151
|
Luo M, Wang M, Niu W, Chen M, Cheng W, Zhang L, Xie C, Wang Y, Guo Y, Leng T, Zhang X, Lin C, Lei B. Injectable self-healing anti-inflammatory europium oxide-based dressing with high angiogenesis for improving wound healing and skin regeneration. CHEMICAL ENGINEERING JOURNAL 2021; 412:128471. [DOI: 10.1016/j.cej.2021.128471] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
152
|
Liang Y, Zhang J, Quan H, Zhang P, Xu K, He J, Fang Y, Wang J, Chen P. Antibacterial Effect of Copper Sulfide Nanoparticles on Infected Wound Healing. Surg Infect (Larchmt) 2021; 22:894-902. [PMID: 33887157 DOI: 10.1089/sur.2020.411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: It is widely acknowledged that pathogenic germs delay wound healing to some extent. To explore factors influencing the wound healing process, the current study was conducted to evaluate the antibacterial effect of topical application of copper sulfide nanoparticles (CuS NPs) in vitro and on infected wound healing process in the rat model. Materials and Methods: In this study, the morphology and size of CuS NPs were detected. Staphylococcus aureus and Escherichia coli were used so that the antibacterial ability of CuS NPs could be evaluated better. In addition, a 2-cm circular full-thickness wound infected with a solution of 107 colony forming units (CFU) Staphylococcus aureus was created on the back of each rat. The rats were divided into four groups including the control group, the 100 mcg/mL CuS NPs group, the 250 mcg/mL CuS NPs group, and the 500 mcg/mL CuS NPs group. Tissue bacterial count and histologic assessment were evaluated. Results: The results indicated that CuS NPs had antibacterial activity against Staphylococcus aureus and Escherichia coli. Moreover, they could decrease the incidence of bacterial colonization and promote wound healing through re-epithelialization and collagen deposition. Furthermore, CuS NPs could maintain Cu2+ continuous release and inhibit the viability of Staphylococcus aureus through lipid peroxidation. Conclusions: This study found that CuS NPs have fine antibacterial properties, and particularly, the 500 mcg/mL CuS NPs had better effects, without increase of side effects. They could promote infected wound healing, the prospective clinical application of which was further confirmed in the treatment of wound infection.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, China
| | - Jiale Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, China
| | | | - Pei Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Keteng Xu
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, China
| | - Jinshan He
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, China
| | - Yongchao Fang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, China
| | - Jingcheng Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, China
| | - Pengtao Chen
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, China
| |
Collapse
|
153
|
Photo induced mechanistic activity of GO/Zn(Cu)O nanocomposite against infectious pathogens: Potential application in wound healing. Photodiagnosis Photodyn Ther 2021; 34:102291. [PMID: 33862280 DOI: 10.1016/j.pdpdt.2021.102291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022]
Abstract
Treating infection causing microorganisms is one of the major challenges in wound healing. These may gain resistance due to the overuse of conventional antibiotics. A promising technique is antimicrobial photodynamic therapy (aPDT) used to selectively cause damage to infectious pathogenic cells via generation of reactive oxygen species (ROS). We report on biocompatable nanomaterials that can serve as potential photosensitizers for aPDT. GO/Zn(Cu)O nanocomposite was synthesized by co-precipitation method. Graphene Oxide (GO) is known for its high surface to volume ratio, excellent surface functionality and enhanced antimicrobial property. ZnO nanoparticle induces the generation of reactive oxygen species (ROS) under light irradiation and it leads to recombination of electron-hole pair. Nanocomposites of GO and Cu doped ZnO increases visible light absorption and enhances the photocatalytic property. It generates more ROS and increases the bacterial inhibition. GO/Zn(Cu)O nanocomposite was tested against Staphylococcus aureus (S. aureus), Enterococcus faecium (E. faecium), Escherichia coli (E. coli), Salmonella typhi (S. typhi), Shigella flexneri (S. flexneri) and Pseudomonas aeruginosa (P. aeruginosa) by well diffusion method, growth curve, colony count, biofilm formation under both dark and visible light condition. Reactive Oxygen Species assay (ROS), Lactate dehydrogenase leakage (LDH) assay, Protein estimation assay and membrane integrity study proves the mechanism of inhibition of bacteria. Inhibition kinetics shows the sensitivity between bacteria and GO/Zn(Cu)O nanocomposite.
Collapse
|
154
|
Korupalli C, Li H, Nguyen N, Mi F, Chang Y, Lin Y, Sung H. Conductive Materials for Healing Wounds: Their Incorporation in Electroactive Wound Dressings, Characterization, and Perspectives. Adv Healthc Mater 2021; 10:e2001384. [PMID: 33274846 DOI: 10.1002/adhm.202001384] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/06/2020] [Indexed: 12/11/2022]
Abstract
The use of conductive materials to promote the activity of electrically responsive cells is an effective means of accelerating wound healing. This article focuses on recent advancements in conductive materials, with emphasis on overviewing their incorporation with non-conducting polymers to fabricate electroactive wound dressings. The characteristics of these electroactive dressings are deliberated, and the mechanisms on how they accelerate the wound healing process are discussed. Potential directions for the future development of electroactive wound dressings and their potential in monitoring the course of wound healing in vivo concomitantly are also proposed.
Collapse
Affiliation(s)
- Chiranjeevi Korupalli
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Hui Li
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Nhien Nguyen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| | - Fwu‐Long Mi
- Department of Biochemistry and Molecular Cell Biology School of Medicine College of Medicine Taipei Medical University Taipei Taiwan 110 ROC
| | - Yen Chang
- Taipei Tzu Chi Hospital Buddhist Tzu Chi Medical Foundation and School of Medicine Tzu Chi University Hualien Taiwan 970 ROC
| | - Yu‐Jung Lin
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
- Research Center for Applied Sciences Academia Sinica Taipei Taiwan 11529 ROC
| | - Hsing‐Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu Taiwan 300 ROC
| |
Collapse
|
155
|
Antibiotic-Loaded Psyllium Husk Hemicellulose and Gelatin-Based Polymeric Films for Wound Dressing Application. Pharmaceutics 2021; 13:pharmaceutics13020236. [PMID: 33562378 PMCID: PMC7914473 DOI: 10.3390/pharmaceutics13020236] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Wound infections are one of the major reasons for the delay in the healing of chronic wounds and can be overcome by developing effective wound dressings capable of absorbing exudate, providing local antibiotic release, and improving patient comfort. Arabinoxylan (AX) is a major hemicellulose present in psyllium seed husk (PSH) and exhibits promising characteristics for developing film dressings. Herein, AX-gelatin (GL) films were prepared by blending AX, gelatin (GL), glycerol, and gentamicin (antibiotic). Initially, the optimal quantities of AX, GL, and glycerol for preparing transparent, bubble-free, smooth, and foldable AX-GL films were found. Physiochemical, thermal, morphological, drug release, and antibacterial characteristics of the AX-GL films were evaluated to investigate their suitability as wound dressings. The findings suggested that the mechanical, water vapor transmission, morphological, and expansion characteristics of the optimized AX-GL films were within the required range for wound dressing. The results of Fourier-transform infrared (FTIR) analyses suggested chemical compatibility among the ingredients of the films. In in vitro drug release and antibacterial activity experiments, gentamicin (GM)-loaded AX-GL films released approximately 89% of the GM in 24 h and exhibited better antibacterial activity than standard GM solution. These results suggest that AX-GL films could serve as a promising dressing to protect against wound infections.
Collapse
|
156
|
Sahu A, Jeon J, Lee MS, Yang HS, Tae G. Antioxidant and anti-inflammatory activities of Prussian blue nanozyme promotes full-thickness skin wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111596. [DOI: 10.1016/j.msec.2020.111596] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/31/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
|
157
|
Salimi F, Mohammadipanah F. Nanomaterials Versus The Microbial Compounds With Wound Healing Property. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2020.584489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Age and diabetes related slow-healing or chronic wounds may result in morbidity and mortality through persistent biofilms infections and prolonged inflammatory phase. Nano-materials [metal/metal oxide NPs (39%), lipid vehicles (21%), polymer NPs (19%), ceramic nanoparticles (NPs) (14%), and carbon nanomaterials (NMs) (7%)] can be introduced as a possible next-generation therapy because of either their intrinsic wound healing activity or via carrying bioactive compounds including, antibiotics, antioxidants, growth factor or stem cell. The nanomaterials have been shown to implicate in all four stages of wound healing including hemostasis (polymer NPs, ceramic NPs, nanoceria-6.1%), inflammation (liposome/vesicles/solid lipid NPs/polymer NPs/ceramic NPs/silver NPs/gold NPs/nanoceria/fullerenes/carbon-based NPs-32.7%), proliferation (vesicles/liposome/solid lipid NPs/gold NPs/silver NPs/iron oxide NPs/ceramic NPs/copper NPs/self-assembling elastin-like NPs/nanoceria/micelle/dendrimers/polymer NPs-57.1%), remodeling (iron oxide NPs/nanoceria-4.1%). Natural compounds from alkaloids, flavonoids, retinoids, volatile oil, terpenes, carotenoids, or polyphenolic compounds with proven antioxidant, anti-inflammatory, immunomodulatory, or antimicrobial characteristics are also well known for their potential to accelerate the wound healing process. In the current paper, we survey the potential and properties of nanomaterials and microbial compounds in improving the process of wound and scar healing. Finally, we review the potential biocompounds for incorporation to nano-material in perspective to designate more effective or multivalent wound healing natural or nano-based drugs.
Collapse
|
158
|
Change of the Shape of the Dural Sac in the Laminectomy Model at Different Stages of the Reparation in the Experiment. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
159
|
Fan SL, Lin JA, Chen SY, Lin JH, Lin HT, Chen YY, Yen GC. Effects of Hsian-tsao (Mesona procumbens Hemsl.) extracts and its polysaccharides on the promotion of wound healing under diabetes-like conditions. Food Funct 2021; 12:119-132. [PMID: 33242056 DOI: 10.1039/d0fo02180f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The aim of the study was to evaluate the effects of Hsian-tsao (Mesona procumbens Hemsl.) and its polysaccharides on impaired wound healing in diabetes. The results indicate that ethanol extracts of Hsian-tsao (EE) and crude polysaccharides from water extracts of Hsian-tsao (WEP) had strong inhibitory effects on methylglyoxal (MG)-induced glycation and reactive oxygen species (ROS) production. EE and WEP also decreased MG-induced inflammation-related factors in RAW 264.7 macrophages and restored MG-impaired wound-healing factors in 3T3-L1 fibroblasts. Furthermore, EE and WEP were found to dose-dependently enhance the MG-impaired phagocytosis of Staphylococcus aureus and Pseudomonas aeruginosa by macrophages. Excitingly, EE and WEP significantly enhanced wound healing on the dorsal skin through regulation of macrophage inflammatory protein-2 (MIP-2), metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase-1 (TIMP-1) protein expressions in diabetic mice, as evidenced by the percentage reduction in wound surface area and the results of histopathologic scoring analysis. In conclusion, these results suggest that Hsian-tsao extract and its polysaccharides might be utilized in alternative natural therapy to promote wound healing in diabetic individuals.
Collapse
Affiliation(s)
- Siao-Ling Fan
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| | - Jia-Hong Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| | - Hsin-Tang Lin
- Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Ying-Yin Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan. and Graduate Institute of Food Safety, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| |
Collapse
|
160
|
Chen Y, Lu W, Guo Y, Xie Y, Zhu Y, Song Y. Multifunction gelatin/chitosan composite microspheres with ROS-scavenging and antibacterial activities for improving the microenvironment of chronic wounds. NEW J CHEM 2021. [DOI: 10.1039/d1nj00645b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multifunction gelatin/chitosan composite microspheres with ROS-scavenging and antibacterial activities for chronic wound healing.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Material
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Material
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Yuntao Xie
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Hangzhou 310018
- China
| | - Yi Zhu
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Hangzhou 310018
- China
| | - Yeping Song
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Hangzhou 310018
- China
| |
Collapse
|
161
|
Silk fibroin/collagen 3D scaffolds loaded with TiO2 nanoparticles for skin tissue regeneration. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03475-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
162
|
El-Aassar MR, El-Beheri NG, Agwa MM, Eltaher HM, Alseqely M, Sadik WS, El-Khordagui L. Antibiotic-free combinational hyaluronic acid blend nanofibers for wound healing enhancement. Int J Biol Macromol 2020; 167:1552-1563. [PMID: 33212109 DOI: 10.1016/j.ijbiomac.2020.11.109] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 01/07/2023]
Abstract
An innovative approach in the functionalization of nanofibers (NFs) for wound healing relies on non-antibiotic combinational therapy to subdue microbial invasion while reducing antimicrobial resistance and enhancing healing. Despite great potentials, wound healing efficacy of NFs embedding antimicrobial metal nanoparticles (NPs)/essential oils has been scarcely documented. We developed combinational NFs using an electrospinnable hyaluronic acid/polyvinyl alcohol/polyethylene oxide blend embedding a new ZnO NPs/cinnamon essential oil (CEO) antimicrobial combination. Fourier transform infrared, X-ray diffraction and transmission electron microscopy confirmed the presence of HA and distribution of ZnO NPs and CEO within NFs. Results for mean diameter, thermal stability, hydrophilicity, tensile strength, in vitro biodegradability, and cytocompatibility of crosslinked combinational NFs were intermediate between those of their singly loaded counterparts. All NFs inhibited the growth of Staphylococcus aureus (S. aureus). Compared with singly loaded NFs, combinational NFs showed the greatest healing efficacy of full thickness S. aureus inoculated incision wounds in rats in terms of bacterial inhibition following a single application, healing speed, and quality of skin structure recovery as verified by morphological, microbiological, and histopathological studies. Results highlighted the potentials of metal NPs/essential oil functionalization of nanofibrous wound dressings as an emerging antibiotic-free combinational approach for more effective and safer wound healing.
Collapse
Affiliation(s)
- Mohamed R El-Aassar
- Department of Chemistry, College of Science, Jouf University, Sakaka 2014, Saudi Arabia; Polymer Materials Research Department, Advanced Technology and New Materials Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Universities and Research Institutes District, Alexandria 21934, Egypt.
| | - Nagham G El-Beheri
- Polymer Materials Research Department, Advanced Technology and New Materials Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Universities and Research Institutes District, Alexandria 21934, Egypt; Materials Science Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El- Behooth St, Dokki, Giza 12311, Egypt
| | - Hoda M Eltaher
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mostafa Alseqely
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Wagih S Sadik
- Materials Science Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Labiba El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
163
|
Patil S, Chandrasekaran R. Biogenic nanoparticles: a comprehensive perspective in synthesis, characterization, application and its challenges. J Genet Eng Biotechnol 2020; 18:67. [PMID: 33104931 PMCID: PMC7588575 DOI: 10.1186/s43141-020-00081-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Translating the conventional scientific concepts into a new robust invention is a much needed one at a present scenario to develop some novel materials with intriguing properties. Particles in nanoscale exhibit superior activity than their bulk counterpart. This unique feature is intensively utilized in physical, chemical, and biological sectors. Each metal is holding unique optical properties that can be utilized to synthesize metallic nanoparticles. At present, versatile nanoparticles were synthesized through chemical and biological methods. Metallic nanoparticles pose numerous scientific merits and have promising industrial applications. But concerning the pros and cons of metallic nanoparticle synthesis methods, researchers elevate to drive the synthesis process of nanoparticles through the utilization of plant resources as a substitute for use of chemicals and reagents under the theme of green chemistry. These synthesized nanoparticles exhibit superior antimicrobial, anticancer, larvicidal, leishmaniasis, wound healing, antioxidant, and as a sensor. Therefore, the utilization of such conceptualized nanoparticles in treating infectious and environmental applications is a warranted one. CONCLUSION Green chemistry is a keen prudence method, in which bioresources is used as a template for the synthesis of nanoparticles. Therefore, in this review, we exclusively update the context of plant-based metallic nanoparticle synthesis, characterization, and applications in detailed coverage. Hopefully, our review will be modernizing the recent trends going on in metallic nanoparticles synthesis for the blooming research fraternities.
Collapse
Affiliation(s)
- Sunita Patil
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, India
- Department of Biotechnology, Sri Krishna College of Arts and Science, Coimbatore, India
| | | |
Collapse
|
164
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
165
|
Boomi P, Ganesan R, Prabu Poorani G, Jegatheeswaran S, Balakumar C, Gurumallesh Prabu H, Anand K, Marimuthu Prabhu N, Jeyakanthan J, Saravanan M. Phyto-Engineered Gold Nanoparticles (AuNPs) with Potential Antibacterial, Antioxidant, and Wound Healing Activities Under in vitro and in vivo Conditions. Int J Nanomedicine 2020; 15:7553-7568. [PMID: 33116487 PMCID: PMC7548233 DOI: 10.2147/ijn.s257499] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background A diabetic ulcer is one of the major causes of illness among diabetic patients that involves severe and intractable complications associated with diabetic wounds. Hence, a suitable wound-healing agent is urgently needed at this juncture. Greener nanotechnology is a very promising and emerging technology currently employed for the development of alternative medicines. Plant-mediated synthesis of metal nanoparticles has been intensively investigated and regarded as an alternative strategy for overcoming various diseases and their secondary complications like microbial infections. Hence, we are interested in developing phyto-engineered gold nanoparticles as useful therapeutic agents for the treatment of infectious diseases and wounds effectively. Methods and Results We have synthesized phyto-engineered gold nanoparticles from the aqueous extract of Acalypha indica and characterized using advanced bio-analytical techniques. The surface plasmon resonance feature and crystalline behavior of gold nanoparticles were revealed by ultraviolet-visible spectroscopy and X-ray diffraction, respectively. High-performance liquid chromatography analysis of the extract demonstrated the presence of different constituents, while major functional groups were interpreted by the Fourier-transform infrared spectroscopy as the various stretching vibrations appeared for important O-H (3443 cm−1), C=O (1644 cm−1) and C-O (1395 cm−1) groups. Scanning electron microscopy, high-resolution transmission electron microscopy results revealed a distribution of spherical and rod-like nanostructures with 20 nm of size. The gold nanoparticle-coated cotton fabric was evaluated for the antibacterial activity against Staphylococcus epidermidis and Escherichia coli bacterial strains which revealed remarkable inhibition at the zone of inhibition of 31 mm diameter against S. epidermidis. Further, antioxidant activity was tested for their free radical scavenging property, and the maximum antioxidant activity of the extract containing gold nanoparticles was found to be 80% at 100 µg/mL. The potent free radical scavenging property of the nanoparticles is observed at IC50 value 16.25 µg/mL. Moreover, in vivo wound-healing activity was carried out using BALB/c mice model with infected diabetic wounds and observed the stained microscopic images at different time intervals (day 2, day 7 and day 15). It was noted that in 15 days, the wound area is completely re-epithelialized due to the presence of different morphologies such as spherical, needle and triangle nanoparticles. The re-epithelialization layer is fully covered by nanoparticles on the wound area and also collagen filled in the scar tissue when compared with the control group. Conclusion The pharmacological evaluation results of the study indicated an encouraging antibacterial and antioxidant activity of the greener synthesized gold nanoparticles tethered with aqueous extract of Acalypha indica. Moreover, we demonstrated enhanced in vivo wound-healing efficiency of the synthesized gold nanoparticles through the animal model. Thus, the outcome of this work revealed that the phyto-engineered gold nanoparticles could be useful for biomedical applications, especially in the development of promising antibacterial and wound-healing agents.
Collapse
Affiliation(s)
- Pandi Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Ramalingam Ganesan
- Department of Chemistry, Arumugam Seethaiyammal Arts and Science College, Tiruppattur, Tamil Nadu, India
| | | | - Sonamuthu Jegatheeswaran
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | | | - Halliah Gurumallesh Prabu
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Narayanasamy Marimuthu Prabhu
- Disease Control and Prevention Lab, Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Muthupandian Saravanan
- Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Science, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
166
|
Fu LQ, Chen XY, Cai MH, Tao XH, Fan YB, Mou XZ. Surface Engineered Metal-Organic Frameworks (MOFs) Based Novel Hybrid Systems for Effective Wound Healing: A Review of Recent Developments. Front Bioeng Biotechnol 2020; 8:576348. [PMID: 33042977 PMCID: PMC7527743 DOI: 10.3389/fbioe.2020.576348] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022] Open
Abstract
Wounds present serious medical complications and their healing requires strategies that promote angiogenesis, deposition of collagen as well as re-epithelialization of wounds. Currently used conventional wound healing strategies have become less effective due to various issues associated with them. Thus, novel strategies are needed to be developed for early and effective healing of wounds. Metal-organic frameworks (MOFs), formed by linking of metal ions through organic bridging ligands, are highly tunable hybrid materials and have attracted more considerable scientific attention due to their charming and prominent properties, such as abundant pore structures and multiple functionalities. Surface engineering of MOFs with unique ligands can overcome issues associated with conventional wound healing methods, thus resulting in early and effective wound healing. This review has been undertaken to elaborate wound healing, and the use of surface engineered MOFs for effective and rapid wound healing. The process of wound healing will be discussed followed by a detailed review of recent literature for summarizing applications of surface engineered MOFs for wound healing. MOFs wound healing will be discussed in terms of their use as antibacterial agents, therapeutic delivery vehicles, and dressing systems in wound healing.
Collapse
Affiliation(s)
- Luo-Qin Fu
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou, China
| | - Xiao-Yi Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Mao-Hua Cai
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou, China
| | - Xiao-Hua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yi-Bin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiao-Zhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
167
|
Barroso A, Mestre H, Ascenso A, Simões S, Reis C. Nanomaterials in wound healing: From material sciences to wound healing applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000055] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Andreia Barroso
- Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Henrique Mestre
- Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Andreia Ascenso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Catarina Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
- IBEB, Biophysics and Biomedical Engineering, Faculty of Sciences Universidade de Lisboa Campo Grande Lisboa 1649‐016 Portugal
| |
Collapse
|
168
|
Matter MT, Probst S, Läuchli S, Herrmann IK. Uniting Drug and Delivery: Metal Oxide Hybrid Nanotherapeutics for Skin Wound Care. Pharmaceutics 2020; 12:E780. [PMID: 32824470 PMCID: PMC7465174 DOI: 10.3390/pharmaceutics12080780] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Wound care and soft tissue repair have been a major human concern for millennia. Despite considerable advancements in standards of living and medical abilities, difficult-to-heal wounds remain a major burden for patients, clinicians and the healthcare system alike. Due to an aging population, the rise in chronic diseases such as vascular disease and diabetes, and the increased incidence of antibiotic resistance, the problem is set to worsen. The global wound care market is constantly evolving and expanding, and has yielded a plethora of potential solutions to treat poorly healing wounds. In ancient times, before such a market existed, metals and their ions were frequently used in wound care. In combination with plant extracts, they were used to accelerate the healing of burns, cuts and combat wounds. With the rise of organic chemistry and small molecule drugs and ointments, researchers lost their interest in inorganic materials. Only recently, the advent of nano-engineering has given us a toolbox to develop inorganic materials on a length-scale that is relevant to wound healing processes. The robustness of synthesis, as well as the stability and versatility of inorganic nanotherapeutics gives them potential advantages over small molecule drugs. Both bottom-up and top-down approaches have yielded functional inorganic nanomaterials, some of which unite the wound healing properties of two or more materials. Furthermore, these nanomaterials do not only serve as the active agent, but also as the delivery vehicle, and sometimes as a scaffold. This review article provides an overview of inorganic hybrid nanotherapeutics with promising properties for the wound care field. These therapeutics include combinations of different metals, metal oxides and metal ions. Their production, mechanism of action and applicability will be discussed in comparison to conventional wound healing products.
Collapse
Affiliation(s)
- Martin T. Matter
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland;
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Sebastian Probst
- School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Avenue de Champel 47, 1206 Geneva, Switzerland;
| | - Severin Läuchli
- Department of Dermatology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland;
| | - Inge K. Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland;
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
169
|
Xu C, Akakuru OU, Ma X, Zheng J, Zheng J, Wu A. Nanoparticle-Based Wound Dressing: Recent Progress in the Detection and Therapy of Bacterial Infections. Bioconjug Chem 2020; 31:1708-1723. [PMID: 32538089 DOI: 10.1021/acs.bioconjchem.0c00297] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial infections in wounds often delay the healing process, and may seriously threaten human life. It is urgent to develop wound dressings to effectively detect and treat bacterial infections. Nanoparticles have been extensively used in wound dressings because of their specific properties. This review highlights the recent progress on nanoparticle-based wound dressings for bacterial detection and therapy. Specifically, nanoparticles have been applied as intrinsic antibacterial agents or drug delivery vehicles to treat bacteria in wounds. Moreover, nanoparticles with photothermal or photodynamic property have also been explored to endow wound dressings with significant optical properties to further enhance their bactericidal effect. More interestingly, nanoparticle-based smart dressings have been recently explored for bacteria detection and treatment, which enables an accurate assessment of bacterial infection and a more precise control of on-demand therapy.
Collapse
Affiliation(s)
- Chen Xu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, the People's Republic of China.,Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, the People's Republic of China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| | - Jianjun Zheng
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, the People's Republic of China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| |
Collapse
|
170
|
Li Z, Mu Y, Peng C, Lavin MF, Shao H, Du Z. Understanding the mechanisms of silica nanoparticles for nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1658. [PMID: 32602269 PMCID: PMC7757183 DOI: 10.1002/wnan.1658] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
As a consequence of recent progression in biomedicine and nanotechnology, nanomedicine has emerged rapidly as a new discipline with extensive application of nanomaterials in biology, medicine, and pharmacology. Among the various nanomaterials, silica nanoparticles (SNPs) are particularly promising in nanomedicine applications due to their large specific surface area, adjustable pore size, facile surface modification, and excellent biocompatibility. This paper reviews the synthesis of SNPs and their recent usage in drug delivery, biomedical imaging, photodynamic and photothermal therapy, and other applications. In addition, the possible adverse effects of SNPs in nanomedicine applications are reviewed from reported in vitro and in vivo studies. Finally, the potential opportunities and challenges for the future use of SNPs are discussed. This article is categorized under:Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies
Collapse
Affiliation(s)
- Ziyuan Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingwen Mu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Cheng Peng
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Martin F Lavin
- University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Hua Shao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongjun Du
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
171
|
Alavi M, Rai M. Topical delivery of growth factors and metal/metal oxide nanoparticles to infected wounds by polymeric nanoparticles: an overview. Expert Rev Anti Infect Ther 2020; 18:1021-1032. [PMID: 32536223 DOI: 10.1080/14787210.2020.1782740] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Infected chronic wounds particularly diabetic foot ulcers (DFUs) can result from stable colonization of antibiotic-resistant bacteria and fungi at the wound sites. In this context, the rapid healing of infected wounds has been the main goal in recent investigations. This issue can be solved by improving wound-healing phases including hemostasis, inflammatory, proliferative, and remodeling/maturation, and removal of bacteria and fungi. The applications of growth factors (GFs) and metal/metal oxide nanoparticles (MNPs/MONPs) are two choices for these targets. However, the lack of sustainable release of these agents is an important problem for appropriate wound healing. AREA COVERED The present review is focused on recent advances in delivery systems composed of growth factor and MNPs/MONPs for rapid wound healing. EXPERT OPINION Synthetic and natural polymeric micro- and nanocarriers including polyvinylpyrrolidone (PVP) and chitosan play a vital role in the healing of infected chronic wounds. Using various derivatives of chitosan as pH-responsive polymer with basic and acidic groups can be the best option to prepare controllable and sequential GF release. However, it warrants further extensive research to solve wound-healing problems.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Department of Biology, Faculty of Science, Razi University , Kermanshah, Iran
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University , Amravati, India.,Department of Chemistry, Federal University of Piaui , Teresina, Brazil
| |
Collapse
|
172
|
Quantum-Sized Zinc Oxide Nanoparticles Synthesised within Mesoporous Silica (SBA-11) by Humid Thermal Decomposition of Zinc Acetate. CRYSTALS 2020. [DOI: 10.3390/cryst10060549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A modified facile method is presented to synthesise quantum-sized zinc oxide nanoparticles within the pores of a mesoporous silica host (SBA-11). This method eliminates the 3 h alcohol reflux and the basic solution reaction steps of zinc acetate. The mesoporous structure and the ZnO nanoparticles were analysed by X-ray diffractometry, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, nitrogen sorption analysis and UV–VIS spectroscopy. These tests confirm the synthesis of ~1 nm sized ZnO within the pores of SBA-11 and that the porous structure remained intact after ZnO synthesis.
Collapse
|
173
|
Ezhilarasu H, Vishalli D, Dheen ST, Bay BH, Srinivasan DK. Nanoparticle-Based Therapeutic Approach for Diabetic Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1234. [PMID: 32630377 PMCID: PMC7353122 DOI: 10.3390/nano10061234] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a common endocrine disease characterized by a state of hyperglycemia (higher level of glucose in the blood than usual). DM and its complications can lead to diabetic foot ulcer (DFU). DFU is associated with impaired wound healing, due to inappropriate cellular and cytokines response, infection, poor vascularization, and neuropathy. Effective therapeutic strategies for the management of impaired wound could be attained through a better insight of molecular mechanism and pathophysiology of diabetic wound healing. Nanotherapeutics-based agents engineered within 1-100 nm levels, which include nanoparticles and nanoscaffolds, are recent promising treatment strategies for accelerating diabetic wound healing. Nanoparticles are smaller in size and have high surface area to volume ratio that increases the likelihood of biological interaction and penetration at wound site. They are ideal for topical delivery of drugs in a sustained manner, eliciting cell-to-cell interactions, cell proliferation, vascularization, cell signaling, and elaboration of biomolecules necessary for effective wound healing. Furthermore, nanoparticles have the ability to deliver one or more therapeutic drug molecules, such as growth factors, nucleic acids, antibiotics, and antioxidants, which can be released in a sustained manner within the target tissue. This review focuses on recent approaches in the development of nanoparticle-based therapeutics for enhancing diabetic wound healing.
Collapse
Affiliation(s)
- Hariharan Ezhilarasu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Dinesh Vishalli
- Faculty of Medical Sciences, Krishna Institute of Medical Sciences “Deemed to be University”, Karad, Maharashtra 415539, India;
| | - S. Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (H.E.); (S.T.D.); (B.-H.B.)
| |
Collapse
|
174
|
Saddik MS, Alsharif FM, El-Mokhtar MA, Al-Hakkani MF, El-Mahdy MM, Farghaly HS, Abou-Taleb HA. Biosynthesis, Characterization, and Wound-Healing Activity of Phenytoin-Loaded Copper Nanoparticles. AAPS PharmSciTech 2020; 21:175. [PMID: 32556636 DOI: 10.1208/s12249-020-01700-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Wound-healing is a very complex and evolutionary process that involves a great variety of dynamic steps. Although different pharmaceutical agents have been developed to hasten the wound-healing process, the existing agents are still far from optimal. The present work aimed to prepare and evaluate the wound-healing efficacy of phenytoin-loaded copper nanoparticles (PHT-loaded CuNPs). CuNPs were biosynthesized using licorice aqueous extract. The prepared CuNPs were loaded with PHT by adsorption, characterized, and evaluated for wound-healing efficiency. Results showed that both plain and PHT-loaded CuNPs were monodisperse and exhibited a cubic and hexagonal morphology. The mechanism by which PHT was adsorbed on the surface of CuNPs was best fit by the Langmuir model with a maximum loaded monolayer capacity of 181 mg/g. The kinetic study revealed that the adsorption reaction followed the pseudo-second order while the thermodynamic parameters indicated that the adsorption process was physical in nature and endothermic, and occurred spontaneously. Moreover, the in vivo wound-healing activity of PHT-loaded CuNP impregnated hydroxypropylmethyl cellulose (HPMC) gel was carried out using an excisional wound model in rats. Data showed that PHT-loaded CuNPs accelerated epidermal regeneration and stimulated granulation and tissue formation in treated rats compared to controls. Additionally, quantitative real-time polymerase chain reaction (RT-PCR) analysis showed that lesions treated with PHT-loaded CuNPs were associated with a marked increase in the expression of dermal procollagen type I and a decrease in the expression of the inflammatory JAK3 compared to control samples. In conclusion, PHT-loaded CuNPs are a promising platform for effective and rapid wound-healing.
Collapse
|
175
|
Antibacterial nano cerium oxide/chitosan/cellulose acetate composite films as potential wound dressing. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109777] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
176
|
Shahriyari F, Yaarali D, Ahmadi R, Hassan S, Wei W. Synthesis and characterization of Cu-Sn oxides nanoparticles via wire explosion method with surfactants, evaluation of in-vitro cytotoxic and antibacterial properties. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
177
|
Silina EV, Manturova NE, Vasin VI, Artyushkova EB, Khokhlov NV, Ivanov AV, Stupin VA. Efficacy of A Novel Smart Polymeric Nanodrug in the Treatment of Experimental Wounds in Rats. Polymers (Basel) 2020; 12:E1126. [PMID: 32423071 PMCID: PMC7285345 DOI: 10.3390/polym12051126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
High-quality and aesthetic wound healing, as well as effective medical support of this process, continue to be relevant. This study aims to evaluate the medical efficacy of a novel smart polymeric nanodrug (SPN) on the rate and mechanism of wound healing in experimental animals. The study was carried out in male Wistar rats (aged 8-9 months). In these animals, identical square wounds down to the fascia were made in non-sterile conditions on the back on both sides of the vertebra. SPN was used for the treatment of one wound, and the other wound was left without treatment (control group). Biocompatible citrate-stabilized cerium oxide nanoparticles integrated into a polysaccharide hydrogel matrix containing natural and synthetic polysaccharide polymers (pectin, alginate, chitosan, agar-agar, water-soluble cellulose derivatives) were used as the therapeutic agent. Changes in the wound sizes (area, volume) over time and wound temperature were assessed on Days 0, 1, 3, 5, 7, and 14. Histological examination of the wounds was performed on Days 3, 7, and 14. The study showed that the use of SPN accelerated wound healing in comparison with control wounds by inhibiting the inflammatory response, which was measured by a decreased number of white blood cells in SPN-treated wounds. It also accelerated the development of fibroblasts, with an early onset of new collagen synthesis, which eventually led to the formation of more tender postoperative scars. Thus, the study demonstrated that the use of SPN for the treatment of wounds was effective and promising.
Collapse
Affiliation(s)
- Ekaterina V. Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str, 8, 119991 Moscow, Russia
| | - Natalia E. Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, N.I. Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova St., 1, 117997 Moscow, Russia;
| | - Vitaliy I. Vasin
- Department of Hospital Surgery №1, N.I. Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova St., 1, 117997 Moscow, Russia; (V.I.V.); (V.A.S.)
| | - Elena B. Artyushkova
- Research Institute of Experimental Medicine, Kursk State Medical University, Karl Marx St, 3, 305041 Kursk, Russia; (E.B.A.); (N.V.K.)
| | - Nikolay V. Khokhlov
- Research Institute of Experimental Medicine, Kursk State Medical University, Karl Marx St, 3, 305041 Kursk, Russia; (E.B.A.); (N.V.K.)
| | - Alexander V. Ivanov
- Department of Histology, Embryology, Cytology, Kursk State Medical University, Karl Marx St, 3, 305041 Kursk, Russia;
| | - Victor A. Stupin
- Department of Hospital Surgery №1, N.I. Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova St., 1, 117997 Moscow, Russia; (V.I.V.); (V.A.S.)
| |
Collapse
|
178
|
Organic nanocomposite Band-Aid for chronic wound healing: a novel honey-based nanofibrous scaffold. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01247-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
179
|
Soubhagya AS, Moorthi A, Prabaharan M. Preparation and characterization of chitosan/pectin/ZnO porous films for wound healing. Int J Biol Macromol 2020; 157:135-145. [PMID: 32339591 DOI: 10.1016/j.ijbiomac.2020.04.156] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/09/2020] [Accepted: 04/19/2020] [Indexed: 01/29/2023]
Abstract
Three-dimensional (3D) porous films based on chitosan/pectin/ZnO nanoparticles (NPs) were prepared for wound healing by the freeze-drying method. The chemical nature, composition and morphology of these films were revealed by FTIR, XRD, EDX, SEM and BET analysis. SEM micrographs showed a decrease in the pore size and porosity of chitosan/pectin/ZnO films when increasing the content of ZnO NPs. The developed films presented the swelling degree and water retention ability in the range of 189-465 and 230-390%, respectively. Moreover, they showed an improved compression strength and controlled degradation in the lysozyme-containing medium in comparison with control. MTT assay demonstrated the biocompatibility of chitosan/pectin/ZnO films against the primary human dermal fibroblast cells (HFCs). Among the developed chitosan/pectin/ZnO films, CPZnO-2 films presented the increased rate of cell proliferation and migration. Also, they exhibited antimicrobial activity against the gram-positive and gram-negative bacteria and fungi. These results suggested that chitosan/pectin/ZnO films could be safe, convenient and effective for wound healing.
Collapse
Affiliation(s)
- A S Soubhagya
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India
| | - A Moorthi
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603 103, India
| | - M Prabaharan
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India.
| |
Collapse
|
180
|
Do M, Stinson K, George R. Reflectance structured illumination imaging of internalized cerium oxide nanoparticles modulating dose-dependent reactive oxygen species in breast cancer cells. Biochem Biophys Rep 2020; 22:100745. [PMID: 32099911 PMCID: PMC7031132 DOI: 10.1016/j.bbrep.2020.100745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Cerium oxide nanoparticles have been shown to sensitize cancer cells to radiation damage. Their unique redox properties confer excellent therapeutic potential by augmenting radiation dose with reactive oxygen species mediating bystander effects. Owing to its metallic properties, cerium oxide nanoparticles can be visualized inside cells using reflected light and optical sectioning. This can be advantageous in settings requiring none or minimal sample preparation and modification. We investigated the use of reflectance imaging for the detection of unmodified nanoceria in MDA MB231 breast cancer cells along with differential interference contrast imaging and fluorescent nuclear labeling. We also performed studies to evaluate the uptake capability, cellular toxicity and redox properties of nanocaria in these cells. Our results demonstrate that reflectance structured illumination imaging can effectively localize cerium oxide nanoparticles in breast cancer cells, and when combining with differential interference contrast and fluorescent cell label imaging, effective compartmental localization of the nanoparticles can be achieved. The total number of cells taking up the nanoparticles and the amount of nanoparticle uptake increased significantly in proportion to the dose, with no adverse effects on cell survival. Moreover, significant reduction in reactive oxygen species was also observed in proportion to increasing nanoceria concentrations attesting to its ability to modulate oxidative stress. In conclusion, this work serves as a pre-clinical scientific evaluation of the effective use of reflectance structured illumination imaging of cerium oxide nanoparticles in breast cancer cells and the safe use of these nanoparticles in MDA MB231 cells for further therapeutic applications. Internalized cerium oxide nanoparticles are imaged with reflected light in breast cancer cells for the first time. Cerium oxide nanoparticles demonstrated no toxicity in MDA MB231 breast cancer cells Cerium oxide nanoparticles modulated free radicals in MBA MB231 cells in a dose dependent manner
Collapse
Affiliation(s)
- Melissa Do
- Department of Clinical & Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kayla Stinson
- Department of Clinical & Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Remo George
- Department of Clinical & Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
181
|
Latest developments on topical therapies in chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg 2020; 28:25-30. [DOI: 10.1097/moo.0000000000000598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
182
|
Ahmad F, Al-Douri Y, Kumar D, Ahmad S. Metal-oxide powder technology in biomedicine. METAL OXIDE POWDER TECHNOLOGIES 2020:121-168. [DOI: 10.1016/b978-0-12-817505-7.00007-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
183
|
Wang C, Li J, Liu X, Cui Z, Chen DF, Li Z, Liang Y, Zhu S, Wu S. The rapid photoresponsive bacteria-killing of Cu-doped MoS2. Biomater Sci 2020; 8:4216-4224. [DOI: 10.1039/d0bm00872a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This material of Cu doped MoS2 can produce reactive oxygen species and photothermal under 660 nm light, thus achieving a rapid bacterial effect. Which is a kind of good photothermal and photodynamic material.
Collapse
Affiliation(s)
- Chaofeng Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei Key Laboratory of Polymer Materials
- School of Materials Science & Engineering
- Hubei University
| | - Jun Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Xiangmei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei Key Laboratory of Polymer Materials
- School of Materials Science & Engineering
- Hubei University
| | - Zhenduo Cui
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Da-Fu Chen
- Beijing JiShuiTan Hospital
- Beijing Research Institute Orthopaedics & Traumatology
- Lab Bone Tissue Engineering
- Beijing 100035
- Peoples R China
| | - Zhaoyang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Yanqin Liang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Shengli Zhu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Shuilin Wu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China
- School of Materials Science & Engineering
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
184
|
Mohammadi Aria M, Erten A, Yalcin O. Technology Advancements in Blood Coagulation Measurements for Point-of-Care Diagnostic Testing. Front Bioeng Biotechnol 2019; 7:395. [PMID: 31921804 PMCID: PMC6917661 DOI: 10.3389/fbioe.2019.00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/21/2019] [Indexed: 12/24/2022] Open
Abstract
In recent years, blood coagulation monitoring has become crucial to diagnosing causes of hemorrhages, developing anticoagulant drugs, assessing bleeding risk in extensive surgery procedures and dialysis, and investigating the efficacy of hemostatic therapies. In this regard, advanced technologies such as microfluidics, fluorescent microscopy, electrochemical sensing, photoacoustic detection, and micro/nano electromechanical systems (MEMS/NEMS) have been employed to develop highly accurate, robust, and cost-effective point of care (POC) devices. These devices measure electrochemical, optical, and mechanical parameters of clotting blood. Which can be correlated to light transmission/scattering, electrical impedance, and viscoelastic properties. In this regard, this paper discusses the working principles of blood coagulation monitoring, physical and sensing parameters in different technologies. In addition, we discussed the recent progress in developing nanomaterials for blood coagulation detection and treatments which opens up new area of controlling and monitoring of coagulation at the same time in the future. Moreover, commercial products, future trends/challenges in blood coagulation monitoring including novel anticoagulant therapies, multiplexed sensing platforms, and the application of artificial intelligence in diagnosis and monitoring have been included.
Collapse
Affiliation(s)
| | - Ahmet Erten
- Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ozlem Yalcin
- Graduate School of Biomedical Sciences and Engineering, Koc University, Sariyer, Turkey
- Department of Physiology, Koc University School of Medicine, Koc University, Sariyer, Turkey
| |
Collapse
|
185
|
Jin SE, Jin HE. Synthesis, Characterization, and Three-Dimensional Structure Generation of Zinc Oxide-Based Nanomedicine for Biomedical Applications. Pharmaceutics 2019; 11:E575. [PMID: 31689932 PMCID: PMC6921052 DOI: 10.3390/pharmaceutics11110575] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 01/10/2023] Open
Abstract
Zinc oxide (ZnO) nanoparticles have been studied as metal-based drugs that may be used for biomedical applications due to the fact of their biocompatibility. Their physicochemical properties, which depend on synthesis techniques involving physical, chemical, biological, and microfluidic reactor methods affect biological activity in vitro and in vivo. Advanced tool-based physicochemical characterization is required to identify the biological and toxicological effects of ZnO nanoparticles. These nanoparticles have variable morphologies and can be molded into three-dimensional structures to enhance their performance. Zinc oxide nanoparticles have shown therapeutic activity against cancer, diabetes, microbial infection, and inflammation. They have also shown the potential to aid in wound healing and can be used for imaging tools and sensors. In this review, we discuss the synthesis techniques, physicochemical characteristics, evaluation tools, techniques used to generate three-dimensional structures, and the various biomedical applications of ZnO nanoparticles.
Collapse
Affiliation(s)
- Su-Eon Jin
- College of Pharmacy, Yonsei University, Incheon 21983, Korea.
| | - Hyo-Eon Jin
- College of Pharmacy, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
186
|
Shahbazi MA, Ferreira MPA, Santos HA. Landing a lethal blow on bacterial infections: an emerging advance of nanodots for wound healing acceleration. Nanomedicine (Lond) 2019; 14:2269-2272. [DOI: 10.2217/nnm-2019-0236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 56184-45139 Zanjan, Iran
| | - Mónica PA Ferreira
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|