug-one target.
Collapse
Affiliation(s)
- Liyuan Chen
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianyuan Ye
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaolong Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lu Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Tongxing Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin 300410, China
| | - Dongmei Qi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaorui Cheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
155
|
Li H, Dong A, Li N, Ma Y, Zhang S, Deng Y, Chen S, Zhang M. Mechanistic Study of Schisandra chinensis Fruit Mixture Based on Network Pharmacology, Molecular Docking and Experimental Validation to Improve the Inflammatory Response of DKD Through AGEs/RAGE Signaling Pathway. Drug Des Devel Ther 2023; 17:613-632. [PMID: 36875720 PMCID: PMC9983444 DOI: 10.2147/dddt.s395512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Background Diabetic kidney disease (DKD) is a major cause of end-stage renal disease (ESRD), and inflammation is the main causative mechanism. Schisandra chinensis fruit Mixture (SM) is an herbal formulation that has been used for a long time to treat DKD. However, its pharmacological and molecular mechanisms have not been clearly elucidated. The aim of this study was to investigate the potential mechanisms of SM for the treatment of DKD through network pharmacology, molecular docking and experimental validation. Methods The chemical components in SM were comprehensively identified and collected using liquid chromatography-tandem mass spectrometry (LC-MS) and database mining. The mechanisms were investigated using a network pharmacology, including obtaining SM-DKD intersection targets, completing protein-protein interactions (PPI) by Cytoscape to obtain key potential targets, and then revealing potential mechanisms of SM for DKD by GO and KEGG pathway enrichment analysis. The important pathways and phenotypes screened by the network analysis were validated experimentally in vivo. Finally, the core active ingredients were screened by molecular docking. Results A total of 53 active ingredients of SM were retrieved by database and LC-MS, and 143 common targets of DKD and SM were identified; KEGG and PPI showed that SM most likely exerted anti-DKD effects by regulating the expression of AGEs/RAGE signaling pathway-related inflammatory factors. In addition, our experimental validation results showed that SM improved renal function and pathological changes in DKD rats, down-regulated AGEs/RAGE signaling pathway, and further down-regulated the expression of TNF-α, IL-1β, IL-6, and up-regulated IL-10. Molecular docking confirmed the tight binding properties between (+)-aristolone, a core component of SM, and key targets. Conclusion This study reveals that SM improves the inflammatory response of DKD through AGEs/RAGE signaling pathway, thus providing a novel idea for the clinical treatment of DKD.
Collapse
Affiliation(s)
- Hongdian Li
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ao Dong
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Na Li
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yu Ma
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Sai Zhang
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yuanyuan Deng
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shu Chen
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Mianzhi Zhang
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China.,Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, People's Republic of China
| |
Collapse
|
156
|
Wu C, Yu Q, Shou W, Zhang K, Li Y, Guo W, Bao Q. Identification of molecular mechanism of the anti-lung cancer effect of Jin Ning Fang using network pharmacology and its experimental verification. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2085813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Chunxiao Wu
- Department of Thoracic Surgery, Longhua Hospital Affiliated to Shanghai TCM University, Shanghai, People’s Republic of China
| | - Qiquan Yu
- Department of Thoracic Surgery, Longhua Hospital Affiliated to Shanghai TCM University, Shanghai, People’s Republic of China
| | - Weizhen Shou
- Department of Thoracic Surgery, Longhua Hospital Affiliated to Shanghai TCM University, Shanghai, People’s Republic of China
| | - Kun Zhang
- Department of Thoracic Surgery, Longhua Hospital Affiliated to Shanghai TCM University, Shanghai, People’s Republic of China
| | - Yang Li
- Department of Thoracic Surgery, Longhua Hospital Affiliated to Shanghai TCM University, Shanghai, People’s Republic of China
| | - Wentao Guo
- Department of Thoracic Surgery, Longhua Hospital Affiliated to Shanghai TCM University, Shanghai, People’s Republic of China
| | - Qi Bao
- Department of Thoracic Surgery, Longhua Hospital Affiliated to Shanghai TCM University, Shanghai, People’s Republic of China
| |
Collapse
|
157
|
Pahal S, Gupta A, Choudhary P, Chaudhary A, Singh S. Network pharmacological evaluation of Withania somnifera bioactive phytochemicals for identifying novel potential inhibitors against neurodegenerative disorder. J Biomol Struct Dyn 2022; 40:10887-10898. [PMID: 34278961 DOI: 10.1080/07391102.2021.1951355] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders are illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Withania somnifera (Ashwagandha) in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of W. somnifera (WS) as potential inhibitors for the treatment of neurodegenerative diseases (ND). To fulfill this objective, Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 77 active components in WS, 175 predicted neurodegenerative targets of WS, and 8085 ND-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to ND. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer's disease pathways. Molecular docking results found that Anahygrine, Cuscohygrine, Isopelletierine, and Nicotine showed the best binding affinities -5.55, -4.73, -4.04, and -4.11 Kcal/mol. Further, MDS results suggested that Isopelletierine and Nicotine could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer's disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonu Pahal
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Ayushi Gupta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Princy Choudhary
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Amit Chaudhary
- Amity Institute of Biotechnology, Amity University, Noida, India
| | | |
Collapse
|
158
|
Zhang Z, Fang J, Sun D, Zheng Y, Liu X, Li H, Hu Y, Liu Y, Zhang M, Liu W, Zhang X, Liu X. Study on the Mechanism of Radix Astragali against Renal Aging Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6987677. [PMID: 36561604 PMCID: PMC9767736 DOI: 10.1155/2022/6987677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022]
Abstract
Radix Astragali is widely used in the traditional Chinese medicine with the effect of antiaging. The purpose of this study is to explore the main active ingredients and targets of Radix Astragali against renal aging by network pharmacology and further to verify the mechanism of the main active ingredients in vitro. TCMSP, ETCM, and TCMID databases were used to screen active ingredients of Radix Astragali. Targets of active ingredients were predicted using BATMAN-TCM and cross validated using kidney aging-related genes obtained from GeneCards and NCBI database. Pathways enrichment and protein-protein interaction (PPI) analysis were performed on core targets. Additionally, a pharmacological network was constructed based on the active ingredients-targets-pathways. HK-2 cell was treated with D-galactose to generate a cell model of senescence. CCK-8 and β-galactosidase were used to detect the effect of Radix Astragali active components on cell proliferation and aging. ELISA was used to detect the expression of senescence-associated secreted protein (TGF-β and IL-6) in the cell culture supernatant. Western blot was used to detect the expression of key proteins in the SIRT1/p53 pathway. Five active ingredients (Astragaloside I, II, III, IV and choline) were identified from Radix Astragali, and all these active ingredients target a total of 128 genes. Enrichment analysis showed these genes were implicated in 153 KEGG pathways, including the p53, FoxO, and AMPK pathway. 117 proteins and 572 interactions were found in PPI network. TP53 and SIRT1 were two hub genes in PPI network, which interacted with each other. The pharmacological network showed that the five main active ingredients target on some coincident genes, including TP53 and SIRT1. These targeted genes were involved in the p53, FoxO, and AMPK pathway. Proliferation of HK-2 cells was increased by Astragaloside IV treatment compared with that of the D-Gal treatment group. However, the proliferation of the SA-β-gal positive cells were inhibited. The expression of TGF-β and IL-6 in the D-Gal group was higher than that in the normal group, and the treatment of Astragaloside IV could significantly reduce the expression of TGF-β and IL-6. The expression of SIRT1 in the Astragaloside IV group was higher than that in the D-Gal group. However, the expression of p53 and p21 was less in the Astragaloside IV group than that in the D-Gal group. This study suggested that Astragaloside IV is an important active ingredient of Radix Astragali in the treatment of kidney aging via the SITR1-p53 pathway.
Collapse
Affiliation(s)
- Ziyuan Zhang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Dalin Sun
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Yaqin Zheng
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Xinhui Liu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Hui Li
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Yaling Hu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Yuxiang Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Mingyu Zhang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Wenyuan Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Xiaodong Zhang
- Department of Nephrology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| | - Xuejun Liu
- Department of Geriatrics, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan, Shanxi Province 030001, China
| |
Collapse
|
159
|
Wang F, Wang S, Wang J, Huang K, Chen G, Peng Y, Liu C, Tao Y. Pharmacological mechanisms of Fuzheng Huayu formula for Aristolochic acid I-induced kidney fibrosis through network pharmacology. Front Pharmacol 2022; 13:1056865. [PMID: 36569327 PMCID: PMC9779930 DOI: 10.3389/fphar.2022.1056865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
Renal fibrosis, characterized by the destruction of renal tubules and interstitial capillaries and the accumulation of extracellular matrix proteins, is a common outcome of chronic renal diseases and has a wide spectrum of etiologies. Fibrosis can affect any organ and has similar pathological mechanisms. Fuzheng Huayu formula (FZHY), as the approved anti-liver fibrosis medicine in China, also can inhibit the kidney fibrosis induced by HgCl2 or unilateral ureteral obstruction. However, little is known about the mechanisms underlying the beneficial effects of FZHY on renal fibrosis. This study aimed to identify the mechanisms of FZHY acts on renal fibrosis through network pharmacological analysis and in vivo experiments. Data from online databases were mined and screened to predict the target related genes of FZHY acts on renal fibrosis. The STRING and Cytoscape were used to construct the protein-protein interaction (PPI) networks for FZHY and CKD target proteins. Mouse models with CKD induced by Aristolochic Acid I (AAI) were used to validate the effects of FZHY on renal fibrosis and their underlying mechanisms by detecting kidney function, renal fibrosis, and related intersection genes. A total of 129 FZHY-CKD crossover proteins were filtered and constructed into a protein-protein interaction network complex and designated as the potential targets of FZHY. One of the highest-scoring genes, FOS, and its related signaling pathways were more activated in CKD. The results demonstrated that FZHY can exert an anti-renal fibrosis effect by improving the levels of serum creatinine and blood urea nitrogen and alleviating excessive collagen deposition in kidney tissue, FZHY also could reduce the levels of TNF-α, IL-1β, and IL-6 and inhibit the expression of MAPK/FOS signal molecules. Our study findings provide insights into predicting the effects of FZHY on CKD through network pharmacology. FZHY can protect the kidney from inflammatory injury caused by AAI and can antagonize inflammatory factor-stimulated MAPK/FOS activation in fibrotic kidneys. These effects constitute the mechanisms of FZHY for renal fibrosis.
Collapse
Affiliation(s)
- Fan Wang
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siyuan Wang
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wang
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Huang
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Gaofeng Chen
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Peng
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chenghai Liu, ; Yanyan Tao,
| | - Yanyan Tao
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chenghai Liu, ; Yanyan Tao,
| |
Collapse
|
160
|
Pharmacological Mechanism of NRICM101 for COVID-19 Treatments by Combined Network Pharmacology and Pharmacodynamics. Int J Mol Sci 2022; 23:ijms232315385. [PMID: 36499711 PMCID: PMC9740625 DOI: 10.3390/ijms232315385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Symptom treatments for Coronavirus disease 2019 (COVID-19) infection and Long COVID are one of the most critical issues of the pandemic era. In light of the lack of standardized medications for treating COVID-19 symptoms, traditional Chinese medicine (TCM) has emerged as a potentially viable strategy based on numerous studies and clinical manifestations. Taiwan Chingguan Yihau (NRICM101), a TCM designed based on a medicinal formula with a long history of almost 500 years, has demonstrated its antiviral properties through clinical studies, yet the pharmacogenomic knowledge for this formula remains unclear. The molecular mechanism of NRICM101 was systematically analyzed by using exploratory bioinformatics and pharmacodynamics (PD) approaches. Results showed that there were 434 common interactions found between NRICM101 and COVID-19 related genes/proteins. For the network pharmacology of the NRICM101, the 434 common interacting genes/proteins had the highest associations with the interleukin (IL)-17 signaling pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Moreover, the tumor necrosis factor (TNF) was found to have the highest association with the 30 most frequently curated NRICM101 chemicals. Disease analyses also revealed that the most relevant diseases with COVID-19 infections were pathology, followed by cancer, digestive system disease, and cardiovascular disease. The 30 most frequently curated human genes and 2 microRNAs identified in this study could also be used as molecular biomarkers or therapeutic options for COVID-19 treatments. In addition, dose-response profiles of NRICM101 doses and IL-6 or TNF-α expressions in cell cultures of murine alveolar macrophages were constructed to provide pharmacodynamic (PD) information of NRICM101. The prevalent use of NRICM101 for standardized treatments to attenuate common residual syndromes or chronic sequelae of COVID-19 were also revealed for post-pandemic future.
Collapse
|
161
|
Hypoglycemic Effect and Experimental Validation of Scutellariae Radix based on Network Pharmacology and Molecular Docking. Processes (Basel) 2022. [DOI: 10.3390/pr10122553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Scutellariae Radix (SR) is a well-known traditional herb that has good pharmacological effects against diabetes. However, the mechanism of SR against diabetes is not clear. In this study, the ingredient–target–pathway relationship and hypoglycemic effect of SR on diabetes were explored using network pharmacology, molecular docking and an animal experiment. The targets of SR and diabetes were mined. The selected targets were studied using Gene Ontology (GO) enrichment analysis and pathway enrichment analysis. The network of active components, targets and pathways was integrated to analyze the ingredient–target–pathway relationship. Then, the correspondence between the active components and targets was verified using molecular docking. Finally, an animal experiment was used to verify the hypoglycemic effect of SR. There were 52 components and 22 targets for the hypoglycemic effect of SR. We identified 18 biological processes, 9 cellular components, 15 molecular functions and 25 signaling pathways. Molecular docking results indicated that the targets of diabetes bound strongly to the main components. The animal experiments showed that SR could significantly decrease the blood glucose level of diabetic rats (p ≤ 0.05). This study explored the potential targets and signaling pathways of SR in diabetes, and the results may help to illustrate the hypoglycemic mechanism of SR.
Collapse
|
162
|
Dong Q, Yang S, Liao H, He Q, Xiao J. Preclinical findings reveal the pharmacological targets of ferulic acid in the treatment of traumatic brain injury. Food Sci Nutr 2022; 10:4403-4410. [PMID: 36514753 PMCID: PMC9731527 DOI: 10.1002/fsn3.3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is characterized by cellular damage and inflammation in lesioned brain tissue. Ferulic acid has been shown to have a melioration effect on neurological functions. However, the active pharmacological effects and the underlying mechanisms of ferulic acid against TBI remain unclear. On the basis of network pharmacology and molecular docking methodology, this study aimed to investigate the beneficial effects of ferulic acid in treating TBI, and characterized the detailed biotargets and mechanisms of these actions. The identified core targets were validated via in silico simulation. We identified 91 overlapping targets associated with ferulic acid and TBI. In-silico simulation analysis validated the putative core targets of tumor protein p53, mitogen-activated protein kinase (MAPK) 1, and estrogen receptor 1. The Gene Ontology-enriched annotations and findings were largely associated with cell proliferation, apoptosis, and inflammation in nerve cells. Additional Kyoto Encyclopedia of Genes and Genomes enrichment analysis unmasked the pharmacological pathways of ferulic acid in treating TBI, including the MAPK signaling pathway and hypoxia-inducible factor-1 signaling pathway. Bioinformatic analyses and findings provide a new preclinical strategy for revealing the core targets and network pathways of ferulic acid in treating TBI. Moreover, some bioinformatic findings were computationally validated in silico for exhibiting the neuroprotective action of ferulic acid against TBI.
Collapse
Affiliation(s)
- Qinghua Dong
- Intensive Care UnitGuilin Municipal Hospital of Traditional Chinese MedicineGuilinGuangxiPeople's Republic of China
| | - Shenglin Yang
- Intensive Care UnitGuilin Municipal Hospital of Traditional Chinese MedicineGuilinGuangxiPeople's Republic of China
| | - Huafeng Liao
- Intensive Care UnitGuilin Municipal Hospital of Traditional Chinese MedicineGuilinGuangxiPeople's Republic of China
| | - Qi He
- Intensive Care UnitGuilin Municipal Hospital of Traditional Chinese MedicineGuilinGuangxiPeople's Republic of China
| | - Junxin Xiao
- Intensive Care UnitGuilin Municipal Hospital of Traditional Chinese MedicineGuilinGuangxiPeople's Republic of China
| |
Collapse
|
163
|
Xu L, Jois S, Cui H. Metformin and Gegen Qinlian Decoction boost islet α-cell proliferation of the STZ induced diabetic rats. BMC Complement Med Ther 2022; 22:193. [PMID: 35858880 PMCID: PMC9301855 DOI: 10.1186/s12906-022-03674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022] Open
Abstract
Background The traditional Chinese medicine Gegen Qinlian Decoction (GQD), as well as metformin, had been reported with anti-diabetic effects in clinical practice. Objective To verify whether these two medicines effectively ameliorate hyperglycemia caused by deficiency of islet β-cell mass which occurs in both type 1 and type 2 diabetes. Methods SD rats were injected with a single dose of STZ (55 mg/kg) to induce β-cell destruction. The rats were then divided into control, diabetes, GQD and metformin group. GQD and metformin groups were administered with GQD extract or metformin for 6 weeks. The islet α-cell or β-cell mass changes were tested by immunohistochemical and immunofluorescent staining. The potential targets and mechanisms of GQD and metformin on cell proliferation were tested using in silico network pharmacology. Real-time PCR was performed to test the expression of islet cells related genes and targets related genes. Results Both GQD and metformin did not significantly reduce the FBG level caused by β-cell mass reduction, but alleviated liver and pancreas histopathology. Both GQD and metformin did not change the insulin positive cell mass but increased α-cell proliferation of the diabetic rats. Gene expression analysis showed that GQD and metformin significantly increased the targets gene cyclin-dependent kinase 4 (Cdk4) and insulin receptor substrate (Irs1) level. Conclusion This research indicates that GQD and metformin significantly increased the α-cell proliferation of β-cell deficiency induced diabetic rats by restoring Cdk4 and Irs1 gene expression.
Collapse
|
164
|
Zhong Y, Hu L, Chen W, Wang B, Sun J, Dong J. Exploring the comorbidity mechanisms between asthma and idiopathic pulmonary fibrosis and the pharmacological mechanisms of Bu-Shen-Yi-Qi decoction therapy via network pharmacology. BMC Complement Med Ther 2022; 22:151. [PMID: 35672815 PMCID: PMC9175349 DOI: 10.1186/s12906-022-03637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Backgrounds Asthma and idiopathic pulmonary fibrosis (IPF) are common chronic diseases of the respiratory system in clinical practice. However, the relationship and molecular links remain unclear, and the current treatment’s efficacy is disappointing. Bu-Shen-Yi-Qi (BSYQ) decoction has proven effective in treating various chronic airway inflammatory diseases, including asthma and IPF. But the underlying pharmacological mechanisms are still to be elucidated. Methods This study searched the proteins related to asthma and IPF via TTD, CTD, and DisGeNET databases and then submitted to the STRING to establish the protein–protein interaction (PPI) network. The co-bioinformatics analysis was conducted by Metascape. The active ingredients of BSYQ decoction were screened from TCMSP, ETCM, BATMAN-TCM databases, and HPLC/MS experiment. The corresponding targets were predicted based on TCMSP, ETCM, and BATMAN-TCM databases. The shared targets for asthma and IPF treatment were recognized, and further GO and KEGG analyses were conducted with the DAVID platform. Finally, molecule docking via Autodock Vina was employed to predict the potential binding mode between core potential compounds and targets. Results Finally, 1333 asthma-related targets and 404 IPF-related proteins were retrieved, 120 were overlapped between them, and many of the asthma-related proteins fall into the same statistically significant GO terms with IPF. Moreover, 116 active ingredients of BSYQ decoction were acquired, and 1535 corresponding targets were retrieved. Eighty-three potential compounds and 56 potential targets were recognized for both asthma and IPF treatment. GO and KEGG analysis indicated that the inflammation response, cytokine production, leukocyte differentiation, oxygen level response, etc., were the common pathological processes in asthma and IPF, which were regulated by BSYQ decoction. Molecule docking further predicted the potential binding modes between the core potential compounds and targets. Conclusion The current study successfully clarified the complex molecule links between asthma and IPF and found the potential common targets. Then we demonstrated the efficacy of BSYQ decoction for asthma and IPF treatment from the angle of network pharmacology, which may provide valuable references for further studies and clinical use. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03637-7.
Collapse
|
165
|
Meimei C, Fengzhen W, Huangwei L, Candong L, Zhaoyang Y. Discovery of Taxus chinensis fruit wine as potentially functional food against Alzheimer's disease by UHPLC-QE-MS/MS, network pharmacology and molecular docking. J Food Biochem 2022; 46:e14502. [PMID: 36394096 DOI: 10.1111/jfbc.14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Nowadays, there is no specific cure for Alzheimer's disease (AD), but the progression of AD can be improved by preventive interventions. The wine of Taxus chinensis fruit (TCFW) has the effect of improving human immunity and anti-aging as a long history of health care wine in folk, especially popular in the longevity villages in China, which may be potentially effective dietary products to improve AD. However, the chemical constituents and molecular mechanisms of TCFW still remain unknown. In this study, chemical profiling with UHPLC-QE-MS/MS, network pharmacology and molecular docking were integrated to fastly explore the potential chemicals and mechanisms of TCFW against AD. A total of 31 chemical components in TCFW were detected and identified compared with the solvent wine of TCFW by UHPLC-QE-MS/MS. Then, 27 potential key targets and 14 chemical compounds of TCFW were uncovered for the improvement of AD by network pharmacology and molecular docking. These 14 compounds were reported to have diverse bioactivities such as neuroprotective activity, antifibrotic activity, anticancer activity, antiviral activity and effectiveness in the treatment of neuronal injury, Alzheimer's disease, etc. Among these 27 targets affected by TCFW predicted by our approach, AKT1, PTGS2, NOS3, NOS2, INS, ESR1, ESR2, BDNF, IL6, IL1B, DRD2 and ACHE were significantly altered in AD. The GO and KEGG enrichment analyses revealed that TCFW mainly acted on oxidative response, inflammatory response, insulin secretion, amyloid fibril formation, neurodegenerative pathway-multiple diseases, Alzheimer's disease, longevity regulation pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, etc, which were the main pathogenesis of AD. PRACTICAL APPLICATIONS: Alzheimer's disease (AD) is a degenerative neurological disorder characterized by cognitive and behavioral dysfunction. Nowadays, there is no specific cure for AD, but the progression of AD can be improved by preventive interventions. The wine of Taxus chinensis fruit (TCFW) has the effect of improving human immunity and anti-aging as a long history of health care wine in folk, especially popular in the longevity villages in China, which may be potentially effective dietary products to improve AD. This study proposed a fastly integrated method to explore the potential chemicals and mechanisms of TCFW against AD by UHPLC-QE-MS/MS, network pharmacology and molecular docking. Here, we found that TCFW may ameliorate AD by reversing many biological events, including oxidative stress, inflammatory response, neuronal apoptosis, insulin secretion, amyloid fibril formation, and T cell co-stimulation, which may provide some insights for the development and research of anti-AD drugs.
Collapse
Affiliation(s)
- Chen Meimei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wang Fengzhen
- Certification Center for Chinese Physicians, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Lei Huangwei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Li Candong
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yang Zhaoyang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
166
|
Yi Z, Jia Q, Lin Y, Wang Y, Cong J, Gu Z, Ling J, Cai G. Mechanism of Elian granules in the treatment of precancerous lesions of gastric cancer in rats through the MAPK signalling pathway based on network pharmacology. PHARMACEUTICAL BIOLOGY 2022; 60:87-95. [PMID: 34962453 PMCID: PMC8725869 DOI: 10.1080/13880209.2021.2017980] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/17/2021] [Accepted: 12/08/2021] [Indexed: 05/26/2023]
Abstract
CONTEXT Elian Granules have been applied in the treatment of precancerous lesions of gastric cancer (PLGC) and achieved good results. However, its exact mechanism remains unclear. OBJECTIVES To explore the mechanism of Elian granules in treating PLGC through the mitogen-activated protein kinase (MAPK) signalling pathway based on network pharmacology. MATERIALS AND METHODS Through network pharmacological methods, the targets of the active component of Elian granules against PLGC were obtained. Subsequently, Specific Pathogen Free (SPF) male Sprague Dawley (SD) rats were randomly divided into normal, model, and Elian granule groups. The N-methyl-N'-nitro-N-nitrosoguanidine comprehensive method was used to establish the PLGC rat model. The model and Elian granule groups were given normal saline and Elian granule aqueous solution (3.24 g/kg/d) intragastric administration, respectively, for 24 weeks. The pathological changes in gastric tissues were observed by hematoxylin-eosin staining. The protein expression of p-JNK and p-p38 was verified by western blotting. RESULTS 394 and 4,395 targets were identified in Elian granules and PLGC, respectively. The 190 common targets were mainly enriched in MAPK signalling pathways. The gastric mucosal epithelium was still intact, the glands were arranged regularly, and no goblet cells or apparent inflammatory cell infiltration were observed in the Elian granule group. The expression of p-JNK and p-p38 protein of the Elian granule group (0.83 ± 0.08; 1.18 ± 0.40) was significantly higher than the model group (0.27 ± 0.14; 0.63 ± 0.14) (p < 0.01; p < 0.05). DISCUSSION AND CONCLUSIONS Elian granules may play a critical role in the treatment of rat PLGC by up-regulating the expression of p-JNK and p-p38 proteins in the MAPK signalling pathway, thus providing a scientific basis for clinical application.
Collapse
Affiliation(s)
- Zhirong Yi
- The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People’s Republic of China
| | - Qingling Jia
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yili Lin
- The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People’s Republic of China
| | - Yujiao Wang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jun Cong
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zhijian Gu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jianghong Ling
- The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, People’s Republic of China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Gan Cai
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
167
|
Li W, Lv L, Ruan M, Xu J, Zhu W, Li Q, Jiang X, Zheng L, Zhu W. Qin Huang formula enhances the effect of Adriamycin in B-cell lymphoma via increasing tumor infiltrating lymphocytes by targeting toll-like receptor signaling pathway. BMC Complement Med Ther 2022; 22:185. [PMID: 35818037 PMCID: PMC9272877 DOI: 10.1186/s12906-022-03660-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/29/2022] [Indexed: 12/05/2022] Open
Abstract
Background As an original traditional Chinese medicinal formula, Qin Huang formula (QHF) is used as adjuvant therapy for treating lymphoma in our hospital and has proven efficacy when combined with chemotherapy. However, the underlying mechanisms of QHF have not been elucidated. Methods A network pharmacological-based analysis method was used to screen the active components and predict the potential mechanisms of QHF in treating B cell lymphoma. Then, a murine model was built to verify the antitumor effect of QHF combined with Adriamycin (ADM) in vivo. Finally, IHC, ELISA, 18F-FDG PET-CT scan, and western blot were processed to reveal the intriguing mechanism of QHF in treating B cell lymphoma. Results The systemic pharmacological study revealed that QHF took effect following a multiple-target and multiple-pathway pattern in the human body. In vivo study showed that combination therapy with QHF and ADM potently inhibited the growth of B cell lymphoma in a syngeneic murine model, and significantly increased the proportion of tumor infiltrating CD4+ and CD8+ T cells in the tumor microenvironment (TME). Furthermore, the level of CXCL10 and IL-6 was significantly increased in the combination group. Finally, the western blot exhibited that the level of TLR2 and p38 MAPK increased in the combination therapy group. Conclusion QHF in combination of ADM enhances the antitumor effect of ADM via modulating tumor immune microenvironment and can be a combination therapeutic strategy for B cell lymphoma patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03660-8.
Collapse
|
168
|
Wang H. Network pharmacology- and molecular docking-based approaches to unveil the pharmacological mechanisms of dihydroartemisinin against esophageal carcinoma. Front Genet 2022; 13:1017520. [PMID: 36506308 PMCID: PMC9732420 DOI: 10.3389/fgene.2022.1017520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Objective: Dihydroartemisinin (DHA) is an active metabolite of artemisinin and its derivatives, which is a potent drug extensively applied in clinical treatment of malaria. The antitumor properties of DHA have received increasing attention. However, there is no systematic summary on the pharmacological mechanisms of DHA against esophageal carcinoma (ESCA). The present study implemented network pharmacology- and molecular docking-based approaches to unveil the pharmacological mechanisms of DHA against ESCA. Methods: DHA targets were accessed through integrating the SwissTargetPrediction, HERB, as well as BATMAN-TCM platforms. In TCGA-ESCA dataset, genes with differential expression were screened between 161 ESCA and 11 normal tissue specimens. DHA targets against ESCA were obtained through intersection. Their biological significance was evaluated with functional enrichment analysis. A prognostic signature was established via uni- and multivariate cox regression analyses. DHA-target interactions were predicted via molecular docking. Molecular dynamics simulation was implemented to examine the stability of DHA binding to potential targets. Results: The study predicted 160 DHA targets as well as 821 genes with differential expression in ESCA. Afterwards, 16 DHA targets against ESCA were obtained, which remarkably correlated to cell cycle progression. The ADORA2B- and AURKA-based prognostic signature exhibited the reliability and independency in survival prediction. The stable docking of DHA-ADORA2B and DHA-AURKA was confirmed. Conclusion: Collectively, this study systematically revealed the basis and mechanism of DHA against ESCA through targeting multi-target and multi-pathway mechanisms, and thus offered theoretical and scientific basis for the clinical application of DHA.
Collapse
|
169
|
Ling J, Huang Y, Sun Z, Guo X, Chang A, Pan J, Zhuo X. Exploration of the effect of Celastrol on protein targets in nasopharyngeal carcinoma: Network pharmacology, molecular docking and experimental evaluations. Front Pharmacol 2022; 13:996728. [PMID: 36506508 PMCID: PMC9726908 DOI: 10.3389/fphar.2022.996728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Celastrol, an important extract of Tripterygium wilfordii, shows strong antitumor activity in a variety of tumors including nasopharyngeal carcinoma (NPC). However, little is known about its targets in NPC. We aimed to screen the key gene targets of Celastrol in the treatment of NPC by means of in silico analyses (including network pharmacology and molecular docking) and experimental evaluations. Methods: The main target genes of Celastrol and the genes related to NPC were obtained by retrieving the relevant biological databases, and the common targets were screened. Protein-protein interaction analysis was used to screen the hub genes. Then, a "compound-target-disease" network model was created and molecular docking was used to predict the binding of Celastrol to the candidate hub proteins. Afterward, the expression changes of the candidate genes under the administration of Celastrol were verified in vitro and in vivo. Results: Sixty genes common to Celastrol and NPC were screened out, which may be related to numerous biological processes such as cell proliferation, apoptosis, and tube development, and enriched in various pathways such as PI3K- Akt, EGFR tyrosine kinase inhibitor resistance, and Apoptosis. The tight binding ability of the candidate hub proteins (TNF, VEGFA, and IL6) to Celastrol was predicted by molecular docking [Docking energy: TNF, -6.08; VEGFA,-6.76; IL6,-6.91(kcal/mol)]. In vitro experiments showed that the expression of TNF and VEGFA decreased while the expression of IL6 increased in NPC cells (CNE2 and HONE1) treated with Celastrol. In vivo experiments suggested that Celastrol significantly reduced the weight and volume of the transplanted tumors in tumor-bearing mice in vivo. The expression of TNF, VEGFA, and IL6 in the transplanted tumor cells could be regulated by using Celastrol, and the expression trends were consistent with the in vitro model. Conclusion: Several gene targets have been filtered out as the core targets of Celastrol in the treatment of NPC, which might be involved in a variety of signaling pathways. Hence, Celastrol may exert its anti-NPC activity through multiple targets and multiple pathways, which will provide new clues for further research. Future experiments are warranted to validate the findings.
Collapse
Affiliation(s)
- Junjun Ling
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Huang
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhen Sun
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaopeng Guo
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Aoshuang Chang
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jigang Pan
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Jigang Pan, ; Xianlu Zhuo,
| | - Xianlu Zhuo
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Jigang Pan, ; Xianlu Zhuo,
| |
Collapse
|
170
|
Wang Q, Lin J, Li C, Lin M, Zhang Q, Zhang X, Yao K. Traditional Chinese medicine method of tonifying kidney for hypertension: Clinical evidence and molecular mechanisms. Front Cardiovasc Med 2022; 9:1038480. [PMID: 36465462 PMCID: PMC9709460 DOI: 10.3389/fcvm.2022.1038480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 09/19/2023] Open
Abstract
Hypertension is the most common chronic disease. A large amount of evidence showed that traditional Chinese medicine (TCM) method of tonifying kidney (TK) combined with routine treatment is more effective and safer in the treatment of hypertension. This study integrated meta-analysis, data mining, and network pharmacology to explore the efficacy and potential mechanisms of TK in the treatment of hypertension. Meta-analysis was performed to explore the efficacy and safety of TK combined with routine treatment in the treatment of hypertension. Data mining was used to screen the core herbs of the TK. Network pharmacology was used to predict the antihypertensive mechanism of TK core herbs. A total of 18 studies with 2,024 patients were included in this study. Meta-analysis showed that TK combined with routine treatment was superior to routine treatment alone in lowering blood pressure (systolic and diastolic blood pressures), lowering blood lipids (total cholesterol, triglyceride, low-density lipoprotein cholesterol), improving vascular endothelial functions (nitric oxide, endothelin) and TCM symptoms (headache dizziness, soreness, and weakness of waist and knees). In addition, TK was safe and has no obvious adverse reactions. Data mining showed that the core herbs of TK were Eucommia ulmoides Oliv. (Duzhong), Vitex negundo L. (Huangjing), Taxillus chinensis (DC.) Danser (Sangjisheng), Ligustrum lucidum W.T.Aiton (Nuzhenzi), Astragalus mongholicus Bunge (Huangqi), Rehmannia glutinosa (Gaertn.) DC. (Shudihuang). Network pharmacology predicted that core herbs antihypertensive components were oleanolic acid, ursolic acid, and civetone, and the antihypertensive targets were NOS3, NOS2, MMP9, TNF, PTGS2, HMOX1. In addition, the antihypertensive targets were enriched in cGMP-PKG signaling pathway, calcium signaling pathway, aldosterone-regulated sodium reabsorption, HIF-1 signaling pathway. In conclusion, TK combined with routine treatment for hypertension is effective and safe. The mechanism of TK may be related to GMP-PKG signaling pathway, calcium signaling pathway, aldosterone-regulated sodium reabsorption. On the premise of syndrome differentiation and treatment, it is promising to treat hypertension with TK. Systematic review registration [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022358276].
Collapse
Affiliation(s)
- Qingqing Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianguo Lin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cheng Li
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingshan Lin
- Beijing University of Chinese Medicine, Beijing, China
| | - Qing Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxiao Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kuiwu Yao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
171
|
Liao Y, Ding Y, Yu L, Xiang C, Yang M. Exploring the mechanism of Alisma orientale for the treatment of pregnancy induced hypertension and potential hepato-nephrotoxicity by using network pharmacology, network toxicology, molecular docking and molecular dynamics simulation. Front Pharmacol 2022; 13:1027112. [PMID: 36457705 PMCID: PMC9705790 DOI: 10.3389/fphar.2022.1027112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 10/28/2023] Open
Abstract
Background: Pregnancy-induced Hypertension (PIH) is a disease that causes serious maternal and fetal morbidity and mortality. Alisma Orientale (AO) has a long history of use as traditional Chinese medicine therapy for PIH. This study explores its potential mechanism and biosafety based on network pharmacology, network toxicology, molecular docking and molecular dynamics simulation. Methods: Compounds of AO were screened in TCMSP, TCM-ID, TCM@Taiwan, BATMAN, TOXNET and CTD database; PharmMapper and SwissTargetPrediction, GeneCards, DisGeNET and OMIM databases were used to predict the targets of AO anti-PIH. The protein-protein interaction analysis and the KEGG/GO enrichment analysis were applied by STRING and Metascape databases, respectively. Then, we constructed the "herb-compound-target-pathway-disease" map in Cytoscape software to show the core regulatory network. Finally, molecular docking and molecular dynamics simulation were applied to analyze binding affinity and reliability. The same procedure was conducted for network toxicology to illustrate the mechanisms of AO hepatotoxicity and nephrotoxicity. Results: 29 compounds with 78 potential targets associated with the therapeutic effect of AO on PIH, 10 compounds with 117 and 111 targets associated with AO induced hepatotoxicity and nephrotoxicity were obtained, respectively. The PPI network analysis showed that core therapeutic targets were IGF, MAPK1, AKT1 and EGFR, while PPARG and TNF were toxicity-related targets. Besides, GO/KEGG enrichment analysis showed that AO might modulate the PI3K-AKT and MAPK pathways in treating PIH and mainly interfere with the lipid and atherosclerosis pathways to induce liver and kidney injury. The "herb-compound-target-pathway-disease" network showed that triterpenoids were the main therapeutic compounds, such as Alisol B 23-Acetate and Alisol C, while emodin was the main toxic compounds. The results of molecular docking and molecular dynamics simulation also showed good binding affinity between core compounds and targets. Conclusion: This research illustrated the mechanism underlying the therapeutic effects of AO against PIH and AO induced hepato-nephrotoxicity. However, further experimental verification is warranted for optimal use of AO during clinical practice.
Collapse
Affiliation(s)
- Yilin Liao
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yiling Ding
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ling Yu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cheng Xiang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mengyuan Yang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
172
|
Indradi RB, Pitaloka DAE, Suryani S. Network pharmacology to uncover potential anti-inflammatory and immunomodulatory constituents in Curcuma longa rhizome as complementary treatment in COVID-19. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e89799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The immune status of patients plays an essential role in COVID-19. Herbal medicine with immunomodulatory and anti-inflammatory effect could have potential as a complementary therapeutic along with modern medicine. This study aims to investigate the anti-inflammatory and immunomodulatory constituents of Curcuma longa (C. longa) and its possible mechanisms in COVID-19. We systematically sorted the biochemical of C. longa rhizome from literature and repository. Next, we investigated targets related to COVID-19 in the selected active phytochemical constituents and analyzed the possible mechanisms against COVID-19 and performed molecular docking with four essential target proteins in COVID-19 for further verification. Ten active phytochemical constituents of C. longa were predicted to interact with four protein targets. The epidermal growth factor was the most interacted protein targeted by Calebin A, curcumin, cyclocurcumin, demethoxycurcumin, turmeronol a, turmeronol b, caffeic acid, and quercetin. Interferon-gamma was performed as the most critical protein targeted by 4-hydroxycinnamic acid. Curcumin was also predicted to interact with toll-like receptor 4 and Ar-turmerone with angiotensin II receptor type 2. We also reported four signaling pathways associated with target proteins-active phytochemical constituents against COVID-19: cytokine-cytokine receptor interaction, toll-like receptor signaling pathway, Jak-STAT signaling pathway, and PI3K-Akt signaling pathway. In conclusion, multi compounds in C. longa might act synergistically against COVID-19 by affecting the inflammatory and immune responses, and other pathological processes through multiple targets and pathways.
Collapse
|
173
|
Inhibitory Effects of Rabdosia rubescens in Esophageal Squamous Cell Carcinoma: Network Pharmacology and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2696347. [DOI: 10.1155/2022/2696347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/12/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most frequently occurring diseases in the world. Rabdosia rubescens (RR) has been demonstrated to be effective against ESCC; however, the mechanism is unknown. The primary gene modules related to the clinical characteristics of ESCC were initially investigated in this research using weighted gene co-expression network analysis (WCGNA) and differential expression gene (DEG) analysis. We employed network pharmacology to study the hub genes linked with RR therapy on ESCC. A molecular docking simulation was achieved to identify the binding activity of central genes to RR compounds. Lastly, a chain of experimentations was used to verify the inhibitory effect of RR water extract on the ESCC cell line in vitro. The outcomes revealed that CCNA2, TOP2A, AURKA, CCNB2, CDK2, CHEK1, and other potential central targets were therapeutic targets for RR treatment of ESCC. In addition, these targets are over-represented in several cancer-related pathways, including the cell cycle signaling pathway and the p53 signaling pathway. The predicted targets displayed good bonding activity with the RR bioactive chemical according to a molecular docking simulation. In vitro experiments revealed that RR water extracts could inhibit ESCC cells, induce cell cycle arrest, inhibit cell proliferation, increase P53 expression, and decrease CCNA2, TOP2A, AURKA, CCNB2, CDK2, and CHEK1. In conclusion, our study reveals the molecular mechanism of RR therapy for ESCC, providing great potential for identifying effective compounds and biomarkers for ESCC therapy.
Collapse
|
174
|
Alshehade SA, Al Zarzour RH, Murugaiyah V, Lim SYM, El-Refae HG, Alshawsh MA. Mechanism of action of Orthosiphon stamineus against non-alcoholic fatty liver disease: Insights from systems pharmacology and molecular docking approaches. Saudi Pharm J 2022; 30:1572-1588. [PMID: 36465851 PMCID: PMC9715956 DOI: 10.1016/j.jsps.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022] Open
Abstract
UNLABELLED Non-alcoholic fatty liver disease (NAFLD) is one of the most common complications of a metabolic syndrome caused by excessive accumulation of fat in the liver. Orthosiphon stamineus also known as Orthosiphon aristatus is a medicinal plant with possible potential beneficial effects on various metabolic disorders. This study aims to investigate the in vitro inhibitory effects of O. stamineus on hepatic fat accumulation and to further use the computational systems pharmacology approach to identify the pharmacokinetic properties of the bioactive compounds of O. stamineus and to predict their molecular mechanisms against NAFLD. METHODS The effects of an ethanolic extract of O. stamineus leaves on cytotoxicity, fat accumulation and antioxidant activity were assessed using HepG2 cells. The bioactive compounds of O. stamineus were identified using LC/MS and two bioinformatics databases, namely the Traditional Chinese Medicine Integrated Database (TCMID) and the Bioinformatics Analysis Tool for the Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). Pathway enrichment analysis was performed on the predicted targets of the bioactive compounds to provide a systematic overview of the molecular mechanism of action, while molecular docking was used to validate the predicted targets. RESULTS A total of 27 bioactive compounds corresponding to 50 potential NAFLD-related targets were identified. O. stamineus exerts its anti-NAFLD effects by modulating a variety of cellular processes, including oxidative stress, mitochondrial β-oxidation, inflammatory signalling pathways, insulin signalling, and fatty acid homeostasis pathways. O. stamineus is significantly targeting many oxidative stress regulators, including JNK, mammalian target of rapamycin (mTOR), NFKB1, PPAR, and AKT1. Molecular docking analysis confirmed the expected high affinity for the potential targets, while the in vitro assay indicates the ability of O. stamineus to inhibit hepatic fat accumulation. CONCLUSION Using the computational systems pharmacology approach, the potentially beneficial effect of O. stamineus in NAFLD was indicated through the combination of multiple compounds, multiple targets, and multicellular components.
Collapse
Affiliation(s)
- Salah Abdulrazak Alshehade
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Raghdaa Hamdan Al Zarzour
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
- Department of Pharmacology, Faculty of Pharmacy, Arab International University (AIU), Damascus, Syria
| | - Vikneswaran Murugaiyah
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Sharoen Yu Ming Lim
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih 43500, Malaysia
| | | | | |
Collapse
|
175
|
Wang YX, Yang Z, Wang WX, Huang YX, Zhang Q, Li JJ, Tang YP, Yue SJ. Methodology of network pharmacology for research on Chinese herbal medicine against COVID-19: A review. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:477-487. [PMID: 36182651 PMCID: PMC9508683 DOI: 10.1016/j.joim.2022.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/15/2022] [Indexed: 12/09/2022]
Abstract
Traditional Chinese medicine, as a complementary and alternative medicine, has been practiced for thousands of years in China and possesses remarkable clinical efficacy. Thus, systematic analysis and examination of the mechanistic links between Chinese herbal medicine (CHM) and the complex human body can benefit contemporary understandings by carrying out qualitative and quantitative analysis. With increasing attention, the approach of network pharmacology has begun to unveil the mystery of CHM by constructing the heterogeneous network relationship of "herb-compound-target-pathway," which corresponds to the holistic mechanisms of CHM. By integrating computational techniques into network pharmacology, the efficiency and accuracy of active compound screening and target fishing have been improved at an unprecedented pace. This review dissects the core innovations to the network pharmacology approach that were developed in the years since 2015 and highlights how this tool has been applied to understanding the coronavirus disease 2019 and refining the clinical use of CHM to combat it.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China; Department of Scientific Research, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Zhen Yang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Yu-Xi Huang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Jia-Jia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China.
| |
Collapse
|
176
|
Tang R, Wang L, Zhang J, Li X, Tan L, He W, Han H, Liu Y, Wang K, Wang M. Exploring the active ingredients and pharmacological mechanisms of the oral intake formula Huoxiang Suling Shuanghua Decoction on influenza virus type A based on network pharmacology and experimental exploration. Front Microbiol 2022; 13:1040056. [PMID: 36386710 PMCID: PMC9663660 DOI: 10.3389/fmicb.2022.1040056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 05/14/2025] Open
Abstract
OBJECTIVE To investigate the active ingredients, underlying anti-influenza virus effects, and mechanisms of Huoxiang Suling Shuanghua Decoction (HSSD). MATERIALS AND METHODS The therapeutic effect of HSSD were confirmed through the survival rate experiment of H1N1-infected mice. Then, the HSSD solution and the ingredients absorbed into the blood after treatment with HSSD in rats were identified by UPLC/Q-TOF MS, while the main contents of ingredients were detected by high performance liquid chromatography (HPLC). Next, a systems pharmacology approach incorporating target prediction, gene ontology (GO) enrichment, kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and molecular docking were performed to screen out the active compounds and critical pathways of HSSD in treating influenza. According to prediction results, real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry assay were used to detect the mRNA and protein expression levels of critical targets in H1N1-infected mice lungs. RESULTS Huoxiang Suling Shuanghua Decoction improved the survival rate of H1N1-infected mice and prolonged the mice's lifespan. Besides, HSSD exerts an antivirus effect by decreasing the levels of hemagglutinin (HA) and nucleoprotein (NP) to inhibit the replication and proliferation of H1N1, reducing the lung pathological state, inhibiting the cell apoptosis in the lung, and regulating the abnormal responses of peripheral blood, including GRA, LYM, white blood cell (WBC), PLT, and hemoglobin (HGB). Then, 87 compounds in the HSSD solution and 20 ingredients absorbed into the blood after treatment with HSSD were identified. Based on this, combined with the network analysis and previous research on antivirus, 16 compounds were screened out as the active components. Moreover, 16 potential targets were predicted by network pharmacology analysis. Next, molecular docking results showed stable binding modes between compounds and targets. Furthermore, experimental validation results indicated that HSSD regulates the contents of Immunoglobulin A (IgA), Immunoglobulin M (IgM), and Immunoglobulin G (IgG) in serum, modulating the levels of IFN-γ, IL-6, IL-10, MCP-1, MIP-1α, and IP-10 in the lung tissue, and significantly decreasing the mRNA and protein expressions of TLR4, CD14, MyD88, NF-κB p65, HIF1 α, VEGF, IL17A, and IL6 in the lung tissue. CONCLUSION Huoxiang Suling Shuanghua Decoction exerts an anti-influenza effect by affecting the expressions of mRNA and protein including TLR4, CD14, MyD88, NF-kB p65, HIF-1α, VEGF, IL17A, IL6, and inhibiting the accumulation of inflammation. Our study provided experimental pieces of evidence about the practical application of HSSD in treating influenza.
Collapse
Affiliation(s)
- Ruying Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lingyun Tan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wei He
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hui Han
- Clinical Basic Teaching and Research Office of Medical College, Qingdao Binhai University, Qingdao, China
| | - Yuan Liu
- College of Biological Sciences, China Agricultural University, Beijing, China
- Solarbio Life Sciences, Beijing, China
| | - Keyu Wang
- Department of Clinical Laboratory, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Mengyao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
177
|
Zhou J, Guo H, Yang A, Liu T, Li P, Cui H, Wang Y, Tang T. Buyang Huanwu Decoction: A Traditional Chinese Medicine, Promotes Lactate-Induced Angiogenesis in Experimental Intracerebral Hemorrhage. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4063315. [PMID: 36349188 PMCID: PMC9637474 DOI: 10.1155/2022/4063315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/01/2022] [Indexed: 09/08/2023]
Abstract
Identifying the underlying mechanisms and exploring effective therapies for intracerebral hemorrhage (ICH) are urgently needed. Here, we aim to elucidate the potential roles and underlying mechanisms of Buyang Huanwu decoction (BYHWD) in ICH. In the first set of experiments, rats were randomly divided into five groups: Sham, ICH, ICH + sodium oxamate (OXA), ICH + BYHWD, and ICH + BYHWD + OXA. The lactate level around the hematoma was evaluated. PCNA+/vWF+ nuclei were observed. Additionally, an online bioinformatics analysis tool was used to predict the BYHWD druggable targets related to angiogenesis. Then, we validated these predictions. In the second set, exogenous sodium L-lactate (Lac) was infused into the intact brains of rats. Rats were randomly divided into three groups: Sham, Lac, and Lac + YC-1. The numbers of PCNA+/vWF+ nuclei and the expression of HIF-1α and VEGF were evaluated. In the first set of experiments, compared with the ICH group, the BYHWD group exhibited significantly increased numbers of PCNA+/vWF+ nuclei, and neurological dysfunction was markedly improved. Bioinformatics analysis revealed that the improvements caused by BYHWD indicated a role for the HIF-1α pathway. The HIF-1α and VEGF protein levels were upregulated after BYHWD administration. Moreover, we verified that lactate was involved in the predicted mechanisms. In the second set, lactate facilitated angiogenesis and HIF-1α and VEGF expression. Co-infusion with a HIF-1α inhibitor, YC-1, significantly inhibited these effects. Our data suggest that the pharmacological effects of BYHWD involve lactate-induced angiogenesis, these data may provide new evidence for its use in ICH.
Collapse
Affiliation(s)
- Jing Zhou
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan 030012, Shanxi, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hao Guo
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Ali Yang
- Department of Neurology, Henan Province People's Hospital, Zhengzhou 450003, Henan, China
| | - Tao Liu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Gerontology, Traditional Chinese Medicine Hospital Affliate to Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Pengfei Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hanjin Cui
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
178
|
In Silico and In Vitro Studies on the Mechanisms of Chinese Medicine Formula (Yiqi Jianpi Jiedu Formula) in the Treatment of Hepatocellular Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8669993. [PMID: 36345477 PMCID: PMC9637043 DOI: 10.1155/2022/8669993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
Objective Traditional Chinese medicine (TCM) is an important part of the comprehensive treatment of hepatocellular carcinoma (HCC), and Chinese materia medica formulas with the effect of “Yiqi Jianpi” (replenishing qi and strengthening spleen) or “Jiedu” (removing toxicity) have been proved to be effective in treating HCC. However, mechanisms of these formulas in treating HCC remain unclear. In this paper, our goal is to explore the antitumor activity and its molecular mechanisms of Yiqi Jianpi Jiedu (YQJPJD) formula against HCC. Methods The bioactive ingredients and targets of YQJPJD formula and HCC targets were screened by five Chinese materia medicas and two disease databases, respectively. The network pharmacology was utilized to construct the relationship network between YQJPJD formula and HCC, and the mechanisms were predicted by the protein-protein interaction (PPI) network, pathway enrichment analysis, bioinformatics, and molecular docking. Numerous in vitro assays were performed to verify the effect of YQJPJD formula on HCC cells, cancer-associated targets, and PI3K/Akt pathway. Results The network relationship between YQJPJD formula and HCC suggested that YQJPJD formula mainly regulated the potential therapeutic targets of HCC by several key bioactive ingredients (e.g., quercetin, luteolin, baicalein, and wogonin). PPI network, bioinformatics, and molecular docking analyses displayed that YQJPJD formula may play an anti-HCC effect through key targets such as MAPK3, RAC1, and RHOA. Additionally, pathway analysis demonstrated that YQJPJD formula could play an anti-HCC effect via multiple pathways (e.g., PI3K-Akt and hepatitis B). Experimental results showed that YQJPJD formula could effectively inhibit the proliferation, migration, and invasion of HCC cells and promote HCC cell apoptosis in a concentration-dependent manner. Moreover, YQJPJD formula could decrease the mRNA expression of β-catenin, MAPK3, and RHOA and the protein expression of phosphorylated PI3K and Akt. Conclusion YQJPJD formula mainly exerts its anti-HCC effect through multiple bioactive ingredients represented by quercetin, as well as multiple pathways and targets represented by PI3K/Akt pathway, β-catenin, MAPK3, and RHOA.
Collapse
|
179
|
Zhu Y, Wang L, Xu L, Ying P. A Network Pharmacology Study on the Cervix Prescription for Treatment of Cervical Cancer. J Immunol Res 2022; 2022:8945591. [PMID: 36277473 PMCID: PMC9581665 DOI: 10.1155/2022/8945591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 10/05/2023] Open
Abstract
Purpose Based on the method of network pharmacology to explore the mechanism of the cervical prescription (CP) in the treatment of cervical cancer (CC). Methods We obtained the active ingredients and potential targets in the CP from the literature and the systematic pharmacological analysis platform of traditional Chinese medicine (BATMAN-TCM); the database was used to search for targets related to cervical cancer and to map CP and targets; the core targets were screened, and the protein-protein interaction network (PPI) was constructed using the TCM compound-target network and STRING database. Gene ontology (GO) and Kyoto Gene and Genome Encyclopedia (KEGG) pathway enrichment analysis of overlapping targets were performed using DAVID 6.8 online tool. Results The CP contains 2 active ingredients, corresponding to 301 nonreactive targets; 10 GO biological process related items and 73 signal pathways were obtained. Cell experiments confirmed that the medicated serum of CP could effectively inhibit the proliferation and invasion ability of Hela cells. Conclusion This study provides valuable information for TCM researchers and clinicians to better understand the main therapeutic targets and therapeutic roles of herbal decoctions in clinical settings. The results of our study preliminarily clarified that the cervical prescription has an inhibitory effect on cervical cancer cells.
Collapse
Affiliation(s)
- Yingping Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Liangping Wang
- Affiliated People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, China
| | - Leilai Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Pian Ying
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| |
Collapse
|
180
|
Lang J, Li L, Chen S, Quan Y, Yi J, Zeng J, Li Y, Zhao J, Yin Z. Mechanism Investigation of Wuwei Shexiang Pills on Gouty Arthritis via Network Pharmacology, Molecule Docking, and Pharmacological Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2377692. [PMID: 36248423 PMCID: PMC9568303 DOI: 10.1155/2022/2377692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 11/07/2022]
Abstract
Background Gout is a common crystal-related arthritis caused by the deposition of monosodium urates (MSU). Tibetan medicine Wuwei Shexiang Pills (WSP) has been demonstrated to exhibit anti-inflammatory, antihyperuricemia, and antigout activities. However, the underlying mechanism is unknown. Objectives To explore the mechanisms of Wuwei Shexiang Pills on gouty arthritis via network pharmacology, molecule docking, and pharmacological verification. Methods The ingredients and targets of WSP were obtained by searching and screening in BATMAN-TCM and SwissADME. The targets involving the gout were acquired from public databases. The shared targets were put onto STRING to construct a PPI network. Furthermore, Metascape was applied for the GO and KEGG enrichment analysis to predict the biological processes and signaling pathways. And molecular docking was performed to validate the binding association between the key ingredients and the relative proteins of TNF signaling. Based on the serum pharmacology, the predicted antigout mechanism of WSP was validated in MSU-induced THP-1 macrophages. The levels of inflammatory cytokines and mRNA were measured by ELISA and qRT-PCR, respectively, and MAPK, NF-κB, and NLRP3 signaling-associated proteins were determined by western blot and immunofluorescence staining. Results 48 bioactive ingredients and 165 common targets were found in WSP. The data showed that 5-Cis-Cyclopentadecen-1-One, 5-Cis-Cyclotetradecen-1-One, (-)-isoshyobunone, etc. were potential active ingredients. TNF signaling, HIF-1 signaling, and Jak-STAT signaling were predicted to be the potential pathways against gout. The molecule docking analysis found that most ingredients had a high affinity for p65, NLRP3, IL-1β, TNF-α, and p38. The data from in vitro experiment showed that WSP suppressed the production and gene expression of inflammatory cytokines. Furthermore, WSP could inhibit the activation of MAPK, NF-κB, and NLRP3 signaling pathways. Conclusion Our finding suggested that the antigout effect of WSP could be achieved by inhibiting MAPK, NF-κB, and NLRP3 signaling pathways. WSP might be a candidate drug for gouty treatment.
Collapse
Affiliation(s)
- Jirui Lang
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Shilong Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Yunyun Quan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jing Yi
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Yong Li
- Sichuan Fengchun Pharmaceutical Co, Ltd, Deyang, China
| | - Junning Zhao
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| |
Collapse
|
181
|
Wu G, Hao Q, Liu B, Zhou J, Fan C, Liu R. Network pharmacology-based screening of the active ingredients and mechanisms of evodiae fructus anti-glioblastoma multiforme. Medicine (Baltimore) 2022; 101:e30853. [PMID: 36181021 PMCID: PMC9524918 DOI: 10.1097/md.0000000000030853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Evodiae fructus has been shown to have anti-glioblastoma multiforme (GBM) effects. However, its anti-GBM active components and mechanism remain unclear. In this study, the active components of evodiae fructus were screened by network pharmacology to explore the possible molecular mechanism of resistance to GBM. MATERIALS AND METHODS The main active ingredients of evodiae fructus were derived from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Batch-traditional Chinese medicine (TCM). TCMSP and Swiss absorption, distribution, metabolism and elimination (ADME) predict genetic targets for ingredients that meet pharmacological criteria. GBM-related targets were obtained from DisGeNet, GeneCards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), and TCGA. A Venn diagram was used to obtain the common targets of evodiae fructus and GBM. Protein-protein interaction (PPI) networks and component-disease target networks were constructed using Cytoscape 3.8.1 software for visualization. GBM gene differential expression was visualized by VolcaNoseR, and potential targets were enriched by Gene Ontology (GO) function and annotated by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway by SRplot. Molecular docking verification was conducted using AutoDock Vina software. RESULTS According to the screening conditions, 24 active components and 80 drug targets were obtained. The PPI network contains 80 proteins. The molecular docking verification showed the molecular docking affinity of the core active compounds in evodiae fructus with CASP3, JUN, EGFR, and AKT1. CONCLUSIONS This study preliminarily identified the various molecular targets and multiple pathways of evodiae fructus against GBM.
Collapse
Affiliation(s)
- Gang Wu
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Qingpei Hao
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Bo Liu
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Jingru Zhou
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Cungang Fan
- Department of Neurosurgery, Peking University People’s Hospital, China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People’s Hospital, China
- *Correspondence: Ruen Liu, Department of Neurosurgery, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, China (e-mail: )
| |
Collapse
|
182
|
Hu J, He T, Liu J, Jia S, Li B, Xu W, Liao M, Guo L. Pharmacological and molecular analysis of the effects of Huangqi Jianzhong decoction on proliferation and apoptosis in GES-1 cells infected with H. pylori. Front Pharmacol 2022; 13:1009705. [PMID: 36249768 PMCID: PMC9556892 DOI: 10.3389/fphar.2022.1009705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Infection with Helicobacter pylori (H. pylori) can cause chronic gastritis and other digestive tract diseases, and represents a public health concern. Current anti-H. pylori treatment can result in antibiotic resistance and other adverse reactions. Huangqi Jianzhong decoction (HQJZD) is a prescription form of traditional Chinese medicine for chronic gastritis that increases probiotics and inhibits H. pylori. In this study, its anti-bacterial activity against H. pylori receives a preliminary evaluation, and a pharmacology analysis is performed to predict its underlying mechanisms. Methods: Human GES-1 cells are divided into a blank control group, a model group, a HQJZD low-dose (2.08 mg·mL−1), a high-dose group (4.16 mg·mL−1), and a positive control group (amoxicillin, 5 μg·mL−1). After culture, the CCK-8 method is used to detect cell viability; flow cytometry is used to detect cell apoptosis rate; and RT-qPCR is used to detect the expression of mRNA virulence factors, including HpPrtC, OPiA, IceA1, and BabA2. Network pharmacology analysis and molecular docking were performed to explore the mechanisms of HQJZD in treating H. pylori gastritis, based on its anti-H. pylori infection effect. Results: We noted lower cell survival rates in the model group, but higher apoptosis rates and mRNA expressions of HpPrtC, OPiA, IceA1, and BabA2 than in the control group (p < 0.05). Compared to the model group, the cell survival rate of each dosage group of Huangqi Jianzhong decoction and the positive control group increased significantly, while the apoptosis rate and the mRNA expressions of HpPrtC, OPiA, IceA1, and BabA2 were decreased significantly. The effect in each HQJZD group was dose-dependent (p < 0.05). Network pharmacological analysis involving 159 signaling pathways was used to screen 6 key active components of HQJZD and 102 potential target proteins for the treatment of H. pylori-related gastritis. The molecular docking results revealed that the 6 active compounds had a strong binding ability with the target proteins of ALB, IL-6, AKT1, IL-1B, and JUN. Conclusion: HQJZD effectively increases the proliferation rate of human GES-1 cells after infection, while reducing the level of apoptosis. The mechanism may be related to multiple components, multiple targets and pathways, which provides a scientific basis for further elucidating the mechanism of action, the pharmacodynamic material basis, and the clinical application of HQJZD against H. pylori infection.
Collapse
Affiliation(s)
- Jingnan Hu
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang, China
| | - Tao He
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Jianfang Liu
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang, China
| | - Sujie Jia
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Bolin Li
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Weichao Xu
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Man Liao
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang, China
| | - Lifang Guo
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Lifang Guo,
| |
Collapse
|
183
|
Song Z, Zhang H, Jiang Y, Zhao R, Pei X, Ning H, Chen H, Pan J, Gong Y, Song M, Wang W. Study on complications of osteoporosis based on network pharmacology. Front Genet 2022; 13:941098. [PMID: 36246605 PMCID: PMC9557205 DOI: 10.3389/fgene.2022.941098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoporosis is a serious threat to human life. Guben Zenggu Granule is an empirical prescription for clinical treatment of osteoporosis. MC3T3-E1 cells are mouse osteogenic precursor cells with osteogenic differentiation, and are classic cells for studying bone metabolism and osteogenic mechanism, as well as mechanical stimulation sensitive cells. Therefore, it can be inferred that Guben Zenggu granule can repair MC3T3-E1 cells under continuous static pressure overload. This study aims to through the network of pharmacology and gene sequencing method, reveal thrift increase bone particles under the condition of continuous static pressure overload on osteogenesis mechanism of MC3T3-E1 cells. In the process of analysis, from a variety of 98 compounds was predicted in the database, a collection of 474 goals, a total of 29,164 difference between two groups of genes. Then, construction of composite targets between cells and predict targets and protein - protein interaction networks, and through the cluster analysis to further explore the relationship between the target. In addition, linkages between target proteins and cells were further identified using Gene Ontology (GO) and Pathways (KEGG Pathway). Finally, the repair effect of Guben Zenggu granule on MC3T3-E1 cells under continuous static pressure overload was verified through experiments, so as to accurately explain the pharmacodynamic mechanism of Traditional Chinese medicine.
Collapse
Affiliation(s)
- Zhijing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, Gansu, China
| | - Haoling Zhang
- St Petersburg State University, St. Petersburg, Russia
| | - Yuhang Jiang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xuedong Pei
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Haochi Ning
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Hailiang Chen
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jing Pan
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yanlong Gong
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Min Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Wei Wang
- Gansu University of Chinese Medicine College of Acupuncture-Moxibustion and Tuing, Lanzhou, Gansu, China
| |
Collapse
|
184
|
Wang A, Zhao W, Yan K, Guo L, Gao F, Chen J, Wang Y, Ma X. Investigating the cardioprotective effects of Fuzheng Yangxin recipe based on network pharmacology and experimental evaluation. Front Pharmacol 2022; 13:1004929. [PMID: 36225565 PMCID: PMC9549113 DOI: 10.3389/fphar.2022.1004929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Under Chinese medicine theory guidance, Fuzheng Yangxin Recipe (FZYX) is clinically effective for the treatment of heart failure (HF) caused by ischemic heart disease (IHD). This study aimed to investigate the mechanism of the myocardial protective effects of FZYX on HF. Materials and methods: The Gene expression omnibus database was used to identify differential genes of the IHD subtype. Through network pharmacological methods, the targets of the active components of FZYX were obtained. We also constructed IHD-induced HF model rats by ligating the left anterior descending coronary artery. Echocardiography, pathological section staining, enzyme-linked immunosorbent assay, western blotting, immunohistochemistry, and quantitative real-time PCR analyses were performed to verify the protective effects of FZYX on the myocardium. Results: We identified 53 active components and 37 potential targets of FZYX associated with the IHD subtype. Signal transducer and activator of transcription 3 (STAT3) is a key protein in the protein-protein interaction (PPI) network. A total of 146 biological processes, 10 cellular components and 40 molecular function subcategories were identified by Gene Ontology (GO) enrichment analysis, and 18 signalling pathways, including apoptosis, were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. In vivo experiments showed that FZYX significantly inhibited cardiomyocyte apoptosis, promoted the expression and phosphorylation of STAT3, and improved cardiac function. Conclusion: FZXY improves cardiac function and protects cardiomyocytes from injury via multi-component, multi-target and multi-pathway action, especially its possible role in regulating STAT3 expression and anti-apoptotic effect.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhao
- Yidu Central Hospital of Weifang, Weifang, China
| | - Kaituo Yan
- Yidu Central Hospital of Weifang, Weifang, China
| | - Lijun Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Feng Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- *Correspondence: Xiaochang Ma,
| |
Collapse
|
185
|
Huang AY, Xiong Z, Liu K, Chang Y, Shu L, Gao G, Zhang C. Identification of kaempferol as an OSX upregulator by network pharmacology-based analysis of qianggu Capsule for osteoporosis. Front Pharmacol 2022; 13:1011561. [PMID: 36210811 PMCID: PMC9539404 DOI: 10.3389/fphar.2022.1011561] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is the most common metabolic disease of skeleton with reduced bone density and weaker bone. Qianggu Capsule as a traditional chinese medicine has been widely used to treat osteoporosis. The potential pharmacological mechanism of its active ingredient Gusuibu is not well understood. The purpose of this work is to analyze the anti-osteoporosis function of Gusuibu based on network pharmacology, and further explore the potential mechanism of Qianggu Capsule. The active compounds and their corresponding targets of Gusuibu were obtained from TCMSP, TCMID, and BATMAN-TCM databases. Potential therapeutic targets for osteoporosis were obtained through DisGeNET, TTD, GeneCards, MalaCards, CTD, and OMIM databases. The overlapping targets of Gusuibu and osteoporosis were obtained. GO and KEGG pathway enrichment analysis were performed. The “Gusuibu-active compounds-target genes-osteoporosis” network and protein-protein interaction (PPI) network were constructed, and the top hub genes were screened by using the plug-in CytoHubba. Molecular docking was used to verify the binding activity of hub genes and key compounds. We identified 21 active compounds and 140 potential therapeutic targets that may be related to Gusuibu and 10 hub genes (AKT1, IL6, JUN, TNF, MAPK3, VEGFA, EGFR, MAPK1, CASP3, PTGS2). Molecular docking analysis demonstrated that four key active small molecules in Gusuibu (including Luteolin, Naringenin, Kaempferol, and Beta-sitosterol) have excellent binding affinity to the target proteins encoded by the top 10 hub genes. Our new findings indicated that one key active compound kaempferol activated the expression of osteoblast specific transcription factor OSX through JNK kinase pathway.
Collapse
Affiliation(s)
- Ann Yehong Huang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Zhencheng Xiong
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Kuankuan Liu
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Yanan Chang
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Li Shu
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Guolan Gao
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Chi Zhang
- Central Laboratory, Peking University International Hospital, Beijing, China
- Department of Orthopedics, Peking University International Hospital, Beijing, China
- Biomedical Engineering Department, Peking University, Beijing, China
- *Correspondence: Chi Zhang,
| |
Collapse
|
186
|
Tran MN, Kim S, Nguyen QHN, Lee S. Molecular Mechanisms Underlying Qi-Invigorating Effects in Traditional Medicine: Network Pharmacology-Based Study on the Unique Functions of Qi-Invigorating Herb Group. PLANTS 2022; 11:plants11192470. [PMID: 36235337 PMCID: PMC9573487 DOI: 10.3390/plants11192470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
Qi-invigorating herbs (QIHs) are a group of herbs that invigorate Qi, the most vital force for maintaining the physiological functions of the human body in traditional medicine. However, the mechanism underlying the Qi-invigorating effects remains unclear. This study aimed to elucidate the unique mechanisms of QIHs based on unique compounds, using a network pharmacology approach. QIHs and their compounds were identified using existing literature and the TCMSP database, respectively. Subsequently, a method was proposed to screen for unique compounds that are common in QIHs but rare in other traditional herbs. Unique compounds’ targets were predicted using the TCMSP, BATMAN-TCM, and SwissTargetPrediction databases. Finally, enriched GO and KEGG pathways were obtained using DAVID to uncover the biomolecular functions and mechanisms. Thirteen unique compounds, mainly including amino acids and vitamins that participate in energy metabolism and improve Qi deficiency syndrome, were identified among the eight QIHs. GO and KEGG pathway analyses revealed that these compounds commonly participate in neuroactive ligand–receptor interaction and the metabolism of amino acids, and are related to the components of mitochondria and neuronal cells. Our results appropriately reflect the characteristics of traditional Qi-invigorating effects; therefore, this study facilitates the scientific interpretation of Qi functions and provides evidence regarding the treatment effectiveness of QIHs.
Collapse
Affiliation(s)
- Minh Nhat Tran
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon 34113, Korea
- Faculty of Traditional Medicine, Hue University of Medicine and Pharmacy, Hue University, Hue 49120, Vietnam
| | - Soyoung Kim
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon 34113, Korea
| | - Quynh Hoang Ngan Nguyen
- Center for Artificial Intelligence, Korea Institute of Science and Technology, Seoul 02792, Korea
- AI Robotics, University of Science and Technology, Daejeon 34113, Korea
| | - Sanghun Lee
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-42-868-9461
| |
Collapse
|
187
|
Xu X, Wang L, Chen Q, Wang Z, Pan X, Peng X, Wang M, Wei D, Li Y, Wu B. Decoding the Mechanism of CheReCunJin Formula in Treating Sjögren's Syndrome Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1193846. [PMID: 36248435 PMCID: PMC9553462 DOI: 10.1155/2022/1193846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Background Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by progressive oral and ocular dryness that correlates poorly with autoimmune damage to the glands. CheReCunJin (CRCJ) formula is a prescription formulated according to the Chinese medicine theory for SS treatment. Objective This study aimed to explore the underlying mechanisms of CRCJ against SS. Methods The databases, including Traditional Chinese Medicine System Pharmacology, Encyclopedia of Traditional Chinese Medicine, Bioinformatics Analysis Tool for the molecular mechanism of Traditional Chinese Medicine, and Traditional Chinese Medicine Integrated Databases, obtained the active ingredients and predicted targets of CRCJ. Then, DrugBank, Therapeutic Target Database, Genecards, Comparative Toxicogenomics Database, and DisGeNET disease databases were used to screen the predicted targets of SS. Intersected targets of CRCJ and SS were visualized by using Venn diagrams. The overlapping targets were uploaded to the protein-protein interaction network analysis search tool. Cytoscape 3.8.2 software constructed a "compound-targets-disease" network. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analyses characterized potential targets' biological functions and pathways. AutoDock Vina 1.1.2 software was used to research and verify chemical effective drug components and critical targets. Results From the database, we identified 878 active components and 2578 targets of CRCJ, and 827 SS-related targets. 246 SS-related genes in CRCJ were identified by intersection analysis, and then ten hub genes were identified as crucial potential targets from PPI, including ALB, IL-6, TNF, INS, AKT1, IL1B, VEGFA, TP53, JUN, and TLR4. The process of CRCJ action against SS was mainly involved in human cytomegalovirus infection and Th17 cell differentiation, as well as the toll-like receptor signaling and p53 signaling pathways. Molecular docking showed that the bioactive compounds of CRCJ had a good binding affinity with hub targets. Conclusions The results showed that CRCJ could activate multiple pathways and treat SS through multiple compounds and targets. This study lays a foundation for better elucidation of the molecular mechanism of CRCJ in the treatment of SS, and also provides basic guidance for future research on Chinese herbal compounds.
Collapse
Affiliation(s)
- Xiaoyu Xu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Zikang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xun Pan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xike Peng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Miao Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanping Li
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bin Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
188
|
Xiao QX, Xue LL, Su ZY, Huang J, Chen JL, Xiong LL, Wang TH. The neuroprotective effects of Lutongkeli in traumatic brain injury rats by anti-apoptosis mechanism. Acta Cir Bras 2022; 37:e370603. [PMID: 36134852 PMCID: PMC9488509 DOI: 10.1590/acb370603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To explore the neuroprotective effects of Lutongkeli (LTKL) in traumatic brain injury (TBI) and detect the related mechanism. METHODS TBI model was established with LTKL administration (2 and 4 g/kg/d, p.o.). Motor function of rats was examined by Rotarod test. Nissl staining was used to show neuron morphology. Furthermore, the disease-medicine common targets were obtained with the network pharmacology and analyzed with Kyoto Encyclopedia of Genes and Genomes. Lastly, the predicted targets were validated by real-time polymerase chain reaction. RESULTS After LTKL administration, neural behavior was significantly improved, and the number of spared neurons in brain was largely increased. Moreover, 68 bioactive compounds were identified, corresponding to 148 LTKL targets; 2,855 genes were closely associated with TBI, of which 87 overlapped with the LTKL targets and were considered to be therapeutically relevant. Functional enrichment analysis suggested LTKL exerted its pharmacological effects in TBI by modulating multiple pathways including apoptosis, inflammation, etc. Lastly, we found LTKL administration could increase the mRNA level of Bcl-2 and decrease the expression of Bax and caspase-3. CONCLUSIONS This study reported the neuroprotective effect of LTKL against TBI is accompanied with anti-apoptosis mechanism, which provides a scientific explanation for the clinical application of LTKL in the treatment of TBI.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- MD. Kunming Medical University – Institute of Neuroscience – Animal Zoology Department – Kunming, China
| | - Lu-Lu Xue
- PhD. Sichuan University – State Key Laboratory of Biotherapy – Chengdu, China
| | - Zhang-Yu Su
- BS. Southwest Medical University – Department of Anesthesiology – Luzhou, China
| | - Jin Huang
- PhD. Kunming Medical University – Affiliated Hospital – Department of Neurosurgery – Kunming, China
| | - Ji-Lin Chen
- BS. Kunming Medical University – Institute of Neuroscience – Animal Zoology Department – Kunming, China
| | - Liu-Lin Xiong
- PhD, Professor. Kunming Medical University – Institute of Neuroscience – Animal Zoology Department – Kunming, China
| | - Ting-Hua Wang
- PhD, Professor. Kunming Medical University – Institute of Neuroscience – Animal Zoology Department – Kunming, China
| |
Collapse
|
189
|
Liu W, Shang J, Deng Y, Han X, Chen Y, Wang S, Yang R, Dong F, Shang H. Network pharmacology analysis on mechanism of Jian Pi Qing Gan Yin decoction ameliorating high fat diet-induced non-alcoholic fatty liver disease and validated in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115382. [PMID: 35577161 DOI: 10.1016/j.jep.2022.115382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jian Pi Qing Gan Yin (JPQGY) has been used clinically to relieve non-alcoholic fatty liver disease (NAFLD) in China for decades; however, the underlying mechanisms of JPQGY remain unclear. AIM OF THE STUDY We evaluated the effects and mechanisms of JPQGY and hepatic steatosis caused by the middle stage of 13-week-high-fat-diet-induced NAFLD in mice. MATERIALS AND METHODS Different dosages of JPQGY (5.5, 11, and 22 g/kg/day) were administered to NAFLD mice simultaneously. Body weight, body mass index (BMI), and liver lipid- and inflammation-related serum indicators were measured enzymatically. Liver samples were stained with Oil Red O and hematoxylin and eosin (H&E). Next, we performed a network pharmacology analysis and verified eight target genes mapping to NAFLD-related lipid metabolism pathways. The mRNA/protein expression was analyzed by real-time polymerase chain reaction (PCR) and western blotting. RESULTS JPQGY significantly relieved histological damage (steatosis-inflammation-fibrosis), prevented the downregulation of AMPK and Pparα, and upregulated LXRα, Srebp-1c, F4/80, Nf-κb, and Cyp2e1 in the HFD-induced NAFLD mouse model. CONCLUSIONS The present results suggest that chronic treatment with JPQGY ameliorated HFD-induced NAFLD in mice by targeting the first and second phases of hepatic steatosis by stimulating the AMPK/PPARα pathway and inhibiting the LXRα/Srebp1/Nf-κb pathway. Our findings provide evidence that supports the clinical use of this formula for high-fat diet-induced fatty liver disease.
Collapse
Affiliation(s)
- Weiwei Liu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China; Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jingyu Shang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yinxiang Deng
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China; Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Xiuzhen Han
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China; Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yugen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China; Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Shuangshuang Wang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China; Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Ruwen Yang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Fan Dong
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Hongtao Shang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China; Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
190
|
Hu YH, Wang XY, Zhang XW, Chen J, Li F. Investigation of the mechanisms and experimental verification of Shao yao gan cao decoction against Sphincter of Oddi Dysfunction via systems pharmacology. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:13374-13398. [PMID: 36654051 DOI: 10.3934/mbe.2022626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study explored the chemical and pharmacological mechanisms of Shao Yao Gan Cao decoction (SYGC) in the treatment of Sphincter of Oddi Dysfunction (SOD) through ultra-high-performance liquid chromatography coupled with Quadrupole Exactive-Orbitrap high-resolution mass spectrometry (UHPLC-Q Exactive-Orbitrap HR-MS), network pharmacology, transcriptomics, molecular docking and in vivo experiments. First, we identified that SYGC improves SOD in guinea pigs by increased c-kit expression and decreased inflammation infiltration and ring muscle disorders. Then, a total of 649 SOD differential genes were found through RNA sequencing and mainly enriched in complement and coagulation cascades, the B cell receptor signaling pathway and the NF-kappa B signaling pathway. By combining UHPLC-Q-Orbitrap-HRMS with a network pharmacology study, 111 chemicals and a total of 52 common targets were obtained from SYGC in the treatment of SOD, which is also involved in muscle contraction, the B cell receptor signaling pathway and the complement system. Next, 20 intersecting genes were obtained among the PPI network, MCODE and ClusterOne analysis. Then, the molecular docking results indicated that four active compounds (glycycoumarin, licoflavonol, echinatin and homobutein) and three targets (AURKB, KIF11 and PLG) exerted good binding interactions, which are also related to the B cell receptor signaling pathway and the complement system. Finally, animal experiments were conducted to confirm the SYGC therapy effects on SOD and verify the 22 hub genes using RT-qPCR. This study demonstrates that SYGC confers therapeutic effects against an experimental model of SOD via regulating immune response and inflammation, which provides a basis for future research and clinical applications.
Collapse
Affiliation(s)
- Yong-Hong Hu
- Institute of Digestive Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xue-Ying Wang
- Department of Preventive Treatment, Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xi-Wen Zhang
- Department of Pancreaticobiliary Surgery, Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Chen
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200082, China
| | - Fu Li
- Department of Pancreaticobiliary Surgery, Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
191
|
Investigation of Anti-Liver Cancer Activity of the Herbal Drug FDY003 Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5765233. [PMID: 36118098 PMCID: PMC9481369 DOI: 10.1155/2022/5765233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Globally, liver cancer (LC) is the sixth-most frequently occurring and the second-most fatal malignancy, responsible for 0.83 million deaths annually. Although the application of herbal drugs in cancer therapies has increased, their anti-LC activity and relevant mechanisms have not been fully studied from a systems perspective. To address these issues, we conducted a system-perspective network pharmacological investigation into the activity and mechanisms underlying the action of the herbal drug. FDY003 reduced the viability of human LC treatment. FDY003 reduced the viability of human LC cells and elevated their chemosensitivity. There were a total of 16 potential bioactive chemical components in FDY003 and they had 91 corresponding targets responsible for the pathological processes in LC. These FDY003 targets were functionally involved in regulating the survival, proliferation, apoptosis, and cell cycle of LC cells. Additionally, we found that FDY003 may target key signaling cascades connected to diverse LC pathological mechanisms, namely, PI3K-Akt, focal adhesion, IL-17, FoxO, MAPK, and TNF pathways. Overall, this study contributed to integrative mechanistic insights into the anti-LC potential of FDY003.
Collapse
|
192
|
Shaofeng C, Chunxu L, Qiang G. The mechanism of Lingze tablets in the treatment of benign prostatic hyperplasia based on network pharmacology and molecular docking technology. Andrologia 2022; 54:e14555. [PMID: 36064190 DOI: 10.1111/and.14555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/01/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Lingze tablets has been used as a drug in the treatment of kidney deficiency-dampnes shea-stasis type benign prostatic hyperplasia (BPH) in Traditional Chinese Medicine, and it was found effective for BPH treatment. We aimed to investigate the mechanism of the Lingze tablets in the treatment of BPH through the network pharmacology and molecular docking technology. The active compounds of Lingze tablets were retrieved from the TCMSP, BATMAN-TCM and ETCM databases. The ADME of active compounds was screened for Swiss target prediction, and the targets of the active compounds were predicted. DisGeNET, Genecards and OMIM were used to obtain the disease targets of BPH, and the targets of Lingze tablets in the treatment of BPH were obtained by venny2.1. String platform and cytoscape softwares were used to construct the PPI network. Go enrichment analysis and KEGG signal pathway analysis were analysed by mediascape. The 'component-target-pathway' networks diagram was constructed by the cytoscape software. Molecular docking was carried out by autodock software. Lingze tablets could serve as a drug for BPH treatment by regulating SRC, MAPK1, PIK3CA, JAK2 and other disease targets, intervening in biological processes such as cell migration, cell activity, cytokine secretion, protein phosphorylation, MAPK, transferase activity and PI3K/AKT signalling pathways.
Collapse
Affiliation(s)
- Chen Shaofeng
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Andrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Li Chunxu
- Department of Urology, Tianjin Medical University Second Hospital, Tianjin, China
| | - Geng Qiang
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Andrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
193
|
Li R, Yu S, Liang X, Li Y, Lai KP. Vitamin C exerts anti-cadmium induced fracture functions/targets: bioinformatic and biostructural findings. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
194
|
Lee M, Shin H, Park M, Kim A, Cha S, Lee H. Systems pharmacology approaches in herbal medicine research: a brief review. BMB Rep 2022; 55:417-428. [PMID: 35880436 PMCID: PMC9537023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 02/21/2025] Open
Abstract
Herbal medicine, a multi-component treatment, has been extensively practiced for treating various symptoms and diseases. However, its molecular mechanism of action on the human body is unknown, which impedes the development and application of herbal medicine. To address this, recent studies are increasingly adopting systems pharmacology, which interprets pharmacological effects of drugs from consequences of the interaction networks that drugs might have. Most conventional network- based approaches collect associations of herb-compound, compound-target, and target-disease from individual databases, respectively, and construct an integrated network of herb-compound- target-disease to study the complex mechanisms underlying herbal treatment. More recently, rapid advances in highthroughput omics technology have led numerous studies to exploring gene expression profiles induced by herbal treatments to elicit information on direct associations between herbs and genes at the genome-wide scale. In this review, we summarize key databases and computational methods utilized in systems pharmacology for studying herbal medicine. We also highlight recent studies that identify modes of action or novel indications of herbal medicine by harnessing drug-induced transcriptome data. [BMB Reports 2022; 55(9): 417-428].
Collapse
Affiliation(s)
- Myunggyo Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Hyejin Shin
- Korean Medicine (KM) Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Musun Park
- Korean Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Aeyung Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea
| | - Seongwon Cha
- Korean Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Haeseung Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| |
Collapse
|
195
|
Ruchawapol C, Fu WW, Xu HX. A review on computational approaches that support the researches on traditional Chinese medicines (TCM) against COVID-19. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154324. [PMID: 35841663 PMCID: PMC9259013 DOI: 10.1016/j.phymed.2022.154324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND COVID-19 highly caused contagious infections and massive deaths worldwide as well as unprecedentedly disrupting global economies and societies, and the urgent development of new antiviral medications are required. Medicinal herbs are promising resources for the discovery of prophylactic candidate against COVID-19. Considerable amounts of experimental efforts have been made on vaccines and direct-acting antiviral agents (DAAs), but neither of them was fast and fully developed. PURPOSE This study examined the computational approaches that have played a significant role in drug discovery and development against COVID-19, and these computational methods and tools will be helpful for the discovery of lead compounds from phytochemicals and understanding the molecular mechanism of action of TCM in the prevention and control of the other diseases. METHODS A search conducting in scientific databases (PubMed, Science Direct, ResearchGate, Google Scholar, and Web of Science) found a total of 2172 articles, which were retrieved via web interface of the following websites. After applying some inclusion and exclusion criteria and full-text screening, only 292 articles were collected as eligible articles. RESULTS In this review, we highlight three main categories of computational approaches including structure-based, knowledge-mining (artificial intelligence) and network-based approaches. The most commonly used database, molecular docking tool, and MD simulation software include TCMSP, AutoDock Vina, and GROMACS, respectively. Network-based approaches were mainly provided to help readers understanding the complex mechanisms of multiple TCM ingredients, targets, diseases, and networks. CONCLUSION Computational approaches have been broadly applied to the research of phytochemicals and TCM against COVID-19, and played a significant role in drug discovery and development in terms of the financial and time saving.
Collapse
Affiliation(s)
- Chattarin Ruchawapol
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Cai Lun Lu 1200, Shanghai 201203, China
| | - Wen-Wei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Cai Lun Lu 1200, Shanghai 201203, China.
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Cai Lun Lu 1200, Shanghai 201203, China.
| |
Collapse
|
196
|
Guo X, Xu Y, Sun J, Wang Q, Kong H, Zhong Z. Exploring the Mechanism of Wenshen Huatan Quyu Decotion for PCOS Based on Network Pharmacology and Molecular Docking Verification. Stem Cells Int 2022; 2022:3299091. [PMID: 36071733 PMCID: PMC9441343 DOI: 10.1155/2022/3299091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To identify the active chemical in Wenshen Huatan Quyu Decotion (WHQD) and to explore its possible network interactions with the polycystic ovary syndrome (PCOS). Methods The Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP) and the Bioinformatics Analysis Tool for Molecular Mechanisms in Chinese Medicine (BATMAN-TCM) were used to decompose compound formulations, detect active chemicals and their corresponding target genes, and then convert them into UniProt gene symbols. Meanwhile, PCOS-related target genes were collected from GeneCards to construct a protein-protein interaction (PPI) network, which was further analyzed by STRING online database. Gene Ontology (GO) functional analysis was also performed afterwards to construct the component-target gene-disease network to visualize the correlation between WHQD and PCOS. We then performed an in silico molecular docking study to validate the predicted relationships. Results WHQD consists of 14 single drugs containing a total of 67 chemical components. 216 genes were predicted as possible targets. 123 of the 216 target genes overlapped with PCOS. GO annotation analysis revealed that 1968 genes were associated with biological processes, 145 with molecular functions, and 71 with cellular components. KEGG analysis revealed 146 pathways involved PPI, and chemical-target gene-disease networks suggest that PGR, AR, ADRB2, IL-6, MAPK1/8, ESR1/2, CHRM3, RXRA, PPARG, BCL2/BAX, GABRA1, and NR3C2 may be key genes for the pharmacological effects of WHQD on PCOS. Molecular docking analysis confirmed that hydrogen bonding was the main interaction between WHQD and its targets. Conclusion WHQD exerts its pharmacological effects by improving insulin sensitivity, subfertility, and hormonal imbalance, increasing ovulation rates, which in turn may increase pregnancy rates in patients with significant efficacy.
Collapse
Affiliation(s)
- Xin Guo
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Yunyi Xu
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Obstetrics and Gynecology, The Second School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, China
| | - Juan Sun
- Center for Reproductive Medicine, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Qianqian Wang
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Haibo Kong
- Center for Reproductive Medicine, Department of Pediatrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Zixing Zhong
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
197
|
Pan J, Yang H, Zhu L, Lou Y, Jin B. Qingfei Jiedu decoction inhibits PD-L1 expression in lung adenocarcinoma based on network pharmacology analysis, molecular docking and experimental verification. Front Pharmacol 2022; 13:897966. [PMID: 36091822 PMCID: PMC9454399 DOI: 10.3389/fphar.2022.897966] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: We aim at investigating the molecular mechanisms through which the Qingfei Jiedu decoction (QFJDD) regulates PD-L1 expression in lung adenocarcinoma (LUAD). Methods: Bioactive compounds and targets of QFJDD were screened from TCMSP, BATMAN-TCM, and literature. Then, GeneCard, OMIM, PharmGKB, Therapeutic Target, and DrugBank databases were used to identify LUAD-related genes. The protein-protein interaction (PPI) network was constructed using overlapping targets of bioactive compounds in LUAD with the Cytoscape software and STRING database. The potential functions and pathways in which the hub genes were enriched by GO, KEGG, and DAVID pathway analyses. Molecular docking of bioactive compounds and key genes was executed via AutoDock Vina. Qualitative and quantitative analyses of QFJDD were performed using UPLC-Q-TOF-MS and UPLC. Expressions of key genes were determined by qRT-PCR, immunoreactivity score (IRS) of PD-L1 was assessed by immunohistochemistry (IHC), while the CD8+PD-1+T% derived from spleen tissues of Lewis lung cancer (LLC) bearing-mice was calculated using flow cytometry (FCM). Results: A total of 53 bioactive compounds and 288 targets of QFJDD as well as 8151 LUAD associated genes were obtained. Further, six bioactive compounds, including quercetin, luteolin, kaempferol, wogonin, baicalein, and acacetin, and 22 hub genes were identified. The GO analysis showed that the hub genes were mainly enriched in DNA or RNA transcription. KEGG and DAVID pathway analyses revealed that 20 hub genes were primarily enriched in virus, cancer, immune, endocrine, and cardiovascular pathways. The EGFR, JUN, RELA, HIF1A, NFKBIA, AKT1, MAPK1, and MAPK14 hub genes were identified as key genes in PD-L1 expression and PD-1 checkpoint pathway. Moreover, ideal affinity and regions were identified between core compounds and key genes. Notably, QFJDD downregulated EGFR, JUN, RELA, HIF1A, NFKBIA, and CD274 expressions (p < 0.05), while it upregulated AKT1 and MAPK1 (p < 0.05) levels in A549 cells. The PD-L1 IRS of LLC tissue in the QFJDD high dose (Hd) group was lower than model group (p < 0.01). CD8+PD-1+T% was higher in the QFJDD Hd group than in normal and model groups (p < 0.05). Conclusion: QFJDD downregulates PD-L1 expression and increases CD8+PD-1+T% via regulating HIF-1, EGFR, JUN and NFκB signaling pathways. Therefore, QFJDD is a potential treatment option for LUAD.
Collapse
Affiliation(s)
- Junjie Pan
- Department of Pulmonary and Critical Care Medicine, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Hangzhou, Zhejiang, China
- Department of Pulmonary and Critical Care Medicine, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Hongkuan Yang
- Respiratory Intensive Care Unit, The People’s Hospital of Gaozhou, Maoming, Guangdong, China
| | - Lihong Zhu
- Department of Pulmonary and Critical Care Medicine, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Hangzhou, Zhejiang, China
- Department of Pulmonary and Critical Care Medicine, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Yafang Lou
- Department of Pulmonary and Critical Care Medicine, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Hangzhou, Zhejiang, China
- Department of Pulmonary and Critical Care Medicine, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Yafang Lou, ; Bo Jin,
| | - Bo Jin
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- *Correspondence: Yafang Lou, ; Bo Jin,
| |
Collapse
|
198
|
Sun Q, Wang B, Xu L, Xiong L, Guo D, Cui W, Xu X, Lin Y. Quality consistency evaluation on three species of North Patrininae herba by high performance liquid chromatography coupled with Electrospray Ion Trap Time‐Of‐Flight Mass Spectrometry and Network Pharmacology Approaches. J Sep Sci 2022; 45:3852-3865. [DOI: 10.1002/jssc.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Qian Sun
- State Drug Administration Key Laboratory of quality evaluation of glue products National standards innovative engineering laboratory Shandong Institute for Food and Drug Control
- College of Pharmacy Shandong University Of Traditional Chinese Medicine
| | - Bing Wang
- State Drug Administration Key Laboratory of quality evaluation of glue products National standards innovative engineering laboratory Shandong Institute for Food and Drug Control
| | - Lili Xu
- State Drug Administration Key Laboratory of quality evaluation of glue products National standards innovative engineering laboratory Shandong Institute for Food and Drug Control
- College of Pharmacy Shandong University Of Traditional Chinese Medicine
| | - Lewen Xiong
- College of Pharmacy Shandong University Of Traditional Chinese Medicine
| | - Dongxiao Guo
- State Drug Administration Key Laboratory of quality evaluation of glue products National standards innovative engineering laboratory Shandong Institute for Food and Drug Control
| | - Weiliang Cui
- State Drug Administration Key Laboratory of quality evaluation of glue products National standards innovative engineering laboratory Shandong Institute for Food and Drug Control
| | - Xingyan Xu
- State Drug Administration Key Laboratory of quality evaluation of glue products National standards innovative engineering laboratory Shandong Institute for Food and Drug Control
| | - Yongqiang Lin
- State Drug Administration Key Laboratory of quality evaluation of glue products National standards innovative engineering laboratory Shandong Institute for Food and Drug Control
| |
Collapse
|
199
|
Yang J, Li C, Liu Y, Han Y, Zhao H, Luo S, Zhao C, Jiang N, Yang M, Sun L. Using network pharmacology to explore the mechanism of Danggui-Shaoyao-San in the treatment of diabetic kidney disease. Front Pharmacol 2022; 13:832299. [PMID: 36059953 PMCID: PMC9437281 DOI: 10.3389/fphar.2022.832299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Danggui-Shaoyao-San (DSS) is one of traditional Chinese medicine, which recently was found to play a protective role in diabetic kidney disease (DKD). However, the pharmacological mechanisms of DSS remain obscure. This study would explore the molecular mechanisms and bioactive ingredients of DSS in the treatment of DKD through network pharmacology. The potential target genes of DKD were obtained through OMIM database, the DigSee database and the DisGeNET database. DSS-related targets were acquired from the BATMAN-TCM database and the STITCH database. The common targets of DSS and DKD were selected for analysis in the STRING database, and the results were imported into Cytoscape to construct a protein-protein interaction network. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis and Gene Ontology (GO) enrichment analysis were carried out to further explore the mechanisms of DSS in treating DKD. Molecular docking was conducted to identify the potential interactions between the compounds and the hub genes. Finally, 162 therapeutic targets of DKD and 550 target genes of DSS were obtained from our screening process. Among this, 28 common targets were considered potential therapeutic targets of DSS for treating DKD. Hub signaling pathways including HIF-1 signaling pathway, TNF signaling pathway, AMPK signaling pathway, mTOR signaling pathway, and PI3K-Akt signaling pathway may be involved in the treatment of DKD using DSS. Furthermore, TNF and PPARG, and poricoic acid C and stigmasterol were identified as hub genes and main active components in this network, respectively. In this study, DSS appears to treat DKD by multi-targets and multi-pathways such as inflammatory, oxidative stress, autophagy and fibrosis, which provided a novel perspective for further research of DSS for the treatment of DKD.
Collapse
|
200
|
Li J, Peng P, Lai KP. Therapeutic targets and functions of curcumol against COVID-19 and colon adenocarcinoma. Front Nutr 2022; 9:961697. [PMID: 35967794 PMCID: PMC9372556 DOI: 10.3389/fnut.2022.961697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Since 2019, the coronavirus disease (COVID-19) has caused 6,319,395 deaths worldwide. Although the COVID-19 vaccine is currently available, the latest variant of the virus, Omicron, spreads more easily than earlier strains, and its mortality rate is still high in patients with chronic diseases, especially cancer patients. So, identifying a novel compound for COVID-19 treatment could help reduce the lethal rate of the viral infection in patients with cancer. This study applied network pharmacology and systematic bioinformatics analysis to determine the possible use of curcumol for treating colon adenocarcinoma (COAD) in patients infected with COVID-19. Our results showed that COVID-19 and COAD in patients shared a cluster of genes commonly deregulated by curcumol. The clinical pathological analyses demonstrated that the expression of gamma-aminobutyric acid receptor subunit delta (GABRD) was associated with the patients' hazard ratio. More importantly, the high expression of GABRD was associated with poor survival rates and the late stages of COAD in patients. The network pharmacology result identified seven-core targets, including solute carrier family 6 member 3, gamma-aminobutyric acid receptor subunit pi, butyrylcholinesterase, cytochrome P450 3A4, 17-beta-hydroxysteroid dehydrogenase type 2, progesterone receptor, and GABRD of curcumol for treating patients with COVID-19 and COAD. The bioinformatic analysis further highlighted their importance in the biological processes and molecular functions in gland development, inflammation, retinol, and steroid metabolism. The findings of this study suggest that curcumol could be an alternative compound for treating patients with COVID-19 and COAD.
Collapse
Affiliation(s)
- Jun Li
- The Pharmaceutical Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peng Peng
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Keng Po Lai
- Clinical Medicine Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|