151
|
Li L, Zhou XF. Pericellular Griffonia simplicifolia I isolectin B4-binding ring structures in the dorsal root ganglia following peripheral nerve injury in rats. J Comp Neurol 2001; 439:259-74. [PMID: 11596053 DOI: 10.1002/cne.1349] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with a peripheral nerve injury often suffer from persistent chronic pain, but the underlying mechanism remains largely unknown. The persistent nature of the pain suggests injury-induced profound structural changes along the sensory pathways. In the present study, using the plant Griffonia simplicifolia I isolectin B4 (IB4) as a marker for nonpeptidergic small sensory neurons, we sought to examine whether these neurons sprout in the dorsal root ganglia (DRG) in response to peripheral nerve injury. The lumbar 5 (L5) spinal nerve was transected, and rats were allowed to survive for varying lengths of time before IB4 histology was performed. We found that a subpopulation of IB4-positive sensory neurons sprouted robustly after spinal nerve injury. Twelve weeks after spinal nerve injury, the IB4-positive ring structures became dramatic and encircled both large and small neurons in the DRG. The aberrant sprouting of small sensory neurons was also demonstrated by retrograde labeling. The processes of satellite cells surrounding large sensory neurons also became IB4 positive, and 87.8% of perineuronal IB4-positive ring structures intermingled and/or coexpressed with glial fibrillary acidic protein-positive satellite cells. Thus, the sprouting axons of IB4-positive neurons were intermingled with IB4-positive satellite cells, forming perineuronal ring structures surrounding large-diameter neurons. Ultrastructural examinations further confirmed that IB4-positive nerve terminals were entangled with satellite cells and IB4-negative unmyelinated sprouting fibers around sensory neurons. These studies have provided the first evidence that a subpopulation of IB4-binding small sensory neurons sprouts and forms perineuronal ring structures together with IB4-positive satellite cells in response to nerve injury. The significance of the sprouting of IB4-positive neurons remains to be determined.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/metabolism
- Axons/metabolism
- Axons/pathology
- Axons/ultrastructure
- Calcitonin Gene-Related Peptide/metabolism
- Cell Size/physiology
- Denervation
- Ectodysplasins
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Extracellular Matrix/ultrastructure
- Ganglia, Spinal/injuries
- Ganglia, Spinal/pathology
- Ganglia, Spinal/ultrastructure
- Glial Fibrillary Acidic Protein/metabolism
- Immunohistochemistry
- Lectins
- Male
- Membrane Proteins/metabolism
- Microscopy, Electron
- Nerve Growth Factors/metabolism
- Nerve Regeneration/physiology
- Neuralgia/metabolism
- Neuralgia/pathology
- Neuralgia/physiopathology
- Neurofilament Proteins/metabolism
- Neuronal Plasticity/physiology
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Neurons, Afferent/ultrastructure
- Rats
- Rats, Sprague-Dawley
- Satellite Cells, Perineuronal/metabolism
- Satellite Cells, Perineuronal/pathology
- Satellite Cells, Perineuronal/ultrastructure
- Tyrosine 3-Monooxygenase/metabolism
- Ubiquitin Thiolesterase
- Up-Regulation/physiology
Collapse
Affiliation(s)
- L Li
- Department of Human Physiology and Center for Neuroscience, Flinders University of South Australia, Adelaide 5001, Australia
| | | |
Collapse
|
152
|
Hu P, McLachlan EM. Long-term changes in the distribution of galanin in dorsal root ganglia after sciatic or spinal nerve transection in rats. Neuroscience 2001; 103:1059-71. [PMID: 11301213 DOI: 10.1016/s0306-4522(01)00025-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The neuropeptide galanin is upregulated in primary afferent and sympathetic neurones and might be involved in the development of sympathetic perineuronal baskets ("rings") following nerve injury. Galanin, calcitonin gene-related peptide and tyrosine hydroxylase have been examined immunohistochemically in dorsal root ganglia and associated roots at times up to one year after transection of either sciatic or L5 spinal nerves in adult rats. Small diameter somata containing calcitonin gene-related peptide (with or without galanin) were reduced in number, whereas galanin (and, at later times, calcitonin gene-related peptide) appeared in medium to large diameter cells after both types of lesion. Galanin also appeared in axons in grey rami and somata in lumbar paravertebral ganglia. Within dorsal root ganglia, galanin-positive axons formed perineuronal rings of two types: (i) smooth coiled axons surrounded small (< 30 microm diameter) somata from which they probably arose; these were rare after 12 weeks, particularly after a spinal nerve lesion; and (ii) varicose terminals encircled medium to large galanin-positive somata; some arose from brightly immunofluorescent somata nearby and took nearly a year to disappear. About 30% of varicose galanin-positive rings had associated calcitonin gene-related peptide-positive terminals (partly colocalized) whereas nearly 45% had associated tyrosine hydroxylase-positive terminals (partly colocalized). Synaptophysin was present in swollen axons and in some varicosities of all types. We conclude that, after peripheral nerve lesions, varicose perineuronal rings around large diameter dorsal root ganglion cells may be formed by axotomized primary afferent neurones (some containing calcitonin gene-related peptide) and sympathetic neurones, both of which contain upregulated galanin. Exocytosis from the varicosities may modify the excitability of mechanosensitive somata. Small galanin-positive somata disappear over several months after both lesions as calcitonin gene-related peptide reappears in medium to large neurones.
Collapse
Affiliation(s)
- P Hu
- Prince of Wales Medical Research Institute (affiliated with the University of New South Wales), NSW 2031, Randwick, Australia
| | | |
Collapse
|
153
|
Expression and localization of endothelin receptors: implications for the involvement of peripheral glia in nociception. J Neurosci 2001. [PMID: 11157085 DOI: 10.1523/jneurosci.21-03-00999.2001] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The endothelins (ETs) are peptides that have a diverse array of functions mediated by two receptor subtypes, the endothelin A receptor (ET(A)R) and the endothelin B receptor (ET(B)R). Pharmacological studies have suggested that in peripheral tissues, ET(A)R expression may play a role in signaling acute or neuropathic pain, whereas ET(B)R expression may be involved in the transmission of chronic inflammatory pain. To begin to define the mechanisms by which ET can drive nociceptive signaling, autoradiography and immunohistochemistry were used to examine the distribution of ET(A)R and ET(B)R in dorsal root ganglia (DRG) and peripheral nerve of the rat, rabbit, and monkey. In DRG and peripheral nerve, ET(A)R-immunoreactivity was present in a subset of small-sized peptidergic and nonpeptidergic sensory neurons and their axons and to a lesser extent in a subset of medium-sized sensory neurons. However, ET(B)R-immunoreactivity was not seen in DRG neurons or axons but rather in DRG satellite cells and nonmyelinating ensheathing Schwann cells. Thus, when ETs are released in peripheral tissues, they could act directly on ET(A)R-expressing sensory neurons and on ET(B)R-expressing DRG satellite cells or nonmyelinating Schwann cells. These data indicate that ETs can have direct, nociceptive effects on the peripheral sensory nervous system and that peripheral glia may be directly involved in signaling nociceptive events in peripheral tissues.
Collapse
|
154
|
Grothe C, Meisinger C, Claus P. In vivo expression and localization of the fibroblast growth factor system in the intact and lesioned rat peripheral nerve and spinal ganglia. J Comp Neurol 2001; 434:342-57. [PMID: 11331533 DOI: 10.1002/cne.1181] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Basic fibroblast growth factor (FGF-2) is involved in several cellular processes of the nervous system during development, maintenance, and regeneration. In the central nervous system, FGF-2 has been shown to be expressed in neurons and glial cells, depending on the developmental stage and brain area. In the present study, a comprehensive analysis was performed of the cellular distribution of the transcripts of FGF-2 and of the FGF high-affinity receptors (R) 1-4 in intact and lesioned sciatic nerve and spinal ganglia. In the adult rat sciatic nerve FGF-2, FGFR1-3 were expressed at low levels as revealed by reverse transcriptase-polymerase chain reaction (RT-PCR). Sciatic nerve crush resulted in an increase of these transcript levels. FGFR4 expression was not detected in the intact and crushed nerve as revealed by RT-PCR and RNase protection assay. In situ hybridization using riboprobes for FGF-2, FGFR1-3 displayed staining in diverse cell types. Immunocytochemical staining of consecutive sections with cell markers for myelin, macrophages, and neurons revealed colocalization of the transcripts with Schwann cells and macrophages. In addition to FGF-2 and FGFR1, the transcripts of FGFR2-4 were expressed in neurons of spinal ganglia. Crush lesion of the sciatic nerve resulted in no alterations of the FGFR1-4 transcripts, whereas FGF-2 and FGFR3 mRNAs were up-regulated in spinal ganglia. The expression of FGFRs and FGF-2 in Schwann cells and macrophages at the lesion site of the sciatic nerve and in sensory neurons suggests that FGF-2 is involved in specific functions of these cells during regeneration.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Female
- Fibroblast Growth Factor 2/analysis
- Fibroblast Growth Factor 2/genetics
- Ganglia, Spinal/chemistry
- Ganglia, Spinal/physiology
- Gene Expression/physiology
- In Situ Hybridization
- Macrophages/chemistry
- Macrophages/cytology
- Macrophages/physiology
- Mice
- Nerve Crush
- Nerve Regeneration/physiology
- Protein-Tyrosine Kinases
- RNA, Messenger/analysis
- Rats
- Rats, Wistar/physiology
- Receptor Protein-Tyrosine Kinases/analysis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 2
- Receptor, Fibroblast Growth Factor, Type 3
- Receptor, Fibroblast Growth Factor, Type 4
- Receptors, Fibroblast Growth Factor/analysis
- Receptors, Fibroblast Growth Factor/genetics
- Sciatic Nerve/chemistry
- Sciatic Nerve/physiology
- Sciatic Neuropathy/physiopathology
Collapse
Affiliation(s)
- C Grothe
- Hannover Medical School, Center of Anatomy, OE 4140, D-30623 Hannover, Germany.
| | | | | |
Collapse
|
155
|
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) are neuroprotective for subpopulations of sensory neurons and thus are candidates for pain treatment. However, delivering these factors to damaged neurons will invariably result in undamaged systems also being treated, with possible consequences for sensory processing. In sensory neurons the purinergic receptor P2X(3) is found predominantly in GDNF-sensitive nociceptors. ATP signalling via the P2X(3) receptor may contribute to pathological pain, suggesting an important role for this receptor in regulating nociceptive function. We therefore investigated the effects of intrathecal GDNF or NGF on P2X(3) expression in adult rat spinal cord and dorsal root ganglia (DRG). In control spinal cords, P2X(3) expression was restricted to a narrow band of primary afferent terminals within inner lamina II (II(i)). Glial cell line-derived neurotrophic factor treatment increased P2X(3) immunoreactivity within lamina II(i) but not elsewhere in the cord. Nerve growth factor treatment, however, induced novel P2X(3) expression, with intense immunoreactivity in axons projecting to lamina I and outer lamina II and to the ventro-medial afferent bundle beneath the central canal. In the normal DRG, we found a greater proportion of P2X(3)-positive neurons at cervical levels, many of which were large-diameter and calcitonin gene-related peptide-positive. In both cervical and lumbar DRG, the number of P2X(3)-positive cells increased following GDNF or NGF treatment. De novo expression of P2X(3) in NGF-sensitive nociceptors may contribute to chronic inflammatory pain.
Collapse
Affiliation(s)
- M S Ramer
- Sensory Function Group, Centre for Neuroscience Research, Guy's King's and St. Thomas' School of Biomedical Science, King's College London, London, UK.
| | | | | |
Collapse
|
156
|
Fried K, Bongenhielm U, Boissonade FM, Robinson PP. Nerve injury-induced pain in the trigeminal system. Neuroscientist 2001; 7:155-65. [PMID: 11496926 DOI: 10.1177/107385840100700210] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article reviews some recent findings on peripheral mechanisms related to the development of oro-facial pain after trigeminal nerve injury. Chronic injury-induced oro-facial pain is not in itself a life-threatening condition, but patients suffering from this disorder undoubtedly have a reduced quality of life. The vast majority of the work on pain mechanisms has been carried out in spinal nerve systems. Those studies have provided great insight into mechanisms of neuropathic spinal pain, and much of the data from them is obviously relevant to studies of trigeminal pain. However, it is now clear that the pathophysiology of the trigeminal nerve (a cranial nerve) is in many ways different to that found in spinal nerves. Whereas some of the changes seen in animal models of trigeminal nerve injury mimic those occurring after spinal nerve injury (e.g., the development of spontaneous activity from the damaged axons), others are different, such as the time-course of the spontaneous activity, some of the neuropeptide changes in the trigeminal ganglion, and the lack of sprouting of sympathetic terminals in the ganglion. Recent findings provide new insights that help our understanding of the etiology of chronic injury-induced oro-facial pain. Future investigations will hopefully explain how data gained from these studies relate to clinical pain experience in man and should enable the rapid development of new therapeutic regimes.
Collapse
Affiliation(s)
- K Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
157
|
Lee P, Zhuo H, Helke CJ. Axotomy alters neurotrophin and neurotrophin receptor mRNAs in the vagus nerve and nodose ganglion of the rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 87:31-41. [PMID: 11223157 DOI: 10.1016/s0169-328x(00)00277-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurotrophins and neurotrophin receptors play an important role in survival and growth of injured peripheral nerves. To study the injury-mediated neurotrophic response in autonomic nerves, we investigated changes in mRNA expression of neurotrophins and their receptors in the transected vagus nerve and nodose ganglion. Studies using in situ hybridization histochemistry showed that axotomy of the cervical vagus nerve resulted in increased expression of mRNAs for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and for TrkA, TrkB, and TrkC receptors in non-neuronal cells at both the proximal and distal segments of the transected cervical vagus nerve. Moreover, NGF protein was increased in the distal end, and NT-3 protein was increased in both the proximal and the distal ends of the transected nerve 3 days after axotomy. No change of p75(NTR) mRNA was detected in the transected vagus nerve. The induction of each neurotrophin and Trk receptor mRNA was apparent within 1 day after the axotomy and was sustained at least 14 days. By 45 days after the axotomy, a time when axonal reconnection with target tissue is made (integrity of the nerve-target connection was confirmed by the retrograde transport of FluoroGold from the stomach to vagal cell bodies), the levels of neurotrophin and Trk mRNAs in the vagus nerve declined to pre-axotomy levels. TrkA, TrkC, and p75(NTR) mRNA-containing vagal sensory neurons in the nodose ganglion were reduced in number after cervical vagotomy. Neurotrophin-mRNA-containing neurons were not found in the nodose ganglia from either intact or vagotomized rats. The axotomy-induced up-regulation of neurotrophins and Trk receptors mainly in the non-neuronal cells at or near the site of transection suggests that neurotrophins are involved in the survival and regeneration process of the vagus nerve after injury.
Collapse
Affiliation(s)
- P Lee
- Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, 20814, Bethesda, MD, USA
| | | | | |
Collapse
|
158
|
Holmberg K, Shi TJ, Albers KM, Davis BM, Hökfelt T. Effect of peripheral nerve lesion and lumbar sympathectomy on peptide regulation in dorsal root ganglia in the NGF-overexpressing mouse. Exp Neurol 2001; 167:290-303. [PMID: 11161617 DOI: 10.1006/exnr.2000.7552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Galanin is a peptide normally expressed at low levels both in sensory and in sympathetic neurons. It is strongly upregulated after peripheral nerve lesions, and it has been proposed that nerve growth factor (NGF) plays a role in this regulation. In the present study the effect of both sciatic nerve transection and lumbar sympathectomy on galanin in lumbar dorsal root ganglia (DRGs) was examined in mice overexpressing NGF (NGFOE) in the skin under the keratin promoter. The superior cervical ganglia (SCG) were also studied. In the DRG pericellular baskets containing tyrosine hydroxylase- (TH) and galanin-like immunoreactivity (LI) were found, mostly in the same fibers. Galanin-positive baskets were also found in the trigeminal ganglia. However, only single neuropeptide Y (NPY)-positive baskets were observed within the DRGs. No marked difference in number of galanin-positive neurons was seen between wild-type and NGFOE mice. After sciatic nerve transection galanin was upregulated in DRG neurons to about the same extent in NGFOE mice as in wild-type mice. Galanin-, but not TH-LIs decreased in the pericellular baskets. After lumbar sympathectomy both galanin- and TH-immunoreactive baskets disappeared, suggesting a sympathetic origin. In the SCG the very low galanin mRNA levels were strongly increased after lesion of the carotid nerves, both in wild-type and in NGFOE mice. However, whereas NPY mRNA levels decreased in the SCG after axotomy in the wild-type mice, there was a distinct increase in the NGFOE mice. Our results show that high NGF levels in skin induce formation of pericellular baskets in DRGs expressing galanin- and TH-LI and that galanin in these baskets is strongly influenced by peripheral axotomy. However, overexpression of NGF did not markedly influence galanin expression in DRG neurons, neither normally nor after nerve lesions. Finally, expression of NPY in sympathetic ganglia is differently regulated in NGFOE compared to wild-type mice.
Collapse
Affiliation(s)
- K Holmberg
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
159
|
Benoliel R, Eliav E, Tal M. No sympathetic nerve sprouting in rat trigeminal ganglion following painful and non-painful infraorbital nerve neuropathy. Neurosci Lett 2001; 297:151-4. [PMID: 11137750 DOI: 10.1016/s0304-3940(00)01681-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Following sciatic nerve injury sympathetic invasion and basket formation is seen in dorsal root ganglia. We examined whether this phenomenon occurs in trigeminal ganglion (TG) following axotomy (IOAx) or chronic constriction injury to the infraorbital nerve (IOCCI). The IOCCI rats developed hyperresponsiveness to pinprick stimulation consistent with this model and the IOAx rats remained hyporesponsive for most of the study period. Immunocytochemistry employing antibodies to tyrosine hydroxylase showed no sympathetic invasion or basket formation 2 and 7 weeks post surgery. This study confirms previous work that found no sympathetic invasion of TG following injury, and shows that this finding is unaffected by the presence or absence of nerve injury induced hyperresponsiveness.
Collapse
Affiliation(s)
- R Benoliel
- Department of Oral Diagnosis, Oral Medicine and Oral Radiology, The Hebrew University, Hadassah School of Dental Medicine, Jerusalem, Israel.
| | | | | |
Collapse
|
160
|
Hu P, McLachlan EM. Distinct sprouting responses of sympathetic and peptidergic sensory axons proximal to a sciatic nerve transection in guinea pigs and rats. Neurosci Lett 2000; 295:59-63. [PMID: 11078936 DOI: 10.1016/s0304-3940(00)01583-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sprouting of sympathetic and peptidergic sensory neurones proximal to nerve lesions may reflect upregulation of growth factors around damaged dorsal root ganglion (DRG) cells. Axons containing noradrenaline or calcitonin gene-related peptide were visualized in DRGs and spinal roots of guinea pigs and rats. After sciatic transection in rats, varicose terminals of both types appeared around large DRG somata. These neurones were surrounded by proliferated satellite cells expressing glial fibrillary acidic protein (GFAP) and p75. This did not occur in guinea pigs. Instead, sympathetic axons grew through the DRG and centrally along the dorsal roots (which contained p75-positive glia), avoiding the DRG somata. Thus the glial reaction to peripheral injury differs between species such that, in guinea pigs, the environment in the spinal roots rather than in the DRGs favours sympathetic sprouting.
Collapse
Affiliation(s)
- P Hu
- Prince of Wales Medical Research Institute, Barker Street, Randwick, NSW 2031, Sydney, Australia
| | | |
Collapse
|
161
|
Li L, Deng YS, Zhou XF, Yan-Shen Deng LL. Downregulation of TrkA expression in primary sensory neurons after unilateral lumbar spinal nerve transection and some rescuing effects of nerve growth factor infusion. Neurosci Res 2000; 38:183-91. [PMID: 11000445 DOI: 10.1016/s0168-0102(00)00153-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peripheral nerve injury results in sprouting of sympathetic and sensory nerve terminals around large diameter neurons in the dorsal root ganglia (DRG), but the underlying mechanism is not clear. Current study sought to examine changes of the nerve growth factor (NGF) receptor TrkA in DRG and spinal cord after a spinal nerve transection by an immunohistochemical technique and to investigate effects of NGF on the expression of TrkA protein in the same animal model. In the control rat, TrkA immunoreactivity was localized to about 55 +/ -1% of total neurons in DRG and to laminae I and II of the spinal cord. The percentage of TrkA immunoreactive neurons in DRG and TrkA staining intensity of spinal cord were reduced 1 week after the nerve lesion. The changes became maximal 2 weeks, but recovered partially 4 weeks after the lesion. The size of TrkA immunoreactive neurons dramatically shifted to smaller sizes, becoming more remarkable 4 weeks after the lesion. In the contralateral DRG, the percentage of TrkA immunoreactive neurons also decreased significantly. Exogenous NGF delivered to DRG for 2 weeks partially reversed the reduction of TrkA expression as well as atrophy of TrkA immunoreactive neurons. No TrkA immunoreactive basket was found around neuronal somata. Our data show that unilateral peripheral nerve injury results in dynamic downregulation of TrkA in sensory neurons in bilateral DRG and spinal cord, and that TrkA expression in sensory neurons is partially regulated by target-derived NGF.
Collapse
Affiliation(s)
- L Li
- Department of Human Physiology and Centre for Neuroscience, The Flinders University of South Australia, GPO Box 2100, Adelaide 5001, Australia
| | | | | | | |
Collapse
|
162
|
Deng YS, Zhong JH, Zhou XF. Effects of endogenous neurotrophins on sympathetic sprouting in the dorsal root ganglia and allodynia following spinal nerve injury. Exp Neurol 2000; 164:344-50. [PMID: 10915573 DOI: 10.1006/exnr.2000.7432] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral nerve injury is often complicated by a chronic pain syndrome that is difficult to treat. In animal models of peripheral nerve injury, sympathetic nerve terminals in the dorsal root ganglia (DRG) sprout to form baskets around large diameter neurons, an anatomical change that has been implicated in the induction of neuropathic pain. In the present study, we have investigated whether neurotrophins derived from peripheral sources play any roles in sympathetic sprouting and neuropathic pain in a rat model of peripheral nerve injury. After transection of the left lumbar (L) 5 spinal nerve, antisera specific to neurotrophins were injected intraperitoneally twice a week for 2 weeks. The foot withdrawal response to von Frey hairs was examined on days 1, 3, 7, 10, and 14 postlesion. After completion of behavioral tests, sympathetic sprouting in DRG was examined by tyrosine hydroxylase (TH) immunohistochemistry. The number of TH-immunoreactive (ir) fibers and baskets around large neurons within the lesioned DRG was dramatically increased in the rats treated with control normal sheep serum. Antisera specific to nerve growth factor (NGF), neurotrophin-3 (NT3), and brain-derived neurotrophic factor (BDNF) significantly reduced the sympathetic sprouting and the formation of baskets. L5 spinal nerve lesion induced a significant increase in foot withdrawal responses to von Frey hair stimuli, which was attenuated by treatment of antisera to neurotrophins with a different time sequential. The effect of BDNF antiserum occurred earlier and lasted longer than those of NGF and NT3 antisera. These results implicate that peripherally derived neurotrophins are involved in the induction of sympathetic sprouting and neuropathic pain following peripheral nerve injury.
Collapse
Affiliation(s)
- Y S Deng
- Department of Human Physiology, Flinders University of South Australia, Adelaide, 5001, Australia
| | | | | |
Collapse
|
163
|
Deng YS, Zhong JH, Zhou XF. BDNF is involved in sympathetic sprouting in the dorsal root ganglia following peripheral nerve injury in rats. Neurotox Res 2000; 1:311-22. [PMID: 12835098 DOI: 10.1007/bf03033260] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peripheral nerve injury results in sympathetic sprouting around large diameter sensory neurons in the dorsal root ganglia (DRG). The mechanism underlying this pathological phenomenon is not known. Brain-derived neurotrophic factor (BDNF) is up-regulated in large sensory neurons and ensheathing satellite cells following a sciatic nerve injury. In the present study, we investigated the effects of BDNF on the sympathetic sprouting in the DRG, by delivering BDNF antibody or antisense oligodeoxynucleotide to injured DRGs, or by delivering exogenous BDNF to intact DRGs. The sheep antibody to BDNF, characterized by bioassays and dot blots, specifically reacted with BDNF but not other neurotrophins. Noradrenergic fibers were visualized by immunostaining of tyrosine hydroxylase (TH) and quantified by an NIH Imaging program. Two weeks following L5 spinal nerve lesion, a dramatic increase in TH-immunoreactive (-ir) fibres was observed in both ipsi- and contralateral DRGs in normal sheep IgG treated rats. BDNF antibody significantly reduced the sprouting of sympathetic nerves in both ipsi- and contra-lateral DRGs by 67% and 42% respectively. BDNF antisense oligodeoxynucleotide, by inhibiting BDNF synthesis in DRGs, also significantly suppressed the sprouting by 67% and 60% respectively in the ipsi- and contra-lateral DRGs. Delivery of exogenous BDNF into an intact L5 DRGs resulted in an increase in the sprouting by 4.2-fold. Our results clearly indicate that BDNF, synthesized in and secreted from the DRGs, is involved in the sympathetic sprouting in the DRG following the peripheral nerve injury.
Collapse
Affiliation(s)
- Y S Deng
- Department of Human Physiology and Center for Neuroscience, Flinders University of South Australia, GPO Box 2100, Adelaide 5001, Australia
| | | | | |
Collapse
|
164
|
Xian CJ, Couper R, Howarth GS, Read LC, Kallincos NC. Increased expression of HGF and c-met in rat small intestine during recovery from methotrexate-induced mucositis. Br J Cancer 2000; 82:945-952. [PMID: 10732770 PMCID: PMC2374397 DOI: 10.1054/bjoc.1999.1023] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/1999] [Revised: 09/27/1999] [Accepted: 09/28/1999] [Indexed: 11/23/2022] Open
Abstract
Chemotherapy or radiotherapy often cause mucosal damage in the gut (gut mucositis) in cancer patients. As a step to investigate mechanisms underlying subsequent intestinal repair, we have examined the expression profiles of hepatocyte growth factor (HGF) and its receptor c-met, two molecules previously implicated in tissue repair, in comparison to the histopathological and proliferative changes in a rat model of methotrexate-induced small intestinal mucositis. Histological analysis of the intestinal specimens revealed crypt loss and villus atrophy with damage maximal on day 5 after methotrexate injection, and normalization of mucosal structure commencing on day 6. Crypt cell proliferation was decreased dramatically on day 3, normalized on day 4 and up-regulated on days 5 and 6. HGF and c-met protein/mRNA expression was up-regulated between days 4 and 7, with the mRNA co-localizing to the crypt and lower villus epithelium. Therefore, following methotrexate injection, a decrease in crypt cell proliferation preceded histological damage, and conversely, crypt cell hyperproliferation preceded mucosal regeneration. Up-regulation of HGF and c-met coincided with crypt hyperproliferation and mucosal recovery, suggesting a role for HGF in intestinal repair following acute injury. The crypt epithelial localization of HGF and c-met implies an autocrine or paracrine mechanism of HGF action.
Collapse
Affiliation(s)
- C J Xian
- Child Health Research Institute, University of Adelaide Department of Paediatrics, and Cooperative Research Centre for Tissue Growth and Repair, Australia
| | | | | | | | | |
Collapse
|
165
|
Ramer MS, Priestley JV, McMahon SB. Functional regeneration of sensory axons into the adult spinal cord. Nature 2000; 403:312-6. [PMID: 10659850 DOI: 10.1038/35002084] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arrest of dorsal root axonal regeneration at the transitional zone between the peripheral and central nervous system has been repeatedly described since the early twentieth century. Here we show that, with trophic support to damaged sensory axons, this regenerative barrier is surmountable. In adult rats with injured dorsal roots, treatment with nerve growth factor (NGF), neurotrophin-3 (NT3) and glial-cell-line-derived neurotrophic factor (GDNF), but not brain-derived neurotrophic factor (BDNF), resulted in selective regrowth of damaged axons across the dorsal root entry zone and into the spinal cord. Dorsal horn neurons were found to be synaptically driven by peripheral nerve stimulation in rats treated with NGF, NT3 and GDNF, demonstrating functional reconnection. In behavioural studies, rats treated with NGF and GDNF recovered sensitivity to noxious heat and pressure. The observed effects of neurotrophic factors corresponded to their known actions on distinct subpopulations of sensory neurons. Neurotrophic factor treatment may thus serve as a viable treatment in promoting recovery from root avulsion injuries. I
Collapse
Affiliation(s)
- M S Ramer
- Neuroscience Research Centre, Guy's, King's and St. Thomas' School of Biomedical Sciences, London, UK.
| | | | | |
Collapse
|
166
|
Zhou XF, Deng YS, Xian CJ, Zhong JH. Neurotrophins from dorsal root ganglia trigger allodynia after spinal nerve injury in rats. Eur J Neurosci 2000; 12:100-5. [PMID: 10651864 DOI: 10.1046/j.1460-9568.2000.00884.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Injury to peripheral nerves often results in chronic pain which is difficult to relieve. The mechanism underlying the pain syndrome remains largely unknown. In previous studies we showed that neurotrophins are up-regulated in satellite cells around sensory neurons following sciatic nerve lesion. In the present study, we have examined whether the neurotrophins in the dorsal root ganglia play any role in allodynia after nerve injury. Antibodies to different neurotrophins, directly delivered to injured dorsal root ganglia, significantly reduced (with different time sequences) the percentage of foot withdrawal responses evoked by von Frey hairs. The antibodies to nerve growth factor acted during the early phase but antibodies to neurotrophin-3 and brain-derived neurotrophic factor were effective during the later phase. Exogenous nerve growth factor or brain-derived neurotrophic factor, but not neurotrophin-3, directly delivered to intact dorsal root ganglia, trigger a persistent mechanical allodynia. Our results showed that neurotrophins within the dorsal root ganglia after peripheral nerve lesion are involved in the generation of allodynia at different stages. These studies provide the first evidence that ganglia-derived neurotrophins are a source of nociceptive stimuli for neuropathic pain after peripheral nerve injury.
Collapse
Affiliation(s)
- X F Zhou
- Department of Human Physiology, Flinders University of South Australia, GPO Box 2100, Adelaide 5001, Australia.
| | | | | | | |
Collapse
|
167
|
Malcangio M, Ramer MS, Jones MG, McMahon SB. Abnormal substance P release from the spinal cord following injury to primary sensory neurons. Eur J Neurosci 2000; 12:397-9. [PMID: 10651897 DOI: 10.1046/j.1460-9568.2000.00946.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neuropeptide substance P (SP) modulates nociceptive transmission within the spinal cord. Normally, SP is uniquely contained in a subpopulation of small-calibre axons (Adelta- and C-fibres) within primary afferent nerve. However, it has been shown that after nerve transection, besides being downregulated in small axons, SP is expressed de novo in large myelinated Abeta-fibres. In this study we investigated whether, following peripheral nerve injury, SP was released de novo from the spinal cord after selective activation of Abeta-fibres. Spinal cords with dorsal roots attached were isolated in vitro from rats 2 weeks following distal sciatic axotomy or proximal spinal nerve lesion (SNL). The ipsilateral dorsal roots were electrically stimulated for two consecutive periods at low- or high-threshold fibre strength, spinal cord superfusates were collected and SP content was determined by radioimmunoassay. SNL, but not axotomized or control rat cords, released significant amounts of SP after selective activation of Abeta-fibres. Not only do these data support the idea that Abeta myelinated fibres contribute to neuropathic pain by releasing SP, they also illustrate the importance of the proximity of the lesion to the cell body.
Collapse
Affiliation(s)
- M Malcangio
- Neuroscience Research Centre, Guy's, King's and St Thomas's School of Biomedical Sciences, King's College London, London SE1 7EH, UK.
| | | | | | | |
Collapse
|
168
|
Michael GJ, Averill S, Shortland PJ, Yan Q, Priestley JV. Axotomy results in major changes in BDNF expression by dorsal root ganglion cells: BDNF expression in large trkB and trkC cells, in pericellular baskets, and in projections to deep dorsal horn and dorsal column nuclei. Eur J Neurosci 1999; 11:3539-51. [PMID: 10564362 DOI: 10.1046/j.1460-9568.1999.00767.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Brain derived neurotrophic factor (BDNF) is normally expressed by a small number of predominantly trkA-expressing dorsal root ganglion cells. Using immunocytochemistry and in situ hybridization, we have examined the effect of sciatic nerve section on the expression of BDNF in the adult rat. Following axotomy there was a long lasting (4-week) increase in BDNF mRNA and protein in large-diameter, trkB- and trkC-expressing dorsal root ganglion cells. By 2 days postaxotomy, expression of BDNF mRNA had increased from 2% of trkB cells to 50%, and from 18% of trkC cells to 56%. In contrast, BDNF expression in most trkA cells was unchanged, although was increased in the small population of medium- and large-sized trkA cells. Following axotomy, BDNF-immunoreactive terminals appeared in the central axonal projections of large-diameter cells, including the deep dorsal horn and gracile nucleus. Neuropeptide Y was also upregulated following axotomy and was coexpressed with BDNF in the cell bodies and central terminals of the large cells. Ultrastructural analysis in lamina IV of the spinal cord revealed that BDNF terminals in these central projections establish synaptic contacts. Immunoreactivity at 4 weeks was also observed in pericellular baskets that contained calcitonin gene-related peptide (CGRP) and surrounded trkA- and trkB-expressing cells in L4 and L5 lumbar ganglia. These baskets are likely to arise from local, highly immunoreactive, BDNF/CGRP/trkA-expressing cells. Our results identify several novel targets for BDNF and imply that it acts locally in both autocrine and paracrine modes, as well as centrally in a synaptic mode, to modulate the response of somatosensory pathways in nerve injury.
Collapse
Affiliation(s)
- G J Michael
- Neuroscience Section, Division of Biomedical Sciences, St Bartholomew's and The Royal London School of Medicine and Dentistry, Queen Mary and Westfield College, London, UK
| | | | | | | | | |
Collapse
|
169
|
Ramer MS, Thompson SWN, McMahon SB. Causes and consequences of sympathetic basket formation in dorsal root ganglia. Pain 1999; Suppl 6:S111-S120. [PMID: 10491979 DOI: 10.1016/s0304-3959(99)00144-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Injury to peripheral nerves can result in severe and intractable neuropathic pain, and in some cases the symptoms are sympathetically maintained. In recent years much effort has been put into elucidating the anatomical nature of nerve injury-induced sympathetic-sensory coupling. The demonstration of sympathetic sprouting into dorsal root ganglia (DRG) of nerve-injured rats has led to the suggestion that this phenomenon might underlie sympathetically-maintained pain. As a result, several studies have been undertaken to determine what factor or factors are responsible for the sprouting, and for the formation of abnormal sympathetic terminal arborizations or 'baskets' around some DRG neurons. In this review we examine in particular the roles of nerve growth factor (NGF) and the cytokines leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), as these have all been shown to contribute to sympathetic sprouting. We also stress the role of satellite cells within axotomized DRG, as these have been shown to express not only neurotrophin mRNA, but also the low-affinity neurotrophin receptor p75. We propose a mechanism for sympathetic sprouting in the DRG involving; (i) the activation of satellite cells on the DRG by a factor such as LIF or IL-6, and (ii) the generation of a sympathetic axon-guiding gradient by p75-bound neurotrophins on the activated satellite cells. We also highlight the possibility that a sympathetic sprouting signal may be derived from the periphery, as NGF, LIF and IL-6 are all produced as a result of Wallerian degeneration, and can be retrograde transported to the DRG. The possible relevance of sympathetic sprouting in the DRG to neuropathic pain is also discussed.
Collapse
Affiliation(s)
- Matt S Ramer
- Neuroscience Research Centre, GKT School of Biomedical Sciences, Kings College, London, UK
| | | | | |
Collapse
|
170
|
Zhou XF, Chie ET, Deng YS, Zhong JH, Xue Q, Rush RA, Xian CJ. Injured primary sensory neurons switch phenotype for brain-derived neurotrophic factor in the rat. Neuroscience 1999; 92:841-53. [PMID: 10426526 DOI: 10.1016/s0306-4522(99)00027-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Peripheral nerve injury results in plastic changes in the dorsal root ganglia and spinal cord, and is often complicated with neuropathic pain. The mechanisms underlying these changes are not known. We have now investigated the expression of brain-derived neurotrophic factor in the dorsal root ganglia with histochemical and biochemical methods following sciatic nerve lesion in the rat. The percentage of neurons immunoreactive for brain-derived neurotrophic factor in the ipsilateral dorsal root ganglia was significantly increased as early as 24 h after the nerve lesion and the increase lasted for at least two weeks. The level of brain-derived neurotrophic factor messenger RNA was also significantly increased in the ipsibut not contralateral dorsal root ganglia. Both neurons and satellite cells in the lesioned dorsal root ganglia synthesized brain-derived neurotrophic factor messenger RNA after the nerve lesion. There was a dramatic shift in size distribution of positive neurons towards large sizes seven days after sciatic nerve lesion. Morphometric analysis and retrograde tracing studies showed that no injured neurons smaller than 600 microm2 were immunoreactive for brain-derived neurotrophic factor, whereas the majority of large injured neurons were immunoreactive in the ipsilateral dorsal root ganglia seven days postlesion. The brain-derived neurotrophic factor-immunoreactive nerve terminals in the ipsilateral spinal cord were reduced in the central region of lamina II, but increased in more medial regions or deeper into laminae III/IV. These studies indicate that sciatic nerve injury results in a differential regulation of brain-derived neurotrophic factor in different subpopulations of sensory neurons in the dorsal root ganglia. Small neurons switched off their normal synthesis of brain-derived neurotrophic factor, whereas larger ones switched to a brain-derived neurotrophic factor phenotype. The phenotypic switch may have functional implications in neuronal plasticity and generation of neuropathic pain after nerve injury.
Collapse
Affiliation(s)
- X F Zhou
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
171
|
Xian CJ, Zhou XF. Neuronal-glial differential expression of TGF-alpha and its receptor in the dorsal root ganglia in response to sciatic nerve lesion. Exp Neurol 1999; 157:317-26. [PMID: 10364443 DOI: 10.1006/exnr.1999.7063] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Injury to peripheral nerves often results in structural and functional changes in the dorsal root ganglia (DRG). Although the mechanisms underlying these changes remain largely unknown, satellite cell activation and up-regulation of several neurotrophic factors in the DRG occur in response to the nerve lesion, modulating the plasticity of affected neurons. To investigate potential roles of transforming growth factor alpha (TGF-alpha) in these plastic changes in the DRG following a sciatic nerve transection, here we examined the expression in DRGs of TGF-alpha and its receptor (EGF receptor), molecules known to be mitogenic to glia and Schwann cells and to be neurotrophic for some differentiated neurons. In the normal DRGs, TGF-alpha and its receptor are expressed mainly in small neurons and satellite cells surrounding some large or medium-sized neurons as determined by immunohistochemistry and in situ hybridization. In response to sciatic nerve lesion, there was a marked and differential up-regulation of TGF-alpha and EGF receptor expression within DRG, evident as early as 24 h after lesion and lasting for at least 14 days. While the up-regulated TGF-alpha was localized mainly on satellite cells in the ipsilateral and contralateral DRGs, EGF receptor up-regulation was mainly neuronal (with the expression expanding to include all neurons) in the ipsilateral DRGs, but mainly glial in the contralateral DRGs. These changes in TGF-alpha and its receptor expression suggest that TGF-alpha may play a role in the satellite cell proliferation and/or activation as well as in neuronal survival after nerve lesion.
Collapse
Affiliation(s)
- C J Xian
- Child Health Research Institute, North Adelaide, Australia
| | | |
Collapse
|