151
|
Liu J, Baek C, Han X, Shoureshi P, Soriano S. Role of glycogen synthase kinase-3β in ketamine-induced developmental neuroapoptosis in rats. Br J Anaesth 2013; 110 Suppl 1:i3-9. [DOI: 10.1093/bja/aet057] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
152
|
O'Keeffe BA, Cilia S, Maiyar AC, Vaysberg M, Firestone GL. The serum- and glucocorticoid-induced protein kinase-1 (Sgk-1) mitochondria connection: identification of the IF-1 inhibitor of the F(1)F(0)-ATPase as a mitochondria-specific binding target and the stress-induced mitochondrial localization of endogenous Sgk-1. Biochimie 2013; 95:1258-65. [PMID: 23402912 PMCID: PMC3684451 DOI: 10.1016/j.biochi.2013.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/30/2013] [Indexed: 12/28/2022]
Abstract
The expression, localization and activity of the serum- and glucocorticoid-induced protein kinase, Sgk-1, are regulated by multiple hormonal and environmental cues including cellular stress. Biochemical fractionation and indirect immunofluorescence demonstrated that sorbitol induced hyperosmotic stress stimulated expression and triggered the localization of endogenous Sgk-1 into the mitochondria of NMuMG mammary epithelial cells. The immunofluorescence pattern of endogenous Sgk-1 was similar to that of a green fluorescent linked fusion protein linked to the N-terminal Sgk-1 fragment that encodes the mitochondrial targeting signal. In the presence or absence of cellular stress, exogenously expressed wild type Sgk-1 efficiently compartmentalized into the mitochondria demonstrating the mitochondrial import machinery per se is not stressed regulated. Co-immunoprecipitation and GST-pull down assays identified the IF-1 mitochondrial matrix inhibitor of the F1F0-ATPase as a new Sgk-1 binding partner, which represents the first observed mitochondrial target of Sgk-1. The Sgk-1/IF-1 interaction requires the 122-176 amino acid region within the catalytic domain of Sgk-1 and is pH dependent, occurring at neutral pH but not at slightly acidic pH, which suggests that this interaction is dependent on mitochondrial integrity. An in vitro protein kinase assay showed that the F1F0-ATPase can be directly phosphorylated by Sgk-1. Taken together, our results suggest that stress-induced Sgk-1 localizes to the mitochondria, which permits access to physiologically appropriate mitochondrial interacting proteins and substrates, such as IF-1 and the F1F0-ATPase, as part of the cellular stressed induced program.
Collapse
Affiliation(s)
- Bridget A O'Keeffe
- Department of Molecular and Cell Biology and the Cancer Research Laboratory, 591 LSA, University of California at Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
153
|
Liu ZH, Yu LP, Xu T, Zhang XW, Yuan YQ, Xiao YB, Li J, Hao YC, Zhao YP, Wang XF. Abnormal lipid metabolism down-regulates adenosine triphosphate synthase β-subunit protein expression in corpus cavernosum smooth musclein vitroandin vivo. Andrologia 2013; 46:487-94. [PMID: 23635034 DOI: 10.1111/and.12105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2013] [Indexed: 12/01/2022] Open
Affiliation(s)
- Z-H Liu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
p53 is a master regulator of cell death pathways and has transcription-dependent and transcription-independent modes of action. Mitochondria are major signal transducers in apoptosis and are critical for p53-dependent cell death. Our lab and others have discovered that a fraction of stress-induced wild-type p53 protein rapidly translocates to mitochondria upon various stress stimuli and exerts p53-dependent apoptosis. Suborganellar localization by various methods shows that p53 localizes to the surface of mitochondria. Direct targeting of p53 to mitochondria is sufficient to induce apoptosis in p53-null cells, without requiring further DNA damage. Recently, p53 has been also shown to localize to other mitochondrial compartments such as the mitochondrial matrix where it plays a role in maintaining mitochondrial genome integrity. Here, we describe subcellular fractionation as a classic technique for detecting mitochondrial p53 in cell extracts. It consists of cell homogenization by hypo-osmotic swelling, removal of nuclear components by low-speed centrifugation, and mitochondrial isolation by a discontinuous sucrose density gradient. Additionally, we describe a method for submitochondrial fractionation, performed by phosphate buffer mediated swelling/shrinking. p53 and other mitochondrial proteins can then be detected by standard immunoblotting procedures. The quality of mitochondrial isolates/subfractions can be verified for purity and intactness.
Collapse
|
155
|
Mitochondrial dysfunction in insulin resistance: differential contributions of chronic insulin and saturated fatty acid exposure in muscle cells. Biosci Rep 2013; 32:465-78. [PMID: 22742515 PMCID: PMC3475448 DOI: 10.1042/bsr20120034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dysfunction has been associated with insulin resistance, obesity and diabetes. Hyperinsulinaemia and hyperlipidaemia are hallmarks of the insulin-resistant state. We sought to determine the contributions of high insulin and saturated fatty acid exposure to mitochondrial function and biogenesis in cultured myocytes. Differentiated C2C12 myotubes were left untreated or exposed to chronic high insulin or high palmitate. Mitochondrial function was determined assessing: oxygen consumption, mitochondrial membrane potential, ATP content and ROS (reactive oxygen species) production. We also determined the expression of several mitochondrial genes. Chronic insulin treatment of myotubes caused insulin resistance with reduced PI3K (phosphoinositide 3-kinase) and ERK (extracellular-signal-regulated kinase) signalling. Insulin treatment increased oxygen consumption but reduced mitochondrial membrane potential and ROS production. ATP cellular levels were maintained through an increased glycolytic rate. The expression of mitochondrial OXPHOS (oxidative phosphorylation) subunits or Mfn-2 (mitofusin 2) were not significantly altered in comparison with untreated cells, whereas expression of PGC-1α (peroxisome-proliferator-activated receptor γ co-activator-1α) and UCPs (uncoupling proteins) were reduced. In contrast, saturated fatty acid exposure caused insulin resistance, reducing PI3K (phosphoinositide 3-kinase) and ERK (extracellular-signal-regulated kinase) activation while increasing activation of stress kinases JNK (c-Jun N-terminal kinase) and p38. Fatty acids reduced oxygen consumption and mitochondrial membrane potential while up-regulating the expression of mitochondrial ETC (electron chain complex) protein subunits and UCP proteins. Mfn-2 expression was not modified by palmitate. Palmitate-treated cells also showed a reduced glycolytic rate. Taken together, our findings indicate that chronic insulin and fatty acid-induced insulin resistance differentially affect mitochondrial function. In both conditions, cells were able to maintain ATP levels despite the loss of membrane potential; however, different protein expression suggests different adaptation mechanisms.
Collapse
|
156
|
Metabolic triad in brain aging: mitochondria, insulin/IGF-1 signalling and JNK signalling. Biochem Soc Trans 2013; 41:101-5. [PMID: 23356266 PMCID: PMC9934302 DOI: 10.1042/bst20120260] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondria generate second messengers, such as H2O2, that are involved in the redox regulation of cell signalling and their function is regulated by several cytosolic signalling pathways. IIS [insulin/IGF1 (insulin-like growth factor 1) signalling] in the brain proceeds mainly through the PI3K (phosphatidylinositol 3-kinase)-Akt (protein kinase B) pathway, which is involved in the regulation of synaptic plasticity and neuronal survival via the maintenance of the bioenergetic and metabolic capacities of mitochondria. Conversely, the JNK (c-Jun N-terminal kinase) pathway is induced by increased oxidative stress and JNK translocation to the mitochondrion results in impairment of energy metabolism. Moreover, IIS and JNK signalling interact with and antagonize each other. This review focuses on functional outcomes of a metabolic triad that entails the co-ordination of mitochondrial function (energy transducing and redox regulation), IIS and JNK signalling, in the aging brain and in neurodegenerative disorders, such as Alzheimer's disease.
Collapse
|
157
|
Yu CC, Wu PJ, Hsu JL, Ho YF, Hsu LC, Chang YJ, Chang HS, Chen IS, Guh JH. Ardisianone, a natural benzoquinone, efficiently induces apoptosis in human hormone-refractory prostate cancers through mitochondrial damage stress and survivin downregulation. Prostate 2013; 73:133-45. [PMID: 22674285 DOI: 10.1002/pros.22548] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 05/14/2012] [Indexed: 11/08/2022]
Abstract
BACKGROUND Increasing evidence suggests that mitochondria play a central role in regulating cell apoptosis. Survivin, an inhibitor of apoptosis protein (IAP) family member, mediates resistance to cancer chemotherapy particularly in prostate cancers. Therefore, development of anticancer agents targeting mitochondria and survivin is a potential strategy. METHOD Cell proliferation was examined by sulforhodamine B, CFSE staining, and clonogenic assays. Mitochondrial membrane potential (ΔΨ(m) ) and reactive oxygen species (ROS) were detected by flow cytometric analysis. Protein expression was detected by Western blot. RNA levels were examined by reverse transcription polymerase chain reaction assay. Overexpression of constitutively active Akt was also used in this study. RESULTS Ardisianone, a natural benzoquinone derivative, displayed anti-proliferative and apoptotic activities against human hormone-refractory prostate cancer cells (HRPC), PC-3, and DU-145. Ardisianone dramatically induced mitochondrial damage, identified by downregulation of Bcl-2 family proteins, ROS production, and loss of ΔΨ(m) . Ardisianone also inhibited Akt and mTOR/p70S6K pathways and induced a fast downregulation of survivin, leading to activation of mitochondria-involved caspase cascades. Overexpression of constitutively active Akt partly rescued ardisianone-mediated apoptotic signaling cascades. Furthermore, a long-term treatment of ardisianone caused an increase of endoplasmic reticulum (ER) stress, upregulation of cIAP1 and cIAP2, and apoptosis-inducing factor (AIF)-mediated caspase-independent apoptosis. CONCLUSIONS The data suggest that the ardisianone induces apoptosis in human prostate cancers through mitochondrial damage stress, leading to the inhibition of mTOR/p70S6K pathway, downregulation of Bcl-2 family members, degradation of survivin, and activation of caspase cascades. The data provide evidence supporting that ardisianone is a potential anticancer agent against HRPCs.
Collapse
Affiliation(s)
- Chia-Chun Yu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
High efficiency versus maximal performance--the cause of oxidative stress in eukaryotes: a hypothesis. Mitochondrion 2012. [PMID: 23178790 DOI: 10.1016/j.mito.2012.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Degenerative diseases are in part based on elevated production of ROS (reactive oxygen species) in mitochondria, mainly during stress and excessive work under stress (strenuous exercise). The production of ROS increases with increasing mitochondrial membrane potential (ΔΨ(m)). A mechanism is described which is suggested to keep ΔΨ(m) at low values under normal conditions thus preventing ROS formation, but is switched off under stress and excessive work to maximize the rate of ATP synthesis, accompanied by decreased efficiency. Low ΔΨ(m) and low ROS production are suggested to occur by inhibition of respiration at high [ATP]/[ADP] ratios. The nucleotides interact with phosphorylated cytochrome c oxidase (COX), representing the step with the highest flux-control coefficient of mitochondrial respiration. At stress and excessive work neural signals are suggested to dephosphorylate the enzyme and abolish the control of COX activity (respiration) by the [ATP]/[ADP] ratio with consequent increase of ΔΨ(m) and ROS production. The control of COX by the [ATP]/[ADP] ratio, in addition, is proposed to increase the efficiency of ATP production via a third proton pumping pathway, identified in eukaryotic but not in prokaryotic COX. We conclude that 'oxidative stress' occurs when the control of COX activity by the [ATP]/[ADP] ratio is switched off via neural signals.
Collapse
|
159
|
Franco C, Fernández S, Torres-Alemán I. Frataxin deficiency unveils cell-context dependent actions of insulin-like growth factor I on neurons. Mol Neurodegener 2012; 7:51. [PMID: 23039828 PMCID: PMC3547778 DOI: 10.1186/1750-1326-7-51] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/03/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by deficiency of the mitochondrial iron chaperone frataxin (Fxn). FRDA has no cure, but disease-modifying strategies to increase frataxin are under study. Because insulin-like growth factor I (IGF-I) has therapeutic effects in various types of cerebellar ataxia and exerts protective actions on mitochondrial function, we explored the potential Fxn-stimulating activity of this growth factor on brain cells. RESULTS IGF-I normalized frataxin levels in frataxin-deficient neurons and astrocytes through its canonical Akt/mTOR signaling pathway. IGF-I also stimulated frataxin in normal astrocytes but not in normal neurons, whereas IGF-I stimulated the Akt/mTOR pathway in both types of cells. This cell context-dependent action of IGF-I on neurons suggested that the intrinsic regulation of Fxn in neurons is different than in astrocytes. Indeed, neurons express much higher levels of frataxin and are much more sensitive to Fxn deficiency than astrocytes; i.e.: only neurons die in the absence of frataxin. In addition, the half-life of frataxin is shorter in neurons than in astrocytes, while after blockade of the proteasome only neurons responded to IGF-I with an increase in frataxin levels. We also explore a potential therapeutic utility of IGF-I in FRDA-like transgenic mice (YG8R mice) and found that treatment with IGF-I normalized motor coordination in these moderately ataxic mice. CONCLUSION Exposure to IGF-I unveiled a cell-specific regulation of frataxin in neurons as compared to astrocytes. Collectively, these results indicate that IGF-I exerts cell-context neuroprotection in frataxin deficiency that maybe therapeutically effective.
Collapse
Affiliation(s)
- Carolina Franco
- Cajal Institute, CSIC, and CIBERNED, Avda Dr Arce 37, 28002, Madrid, Spain
| | - Silvia Fernández
- Cajal Institute, CSIC, and CIBERNED, Avda Dr Arce 37, 28002, Madrid, Spain
| | | |
Collapse
|
160
|
Helling S, Hüttemann M, Ramzan R, Kim SH, Lee I, Müller T, Langenfeld E, Meyer HE, Kadenbach B, Vogt S, Marcus K. Multiple phosphorylations of cytochrome c oxidase and their functions. Proteomics 2012; 12:950-9. [PMID: 22522801 DOI: 10.1002/pmic.201100618] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial electron transport chain, is regulated by isozyme expression, allosteric effectors such as the ATP/ADP ratio, and reversible phosphorylation. Of particular interest is the "allosteric ATP-inhibition," which has been hypothesized to keep the mitochondrial membrane potential at low healthy values (<140 mV), thus preventing the formation of superoxide radical anions, which have been implicated in multiple degenerative diseases. It has been proposed that the "allosteric ATP-inhibition" is switched on by the protein kinase A-dependent phosphorylation of COX. The goal of this study was to identify the phosphorylation site(s) involved in the "allosteric ATP-inhibition" of COX. We report the mass spectrometric identification of four new phosphorylation sites in bovine heart COX. The identified phosphorylation sites include Tyr-218 in subunit II, Ser-1 in subunit Va, Ser-2 in subunit Vb, and Ser-1 in subunit VIIc. With the exception of Ser-2 in subunit Vb, the identified phosphorylation sites were found in enzyme samples with and without "allosteric ATP inhibition," making Ser-2 of subunit Vb a candidate site enabling allosteric regulation. We therefore hypothesize that additional phosphorylation(s) may be required for the "allosteric ATP-inhibition," and that these sites may be easily dephosphorylated or difficult to identify by mass spectrometry.
Collapse
Affiliation(s)
- Stefan Helling
- Medizinisches Proteom-Center, Funktionelle Proteomik, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Goo CK, Lim HY, Ho QS, Too HP, Clement MV, Wong KP. PTEN/Akt signaling controls mitochondrial respiratory capacity through 4E-BP1. PLoS One 2012; 7:e45806. [PMID: 23049865 PMCID: PMC3458951 DOI: 10.1371/journal.pone.0045806] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 08/24/2012] [Indexed: 11/30/2022] Open
Abstract
Akt, a serine/threonine kinase has been shown to stimulate glycolysis in cancer cells but its role in mitochondrial respiration is unknown. Using PTEN-knockout mouse embryonic fibroblasts (MEFPTEN−/−) with hyper-activated Akt as a cell model, we observed a higher respiratory capacity in MEFPTEN−/− compared to the wildtype (MEFWT). The respiratory phenotype observed in MEFPTEN−/− was reproduced in MEFWT by gene silencing of PTEN which substantiated its role in regulating mitochondrial function. The increased activities of the respiratory complexes (RCs) I, III and IV were retained in the same relative proportions as those present in MEFWT, alluding to a possible co-ordinated regulation by PTEN/Akt. Using LY294002 (a PI3K inhibitor) and Akt inhibitor IV, we showed that the regulation of enzyme activities and protein expressions of the RCs was dependent on PI3K/Akt. There was insignificant difference in the protein expressions of mitochondrial transcription factor: peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and its downstream targets, the nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (mtTFA) between MEFPTEN−/− and MEFWT. Similarly, mRNA levels of the same subunits of the RCs detected in Western blots were not significantly different between MEFPTEN−/− and MEFWT suggesting that the regulation by Akt on mitochondrial function was probably not via gene transcription. On the other hand, a decrease of total 4E-BP1 with a higher expression of its phosphorylated form relative to total 4E-BP1 was found in MEFPTEN−/−, which inferred that the regulation of mitochondrial respiratory activities by Akt was in part through this protein translation pathway. Notably, gene silencing of 4E-BP1 up-regulated the protein expressions of all RCs and the action of 4E-BP1 appeared to be specific to these mitochondrial proteins. In conclusion, PTEN inactivation bestowed a bioenergetic advantage to the cells by up-regulating mitochondrial respiratory capacity through the 4E-BP1-mediated protein translation pathway.
Collapse
Affiliation(s)
- Chong Kiat Goo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
| | - Hwee Ying Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
| | - Qin Shi Ho
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
| | - Heng-Phon Too
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
| | - Marie-Veronique Clement
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Kent Ridge, Singapore, Singapore
| | - Kim Ping Wong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
- * E-mail:
| |
Collapse
|
162
|
Vadrot N, Ghanem S, Braut F, Gavrilescu L, Pilard N, Mansouri A, Moreau R, Reyl-Desmars F. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α. PLoS One 2012; 7:e40879. [PMID: 22911714 PMCID: PMC3401193 DOI: 10.1371/journal.pone.0040879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 06/18/2012] [Indexed: 12/16/2022] Open
Abstract
During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α) targets hepatocytes and induces abnormal reactive oxygen species (ROS) production responsible for mitochondrial DNA (mtDNA) alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β) plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR) we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC) was used to measure the rapid (10 min) and transient TNF-α induced increase in ROS production (168±15%). A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM). In addition, mitochondrial D-loop immunoprecipitation (mtDIP) revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15)p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.
Collapse
Affiliation(s)
- Nathalie Vadrot
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Sarita Ghanem
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Françoise Braut
- INSERM U773, CRB3, Equipe El-Benna, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Laura Gavrilescu
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Nathalie Pilard
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Abdellah Mansouri
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Richard Moreau
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
| | - Florence Reyl-Desmars
- INSERM U773, CRB3, Equipe Moreau, Université Paris 7 Denis Diderot, Faculté de Médecine X Bichat, Paris, France
- * E-mail:
| |
Collapse
|
163
|
Antico Arciuch VG, Elguero ME, Poderoso JJ, Carreras MC. Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal 2012; 16:1150-80. [PMID: 21967640 PMCID: PMC3315176 DOI: 10.1089/ars.2011.4085] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 01/01/2023]
Abstract
Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O₂, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O₂ utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis.
Collapse
Affiliation(s)
| | - María Eugenia Elguero
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
| | - Juan José Poderoso
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
- Department of Internal Medicine, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - María Cecilia Carreras
- Laboratory of Oxygen Metabolism, University of Buenos Aires, University Hospital, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
- Department of Clinical Biochemistry, INFIBIOC and School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
164
|
Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM, Wieckowski MR, Pinton P. Mitochondrial Ca(2+) and apoptosis. Cell Calcium 2012; 52:36-43. [PMID: 22480931 PMCID: PMC3396846 DOI: 10.1016/j.ceca.2012.02.008] [Citation(s) in RCA: 359] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 01/13/2023]
Abstract
Mitochondria are key decoding stations of the apoptotic process. In support of this view, a large body of experimental evidence has unambiguously revealed that, in addition to the well-established function of producing most of the cellular ATP, mitochondria play a fundamental role in triggering apoptotic cell death. Various apoptotic stimuli cause the release of specific mitochondrial pro-apoptotic factors into the cytosol. The molecular mechanism of this release is still controversial, but there is no doubt that mitochondrial calcium (Ca(2+)) overload is one of the pro-apoptotic ways to induce the swelling of mitochondria, with perturbation or rupture of the outer membrane, and in turn the release of mitochondrial apoptotic factors into the cytosol. Here, we review as different proteins that participate in mitochondrial Ca(2+) homeostasis and in turn modulate the effectiveness of Ca(2+)-dependent apoptotic stimuli. Strikingly, the final outcome at the cellular level is similar, albeit through completely different molecular mechanisms: a reduced mitochondrial Ca(2+) overload upon pro-apoptotic stimuli that dramatically blunts the apoptotic response.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Nguyen T, Wong R, Wang G, Gucek M, Steenbergen C, Murphy E. Acute inhibition of GSK causes mitochondrial remodeling. Am J Physiol Heart Circ Physiol 2012; 302:H2439-45. [PMID: 22467305 DOI: 10.1152/ajpheart.00033.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent data have shown that cardioprotection can result in the import of specific proteins into the mitochondria in a process that involves heat shock protein 90 (HSP90) and is blocked by geldanamycin (GD), a HSP90 inhibitor. To test the hypothesis that an alteration in mitochondrial import is a more widespread feature of cardioprotection, in this study, we used a broad-based proteomics approach to investigate changes in the mitochondrial proteome following cardioprotection induced by inhibition of glycogen synthase kinase (GSK)-3. Mitochondria were isolated from control hearts, and hearts were perfused with the GSK inhibitor SB 216763 (SB) for 15 min before isolation of mitochondria. Mitochondrial extracts from control and SB-perfused hearts were labeled with isotope tags for relative and absolute quantification (iTRAQ), and differences in mitochondrial protein levels were determined by mass spectrometry. To test for the role of HSP90-mediated protein import, hearts were perfused in the presence and absence of GD for 15 min before perfusion with SB followed by mitochondrial isolation and iTRAQ labeling. We confirmed that treatment with GD blocked the protection afforded by SB treatment in a protocol of 20 min of ischemia and 40 min of reperfusion. We found 16 proteins that showed an apparent increase in the mitochondrial fraction following SB treatment. GD treatment significantly blocked the SB-mediated increase in mitochondrial association for five of these proteins, which included annexin A6, vinculin, and pyruvate kinase. We also found that SB treatment resulted in a decrease in mitochondrial content of eight proteins, of which all but two are established mitochondrial proteins. To confirm a role for mitochondrial import versus a change in protein synthesis and/or degradation, we measured changes in these proteins in whole cell extracts. Taken together, these data show that SB leads to a remodeling of the mitochondrial proteome that is partially GD sensitive.
Collapse
Affiliation(s)
- Tiffany Nguyen
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
166
|
L. Curry J, A. Torres-Cabala C, L. Warneke C, Zhang P, G. Prieto V. Distinct Subcellular Localization of GSK-3<i>β</i> in Melanocytic Nevi: Implications in Melanocyte Senescence. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojpathology.2012.24021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
167
|
Gizak A, Pirog M, Rakus D. Muscle FBPase binds to cardiomyocyte mitochondria under glycogen synthase kinase-3 inhibition or elevation of cellular Ca2+ level. FEBS Lett 2011; 586:13-9. [PMID: 22154964 DOI: 10.1016/j.febslet.2011.11.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/25/2011] [Accepted: 11/26/2011] [Indexed: 02/06/2023]
Abstract
A growing body of research suggests that fructose 1,6-bisphosphatase (FBPase) might be involved in regulation of cell mortality/survival. However, the precise role of FBPase in the process remains unknown. Here, we show for the first time that in HL-1 cardiomyocytes, inhibition of glycogen synthase kinase-3 results in translocation of FBPase to mitochondria. In vitro experiments demonstrate that FBPase reduces the rate of calcium-induced mitochondrial swelling, affects ATP synthesis and interacts with mitochondrial proteins involved in regulation of volume and energy homeostasis. We suggest that FBPase might be engaged in a regulation of cell survival by influencing mitochondrial function.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Animal Molecular Physiology, Wroclaw University, Poland
| | | | | |
Collapse
|
168
|
Picone P, Giacomazza D, Vetri V, Carrotta R, Militello V, San Biagio PL, Di Carlo M. Insulin-activated Akt rescues Aβ oxidative stress-induced cell death by orchestrating molecular trafficking. Aging Cell 2011; 10:832-43. [PMID: 21624038 DOI: 10.1111/j.1474-9726.2011.00724.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Increasing evidence indicates that Alzheimer's disease, one of the most diffused aging pathologies, and diabetes may be related. Here, we demonstrate that insulin signalling protects LAN5 cells by amyloid-β42 (Aβ)-induced toxicity. Aβ affects both activation of insulin receptors and the levels of phospho-Akt, a critical signalling molecule in this pathway. In contrast, oxidative stress induced by Aβ can be antagonized by active Akt that, in turn, inhibits Foxo3a, a pro-apoptotic transcription factor activated by reactive oxygen species generation. Insulin cascade protects against mitochondrial damage caused by Aβ treatment, restoring the mitochondrial membrane potential. Moreover, we show that the recovery of the organelle integrity recruits active Akt translocation to the mitochondrion. Here, it plays a role both by maintaining unimpaired the permeability transition pore through increase in HK-II levels and by blocking apoptosis through phosphorylation of Bad, coming from cytoplasm after Aβ stimulus. Together, these results indicate that the Akt survival signal antagonizes the Aβ cell death process by balancing the presence and modifications of common molecules in specific cellular environments.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto di Biomedicina ed Immunologia Molecolare Alberto Monroy, Consiglio Nazionale delle Ricerche, via Ugo La Malfa 153, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
169
|
Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F, Rimessi A, Pinton P. Protein kinases and phosphatases in the control of cell fate. Enzyme Res 2011; 2011:329098. [PMID: 21904669 PMCID: PMC3166778 DOI: 10.4061/2011/329098] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/06/2011] [Accepted: 06/08/2011] [Indexed: 12/19/2022] Open
Abstract
Protein phosphorylation controls many aspects of cell fate and is often deregulated in pathological conditions. Several recent findings have provided an intriguing insight into the spatial regulation of protein phosphorylation across different subcellular compartments and how this can be finely orchestrated by specific kinases and phosphatases. In this review, the focus will be placed on (i) the phosphoinositide 3-kinase (PI3K) pathway, specifically on the kinases Akt and mTOR and on the phosphatases PP2a and PTEN, and on (ii) the PKC family of serine/threonine kinases. We will look at general aspects of cell physiology controlled by these kinases and phosphatases, highlighting the signalling pathways that drive cell division, proliferation, and apoptosis.
Collapse
Affiliation(s)
- Angela Bononi
- Section of General Pathology, Department of Experimental and Diagnostic Medicine, Interdisciplinary Center for the Study of Inflammation (ICSI) and LTTA Center, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Delayed ischemic postconditioning protects hippocampal CA1 neurons by preserving mitochondrial integrity via Akt/GSK3β signaling. Neurochem Int 2011; 59:749-58. [PMID: 21867737 DOI: 10.1016/j.neuint.2011.08.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 11/20/2022]
Abstract
Delayed ischemic postconditioning (Post C), which involves a brief ischemia followed by reperfusion 2 days after 8-10min global cerebral ischemia (GCI), has been shown to exert a remarkable protection of the vulnerable hippocampal CA1 region of the brain and attenuation of behavioral deficits, although the mechanisms remain poorly understood. The purpose of the current study was to explore the effect of Post C upon mitochondrial integrity, cytochrome c release and Bax translocation as a potential key mechanism for Post C protection of the critical hippocampal CA1 region neurons. The results of the study revealed that ischemic Post C (3min) administered 2 days after 8-min GCI exerted a robust preservation from GCI injury, as evidenced by the increase of NeuN-positive and the decrease of TUNEL-positive cells, as well as morphological features of mitochondrial integrity in the hippocampal CA1 region. We also found that Post C significantly blocked inner mitochondrial membrane potential depolarization, as shown by JC-1 staining, and attenuates cytochrome c release and Bax translocation induced by GCI. Pre-treatment of the PI3K inhibitor LY294002, 20min prior to Post C, significantly attenuated Post C-induced elevation of p-Akt and p-GSK3β, as well as prevented Post C enhancement of mitochondrial integrity and Post C neuroprotection. The results suggest that phosphorylation of Akt and subsequent inactivation of GSK3β signaling is critical in mediating Post C beneficial effects upon mitochondrial integrity, function and neuroprotection following GCI injury.
Collapse
|
171
|
Gomez-Concha C, Flores-Herrera O, Olvera-Sanchez S, Espinosa-Garcia MT, Martinez F. Progesterone synthesis by human placental mitochondria is sensitive to PKA inhibition by H89. Int J Biochem Cell Biol 2011; 43:1402-11. [PMID: 21689781 DOI: 10.1016/j.biocel.2011.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/27/2011] [Accepted: 06/06/2011] [Indexed: 11/24/2022]
Abstract
The transfer of cholesterol to mitochondria, which might involve the phosphorylation of proteins, is the rate-limiting step in human placental steroidogenesis. Protein kinase A (PKA) activity and its role in progesterone synthesis by human placental mitochondria were assessed in this study. The results showed that PKA and phosphotyrosine phosphatase D1 are associated with syncytiotrophoblast mitochondrial membrane by an anchoring kinase cAMP protein-121. The ³²P-labeled of four major proteins was analyzed. The specific inhibitor of PKA, H89, decreased progesterone synthesis in mitochondria while in mitochondrial steroidogenic contact sites protein-phosphorylation was diminished, suggesting that PKA plays a role in placental hormone synthesis. In isolated mitochondria, PKA activity was unaffected by the addition of cAMP suggesting a constant activity of this kinase in the syncytiotrophoblast. The presence of PKA and phosphotyrosine phosphatase D1 anchored to mitochondria by an anchoring kinase cAMP protein-121 indicated that syncytiotrophoblast mitochondria contain a full phosphorylation/dephosphorylation system.
Collapse
Affiliation(s)
- Cuauhtemoc Gomez-Concha
- Departamento de Bioquimica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Coyoacan 04510, Mexico, D.F., Mexico
| | | | | | | | | |
Collapse
|
172
|
Xue Y, Xie N, Lin Y, Xu J, Han Y, Wang S, Jiang H, Chi Z. Role of PI3K/Akt in diazoxide preconditioning against rat hippocampal neuronal death in pilocarpine-induced seizures. Brain Res 2011; 1383:135-40. [DOI: 10.1016/j.brainres.2011.01.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 12/21/2022]
|
173
|
Hayashida T, Komatsu T, Henmi Y, Yanagihara-Ota K, Kim AR, Chiba T, Goto S, Chung HY, Shimokawa I. Modest inhibition of the growth hormone axis does not affect mitochondrial reactive oxygen species generation or redox state, unlike calorie restriction. Geriatr Gerontol Int 2011; 11:496-503. [PMID: 21410856 DOI: 10.1111/j.1447-0594.2011.00692.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM Modest inhibition of the growth hormone (GH) axis by overexpression of the antisense GH gene in male Wistar rats reduced food intake and body weight, and lengthened the lifespan, even if fed ad libitum (AL). These findings were comparable with those induced by 30% calorie restriction (CR) in wild-type (WT) rats, suggesting importance of the GH signal pathway in the effect of CR. The present study evaluated the effects of GH inhibition and CR on mitochondrial oxidative stress and redox state in the liver. METHODS Transgenic and WT rats were fed AL or 30% CR diets from 6weeks of age. Liver tissues were collected at 6 and 24months of age. The mitochondria fraction was prepared from liver tissue homogenates. The total reactive oxygen species (ROS) generation, the protein levels of glutathione (GSH) and oxidized GSH (GSSG), and the superoxide dismutase 2 activity were measured. RESULTS The results revealed that CR, but not modest inhibition of GH, decreased mitochondrial ROS generation and increased the mitochondrial GSH redox potential. CONCLUSION The present study suggests that CR affects mitochondrial function and redox state through a pathway distinct from GH signaling.
Collapse
Affiliation(s)
- Takahiro Hayashida
- Department of Investigative Pathology, Unit of Basic Medical Science Department of Biochemistry and Molecular Biology in Diseases, Atomic Bomb Disease Institute, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Azarashvili TS, Odinokova IV, Krestinina OV, Baburina YL, Grachev DE, Teplova VV, Holmuhamedov EL. Role of phosphorylation of porin (VDAC) in regulation of mitochondrial outer membrane under normal conditions and alcohol intoxication. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2011. [DOI: 10.1134/s1990747811010028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
175
|
Pang L, Qiu T, Cao X, Wan M. Apoptotic role of TGF-β mediated by Smad4 mitochondria translocation and cytochrome c oxidase subunit II interaction. Exp Cell Res 2011; 317:1608-20. [PMID: 21324314 DOI: 10.1016/j.yexcr.2011.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/29/2022]
Abstract
Smad4, originally isolated from the human chromosome 18q21, is a key factor in transducing the signals of the TGF-β superfamily of growth hormones and plays a pivotal role in mediating antimitogenic and proapoptotic effects of TGF-β, but the mechanisms by which Smad4 induces apoptosis are elusive. Here we report that Smad4 directly translocates to the mitochondria of apoptotic cells. Smad4 gene silencing by siRNA inhibits TGF-β-induced apoptosis in Hep3B cells and UV-induced apoptosis in PANC-1 cells. Cell fractionation assays demonstrated that a fraction of Smad4 translocates to mitochondria after long time TGF-β treatment or UV exposure, during which the cells were under apoptosis. Smad4 mitochondria translocation during apoptosis was also confirmed by fluorescence observation of Smad4 colocalization with MitoTracker Red. We searched for mitochondria proteins that have physical interactions with Smad4 using yeast two-hybrid screening approach. DNA sequence analysis identified 34 positive clones, five of which encoded subunits in mitochondria complex IV, i.e., one clone encoded cytochrome c oxidase COXII, three clones encoded COXIII and one clone encoded COXVb. Strong interaction between Smad4 with COXII, an important apoptosis regulator, was verified in yeast by β-gal activity assays and in mammalian cells by immunoprecipitation assays. Further, mitochondrial portion of cells was isolated and the interaction between COXII and Smad4 in mitochondria upon TGF-β treatment or UV exposure was confirmed. Importantly, targeting Smad4 to mitochondria using import leader fusions enhanced TGF-β-induced apoptosis. Collectively, the results suggest that Smad4 promote apoptosis of the cells through its mitochondrial translocation and association with mitochondria protein COXII.
Collapse
Affiliation(s)
- Lijuan Pang
- The Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
176
|
Redlak MJ, Miller TA. Targeting PI3K/Akt/HSP90 signaling sensitizes gastric cancer cells to deoxycholate-induced apoptosis. Dig Dis Sci 2011; 56:323-9. [PMID: 20585984 DOI: 10.1007/s10620-010-1294-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/25/2010] [Indexed: 01/04/2023]
Abstract
BACKGROUND The heat shock protein 90 (HSP90) plays a crucial role in the stability of several proteins that are essential for cell survival and for malignant transformation. The binding of HSP90 with pro-survival kinase Akt prevents proteosomal degradation of Akt and contributes to the functional stabilization of PI3K/Akt signaling and cell survival. Akt kinase and HSP90 are therefore highly over-expressed in a large panel of cancer cell lines and are present in multi-chaperoning complexes. In this paper, we investigated whether targeting both Akt and HSP90 would inhibit the survival pathway in AGS cells (human gastric mucosal cells), and how Akt/HSP90 inhibition modulates the deoxycholate (DC)-induced apoptosis. METHODS AGS cells in the presence of Akt inhibitors (LY294002 and wortmannin), or HSP90 inhibitor (geldanamycin, GA) for 30 min or 18 h, respectively, were treated with DC (50 µM). Activation of PI3K/Akt signaling was evaluated by measuring the Akt and PTEN phosphorylation. HSP90, caspase-3 and caspase-9 were detected in whole lysates by Western blot analysis. AGS cells, transiently transfected with Akt siRNA, were treated with DC, and apoptosis was measured by caspase-3 activation. Apoptotic-positive cells were counted according to changes of cell morphology by Hoechst staining and fluorescence microscopy. RESULTS The intrinsic level of phospho-Akt (pAkt; active form), phospho-PTEN (pPTEN; inactive enzyme) and HSP90 were highly expressed in AGS cells indicating the active PI3K/Akt/HSP90 signaling. Although, deoxycholate at low concentration (50 µM) slightly inhibited the expression of pAkt and cleaved HSP90 to 55 KDa fragment, no significant effect on apoptosis induction, up to 4 h (as assessed by caspase-3 activation) was observed. The higher concentrations of DC (100 µM-300 µM) resulted in progressive inhibition of pAkt, activation of PTEN, and specific cleavage of HSP90 to approximately 45 KDa fragments with significant induction of apoptosis. Although DC (50 µM) had no profound effect on Akt/HSP90 and did not induce apoptosis, it became an inducer of apoptosis when cells were pretreated with LY294002, wortmannin, or geldanamycin. Consistent with these findings, significant activation of apoptosis in response to DC (50 µM) was observed in cells with depleted Akt protein. CONCLUSIONS These results demonstrate that down-regulation of PI3K/Akt pathway with specific cleavage of HSP90 to 45 KDa modulates the pro-apoptotic effects of DC in gastric cells. They further indicate the importance of stable Akt/HSP90 complex in regulation of survival/death responses.
Collapse
Affiliation(s)
- Maria J Redlak
- Department of Surgery, Medical College of Virginia Commonwealth University, Richmond, VA 23298, USA
| | | |
Collapse
|
177
|
Grube K, Rüdebusch J, Xu Z, Böckenholt T, Methner C, Müller T, Cuello F, Zimmermann K, Yang X, Felix SB, Cohen MV, Downey JM, Krieg T. Evidence for an intracellular localization of the adenosine A2B receptor in rat cardiomyocytes. Basic Res Cardiol 2011; 106:385-96. [PMID: 21246204 DOI: 10.1007/s00395-011-0151-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 12/17/2010] [Accepted: 01/03/2011] [Indexed: 11/26/2022]
Abstract
Protection achieved by ischemic preconditioning is dependent on A(2B) adenosine receptors (A(2B)AR) in rabbit and mouse hearts and, predictably, an A(2B)AR agonist protects them. But it is controversial whether cardiomyocytes themselves actually express A(2B)AR. The present study tested whether A(2B)AR could be demonstrated on rat cardiomyocytes. Isolated rat hearts experienced 30 min of ischemia and 120 min of reperfusion. The highly selective, cell-permeant A(2B)AR agonist BAY60-6583 (500 nM) infused at reperfusion reduced infarct size from 40.4 ± 2.0% of the risk zone in control hearts to 19.9 ± 2.8% indicating that A(2B)AR are protective in rat heart as well. Furthermore, BAY60-6583 reduced calcium-induced mitochondrial permeability transition in isolated rat cardiomyocytes. A(2B)AR protein could be demonstrated in isolated cardiomyocytes by western blotting. In addition, message for A(2B)AR was found in individual cardiomyocytes using quantitative RT-PCR. Surprisingly, immunofluorescence microscopy did not show A(2B)AR on the cardiomyocyte's sarcolemma but rather at intracellular sites. Co-staining with MitoTracker Red in isolated cardiomyocytes revealed A(2B)AR are localized to mitochondria. Western blot analysis of a mitochondrial fraction from either rat heart biopsies or isolated cardiomyocytes revealed a strong A(2B)AR band. Thus, the present study demonstrates that activation of A(2B)AR is strongly cardioprotective in rat heart and suppresses transition pores in isolated cardiomyocytes, and A(2B)AR are expressed in individual cardiomyocytes. However, surprisingly, A(2B)AR are present in or near mitochondria rather than on the sarcolemma as are other adenosine receptors. Because A(2B)AR signaling is thought to result in inhibition of mitochondrial transition pores, this convenient location may be important.
Collapse
Affiliation(s)
- Karina Grube
- Department of Cardiology, Ernst-Moritz-Arndt University, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Safdar A, Little JP, Stokl AJ, Hettinga BP, Akhtar M, Tarnopolsky MA. Exercise increases mitochondrial PGC-1alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem 2011; 286:10605-17. [PMID: 21245132 DOI: 10.1074/jbc.m110.211466] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Endurance exercise is known to induce metabolic adaptations in skeletal muscle via activation of the transcriptional co-activator peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α). PGC-1α regulates mitochondrial biogenesis via regulating transcription of nuclear-encoded mitochondrial genes. Recently, PGC-1α has been shown to reside in mitochondria; however, the physiological consequences of mitochondrial PGC-1α remain unknown. We sought to delineate if an acute bout of endurance exercise can mediate an increase in mitochondrial PGC-1α content where it may co-activate mitochondrial transcription factor A to promote mtDNA transcription. C57Bl/6J mice (n = 12/group; ♀ = ♂) were randomly assigned to sedentary (SED), forced-endurance (END) exercise (15 m/min for 90 min), or forced endurance +3 h of recovery (END+3h) group. The END group was sacrificed immediately after exercise, whereas the SED and END+3h groups were euthanized 3 h after acute exercise. Acute exercise coordinately increased the mRNA expression of nuclear and mitochondrial DNA-encoded mitochondrial transcripts. Nuclear and mitochondrial abundance of PGC-1α in END and END+3h groups was significantly higher versus SED mice. In mitochondria, PGC-1α is in a complex with mitochondrial transcription factor A at mtDNA D-loop, and this interaction was positively modulated by exercise, similar to the increased binding of PGC-1α at the NRF-1 promoter. We conclude that in response to acute altered energy demands, PGC-1α re-localizes into nuclear and mitochondrial compartments where it functions as a transcriptional co-activator for both nuclear and mitochondrial DNA transcription factors. These results suggest that PGC-1α may dynamically facilitate nuclear-mitochondrial DNA cross-talk to promote net mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Kinesiology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
179
|
Abstract
A growing body of evidence suggests that mitochondrial abnormalities are involved in diabetes and associated complications. This chapter gives an overview about the effects of diabetes in mitochondrial function of several tissues including the pancreas, skeletal and cardiac muscle, liver, and brain. The realization that mitochondria are at the intersection of cells' life and death has made them a promising target for drug discovery and therapeutic interventions. Here, we also discuss literature that examined the potential protective effect of insulin, insulin-sensitizing drugs, and mitochondrial-targeted antioxidants.
Collapse
Affiliation(s)
- Paula I Moreira
- Faculty of Medicine and Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.
| | | |
Collapse
|
180
|
Zhao X, León IR, Bak S, Mogensen M, Wrzesinski K, Højlund K, Jensen ON. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol Cell Proteomics 2011; 10:M110.000299. [PMID: 20833797 PMCID: PMC3013442 DOI: 10.1074/mcp.m110.000299] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/04/2010] [Indexed: 11/06/2022] Open
Abstract
Mitochondria play a central role in energy metabolism and cellular survival, and consequently mitochondrial dysfunction is associated with a number of human pathologies. Reversible protein phosphorylation emerges as a central mechanism in the regulation of several mitochondrial processes. In skeletal muscle, mitochondrial dysfunction is linked to insulin resistance in humans with obesity and type 2 diabetes. We performed a phosphoproteomics study of functional mitochondria isolated from human muscle biopsies with the aim to obtain a comprehensive overview of mitochondrial phosphoproteins. Combining an efficient mitochondrial isolation protocol with several different phosphopeptide enrichment techniques and LC-MS/MS, we identified 155 distinct phosphorylation sites in 77 mitochondrial phosphoproteins, including 116 phosphoserine, 23 phosphothreonine, and 16 phosphotyrosine residues. The relatively high number of phosphotyrosine residues suggests an important role for tyrosine phosphorylation in mitochondrial signaling. Many of the mitochondrial phosphoproteins are involved in oxidative phosphorylation, tricarboxylic acid cycle, and lipid metabolism, i.e. processes proposed to be involved in insulin resistance. We also assigned phosphorylation sites in mitochondrial proteins involved in amino acid degradation, importers and transporters, calcium homeostasis, and apoptosis. Bioinformatics analysis of kinase motifs revealed that many of these mitochondrial phosphoproteins are substrates for protein kinase A, protein kinase C, casein kinase II, and DNA-dependent protein kinase. Our results demonstrate the feasibility of performing phosphoproteome analysis of organelles isolated from human tissue and provide novel targets for functional studies of reversible phosphorylation in mitochondria. Future comparative phosphoproteome analysis of mitochondria from healthy and diseased individuals will provide insights into the role of abnormal phosphorylation in pathologies, such as type 2 diabetes.
Collapse
Affiliation(s)
- Xiaolu Zhao
- From the ‡Department of Biochemistry and Molecular Biology and
| | - Ileana R. León
- From the ‡Department of Biochemistry and Molecular Biology and
| | - Steffen Bak
- From the ‡Department of Biochemistry and Molecular Biology and
- §Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Kloevervaenget 6, DK-5000 Odense C, Denmark
| | - Martin Mogensen
- ¶Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, DK-5230 Odense M, Denmark and
| | | | - Kurt Højlund
- §Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Kloevervaenget 6, DK-5000 Odense C, Denmark
| | | |
Collapse
|
181
|
Fujiki M, Abe E, Nagai Y, Shiqi K, Kubo T, Ishii K, Abe T, Kobayashi H. Electroconvulsive seizure-induced VEGF is correlated with neuroprotective effects against cerebral infarction: Involvement of the phosphatidylinositol-3 kinase/Akt pathway. Exp Neurol 2010; 225:377-83. [DOI: 10.1016/j.expneurol.2010.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/09/2010] [Accepted: 07/13/2010] [Indexed: 11/25/2022]
|
182
|
Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E. Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk Lymphoma 2010; 51:1968-2005. [PMID: 20849387 DOI: 10.3109/10428194.2010.506570] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are integral components in the treatment protocols of acute lymphoblastic leukemia, multiple myeloma, and non-Hodgkin lymphoma owing to their ability to induce apoptosis of these malignant cells. Resistance to GC therapy is associated with poor prognosis. Although they have been used in clinics for decades, the signal transduction pathways involved in GC-induced apoptosis have only partly been resolved. Accumulating evidence shows that this cell death process is mediated by a communication between nuclear GR affecting gene transcription of pro-apoptotic genes such as Bim, mitochondrial GR affecting the physiology of the mitochondria, and the protein kinase glycogen synthase kinase-3 (GSK3), which interacts with Bim following exposure to GCs. Prevention of Bim up-regulation, mitochondrial GR translocation, and/or GSK3 activation are common causes leading to GC therapy failure. Various protein kinases positively regulating the pro-survival Src-PI3K-Akt-mTOR and Raf-Ras-MEK-ERK signal cascades have been shown to be activated in malignant leukemic cells and antagonize GC-induced apoptosis by inhibiting GSK3 activation and Bim expression. Targeting these protein kinases has proven effective in sensitizing GR-positive malignant lymphoid cells to GC-induced apoptosis. Thus, intervening with the pro-survival kinase network in GC-resistant cells should be a good means of improving GC therapy of hematopoietic malignancies.
Collapse
Affiliation(s)
- Shlomit Kfir-Erenfeld
- The Lautenberg Center of Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
183
|
Antao ST, Duong TTH, Aran R, Witting PK. Neuroglobin overexpression in cultured human neuronal cells protects against hydrogen peroxide insult via activating phosphoinositide-3 kinase and opening the mitochondrial K(ATP) channel. Antioxid Redox Signal 2010; 13:769-81. [PMID: 20367258 DOI: 10.1089/ars.2009.2977] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cultured neurons tolerate low H(2)O(2) concentrations (< or =50 microM) through the activity of constitutive antioxidant response elements (ARE). At H(2)O(2) levels (> or =100 microM), neurons increase expression of the gene encoding for inducible hemoxygenase-1 while superoxide dismutase-2 and catalase remain unchanged. Despite this adaptive response, the endogenous antioxidant systems are overwhelmed, leading to decreased viability. Elevating the neuronal cell content of human neuroglobin (Ngb) prior to insult with 100 or 200 microM H(2)O(2) enhanced cell viability and this resulted in a significant decrease in oxidative stress and an increase in the intracellular ATP concentration, whereas in parental cells exposed to the same H(2)O(2)-insult, oxidative stress and ATP increased and decreased, respectively. The mechanism for this increase in ATP involves sustained activation of the mito-K(ATP) channel and an increase in phosphoinositide-3 kinase (PI3K)-mediated phosphorylation of Akt. Pharmacological inhibitors directed toward PI3K (wortmannin and LY294002), or the mito-K(ATP) channel (glybenclamide) inhibited the H(2)O(2)-mediated increase in ATP in cells overexpressing human Ngb and consequently cell viability decreased. Neuroglobin's ability to bolster the intracellular pool of ATP in response to added H(2)O(2) is central to the preservation of cytoskeletal integrity and cell viability.
Collapse
Affiliation(s)
- Shane T Antao
- Redox Biology Group, Discipline of Pathology, Bosch Institute, Faculty of Medicine, The University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
184
|
Gucek M, Murphy E. What can we learn about cardioprotection from the cardiac mitochondrial proteome? Cardiovasc Res 2010; 88:211-8. [PMID: 20805096 DOI: 10.1093/cvr/cvq277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This review will summarize proteomic methods that are useful in studying the role of mitochondria in cardioprotection. The strengths and weaknesses of some of the different approaches are discussed. We focus on the cardiac mitochondrial proteome with emphasis on changes associated with cell death and protection, and we summarize how proteomic data have contributed to addressing the role of mitochondria in cardioprotection.
Collapse
Affiliation(s)
- Marjan Gucek
- NHLBI Proteomics Core, NHLBI, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
185
|
Ma H, Byra EA, Yu L, Hu N, Kitagawa K, Nakayama KI, Kawamoto T, Ren J. Aldehyde dehydrogenase 2 knockout accentuates ethanol-induced cardiac depression: role of protein phosphatases. J Mol Cell Cardiol 2010; 49:322-9. [PMID: 20362583 PMCID: PMC2885537 DOI: 10.1016/j.yjmcc.2010.03.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 01/12/2023]
Abstract
Alcohol consumption leads to myocardial contractile dysfunction possibly due to the toxicity of ethanol and its major metabolite acetaldehyde. This study was designed to examine the influence of mitochondrial aldehyde dehydrogenase-2 (ALDH2) knockout (KO) on acute ethanol exposure-induced cardiomyocyte dysfunction. Wild-type (WT) and ALDH2 KO mice were subjected to acute ethanol (3g/kg, i.p.) challenge and cardiomyocyte contractile function was assessed 24h later using an IonOptix edge detection system. Western blot analysis was performed to evaluate ALDH2, protein phosphatase 2A (PP2A), phosphorylation of Akt, and glycogen synthase kinase-3beta (GSK-3beta). ALDH2 KO accentuated ethanol-induced elevation in cardiac acetaldehyde levels. Ethanol exposure depressed cardiomyocyte contractile function including decreased cell shortening amplitude and maximal velocity of shortening/relengthening as well as prolonged relengthening duration and a greater decline in peak shortening in response to increasing stimulus frequency, the effect of which was significantly exaggerated by ALDH2 KO. ALDH2 KO also unmasked an ethanol-induced prolongation of shortening duration. In addition, short-term in vitro incubation of ethanol-induced cardiomyocyte mechanical defects was exacerbated by the ALDH inhibitor cyanamide. Ethanol treatment dampened phosphorylation of Akt and GSK-3beta associated with upregulated PP2A, which was accentuated by ALDH2 KO. ALDH2 KO aggravated ethanol-induced decrease in mitochondrial membrane potential. These results suggested that ALDH2 deficiency led to worsened ethanol-induced cardiomyocyte function, possibly due to upregulated expression of protein phosphatase, depressed Akt activation, and subsequently impaired mitochondrial function. These findings depict a critical role of ALDH2 in the pathogenesis of alcoholic cardiomyopathy.
Collapse
Affiliation(s)
- Heng Ma
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
- Department of Physiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China 710032
| | - Emily A. Byra
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Lu Yu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, China 710032
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Kyoko Kitagawa
- First Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Toshihiro Kawamoto
- Department of Environmental Health, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
186
|
Miyamoto S, Purcell NH, Smith JM, Gao T, Whittaker R, Huang K, Castillo R, Glembotski CC, Sussman MA, Newton AC, Brown JH. PHLPP-1 negatively regulates Akt activity and survival in the heart. Circ Res 2010; 107:476-84. [PMID: 20576936 DOI: 10.1161/circresaha.109.215020] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The recently discovered PHLPP-1 (PH domain leucine-rich repeat protein phosphatase-1) selectively dephosphorylates Akt at Ser473 and terminates Akt signaling in cancer cells. The regulatory role of PHLPP-1 in the heart has not been considered. OBJECTIVE To test the hypothesis that blockade/inhibition of PHLPP-1 could constitute a novel way to enhance Akt signals and provide cardioprotection. METHODS AND RESULTS PHLPP-1 is expressed in neonatal rat ventricular myocytes (NRVMs) and in adult mouse ventricular myocytes (AMVMs). PHLPP-1 knockdown by small interfering RNA significantly enhances phosphorylation of Akt (p-Akt) at Ser473, but not at Thr308, in NRVMs stimulated with leukemia inhibitory factor (LIF). The increased phosphorylation is accompanied by greater Akt catalytic activity. PHLPP-1 knockdown enhances LIF-mediated cardioprotection against doxorubicin and also protects cardiomyocytes against H(2)O(2). Direct Akt effects at mitochondria have been implicated in cardioprotection and mitochondria/cytosol fractionation revealed a significant enrichment of PHLPP-1 at mitochondria. The ability of PHLPP-1 knockdown to potentiate LIF-mediated increases in p-Akt at mitochondria and an accompanying increase in mitochondrial hexokinase-II was demonstrated. We generated PHLPP-1 knockout (KO) mice and demonstrate that AMVMs isolated from KO mice show potentiated p-Akt at Ser473 in response to agonists. When isolated perfused hearts are subjected to ischemia/reperfusion, p-Akt in whole-heart homogenates and in the mitochondrial fraction is significantly increased. Additionally in PHLPP-1 KO hearts, the increase in p-Akt elicited by ischemia/reperfusion is potentiated and, concomitantly, infarct size is significantly reduced. CONCLUSIONS These results implicate PHLPP-1 as an endogenous negative regulator of Akt activity and cell survival in the heart.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Miura T, Tanno M, Sato T. Mitochondrial kinase signalling pathways in myocardial protection from ischaemia/reperfusion-induced necrosis. Cardiovasc Res 2010; 88:7-15. [PMID: 20562423 DOI: 10.1093/cvr/cvq206] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Multiple cardioprotective signal pathways that are activated by ischaemic preconditioning (IPC) and those by IPC mimetics converge on mitochondria. Recent studies have shown that pools of Akt, protein kinase C-ε, extracellular-regulated kinases, glycogen synthase kinase-3beta (GSK-3beta), and hexokinases (HK) I and II, are localized in mitochondria in addition to their pools in the cytosol. Accumulating evidence indicates that such 'mitochondrial protein kinases' receive signals from cytosolic molecules and enhance tolerance of myocytes to injury. Proteomic analyses suggest that these kinases form complexes with each other and with subunit proteins of the mitochondrial permeability transition pore (mPTP). Functional relationships between the protein kinases in mitochondria have not been fully clarified, but GSK-3beta and HKs appear to be at the end of the signal pathways and directly responsible for inhibition of opening of the mPTP and, thus, for myocyte protection from necrosis. In this review, recent findings supporting roles of mitochondrial protein kinases in protection from myocardial necrosis after ischaemia/reperfusion are summarized and discussed.
Collapse
Affiliation(s)
- Tetsuji Miura
- Second Department of Internal Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan.
| | | | | |
Collapse
|
188
|
Barksdale KA, Perez-Costas E, Gandy JC, Melendez-Ferro M, Roberts RC, Bijur GN. Mitochondrial viability in mouse and human postmortem brain. FASEB J 2010; 24:3590-9. [PMID: 20466876 DOI: 10.1096/fj.09-152108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neuronal function in the brain requires energy in the form of ATP, and mitochondria are canonically associated with ATP production in neurons. The electrochemical gradient, which underlies the mitochondrial transmembrane potential (DeltaPsi(mem)), is harnessed for ATP generation. Here we show that DeltaPsi(mem) and ATP-production can be engaged in mitochondria isolated from human brains up to 8.5 h postmortem. Also, a time course of postmortem intervals from 0 to 24 h using mitochondria isolated from mouse cortex reveals that DeltaPsi(mem) in mitochondria can be reconstituted beyond 10 h postmortem. It was found that complex I of the mitochondrial electron transport chain was affected adversely with increasing postmortem intervals. Mitochondria isolated from postmortem mouse brains maintain the ability to produce ATP, but rates of production decreased with longer postmortem intervals. Furthermore, we show that postmortem brain mitochondria retain their DeltaPsi(mem) and ATP-production capacities following cryopreservation. Our finding that DeltaPsi(mem) and ATP-generating capacity can be reinitiated in brain mitochondria hours after death indicates that human postmortem brains can be an abundant source of viable mitochondria to study metabolic processes in health and disease. It is also possible to archive these mitochondria for future studies.
Collapse
Affiliation(s)
- Keri A Barksdale
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | | | | | | | |
Collapse
|
189
|
VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 2010; 31:227-85. [PMID: 20346371 DOI: 10.1016/j.mam.2010.03.002] [Citation(s) in RCA: 584] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/17/2010] [Indexed: 01/22/2023]
Abstract
Research over the past decade has extended the prevailing view of the mitochondrion to include functions well beyond the generation of cellular energy. It is now recognized that mitochondria play a crucial role in cell signaling events, inter-organellar communication, aging, cell proliferation, diseases and cell death. Thus, mitochondria play a central role in the regulation of apoptosis (programmed cell death) and serve as the venue for cellular decisions leading to cell life or death. One of the mitochondrial proteins controlling cell life and death is the voltage-dependent anion channel (VDAC), also known as mitochondrial porin. VDAC, located in the mitochondrial outer membrane, functions as gatekeeper for the entry and exit of mitochondrial metabolites, thereby controlling cross-talk between mitochondria and the rest of the cell. VDAC is also a key player in mitochondria-mediated apoptosis. Thus, in addition to regulating the metabolic and energetic functions of mitochondria, VDAC appears to be a convergence point for a variety of cell survival and cell death signals mediated by its association with various ligands and proteins. In this article, we review what is known about the VDAC channel in terms of its structure, relevance to ATP rationing, Ca(2+) homeostasis, protection against oxidative stress, regulation of apoptosis, involvement in several diseases and its role in the action of different drugs. In light of our recent findings and the recently solved NMR- and crystallography-based 3D structures of VDAC1, the focus of this review will be on the central role of VDAC in cell life and death, addressing VDAC function in the regulation of mitochondria-mediated apoptosis with an emphasis on structure-function relations. Understanding structure-function relationships of VDAC is critical for deciphering how this channel can perform such a variety of functions, all important for cell life and death. This review also provides insight into the potential of VDAC1 as a rational target for new therapeutics.
Collapse
|
190
|
The phosphatidylinositol-3 kinase/Akt pathway mediates geranylgeranylacetone-induced neuroprotection against cerebral infarction in rats. Brain Res 2010; 1330:151-7. [PMID: 20206146 DOI: 10.1016/j.brainres.2010.02.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 02/21/2010] [Accepted: 02/22/2010] [Indexed: 11/20/2022]
Abstract
Previous studies demonstrated the cytoprotective effect of geranylgeranylacetone (GGA), a heat shock protein inducer, against ischemic insult. Phosphatidylinositol-3 kinase/Akt (PI3K/Akt) is thought to be an important factor that mediates neuroprotection. However, the signaling pathways in the brain in vivo after oral GGA administration remain unclear. We measured and compared infarction volumes to investigate the effect of GGA on cerebral infarction induced by permanent middle cerebral artery occlusion in rats. We evaluated the effects of pretreatment with 5-hydroxydecanoate (5HD), a specific mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel inhibitor; diazoxide (DZX), a selective mitoK(ATP) channel opener and wortmannin (Wort), a specific PI3K inhibitor of GGA-induced neuroprotection against infarction volumes. To clarify the relationship between PI3K/Akt activation and neuroprotection, we used immunoblot analysis to determine the amount of p-Akt proteins present after GGA administration with or without Wort treatment. Neuroprotective effects of GGA (pretreatment with a single oral GGA dose (800 mg/kg) 48 h before ischemia) were prevented by 5HD, DZX and Wort pretreatment, which indicates that the selective mitoK(ATP) channel and the PI3K/Akt pathway may mediate GGA-dependent protection. Oral GGA-induced p-Akt and GGA pretreatment enhanced ischemia-induced p-Akt, both of which were prevented by Wort pretreatment. These results suggest that a single oral dose of GGA induces p-Akt and that GGA plays an important role in neuroprotection against cerebral ischemia through the mitoK(ATP) channel opening.
Collapse
|
191
|
Santi SA, Lee H. The Akt isoforms are present at distinct subcellular locations. Am J Physiol Cell Physiol 2010; 298:C580-91. [DOI: 10.1152/ajpcell.00375.2009] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Akt is involved in the regulation of diverse cellular functions such as cell proliferation, energy metabolism, and apoptosis. Although three Akt isoforms are known, the function of each isoform is poorly understood. To gain a better understanding of each Akt isoform, we examined the subcellular localization and expression of each isoform in transformed and nontransformed cells. Akt1 was localized in the cytoplasm, which is in agreement with the currently accepted model that cytoplasmic Akt is translocated and activated at the inner leaflet of the plasma membrane. Interestingly, HEK-293 and HEK-293T cells contained Akt1 in the nucleus and cytoplasm, respectively, suggesting that SV40 T-antigen plays a crucial role in the cytoplasmic localization and activation of Akt1 in HEK-293T. Akt2 was colocalized with the mitochondria, while Akt3 was localized in both the nucleus and nuclear membrane. The subcellular localization of the Akt isoforms was not substantially altered in response to ionizing radiation or EGF. Furthermore, the ablation of one Akt isoform by small interfering RNA (siRNA) did not alter the subcellular location of the remaining isoforms, suggesting that the major function of one isoform is not compensated for by other isoforms. Together, our data support the notion that Akt2 and Akt3 are regulated at the mitochondrial and nuclear membranes, respectively. The mitochondrial localization of Akt2 raises the possibility that this isoform may be involved in both glucose-based energy metabolism and suppression of apoptosis, two Akt functions previously identified with anti-pan-Akt antibodies.
Collapse
Affiliation(s)
- Stacey A. Santi
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa; and
- Tumor Biology Group, Northeastern Ontario Regional Cancer Centre, Sudbury Regional Hospital and
| | - Hoyun Lee
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa; and
- Tumor Biology Group, Northeastern Ontario Regional Cancer Centre, Sudbury Regional Hospital and
- Department of Medical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
192
|
Abstract
The phosphoinositide (PI) cycle, discovered over 50 years ago by Mabel and Lowell Hokin, describes a series of biochemical reactions that occur on the inner leaflet of the plasma membrane of cells in response to receptor activation by extracellular stimuli. Studies from our laboratory have shown that the retina and rod outer segments (ROSs) have active PI metabolism. Biochemical studies revealed that the ROSs contain the enzymes necessary for phosphorylation of phosphoinositides. We showed that light stimulates various components of the PI cycle in the vertebrate ROS, including diacylglycerol kinase, PI synthetase, phosphatidylinositol phosphate kinase, phospholipase C, and phosphoinositide 3-kinase (PI3K). This article describes recent studies on the PI3K-generated PI lipid second messengers in the control and regulation of PI-binding proteins in the vertebrate retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology and Cell Biology, and Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA. r
| |
Collapse
|
193
|
Tomas E, Habener JF. Insulin-like actions of glucagon-like peptide-1: a dual receptor hypothesis. Trends Endocrinol Metab 2010; 21:59-67. [PMID: 20018525 PMCID: PMC4085161 DOI: 10.1016/j.tem.2009.11.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/22/2009] [Accepted: 11/23/2009] [Indexed: 12/17/2022]
Abstract
GLP-1 (9-36)amide is the cleavage product of GLP-1(7-36) amide, formed by the action of diaminopeptidyl peptidase-4 (Dpp4), and is the major circulating form in plasma. Whereas GLP-1(7-36)amide stimulates glucose-dependent insulin secretion, GLP-1(9-36)amide has only weak partial insulinotropic agonist activities on the GLP-1 receptor, but suppresses hepatic glucose production, exerts antioxidant cardioprotective actions and reduces oxidative stress in vasculature tissues. These insulin-like activities suggest a role for GLP-1 (9-36)amide in the modulation of mitochondrial functions by mechanisms independent of the GLP-1 receptor. In this paper, we discuss the current literature suggesting that GLP-1(9-36)amide is an active peptide with important insulin-like actions. These findings have implications in nutrient assimilation, energy homeostasis, obesity, and the use of Dpp4 inhibitors for the treatment of diabetes.
Collapse
Affiliation(s)
- Eva Tomas
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
194
|
Perez-Costas E, Gandy JC, Melendez-Ferro M, Roberts RC, Bijur GN. Light and electron microscopy study of glycogen synthase kinase-3beta in the mouse brain. PLoS One 2010; 5:e8911. [PMID: 20111716 PMCID: PMC2811740 DOI: 10.1371/journal.pone.0008911] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 01/05/2010] [Indexed: 11/21/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK3β) is highly abundant in the brain. Various biochemical analyses have indicated that GSK3β is localized to different intracellular compartments within brain cells. However, ultrastructural visualization of this kinase in various brain regions and in different brain cell types has not been reported. The goal of the present study was to examine GSK3β distribution and subcellular localization in the brain using immunohistochemistry combined with light and electron microscopy. Initial examination by light microscopy revealed that GSK3β is expressed in brain neurons and their dendrites throughout all the rostrocaudal extent of the adult mouse brain, and abundant GSK3β staining was found in the cortex, hippocampus, basal ganglia, the cerebellum, and some brainstem nuclei. Examination by transmission electron microscopy revealed highly specific subcellular localization of GSK3β in neurons and astrocytes. At the subcellular level, GSK3β was present in the rough endoplasmic reticulum, free ribosomes, and mitochondria of neurons and astrocytes. In addition GSK3β was also present in dendrites and dendritic spines, with some postsynaptic densities clearly labeled for GSK3β. Phosphorylation at serine-9 of GSK3β (pSer9GSK3β) reduces kinase activity. pSer9GSK3β labeling was present in all brain regions, but the pattern of staining was clearly different, with an abundance of labeling in microglia cells in all regions analyzed and much less neuronal staining in the subcortical regions. At the subcellular level pSer9GSK3β labeling was located in the endoplasmic reticulum, free ribosomes and in some of the nuclei. Overall, in normal brains constitutively active GSK3β is predominantly present in neurons while pSer9GSK3β is more evident in resting microglia cells. This visual assessment of GSK3β localization within the subcellular structures of various brain cells may help in understanding the diverse role of GSK3β signaling in the brain.
Collapse
Affiliation(s)
- Emma Perez-Costas
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Johanna C. Gandy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Miguel Melendez-Ferro
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gautam N. Bijur
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
195
|
Packer L, Cadenas E. Lipoic acid: energy metabolism and redox regulation of transcription and cell signaling. J Clin Biochem Nutr 2010; 48:26-32. [PMID: 21297908 PMCID: PMC3022059 DOI: 10.3164/jcbn.11-005fr] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 09/10/2010] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lester Packer
- *To whom correspondence should be addressed. E-mail:
| | | |
Collapse
|
196
|
Protein Kinase B (PKB/Akt), a Key Mediator of the PI3K Signaling Pathway. Curr Top Microbiol Immunol 2010; 346:31-56. [DOI: 10.1007/82_2010_58] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
197
|
Cardoso S, Santos R, Correia S, Carvalho C, Zhu X, Lee HG, Casadesus G, Smith MA, Perry G, Moreira PI. Insulin and Insulin-Sensitizing Drugs in Neurodegeneration: Mitochondria as Therapeutic Targets. Pharmaceuticals (Basel) 2009; 2:250-286. [PMID: 27713238 PMCID: PMC3978547 DOI: 10.3390/ph2030250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/21/2009] [Accepted: 12/22/2009] [Indexed: 12/13/2022] Open
Abstract
Insulin, besides its glucose lowering effects, is involved in the modulation of lifespan, aging and memory and learning processes. As the population ages, neurodegenerative disorders become epidemic and a connection between insulin signaling dysregulation, cognitive decline and dementia has been established. Mitochondria are intracellular organelles that despite playing a critical role in cellular metabolism are also one of the major sources of reactive oxygen species. Mitochondrial dysfunction, oxidative stress and neuroinflammation, hallmarks of neurodegeneration, can result from impaired insulin signaling. Insulin-sensitizing drugs such as the thiazolidinediones are a new class of synthetic compounds that potentiate insulin action in the target tissues and act as specific agonists of the peroxisome proliferator-activated receptor gamma (PPAR-γ). Recently, several PPAR agonists have been proposed as novel and possible therapeutic agents for neurodegenerative disorders. Indeed, the literature shows that these agents are able to protect against mitochondrial dysfunction, oxidative damage, inflammation and apoptosis. This review discusses the role of mitochondria and insulin signaling in normal brain function and in neurodegeneration. Furthermore, the potential protective role of insulin and insulin sensitizers in Alzheimer´s, Parkinson´s and Huntington´s diseases and amyotrophic lateral sclerosis will be also discussed.
Collapse
Affiliation(s)
- Susana Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000- 354 Coimbra, Portugal
| | - Renato Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000- 354 Coimbra, Portugal
| | - Sonia Correia
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000- 354 Coimbra, Portugal
| | - Cristina Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000- 354 Coimbra, Portugal
| | - Xiongwei Zhu
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hyoung-Gon Lee
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gemma Casadesus
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mark A Smith
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - George Perry
- College of Sciences, The University of Texas at San Antonio, TX 78249, USA
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal.
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.
| |
Collapse
|
198
|
Gogvadze V, Zhivotovsky B, Orrenius S. The Warburg effect and mitochondrial stability in cancer cells. Mol Aspects Med 2009; 31:60-74. [PMID: 19995572 DOI: 10.1016/j.mam.2009.12.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 07/31/2009] [Accepted: 12/02/2009] [Indexed: 12/19/2022]
Abstract
The last decade has witnessed a renaissance of Otto Warburg's fundamental hypothesis, which he put forward more than 80 years ago, that mitochondrial malfunction and subsequent stimulation of cellular glucose utilization lead to the development of cancer. Since most tumor cells demonstrate a remarkable resistance to drugs that kill non-malignant cells, the question has arisen whether such resistance might be a consequence of the abnormalities in tumor mitochondria predicted by Warburg. The present review discusses potential mechanisms underlying the upregulation of glycolysis and silencing of mitochondrial activity in cancer cells, and how pharmaceutical intervention in cellular energy metabolism might make tumor cells more susceptible to anti-cancer treatment.
Collapse
Affiliation(s)
- Vladimir Gogvadze
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, Stockholm SE-17177, Sweden
| | | | | |
Collapse
|
199
|
Sussman MA. Mitochondrial integrity: preservation through Akt/Pim-1 kinase signaling in the cardiomyocyte. Expert Rev Cardiovasc Ther 2009; 7:929-38. [PMID: 19673671 DOI: 10.1586/erc.09.48] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The central role of mitochondria as mediators of cell survival is indisputable and gathering increasing attention as a focal point for interventional strategies to mitigate apoptotic cell death in the wake of cardiomyopathic injury. A legacy of signal transduction studies has proven that mitochondrial integrity can be enhanced by kinases involved in cell survival. Among the many survival signaling cascades under investigation, the wide-ranging impact of Akt upon mitochondrial biology is well known. However, despite years of investigation, emerging research continues to reveal new mechanisms governing the protective effects of Akt signaling in the context of cardiomyocyte mitochondria. This review focuses on two emerging pathways that mediate preservation of mitochondrial function downstream of Akt: hexokinase and Pim-1 kinase.
Collapse
Affiliation(s)
- Mark A Sussman
- San Diego State University, SDSU Heart Institute, Department of Biology, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
200
|
Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression. PLoS One 2009; 4:e7523. [PMID: 19844585 PMCID: PMC2761088 DOI: 10.1371/journal.pone.0007523] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 09/29/2009] [Indexed: 11/19/2022] Open
Abstract
Akt is a serine/threonine kinase involved in cell proliferation, apoptosis, and glucose metabolism. Akt is differentially activated by growth factors and oxidative stress by sequential phosphorylation of Ser473 by mTORC2 and Thr308 by PDK1. On these bases, we investigated the mechanistic connection of H2O2 yield, mitochondrial activation of Akt1 and cell cycle progression in NIH/3T3 cell line with confocal microscopy, in vivo imaging, and directed mutagenesis. We demonstrate that modulation by H2O2 entails the entrance of cytosolic P-Akt1 Ser473 to mitochondria, where it is further phosphorylated at Thr308 by constitutive PDK1. Phosphorylation of Thr308 in mitochondria determines Akt1 passage to nuclei and triggers genomic post-translational mechanisms for cell proliferation. At high H2O2, Akt1-PDK1 association is disrupted and P-Akt1 Ser473 accumulates in mitochondria in detriment to nuclear translocation; accordingly, Akt1 T308A is retained in mitochondria. Low Akt1 activity increases cytochrome c release to cytosol leading to apoptosis. As assessed by mass spectra, differential H2O2 effects on Akt1-PDK interaction depend on the selective oxidation of Cys310 to sulfenic or cysteic acids. These results indicate that Akt1 intramitochondrial-cycling is central for redox modulation of cell fate.
Collapse
|