151
|
Ranty B, Cotelle V, Galaud JP, Mazars C. Nuclear Calcium Signaling and Its Involvement in Transcriptional Regulation in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1123-43. [DOI: 10.1007/978-94-007-2888-2_51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
152
|
Idoux E, Mertz J. Control of local intracellular calcium concentration with dynamic-clamp controlled 2-photon uncaging. PLoS One 2011; 6:e28685. [PMID: 22216105 PMCID: PMC3247215 DOI: 10.1371/journal.pone.0028685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/13/2011] [Indexed: 11/18/2022] Open
Abstract
The variations of the intracellular concentration of calcium ion ([Ca(2+)](i)) are at the heart of intracellular signaling, and their imaging is therefore of enormous interest. However, passive [Ca(2+)](i) imaging provides no control over these variations, meaning that a full exploration of the functional consequences of [Ca(2+)](i) changes is difficult to attain. The tools designed so far to modify [Ca(2+)](i), even qualitatively, suffer drawbacks that undermine their widespread use. Here, we describe an electro-optical technique to quantitatively set [Ca(2+)](i), in real time and with sub-cellular resolution, using two-photon Ca(2+) uncaging and dynamic-clamp. We experimentally demonstrate, on neurons from acute olfactory bulb slices of Long Evans rats, various capabilities of this technique previously difficult to achieve, such as the independent control of the membrane potential and [Ca(2+)](i) variations, the functional knocking-in of user-defined virtual voltage-dependent Ca(2+) channels, and the standardization of [Ca(2+)](i) patterns across different cells. Our goal is to lay the groundwork for this technique and establish it as a new and versatile tool for the study of cell signaling.
Collapse
Affiliation(s)
- Erwin Idoux
- Biomedical Engineering Department, Boston University, Boston, Massachusetts, USA.
| | | |
Collapse
|
153
|
Wormser C, Mason LZ, Helm EM, Light DB. Regulatory volume response following hypotonic stress in Atlantic salmon erythrocytes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:745-759. [PMID: 21336592 DOI: 10.1007/s10695-011-9474-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/07/2011] [Indexed: 05/30/2023]
Abstract
The purpose of this study was to examine regulatory volume decrease (RVD) in Atlantic salmon red blood cells (RBCs). Osmotic fragility was determined optically, mean cell volume was measured electronically, and changes in intracellular Ca(2+) concentration were visualized using fluorescence microscopy and fluo-4-AM. Cells displayed an increase in osmotic fragility and an inhibition of volume recovery following hypotonic shock when they were exposed to a high taurine Ringer or when placed in a high K(+) medium. Interestingly, RVD in cells from fish collected during the summer depended more on taurine efflux, whereas fall cells relied more on the loss of K(+). In addition, RVD in fall cells was prevented with the K(+) channel inhibitor quinine, whereas the ionophore gramicidin decreased osmotic fragility and potentiated volume recovery. Further, hypotonic shock (0.5X Ringer) for both summer and fall cells caused an increase in cytosolic Ca(2+), which resulted from influx of this ion because it was not observed when extracellular Ca(2+) was chelated with EGTA (10 nM free Ca(2+)). Cells exposed to a low Ca(2+) hypotonic Ringer also had a greater osmotic fragility and failed to recover from hypotonic swelling. Finally, inhibition of phospholipase A(2) with ONO-RS-082 blocked volume recovery. In conclusion, Atlantic salmon RBCs displayed volume decrease in response to hypotonic shock, which depended on a swelling-induced influx of Ca(2+) and an increase in the efflux of K(+) and taurine.
Collapse
Affiliation(s)
- Chloe Wormser
- Department of Biology, Lake Forest College, Lake Forest, IL 60045, USA
| | | | | | | |
Collapse
|
154
|
Gibon J, Richaud P, Bouron A. Hyperforin changes the zinc-storage capacities of brain cells. Neuropharmacology 2011; 61:1321-6. [DOI: 10.1016/j.neuropharm.2011.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/19/2011] [Accepted: 08/03/2011] [Indexed: 01/12/2023]
|
155
|
Mazars C, Brière C, Bourque S, Thuleau P. Nuclear calcium signaling: an emerging topic in plants. Biochimie 2011; 93:2068-74. [PMID: 21683118 DOI: 10.1016/j.biochi.2011.05.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/31/2011] [Indexed: 01/02/2023]
Abstract
The calcium ion is probably one of the most studied second messenger both in plant and animal fields. A large number of reviews have browsed the diversity of cytosolic calcium signatures and evaluated their pleiotropic roles in plant and animal cells. In the recent years, an increasing number of reviews has focused on nuclear calcium, especially on the possible roles of nuclear calcium concentration variations on nuclear activities. Experiments initially performed on animal cells gave conflicting results that brought about a controversy about the ability of the nucleus to generate its own calcium signals and to regulate its calcium level. But in plant cells, several converging scientific pieces of evidence support the hypothesis of nucleus autonomy. The present review briefly summarizes data supporting this hypothesis and tries to put forward some possible roles for these nucleus-generated calcium signals in controlling nuclear activity.
Collapse
Affiliation(s)
- Christian Mazars
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Recherche en Sciences végétales, Castanet-Tolosan, France.
| | | | | | | |
Collapse
|
156
|
Phillips S, Yu Y, Rossbach A, Nomikos M, Vassilakopoulou V, Livaniou E, Cumbes B, Lai F, George C, Swann K. Divergent effect of mammalian PLCζ in generating Ca²⁺ oscillations in somatic cells compared with eggs. Biochem J 2011; 438:545-53. [PMID: 21692749 PMCID: PMC3195308 DOI: 10.1042/bj20101581] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 05/31/2011] [Accepted: 06/22/2011] [Indexed: 11/17/2022]
Abstract
Sperm PLCζ (phospholipase Cζ) is a distinct phosphoinositide-specific PLC isoform that is proposed to be the physiological trigger of egg activation and embryo development at mammalian fertilization. Recombinant PLCζ has the ability to trigger Ca²⁺ oscillations when expressed in eggs, but it is not known how PLCζ activity is regulated in sperm or eggs. In the present study, we have transfected CHO (Chinese-hamster ovary) cells with PLCζ fused with either YFP (yellow fluorescent protein) or luciferase and found that PLCζ-transfected cells did not display cytoplasmic Ca²⁺ oscillations any differently from control cells. PLCζ expression was not associated with changes in CHO cell resting Ca²⁺ levels, nor with a significantly changed Ca²⁺ response to extracellular ATP compared with control cells transfected with either YFP alone, a catalytically inactive PLCζ or luciferase alone. Sperm extracts containing PLCζ also failed to cause Ca²⁺ oscillations in CHO cells. Despite these findings, PLCζ-transfected CHO cell extracts exhibited high recombinant protein expression and PLC activity. Furthermore, either PLCζ-transfected CHO cells or derived cell extracts could specifically cause cytoplasmic Ca²⁺ oscillations when microinjected into mouse eggs. These data suggest that PLCζ-mediated Ca²⁺ oscillations may require specific factors that are only present within the egg cytoplasm or be inhibited by factors present only in somatic cell lines.
Collapse
Key Words
- calcium
- chinese-hamster ovary (cho) cell
- egg
- oscillation
- phospholipase c (plc)
- sperm
- am, acetoxymethyl ester
- ccd, charge-coupled-device
- iccd, intensified ccd
- cho, chinese-hamster ovary
- ip3, inositol 1,4,5-trisphosphate
- obgd, oregon green bapta [1,2-bis-(o-aminophenoxy)ethane-n,n,n',n'-tetra-acetic acid] dextran
- plc, phospholipase c
- plcζ–luc, plcζ–luciferase
- pip2, phosphatidylinositol 4,5-bisphosphate
- ryr2, ryanodine receptor 2
- sv, signal variability
- yfp, yellow fluorescent protein
Collapse
Affiliation(s)
- Sally V. Phillips
- *Department of Obstetrics and Gynaecology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, U.K
| | - Yuansong Yu
- *Department of Obstetrics and Gynaecology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, U.K
| | - Andreas Rossbach
- †Department of Cardiology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, U.K
| | - Michail Nomikos
- †Department of Cardiology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, U.K
- ‡IRRP, National Center for Scientific Research, ‘Demokritos’ Athens, Greece
| | | | - Evangelia Livaniou
- ‡IRRP, National Center for Scientific Research, ‘Demokritos’ Athens, Greece
| | - Bevan Cumbes
- †Department of Cardiology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, U.K
| | - F. Anthony Lai
- †Department of Cardiology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, U.K
| | - Christopher H. George
- †Department of Cardiology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, U.K
| | - Karl Swann
- *Department of Obstetrics and Gynaecology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, U.K
| |
Collapse
|
157
|
Ljubojević S, Walther S, Asgarzoei M, Sedej S, Pieske B, Kockskämper J. In situ calibration of nucleoplasmic versus cytoplasmic Ca²+ concentration in adult cardiomyocytes. Biophys J 2011; 100:2356-66. [PMID: 21575569 DOI: 10.1016/j.bpj.2011.03.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 03/14/2011] [Accepted: 03/31/2011] [Indexed: 12/31/2022] Open
Abstract
Quantification of subcellularly resolved Ca²⁺ signals in cardiomyocytes is essential for understanding Ca²⁺ fluxes in excitation-contraction and excitation-transcription coupling. The properties of fluorescent indicators in intracellular compartments may differ, thus affecting the translation of Ca²⁺-dependent fluorescence changes into [Ca²⁺] changes. Therefore, we determined the in situ characteristics of a frequently used Ca²⁺ indicator, Fluo-4, and a ratiometric Ca²⁺ indicator, Asante Calcium Red, and evaluated their use for reporting and quantifying cytoplasmic and nucleoplasmic Ca²⁺ signals in isolated cardiomyocytes. Ca²⁺ calibration curves revealed significant differences in the apparent Ca²⁺ dissociation constants of Fluo-4 and Asante Calcium Red between cytoplasm and nucleoplasm. These parameters were used for transformation of fluorescence into nucleoplasmic and cytoplasmic [Ca²⁺]. Resting and diastolic [Ca²⁺] were always higher in the nucleoplasm. Systolic [Ca²⁺] was usually higher in the cytoplasm, but some cells (15%) exhibited higher systolic [Ca²⁺] in the nucleoplasm. Ca²⁺ store depletion or blockade of Ca²⁺ leak pathways eliminated the resting [Ca²⁺] gradient between nucleoplasm and cytoplasm, whereas inhibition of inositol 1,4,5-trisphosphate receptors by 2-APB reversed it. The results suggest the presence of significant nucleoplasmic-to-cytoplasmic [Ca²⁺] gradients in resting myocytes and during the cardiac cycle. Nucleoplasmic [Ca²⁺] in cardiomyocytes may be regulated via two mechanisms: diffusion from the cytoplasm and active Ca²⁺ release via inositol 1,4,5-trisphosphate receptors from perinuclear Ca²⁺ stores.
Collapse
Affiliation(s)
- Senka Ljubojević
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | |
Collapse
|
158
|
Passive Ca2+ overload in H9c2 cardiac myoblasts: Assessment of cellular damage and cytosolic Ca2+ transients. Arch Biochem Biophys 2011; 512:175-82. [DOI: 10.1016/j.abb.2011.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 12/20/2022]
|
159
|
Franconville R, Revet G, Astorga G, Schwaller B, Llano I. Somatic calcium level reports integrated spiking activity of cerebellar interneurons in vitro and in vivo. J Neurophysiol 2011; 106:1793-805. [PMID: 21734102 DOI: 10.1152/jn.00133.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the relationship between somatic Ca²⁺ signals and spiking activity of cerebellar molecular layer interneurons (MLIs) in adult mice. Using two-photon microscopy in conjunction with cell-attached recordings in slices, we show that in tonically firing MLIs loaded with high-affinity Ca²⁺ probes, Ca²⁺-dependent fluorescence transients are absent. Spike-triggered averages of fluorescence traces for MLIs spiking at low rates revealed that the fluorescence change associated with an action potential is small (1% of the basal fluorescence). To uncover the relationship between intracellular Ca²⁺ concentration ([Ca²⁺](i)) and firing rates, spikes were transiently silenced with puffs of the GABA(A) receptor agonist muscimol. [Ca²⁺](i) relaxed toward basal levels following a single exponential whose amplitude correlated to the preceding spike frequency. The relaxation time constant was slow (2.5 s) and independent of the probe concentration. Data from parvalbumin (PV)-/- animals indicate that PV controls the amplitude and decay time of spike-triggered averages as well as the time course of [Ca²⁺](i) relaxations following spike silencing. The [Ca²⁺](i) signals were sensitive to the L-type Ca²⁺ channel blocker nimodipine and insensitive to ryanodine. In anesthetized mice, as in slices, fluorescence traces from most MLIs did not show spontaneous transients. They nonetheless responded to muscimol iontophoresis with relaxations similar to those obtained in vitro, suggesting a state of tonic firing with estimated spiking rates ranging from 2 to 30 Hz. Altogether, the [Ca²⁺](i) signal appears to reflect the integral of the spiking activity in MLIs. We propose that the muscimol silencing strategy can be extended to other tonically spiking neurons with similar [Ca²⁺](i) homeostasis.
Collapse
Affiliation(s)
- Romain Franconville
- Centre National de la Recherche Scientifique, Laboratoire de Physiologie Cérébrale, Université Paris Descartes, Paris, France
| | | | | | | | | |
Collapse
|
160
|
Wormser C, Pore SA, Elperin AB, Silverman LN, Light DB. Potentiation of regulatory volume decrease by a p2-like receptor and arachidonic acid in american alligator erythrocytes. J Membr Biol 2011; 242:75-87. [PMID: 21728043 DOI: 10.1007/s00232-011-9377-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/20/2011] [Indexed: 12/21/2022]
Abstract
This study examined the role of a P2 receptor and arachidonic acid (AA) in regulatory volume decrease (RVD) by American alligator red blood cells (RBCs). Osmotic fragility was determined optically, mean cell volume was measured by electronic sizing, and changes in intracellular Ca(2+) concentration were visualized using fluorescence microscopy. Gadolinium (50 μM), hexokinase (2.5 U/ml), and suramin (100 μM) increased osmotic fragility, blocked volume recovery after hypotonic shock, and prevented a rise in intracellular Ca(2+) that normally occurs during cell swelling. The P2X antagonists PPADS (50 μM) and TNP-ATP (10 μM) also increased fragility and inhibited volume recovery. In contrast, ATPγS (10 μM), α,β-methylene-ATP (50 μM) and Bz-ATP (50 μM) had the opposite effect, whereas 2-methylthio-ATP (50 μM) and UTP (10 μM) had no effect. In addition, the phospholipase A(2) (PLA(2)) inhibitors ONO-RS-082 (10 μM), chlorpromazine (10 μM), and isotetrandrine (10 μM) increased osmotic fragility and blocked volume recovery, whereas AA (10 μM) and its nonhydrolyzable analog eicosatetraynoic acid (ETYA, 10 μM) had the reverse effect. Further, AA (10 μM), but not ATPγS (10 μM), prevented the inhibitory effect of a low Ca(2+)-EGTA Ringer on RVD, whereas both AA (10 μM) and ATPγS (10 μM) caused cell shrinkage under isosmotic conditions. In conclusion, our results are consistent with the presence of a P2-like receptor whose activation stimulated RVD. In addition, AA also was important for volume recovery.
Collapse
Affiliation(s)
- Chloe Wormser
- Department of Biology, Lake Forest College, IL 60045, USA
| | | | | | | | | |
Collapse
|
161
|
Sun J, Chen P, Feng X, Du W, Liu BF. Development of a microfluidic cell-based biosensor integrating a millisecond chemical pulse generator. Biosens Bioelectron 2011; 26:3413-9. [PMID: 21334189 DOI: 10.1016/j.bios.2011.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/10/2011] [Indexed: 02/03/2023]
Abstract
The use of cell-based biosensors is usually limited by agonist-induced desensitization of cell-surface receptors. In this work, a microfluidic cell-based biosensor (μCBB) was developed for the detection of ATP in liquid environments. It consists of a millisecond chemical pulse generator for sample introduction in a pulsatile manner and a single NIH-3T3 cell expressing endogenous P2Y receptors as the sensing element. ATP solutions were used to simulate input signals for investigating the μCBB. By controlling negative pressures on two outlets of a cross-shaped microfluidic chip, pulses of ATP solutions were generated based on hydrodynamic gated injection. With ATP pulses of 100 ms every 50s, the amplitude of the resulting calcium spikes maintained at a similar level, suggesting that the receptor desensitization was minimized. Consequently, the developed μCBB could be used for detecting pulsatile samples with extended use times. The sensitivity of the μCBB for detecting ATP was further determined and the cellular responses to millisecond ATP pulses were investigated in comparison to long-term stimulations.
Collapse
Affiliation(s)
- Jian Sun
- Britton Chance Center for Biomedical Photonics, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | |
Collapse
|
162
|
Swanson SJ, Choi WG, Chanoca A, Gilroy S. In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:273-97. [PMID: 21370977 DOI: 10.1146/annurev-arplant-042110-103832] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Changes in the levels of Ca(2+), pH, and reactive oxygen species (ROS) are recognized as key cellular regulators involved in diverse physiological and developmental processes in plants. Critical to understanding how they exert such widespread control is an appreciation of their spatial and temporal dynamics at levels from organ to organelle and from seconds to many hours. With appropriate controls, fluorescent sensors can provide a robust approach with which to quantify such changes in Ca(2+), pH, and ROS in real time, in vivo. The fluorescent cellular probes available for visualization split into two broad classes: (a) dyes and (b) an increasingly diverse set of genetically encoded sensors based around green fluorescent proteins (GFPs). The GFP probes in particular can be targeted to well-defined subcellular locales, offering the possibility of high-resolution mapping of these signals within the cell.
Collapse
Affiliation(s)
- Sarah J Swanson
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
163
|
Matsui A, Umezawa K, Shindo Y, Fujii T, Citterio D, Oka K, Suzuki K. A near-infrared fluorescent calcium probe: a new tool for intracellular multicolour Ca2+ imaging. Chem Commun (Camb) 2011; 47:10407-9. [DOI: 10.1039/c1cc14045k] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
164
|
Abstract
Monitoring cellular calcium concentration using fluorescent reporters can provide a rapid, proportional assay of G-protein-coupled receptor activation. Recording calcium changes in single cells, or cell populations, is relatively straightforward, but requires careful deliberation regarding the appropriate calcium reporter and experimental approach. Here, we describe strategies to ensure that calcium changes are recorded with good fidelity and minimal invasiveness. We highlight a range of issues that need to be considered within the design of an experiment to measure cellular calcium, and suggest strategies to avoid common pit-falls.
Collapse
Affiliation(s)
- Martin D Bootman
- Laboratory of Molecular Signalling, Babraham Institute, Cambridge, UK.
| | | |
Collapse
|
165
|
Behne MJ, Sanchez S, Barry NP, Kirschner N, Meyer W, Mauro TM, Moll I, Gratton E. Major translocation of calcium upon epidermal barrier insult: imaging and quantification via FLIM/Fourier vector analysis. Arch Dermatol Res 2010; 303:103-15. [PMID: 21193994 DOI: 10.1007/s00403-010-1113-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 12/16/2022]
Abstract
Calcium controls an array of key events in keratinocytes and epidermis: localized changes in Ca(2+) concentrations and their regulation are therefore especially important to assess when observing epidermal barrier homeostasis and repair, neonatal barrier establishment, in differentiation, signaling, cell adhesion, and in various pathological states. Yet, tissue- and cellular Ca(2+) concentrations in physiologic and diseased states are only partially known, and difficult to measure. Prior observations on the Ca(2+) distribution in skin were based on Ca(2+) precipitation followed by electron microscopy, or proton-induced X-ray emission. Neither cellular and/or subcellular localization could be determined through these approaches. In cells in vitro, fluorescent dyes have been used extensively for ratiometric measurements of static and dynamic Ca(2+) concentrations, also assessing organelle Ca(2+) concentrations. For lack of better methods, these findings together build the basis for the current view of the role of Ca(2+) in epidermis, their limitations notwithstanding. Here we report a method using Calcium Green 5N as the calcium sensor and the phasor-plot approach to separate raw lifetime components. Thus, fluorescence lifetime imaging (FLIM) enables us to quantitatively assess and visualize dynamic changes of Ca(2+) at light-microscopic resolution in ex vivo biopsies of unfixed epidermis, in close to in vivo conditions. Comparing undisturbed epidermis with epidermis following a barrier insult revealed major shifts, and more importantly, a mobilization of high amounts of Ca(2+) shortly following barrier disruption, from intracellular stores. These results partially contradict the conventional view, where barrier insults abrogate a Ca(2+) gradient towards the stratum granulosum. Ca(2+) FLIM overcomes prior limitations in the observation of epidermal Ca(2+) dynamics, and will allow further insights into basic epidermal physiology.
Collapse
Affiliation(s)
- Martin J Behne
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Elperin AB, Pore SA, Evans JM, Naditz AL, Light DB. Swelling-induced Ca²+ influx and K+ efflux in American alligator erythrocytes. J Membr Biol 2010; 240:1-12. [PMID: 21153478 DOI: 10.1007/s00232-010-9336-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 11/21/2010] [Indexed: 11/25/2022]
Abstract
The American alligator can hibernate during winter, which may lead to osmotic imbalance because of reduced kidney function and lack of food consumption during this period. Accordingly, we hypothesized that their red blood cells would have a well-developed regulatory volume decrease (RVD) to cope with the homeostatic challenges associated with torpor. Osmotic fragility was determined optically, mean cell volume was measured by electronic sizing, and changes in intracellular Ca²+ concentration were visualized using fluorescence microscopy and fluo-4-AM. Osmotic fragility increased and the ability to regulate volume was inhibited when extracellular Na+ was replaced with K+, or when cells were exposed to the K+ channel inhibitor quinine, indicating a requirement of K+ efflux for RVD. Addition of the ionophore gramicidin to the extracellular medium decreased osmotic fragility and also potentiated volume recovery, even in the presence of quinine. In addition, hypotonic shock (0.5 x Ringer) caused an increase in cytosolic Ca²+, which resulted from Ca²+ influx because it was not observed when extracellular Ca²+ was chelated with EGTA (ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid). Furthermore, cells loaded with BAPTA-AM (1,2-bis(2-aminophenoxymethyl)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl) ester) or exposed to a low Ca²+-EGTA hypotonic Ringer had a greater osmotic fragility and also failed to recover from cell swelling, indicating that extracellular Ca²+ was needed for RVD. Gramicidin reversed the inhibitory effect of low extracellular Ca²+. Finally, and surprisingly, the Ca²+ ionophore A23187 increased osmotic fragility and inhibited volume recovery. Taken together, our results show that cell swelling activated a K+ permeable pathway via a Ca²+-dependent mechanism, and this process mediated K+ loss during RVD.
Collapse
Affiliation(s)
- Alina B Elperin
- Department of Biology, Lake Forest College, 555 N. Sheridan Road, Lake Forest, IL 60045, USA
| | | | | | | | | |
Collapse
|
167
|
González G, Zaldívar D, Carrillo E, Hernández A, García M, Sánchez J. Pharmacological preconditioning by diazoxide downregulates cardiac L-type Ca(2+) channels. Br J Pharmacol 2010; 161:1172-85. [PMID: 20636393 PMCID: PMC2998696 DOI: 10.1111/j.1476-5381.2010.00960.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 05/18/2010] [Accepted: 06/29/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Pharmacological preconditioning (PPC) with mitochondrial ATP-sensitive K(+) (mitoK(ATP) ) channel openers such as diazoxide, leads to cardioprotection against ischaemia. However, effects on Ca(2+) homeostasis during PPC, particularly changes in Ca(2+) channel activity, are poorly understood. We investigated the effects of PPC on cardiac L-type Ca(2+) channels. EXPERIMENTAL APPROACH PPC was induced in isolated hearts and enzymatically dissociated cardiomyocytes from adult rats by preincubation with diazoxide. We measured reactive oxygen species (ROS) production and Ca(2+) signals associated with action potentials using fluorescent probes, and L-type currents using a whole-cell patch-clamp technique. Levels of the α(1c) subunit of L-type channels in the cellular membrane were measured by Western blot. KEY RESULTS PPC was accompanied by a 50% reduction in α(1c) subunit levels, and by a reversible fall in L-type current amplitude and Ca(2+) transients. These effects were prevented by the ROS scavenger N-acetyl-L-cysteine (NAC), or by the mitoK(ATP) channel blocker 5-hydroxydecanoate (5-HD). PPC significantly reduced infarct size, an effect blocked by NAC and 5-HD. Nifedipine also conferred protection against infarction when applied during the reperfusion period. Downregulation of the α(1c) subunit and Ca(2+) channel function were prevented in part by the protease inhibitor leupeptin. CONCLUSIONS AND IMPLICATIONS PPC downregulated the α(1c) subunit, possibly through ROS. Downregulation involved increased degradation of the Ca(2+) channel, which in turn reduced Ca(2+) influx, which may attenuate Ca(2+) overload during reperfusion.
Collapse
Affiliation(s)
- G González
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del I.P.N. México, México
| | | | | | | | | | | |
Collapse
|
168
|
Hovis KR, Padmanabhan K, Urban NN. A simple method of in vitro electroporation allows visualization, recording, and calcium imaging of local neuronal circuits. J Neurosci Methods 2010; 191:1-10. [PMID: 20669363 PMCID: PMC2974945 DOI: 10.1016/j.jneumeth.2010.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Since Cajal's early drawings, the characterization of neuronal architecture has been paramount in understanding neuronal function. With the development of electrophysiological techniques that provide unprecedented access to the physiology of these cells, experimental questions of neuronal function have also become more tractable. Fluorescent tracers that can label the anatomy of individual or populations of neurons have opened the door to linking anatomy with physiology. Experimentally however, current techniques for bulk labeling of cells in vitro often affect neuronal function creating a barrier for exploring structure-function questions. Here we describe a new technique for highly localized electroporation within a cell or cell population that enables the introduction of membrane impermeable charged dyes including dextran-conjugated fluorophores, hydrazide tracers, and calcium indicator dyes in vitro. We demonstrate that this technique is highly versatile, allowing for labeling of large or small areas of tissue, allowing for the investigation of both cellular morphology and physiological activity in identified neuronal circuits in acute brain slices. Furthermore, this approach allows subsequent targeted whole-cell patch recording based on well-defined connectivity as well as assessment of physiological activity in targeted circuits on a fast time scale.
Collapse
Affiliation(s)
- Kenneth R. Hovis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh PA 15213
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Krishnan Padmanabhan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh PA 15213
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Nathaniel N. Urban
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh PA 15213
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
- Center for Neuroscience, University of Pittsburgh, Pittsburgh PA 15260
| |
Collapse
|
169
|
Gibon J, Tu P, Frazzini V, Sensi SL, Bouron A. The thiol-modifying agent N-ethylmaleimide elevates the cytosolic concentration of free Zn(2+) but not of Ca(2+) in murine cortical neurons. Cell Calcium 2010; 48:37-43. [PMID: 20667413 DOI: 10.1016/j.ceca.2010.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/22/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
Abstract
The membrane permeant alkylating agent N-ethylmaleimide (NEM) regulates numerous biological processes by reacting with thiol groups. Among other actions, NEM influences the cytosolic concentration of free Ca(2+) ([Ca(2+)]i). Depending on the cell type and the concentration used, NEM can promote the release of Ca(2+), affect its extrusion, stimulate or block its entry. However, most of these findings were obtained in experiments that employed fluorescent Ca(2+) probes and one major disadvantage of such experimental setting derives from the lack of specificity of the probes as all the so-called "Ca(2+)-sensitive" indicators also bind metals like Zn(2+) or Mn(2+) with higher affinities than Ca(2+). In this study, we examined the effects of NEM on the [Ca(2+)]i homeostasis of murine cortical neurons. We performed live-cell Ca(2+) and Zn(2+) imaging experiments using the fluorescent probes Fluo-4, FluoZin-3 and RhodZin-3 and found that NEM does not affect the neuronal [Ca(2+)]i homeostasis but specifically increases the cytosolic and mitochondrial concentration of free Zn(2+)([Zn(2+)]i). In addition, NEM triggers some neuronal loss that is prevented by anti-oxidants such as N-acetylcysteine or glutathione. NEM-induced toxicity is dependent on changes in [Zn(2+)]i levels as chelation of the cation with the cell-permeable heavy metal chelator, N,N,N'N'-tetrakis(-)[2-pyridylmethyl]-ethylenediamine (TPEN), promotes neuroprotection of cortical neurons exposed to NEM. Our data indicate that NEM affects [Zn(2+)]i but not [Ca(2+)]i homeostasis and shed new light on the physiological actions of this alkylating agent on central nervous system neurons.
Collapse
|
170
|
Mellen NM, Mishra D. Functional anatomical evidence for respiratory rhythmogenic function of endogenous bursters in rat medulla. J Neurosci 2010; 30:8383-92. [PMID: 20573885 PMCID: PMC2913316 DOI: 10.1523/jneurosci.5510-09.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 04/21/2010] [Accepted: 05/10/2010] [Indexed: 11/21/2022] Open
Abstract
Endogenous burster neurons (EBs) have been found at the level of the facial nucleus (VIIn), and 500 mum caudally, within the pre-Bötzinger complex (preBötC). They have been proposed as either causal to or playing no role in respiratory rhythmogenesis. Little is known about their broader distribution in ventrolateral medulla. Here, a Ca(2+) indicator was used to record respiratory network activity in ventrolateral medulla, and, following synaptic blockade, to identify EBs active at perfusate K(+) concentrations ([K(+)](o)) of 3, 6, and 9 mm. Recordings were made along the respiratory column, extending 300 mum rostrally, and 1100 mum caudally from the caudal pole of VIIn (VIIc), in the in vitro tilted sagittal slab preparation, isolated from neonate male and female Sprague Dawley rats. Activity under matching [K(+)](o) in the intact respiratory network was subsequently investigated. Respiratory neurons (n = 401) formed statistically significant clusters at the VIIc, within the preBötC, and 100 mum caudal to the preBötC. EBs (n = 693) formed statistically significant clusters that overlapped with respiratory clusters at the VIIc and preBötC. EB activity increased significantly as [K(+)](o) was increased, as did neurons that remained coupled following synaptic blockade. The overlap between respiratory and EB clusters in regions of ventrolateral medulla identified as rhythmogenic supports the hypothesis that EBs are constituents of rhythmogenic networks. In addition, the observation of truncated inspiratory bursts and ectopic bursting in respiratory neurons when [K(+)](o) was elevated in the intact network is consistent with a causal role for EBs in respiratory rhythmogenesis.
Collapse
Affiliation(s)
- Nicholas M Mellen
- Kosair Children's Hospital Research Institute, University of Louisville, Louisville, Kentucky 40202, USA.
| | | |
Collapse
|
171
|
Contreras L, Drago I, Zampese E, Pozzan T. Mitochondria: the calcium connection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:607-18. [PMID: 20470749 DOI: 10.1016/j.bbabio.2010.05.005] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/04/2010] [Accepted: 05/04/2010] [Indexed: 12/21/2022]
Abstract
Calcium handling by mitochondria is a key feature in cell life. It is involved in energy production for cell activity, in buffering and shaping cytosolic calcium rises and also in determining cell fate by triggering or preventing apoptosis. Both mitochondria and the mechanisms involved in the control of calcium homeostasis have been extensively studied, but they still provide researchers with long-standing or even new challenges. Technical improvements in the tools employed for the investigation of calcium dynamics have been-and are still-opening new perspectives in this field, and more prominently for mitochondria. In this review we present a state-of-the-art toolkit for calcium measurements, with major emphasis on the advantages of genetically encoded indicators. These indicators can be efficiently and selectively targeted to specific cellular sub-compartments, allowing previously unavailable high-definition calcium dynamic studies. We also summarize the main features of cellular and, in more detail, mitochondrial calcium handling, especially focusing on the latest breakthroughs in the field, such as the recent direct characterization of the calcium microdomains that occur on the mitochondrial surface upon cellular stimulation. Additionally, we provide a major example of the key role played by calcium in patho-physiology by briefly describing the extensively reported-albeit highly controversial-alterations of calcium homeostasis in Alzheimer's disease, casting lights on the possible alterations in mitochondrial calcium handling in this pathology.
Collapse
Affiliation(s)
- Laura Contreras
- Department of Biomedical Sciences, University of Padua, Italy.
| | | | | | | |
Collapse
|
172
|
Gruol DL, Netzeband JG, Nelson TE. Somatic Ca2+ signaling in cerebellar Purkinje neurons. J Neurosci Res 2010; 88:275-89. [PMID: 19681168 DOI: 10.1002/jnr.22204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Activity-driven Ca(2+) signaling plays an important role in a number of neuronal functions, including neuronal growth, differentiation, and plasticity. Both cytosolic and nuclear Ca(2+) has been implicated in these functions. In the current study, we investigated membrane-to-nucleus Ca(2+) signaling in cerebellar Purkinje neurons in culture to gain insight into the pathways and mechanisms that can initiate nuclear Ca(2+) signaling in this neuronal type. Purkinje neurons are known to express an abundance of Ca(2+) signaling molecules such as voltage-gated Ca(2+) channels, ryanodine receptors, and IP3 receptors. Results show that membrane depolarization evoked by brief stimulation with K(+) saline elicits a prominent Ca(2+) signal in the cytosol and nucleus of the Purkinje neurons. Ca(2+) influx through P/Q- and L-type voltage-gated Ca(2+) channels and Ca(2+)-induced Ca(2+) release (CICR) from intracellular stores contributed to the Ca(2+) signal, which spread from the plasma membrane to the nucleus. At strong K(+) stimulations, the amplitude of the nuclear Ca(2+) signal exceeded that of the cytosolic Ca(2+) signal, suggesting the involvement of a nuclear amplification mechanism and/or differences in Ca(2+) buffering in these two cellular compartments. An enhanced nuclear Ca(2+) signal was more prominent for Ca(2+) signals elicited by membrane depolarization than for Ca(2+) signals elicited by activation of the metabotropic glutamate receptor pathway (mGluR1), which is linked to Ca(2+) release from intracellular stores controlled by the IP3 receptor.
Collapse
Affiliation(s)
- D L Gruol
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
173
|
Shin YN, Lim CS, Tian YS, Rho WY, Cho BR. Detection of Near-membrane Calcium Ions in Live Tissues with a Two-Photon Fluorescent Probe. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.03.599] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
174
|
Carrillo-López N, Fernández-Martín JL, Alvarez-Hernández D, González-Suárez I, Castro-Santos P, Román-García P, López-Novoa JM, Cannata-Andía JB. Lanthanum activates calcium-sensing receptor and enhances sensitivity to calcium. Nephrol Dial Transplant 2010; 25:2930-7. [PMID: 20233740 DOI: 10.1093/ndt/gfq124] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate whether nanomolar concentrations of lanthanum could influence the calcium-sensing receptor (CaSR) response. METHODS Embryonic kidney (HEK-293) cells transiently transfected with the human CaSR were used to test the ability of lanthanum to activate the CaSR, either alone or in combination with calcium. CaSR activation was measured by flow cytometry. Parathyroid glands from 4-month-old male Wistar rats with normal renal function (n = 60) were also cultured ex vivo with different concentrations of lanthanum to measure parathyroid hormone (PTH) secreted to the medium and PTH mRNA. RESULTS The maximal CaSR activation induced by 1 muM lanthanum chloride (LaCl(3)) was similar to that induced by 16 mM calcium chloride (CaCl(2) 16 mM: 294 +/- 14%; LaCl(3) 1 muM: 303 +/- 11%). Lanthanum half effective concentration (EC(50)) was 77.28 nM, lower than the 2.30 mM obtained for calcium, supporting the concept that this metal is a strong agonist of the CaSR. Moreover, lanthanum was also able to enhance CaSR sensitivity to calcium. The presence of 1 nM LaCl(3) significantly left-shifted the CaSR response curve, changing the EC(50) value for calcium from 2.30 mM (calcium alone) to 1.26 mM (calcium + 1 nM lanthanum). The parathyroid glands cultured with lanthanum showed a trend to secrete less PTH compared to the control glands: 1.51 +/- 0.23 (control), 0.91 +/- 0.17 (La 100 nM) and 1.04 +/- 0.18 (La 400 nM) [(pg/h)/(pg/h), mean +/- SEM] (ANOVA P = 0.0145). A similar trend was also observed in PTH synthesis measured by PTH mRNA levels. CONCLUSIONS These in vitro findings demonstrate that lanthanum, at nanomolar concentrations, is an agonist of the CaSR able to activate it in the absence of calcium. In addition, it can also enhance CaSR sensitivity to calcium, modulating PTH synthesis and secretion.
Collapse
Affiliation(s)
- Natalia Carrillo-López
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, Universidad de Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Presynaptic mitochondria in functionally different motor neurons exhibit similar affinities for Ca2+ but exert little influence as Ca2+ buffers at nerve firing rates in situ. J Neurosci 2010; 30:1869-81. [PMID: 20130196 DOI: 10.1523/jneurosci.4701-09.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondria accumulate within nerve terminals and support synaptic function, most notably through ATP production. They can also sequester Ca(2+) during nerve stimulation, but it is unknown whether this limits presynaptic Ca(2+) levels at physiological nerve firing rates. Similarly, it is unclear whether mitochondrial Ca(2+) sequestration differs between functionally different nerve terminals. We addressed these questions using a combination of synthetic and genetically encoded Ca(2+) indicators to examine cytosolic and mitochondrial Ca(2+) levels in presynaptic terminals of tonic (MN13-Ib) and phasic (MNSNb/d-Is) motor neurons in Drosophila, which, as we determined, fire during fictive locomotion at approximately 42 Hz and approximately 8 Hz, respectively. Mitochondrial Ca(2+) sequestration starts in both terminals at approximately 250 nM, exhibits a similar Ca(2+)-uptake affinity (approximately 410 nM), and does not require Ca(2+) release from the endoplasmic reticulum. Nonetheless, mitochondrial Ca(2+) uptake in type Is terminals is more responsive to low-frequency nerve stimulation and this is due to higher cytosolic Ca(2+) levels. Since type Ib terminals have a higher mitochondrial density than Is terminals, it seemed possible that greater mitochondrial Ca(2+) sequestration may be responsible for the lower cytosolic Ca(2+) levels in Ib terminals. However, genetic and pharmacological manipulations of mitochondrial Ca(2+) uptake did not significantly alter nerve-stimulated elevations in cytosolic Ca(2+) levels in either terminal type within physiologically relevant rates of stimulation. Our findings indicate that presynaptic mitochondria have a similar affinity for Ca(2+) in functionally different nerve terminals, but do not limit cytosolic Ca(2+) levels within the range of motor neuron firing rates in situ.
Collapse
|
176
|
Claas RF, ter Braak M, Hegen B, Hardel V, Angioni C, Schmidt H, Jakobs KH, Van Veldhoven PP, Heringdorf DMZ. Enhanced Ca2+ storage in sphingosine-1-phosphate lyase-deficient fibroblasts. Cell Signal 2010; 22:476-83. [DOI: 10.1016/j.cellsig.2009.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/02/2009] [Indexed: 11/28/2022]
|
177
|
Ke Y, Sheehan KA, Egom EEA, Lei M, Solaro RJ. Novel bradykinin signaling in adult rat cardiac myocytes through activation of p21-activated kinase. Am J Physiol Heart Circ Physiol 2010; 298:H1283-9. [PMID: 20154261 PMCID: PMC2853422 DOI: 10.1152/ajpheart.01070.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although bradykinin (BK) is known to exert effects on the myocardium, its intracellular signaling pathways remain poorly understood. Experiments in other cell types indicated that p21-activated kinase-1 (Pak1), a Ser/Thr kinase downstream of small monomeric G proteins, is activated by BK. We previously reported that the expression of active Pak1 in adult cardiac myocytes induced activation of protein phosphatase 2A and dephosphorylation of myofilament proteins (Ke et al. Circ Res 94: 194–200, 2004). In experiments reported here, we tested the hypothesis that BK signals altered protein phosphorylation in adult rat cardiac myocytes through the activation and translocation of Pak1. Treatment of myocytes with BK resulted in the activation of Pak1 as demonstrated by increased autophosphorylation at Thr423 and a diminished striated localization, which is present in the basal state. BK induced dephosphorylation of both cardiac troponin I and phospholamban. Treatment of isolated myocytes with BK also blunted the effect of isoproterenol to enhance peak Ca2+ and relaxation of Ca2+ transients. Protein phosphatase 2A was demonstrated to associate with both Pak 1 and phospholamban. Our studies indicate a novel signaling mechanism for BK in adult rat cardiac myocytes and support our hypothesis that Pak 1 is a significant regulator of phosphatase activity in the heart.
Collapse
Affiliation(s)
- Yunbo Ke
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, USA
| | | | | | | | | |
Collapse
|
178
|
Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. PLoS Pathog 2010; 6:e1000746. [PMID: 20140184 PMCID: PMC2816683 DOI: 10.1371/journal.ppat.1000746] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 12/31/2009] [Indexed: 11/24/2022] Open
Abstract
The invasion of erythrocytes by Plasmodium merozoites requires specific interactions between host receptors and parasite ligands. Parasite proteins that bind erythrocyte receptors during invasion are localized in apical organelles called micronemes and rhoptries. The regulated secretion of microneme and rhoptry proteins to the merozoite surface to enable receptor binding is a critical step in the invasion process. The sequence of these secretion events and the external signals that trigger release are not known. We have used time-lapse video microscopy to study changes in intracellular calcium levels in Plasmodium falciparum merozoites during erythrocyte invasion. In addition, we have developed flow cytometry based methods to measure relative levels of cytosolic calcium and study surface expression of apical organelle proteins in P. falciparum merozoites in response to different external signals. We demonstrate that exposure of P. falciparum merozoites to low potassium ion concentrations as found in blood plasma leads to a rise in cytosolic calcium levels through a phospholipase C mediated pathway. Rise in cytosolic calcium triggers secretion of microneme proteins such as the 175 kD erythrocyte binding antigen (EBA175) and apical membrane antigen-1 (AMA-1) to the merozoite surface. Subsequently, interaction of EBA175 with glycophorin A (glyA), its receptor on erythrocytes, restores basal cytosolic calcium levels and triggers release of rhoptry proteins. Our results identify for the first time the external signals responsible for the sequential release of microneme and rhoptry proteins during erythrocyte invasion and provide a starting point for the dissection of signal transduction pathways involved in regulated exocytosis of these key apical organelles. Signaling pathway components involved in apical organelle discharge may serve as novel targets for drug development since inhibition of microneme and rhoptry secretion can block invasion and limit blood-stage parasite growth. Malaria remains a major public health problem in many parts of the tropical world. All the clinical symptoms of malaria are attributed to the blood stage of the parasite life cycle during which Plasmodium merozoites invade and multiply within host erythrocytes. Invasion by Plasmodium merozoites is a complex process that requires multiple molecular interactions between the invading parasite and target erythrocyte. Parasite proteins that mediate such interactions are localized in membrane bound internal organelles at the apical end of merozoites called micronemes and rhoptries. The timely secretion of microneme and rhoptry proteins to the merozoite surface to allow receptor binding is a crucial step in the invasion process. In this study, we demonstrate that exposure of Plasmodium falciparum merozoites to low potassium ion concentrations as found in blood plasma provides the natural signal that triggers a rise in intracellular calcium, which in turn triggers secretion of microneme proteins to the merozoite surface. Subsequently, binding of released microneme proteins with erythrocyte receptors provides the signal for release of rhoptry proteins. These studies open the path for analysis of signal transduction pathways involved in apical organelle secretion. A clear understanding of these pathways will enable development of inhibitors that block secretion of key parasite proteins required for receptor-binding. Such inhibitors will block erythrocyte invasion and inhibit parasite growth, providing promising leads for development of novel drugs against malaria.
Collapse
|
179
|
Effect of 835 MHz radiofrequency radiation exposure on calcium binding proteins in the hippocampus of the mouse brain. Brain Res 2010; 1313:232-41. [DOI: 10.1016/j.brainres.2009.11.079] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/25/2009] [Accepted: 11/29/2009] [Indexed: 11/23/2022]
|
180
|
Dichotomy of functional organization in the mouse auditory cortex. Nat Neurosci 2010; 13:361-8. [PMID: 20118924 PMCID: PMC2866453 DOI: 10.1038/nn.2490] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 12/29/2009] [Indexed: 12/27/2022]
Abstract
The sensory areas of the cerebral cortex possess multiple topographic representations of sensory dimensions. Gradient of frequency selectivity (tonotopy) is the dominant organizational feature in the primary auditory cortex, while other feature-based organizations are less well established. We probed the topographic organization of the mouse auditory cortex at the single cell level using in vivo two-photon Ca2+ imaging. Tonotopy was present on a large scale but was fractured on a fine scale. Intensity tuning, important in level-invariant representation, was observed in individual cells but was not topographically organized. The presence or near-absence of putative sub-threshold responses revealed a dichotomy in topographic organization. Inclusion of sub-threshold responses revealed a topographic clustering of neurons with similar response properties, while such clustering was absent in supra-threshold responses. This dichotomy indicates that groups of nearby neurons with locally shared inputs can perform independent parallel computations in ACX.
Collapse
|
181
|
Tian YS, Lee HY, Lim CS, Park J, Kim HM, Shin YN, Kim ES, Jeon HJ, Park SB, Cho BR. A two-photon tracer for glucose uptake. Angew Chem Int Ed Engl 2010; 48:8027-31. [PMID: 19768816 DOI: 10.1002/anie.200901175] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Shun Tian
- Department of Chemistry, Korea University, 1-Anamdong, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Calcium homeostasis of acutely denervated and lesioned dentate gyrus in organotypic entorhino-hippocampal co-cultures. Cell Calcium 2010; 47:242-52. [PMID: 20053446 DOI: 10.1016/j.ceca.2009.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/04/2009] [Accepted: 12/07/2009] [Indexed: 12/20/2022]
Abstract
Denervation of neurons, e.g. upon traumatic injury or neuronal degeneration, induces transneuronal degenerative events, such as spine loss, dendritic pruning, and even cell loss. We studied one possible mechanism proposed to trigger such events, i.e. excess glutamate release from severed axons conveyed transsynaptically via postsynaptic calcium influx. Using 2-photon microscopical calcium imaging in organotypic entorhino-hippocampal co-cultures, we show that acute transection of the perforant path elicits two independent effects on calcium homeostasis in the dentate gyrus: a brief, short-latency elevation of postsynaptic calcium levels in denervated granule cells, which can be blocked by preincubation with tetrodotoxin, and a long-latency astroglial calcium wave, not blocked by tetrodotoxin and propagating slowly through the hippocampus. While neuronal calcium elevations upon axonal transection placed remote from the target area were similar to those elicited by brief trains of electrical stimulation of the perforant path, large-scale calcium signals were observed upon lesions placed close to or within the dendritic field of granule cells. Concordantly, induction of c-fos in denervated neurons coincided spatially with cell populations showing prolonged calcium elevations upon concomitant dendritic damage. Since denervation of dentate granule cells by remote transection of the perforant path induces transsynaptic dendritic reorganization in the utilized organotypic cultures, a generalized breakdown of the cellular calcium homeostasis is unlikely to underlie these transneuronal changes.
Collapse
|
183
|
Trapani V, Farruggia G, Marraccini C, Iotti S, Cittadini A, Wolf FI. Intracellular magnesium detection: imaging a brighter future. Analyst 2010; 135:1855-66. [DOI: 10.1039/c0an00087f] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
184
|
Smith G, Reynolds M, Burton F, Kemi OJ. Confocal and Multiphoton Imaging of Intracellular Ca2+. Methods Cell Biol 2010; 99:225-61. [DOI: 10.1016/b978-0-12-374841-6.00009-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
185
|
|
186
|
Solares-Pérez A, Sánchez JA, Zentella-Dehesa A, García MC, Coral-Vázquez RM. Intracellular Ca2+ transients in delta-sarcoglycan knockout mouse skeletal muscle. Biochim Biophys Acta Gen Subj 2009; 1800:373-9. [PMID: 19931597 DOI: 10.1016/j.bbagen.2009.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND delta-Sarcoglycan (delta-SG) knockout (KO) mice develop skeletal muscle histopathological alterations similar to those in humans with limb muscular dystrophy. Membrane fragility and increased Ca(2+) permeability have been linked to muscle degeneration. However, little is known about the mechanisms by which genetic defects lead to disease. METHODS Isolated skeletal muscle fibers of wild-type and delta-SG KO mice were used to investigate whether the absence of delta-SG alters the increase in intracellular Ca(2+) during single twitches and tetani or during repeated stimulation. Immunolabeling, electrical field stimulation and Ca(2+) transient recording techniques with fluorescent indicators were used. RESULTS Ca(2+) transients during single twitches and tetani generated by muscle fibers of delta-SG KO mice are similar to those of wild-type mice, but their amplitude is greatly decreased during protracted stimulation in KO compared to wild-type fibers. This impairment is independent of extracellular Ca(2+) and is mimicked in wild-type fibers by blocking store-operated calcium channels with 2-aminoethoxydiphenyl borate (2-APB). Also, immunolabeling indicates the localization of a delta-SG isoform in the sarcoplasmic reticulum of the isolated skeletal muscle fibers of wild-type animals, which may be related to the functional differences between wild-type and KO muscles. CONCLUSIONS delta-SG has a role in calcium homeostasis in skeletal muscle fibers. GENERAL SIGNIFICANCE These results support a possible role of delta-SG on calcium homeostasis. The alterations caused by the absence of delta-SG may be related to the pathogenesis of muscular dystrophy.
Collapse
Affiliation(s)
- Alhondra Solares-Pérez
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, CMN Siglo XXI-IMSS, México, D.F., Mexico
| | | | | | | | | |
Collapse
|
187
|
Coulon P, Herr D, Kanyshkova T, Meuth P, Budde T, Pape HC. Burst discharges in neurons of the thalamic reticular nucleus are shaped by calcium-induced calcium release. Cell Calcium 2009; 46:333-46. [PMID: 19913909 DOI: 10.1016/j.ceca.2009.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/01/2009] [Accepted: 09/27/2009] [Indexed: 11/18/2022]
Abstract
The nucleus reticularis thalami (NRT) is a layer of inhibitory neurons that surrounds the dorsal thalamus. It appears to be the 'pacemaker' of certain forms of slow oscillations in the thalamus and was proposed to be a key determinant of the internal attentional searchlight as well as the origin of hypersynchronous activity during absence seizures. Neurons of the NRT exhibit a transient depolarization termed low threshold spike (LTS) following sustained hyperpolarization. This is caused by the activation of low-voltage-activated Ca2+ channels (LVACC). Although the role of these channels in thalamocortical oscillations was studied in great detail, little is known about the downstream intracellular Ca2+ signalling pathways and their feedback onto the oscillations. A signalling triad consisting of the sarco(endo)plasmic reticulum calcium ATPase (SERCA), Ca2+ activated K+ channels (SK2), and LVACC is active in dendrites of NRT neurons and shapes rhythmic oscillations. The aim of our study was to find out (i) if and how Ca2+-induced Ca2+ release (CICR) via ryanodine receptors (RyR) can be evoked in NRT neurons and (ii) how the released Ca2+ affects burst activity. Combining electrophysiological, immunohistochemical, and two-photon Ca2+ imaging techniques, we show that CICR in NRT neurons takes place by a cell-type specific coupling of LVACC and RyR. CICR could be evoked by the application of caffeine, by activation of LVACC, or by repetitive LTS generation. During the latter, CICR contributed 30% to the resulting build-up of [Ca2+]i. CICR was abolished by cyclopiazonic acid, a specific blocker for SERCA, or by high concentrations of ryanodine (50 microM). Unlike other thalamic nuclei, in the NRT the activation of high-voltage-activated Ca2+ channels failed to evoke CICR. While action potentials contributed little to the build-up of [Ca2+]i upon repetitive LTS generation, the Ca2+ released via RyR significantly reduced the number of action potentials during an LTS and reduced the neurons' low threshold activity, thus potentially reducing hypersynchronicity. This effect persisted in the presence of the SK2 channel blocker apamin. We conclude that the activation of LVACC specifically causes CICR via RyR in neurons of the NRT, thereby adding a Ca2+-dependent intracellular route to the mechanisms determining rhythmic oscillatory bursting in this nucleus.
Collapse
Affiliation(s)
- Philippe Coulon
- Institut für Physiologie I, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27a, 48149 Münster, Germany.
| | | | | | | | | | | |
Collapse
|
188
|
Tian Y, Lee H, Lim C, Park J, Kim H, Shin Y, Kim E, Jeon H, Park S, Cho B. A Two-Photon Tracer for Glucose Uptake. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200901175] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
189
|
del Pilar Gomez M, Nasi E. Prolonged calcium influx after termination of light-induced calcium release in invertebrate photoreceptors. J Gen Physiol 2009; 134:177-89. [PMID: 19720959 PMCID: PMC2737223 DOI: 10.1085/jgp.200910214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In microvillar photoreceptors, light stimulates the phospholipase C cascade and triggers an elevation of cytosolic Ca2+ that is essential for the regulation of both visual excitation and sensory adaptation. In some organisms, influx through light-activated ion channels contributes to the Ca2+ increase. In contrast, in other species, such as Lima, Ca2+ is initially only released from an intracellular pool, as the light-sensitive conductance is negligibly permeable to calcium ions. As a consequence, coping with sustained stimulation poses a challenge, requiring an alternative pathway for further calcium mobilization. We observed that after bright or prolonged illumination, the receptor potential of Lima photoreceptors is followed by the gradual development of an after-depolarization that decays in 1–4 minutes. Under voltage clamp, a graded, slow inward current (Islow) can be reproducibly elicited by flashes that saturate the photocurrent, and can reach a peak amplitude in excess of 200 pA. Islow obtains after replacing extracellular Na+ with Li+, guanidinium, or N-methyl-d-glucamine, indicating that it does not reflect the activation of an electrogenic Na/Ca exchange mechanism. An increase in membrane conductance accompanies the slow current. Islow is impervious to anion replacements and can be measured with extracellular Ca2+ as the sole permeant species; Ba can substitute for Ca2+ but Mg2+ cannot. A persistent Ca2+ elevation parallels Islow, when no further internal release takes place. Thus, this slow current could contribute to sustained Ca2+ mobilization and the concomitant regulation of the phototransduction machinery. Although reminiscent of the classical store depletion–operated calcium influx described in other cells, Islow appears to diverge in some significant aspects, such as its large size and insensitivity to SKF96365 and lanthanum; therefore, it may reflect an alternative mechanism for prolonged increase of cytosolic calcium in photoreceptors.
Collapse
Affiliation(s)
- Maria del Pilar Gomez
- Facultad de Ciencias, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia.
| | | |
Collapse
|
190
|
Zhang D, Wang Y, Xiao Y, Qian S, Qian X. Long-wavelength boradiazaindacene derivatives with two-photon absorption activity and strong emission: versatile candidates for biological imaging applications. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
191
|
Janssen LJ, Farkas L, Rahman T, Kolb MRJ. ATP stimulates Ca(2+)-waves and gene expression in cultured human pulmonary fibroblasts. Int J Biochem Cell Biol 2009; 41:2477-84. [PMID: 19666134 DOI: 10.1016/j.biocel.2009.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/21/2009] [Accepted: 08/01/2009] [Indexed: 10/24/2022]
Abstract
Given that extracellular ATP is markedly elevated in inflammation and is known to modulate fibroblast function, we examined the effects of exogenously added ATP on Ca(2+)-handling and gene expression in human pulmonary fibroblasts. Cells were loaded with the Ca(2+)-indicator dye fluo-4 and studied using confocal fluorimetry. Standard RT-PCR was used to probe gene expression. ATP (10(-5)M) evoked recurring Ca(2+)-waves which were completely occluded by cyclopiazonic acid (depletes the internal Ca(2+)-store) or the phospholipase inhibitor U73122. Pretreatment with ryanodine (10(-5)M), however, had no effect on the ATP-evoked responses. Regarding the receptor through which ATP acted, we found the ATP-response to be mimicked by UTP or ADP but not by adenosine or alpha,beta-methylene-ATP, and to be blocked by the purinergic receptor blocker PPADS. The ATP-evoked response was greater and longer lasting within the nucleus than in the non-nuclear portion of the cytosol. RT-PCR showed that ATP also rapidly and dramatically increased gene expression of P2Y(4) receptors, the cytokine TGF-beta (an important modulator of wound repair) and two matrix proteins (collagen A1 and fibronectin) approximately 4-5 times above baseline: this increase was not significantly affected by ryanodine but was abolished by PPADS. We conclude that, in human pulmonary fibroblasts, ATP acts upon P2Y receptors to liberate internal Ca(2+) through ryanodine-insensitive channels, leading to a Ca(2+)-wave which courses throughout the cell and modulates gene expression.
Collapse
Affiliation(s)
- Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital and the Departments of Medicine, Molecular Medicine and Pathology, McMaster University, Hamilton, Ontario, Canada L8N 3Z5.
| | | | | | | |
Collapse
|
192
|
Rigaud M, Gemes G, Weyker PD, Cruikshank JM, Kawano T, Wu HE, Hogan QH. Axotomy depletes intracellular calcium stores in primary sensory neurons. Anesthesiology 2009; 111:381-92. [PMID: 19602958 PMCID: PMC2891519 DOI: 10.1097/aln.0b013e3181ae6212] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The cellular mechanisms of neuropathic pain are inadequately understood. Previous investigations have revealed disrupted Ca signaling in primary sensory neurons after injury. The authors examined the effect of injury on intracellular Ca stores of the endoplasmic reticulum, which critically regulate the Ca signal and neuronal function. METHODS Intracellular Ca levels were measured with Fura-2 or mag-Fura-2 microfluorometry in axotomized fifth lumbar (L5) dorsal root ganglion neurons and adjacent L4 neurons isolated from hyperalgesic rats after L5 spinal nerve ligation, compared to neurons from control animals. RESULTS Endoplasmic reticulum Ca stores released by the ryanodine-receptor agonist caffeine decreased by 46% in axotomized small neurons. This effect persisted in Ca-free bath solution, which removes the contribution of store-operated membrane Ca channels, and after blockade of the mitochondrial, sarco-endoplasmic Ca-ATPase and the plasma membrane Ca ATPase pathways. Ca released by the sarco-endoplasmic Ca-ATPase blocker thapsigargin and by the Ca-ionophore ionomycin was also diminished by 25% and 41%, respectively. In contrast to control neurons, Ca stores in axotomized neurons were not expanded by neuronal activation by K depolarization, and the proportionate rate of refilling by sarco-endoplasmic Ca-ATPase was normal. Luminal Ca concentration was also reduced by 38% in axotomized neurons in permeabilized neurons. The adjacent neurons of the L4 dorsal root ganglia showed modest and inconsistent changes after L5 spinal nerve ligation. CONCLUSIONS Painful nerve injury leads to diminished releasable endoplasmic reticulum Ca stores and a reduced luminal Ca concentration. Depletion of Ca stores may contribute to the pathogenesis of neuropathic pain.
Collapse
Affiliation(s)
- Marcel Rigaud
- Research Fellow, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Resident, Department of Anesthesiology, Medical University of Graz, Graz, Austria
| | - Geza Gemes
- Research Fellow, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Resident, Department of Anesthesiology, Medical University of Graz, Graz, Austria
| | - Paul D. Weyker
- Medical Student, University of Wisconsin, Madison, Wisconsin
| | - James M. Cruikshank
- Research Assistant, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Takashi Kawano
- Research Fellow, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hsiang-En Wu
- Assistant Professor, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Quinn H. Hogan
- Professor, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Anesthesiologist, Zablocki VA Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
193
|
Peng XB, Sun MX, Yang HY. Comparative detection of calcium fluctuations in single female sex cells of tobacco to distinguish calcium signals triggered by in vitro fertilization. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:782-91. [PMID: 19686375 DOI: 10.1111/j.1744-7909.2009.00857.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Double fertilization is a key process of sexual reproduction in higher plants. The role of calcium in the activation of female sex cells through fertilization has recently received a great deal of attention. The establishment of a Ca(2+)-imaging technique for living, single, female sex cells is a difficult but necessary prerequisite for evaluating the role of Ca(2+) in the transduction of external stimuli, including the fusion with the sperm cell, to internal cellular processes. The present study describes the use of Fluo-3 for reporting the Ca(2+) signal in isolated, single, female sex cells, egg cells and central cells, of tobacco plants. A suitable loading protocol was optimized by loading the cells at pH 5.6 with 2 microM Fluo-3 for 30 min at 30 degrees C. Under these conditions, several key factors related to in vitro fertilization were also investigated in order to test their possible effects on the [Ca(2+)](cyt) of the female sex cells. The results indicated that the bovine serum albumin-fusion system was superior to the polyethlene glycol-fusion system for detecting calcium fluctuations in female sex cells during fertilization. The central cell was fertilized with the sperm cell in bovine serum albumin; however, no evident calcium dynamic was detected, implying that a transient calcium rise might be a specific signal for egg cell fertilization.
Collapse
Affiliation(s)
- Xiong-Bo Peng
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | |
Collapse
|
194
|
Bootman MD, Fearnley C, Smyrnias I, MacDonald F, Roderick HL. An update on nuclear calcium signalling. J Cell Sci 2009; 122:2337-50. [PMID: 19571113 DOI: 10.1242/jcs.028100] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over the past 15 years or so, numerous studies have sought to characterise how nuclear calcium (Ca2+) signals are generated and reversed, and to understand how events that occur in the nucleoplasm influence cellular Ca2+ activity, and vice versa. In this Commentary, we describe mechanisms of nuclear Ca2+ signalling and discuss what is known about the origin and physiological significance of nuclear Ca2+ transients. In particular, we focus on the idea that the nucleus has an autonomous Ca2+ signalling system that can generate its own Ca2+ transients that modulate processes such as gene transcription. We also discuss the role of nuclear pores and the nuclear envelope in controlling ion flux into the nucleoplasm.
Collapse
Affiliation(s)
- Martin D Bootman
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| | | | | | | | | |
Collapse
|
195
|
Cafforio P, De Matteo M, Brunetti AE, Dammacco F, Silvestris F. Functional expression of the calcitonin receptor by human T and B cells. Hum Immunol 2009; 70:678-85. [PMID: 19445988 DOI: 10.1016/j.humimm.2009.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 04/28/2009] [Accepted: 05/08/2009] [Indexed: 01/25/2023]
Abstract
The calcitonin receptor (CTR) is a seven-transmembrane-domain G-protein-coupled receptor that regulates calcium metabolism and bone resorption by osteoclasts. Here we demonstrate that high levels are expressed by normal human T and B lymphocytes from tonsils and peripheral blood in relation to their activation status, as CTR(+) T cells are prone to produce IFN-gamma after TCR stimulation. The receptor is also highly expressed on B cells from chronic lymphocytic leukemia patients, thus suggesting a correlation between its expression, their proliferative extent as well as their memory, antigen-experienced phenotype. Moreover, we found that binding of the receptor with salmon calcitonin induces an increase of intracellular calcium(2+) in peripheral lymphocytes. This effect is involved in several lymphocyte immune functions, as cytosolic calcium(2+) levels regulate both cell proliferation and cytokine production. In our hands, the increase of calcium(2+) levels by CTR binding with sCT induced a dose-dependent cell proliferation. We therefore suppose that expression of this functional receptor may contribute to the modulation of cytoplasmic calcium(2+) levels needed to regulate T and B cell activation and perhaps other immune functions.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Calcium/metabolism
- Calcium Signaling/immunology
- Cell Proliferation
- Cells, Cultured
- Child
- Child, Preschool
- Dose-Response Relationship, Immunologic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Palatine Tonsil/pathology
- Receptors, Calcitonin/genetics
- Receptors, Calcitonin/immunology
- Receptors, Calcitonin/metabolism
- Salmon
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Paola Cafforio
- Department of Internal Medicine and Clinical Oncology, University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
196
|
Carpentier B, Pierobon P, Hivroz C, Henry N. T-cell artificial focal triggering tools: linking surface interactions with cell response. PLoS One 2009; 4:e4784. [PMID: 19274104 PMCID: PMC2653282 DOI: 10.1371/journal.pone.0004784] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/12/2009] [Indexed: 12/22/2022] Open
Abstract
T-cell activation is a key event in the immune system, involving the interaction of several receptor ligand pairs in a complex intercellular contact that forms between T-cell and antigen-presenting cells. Molecular components implicated in contact formation have been identified, but the mechanism of activation and the link between molecular interactions and cell response remain poorly understood due to the complexity and dynamics exhibited by whole cell-cell conjugates. Here we demonstrate that simplified model colloids grafted so as to target appropriate cell receptors can be efficiently used to explore the relationship of receptor engagement to the T-cell response. Using immortalized Jurkat T cells, we monitored both binding and activation events, as seen by changes in the intracellular calcium concentration. Our experimental strategy used flow cytometry analysis to follow the short time scale cell response in populations of thousands of cells. We targeted both T-cell receptor CD3 (TCR/CD3) and leukocyte-function-associated antigen (LFA-1) alone or in combination. We showed that specific engagement of TCR/CD3 with a single particle induced a transient calcium signal, confirming previous results and validating our approach. By decreasing anti-CD3 particle density, we showed that contact nucleation was the most crucial and determining step in the cell-particle interaction under dynamic conditions, due to shear stress produced by hydrodynamic flow. Introduction of LFA-1 adhesion molecule ligands at the surface of the particle overcame this limitation and elucidated the low TCR/CD3 ligand density regime. Despite their simplicity, model colloids induced relevant biological responses which consistently echoed whole cell behavior. We thus concluded that this biophysical approach provides useful tools for investigating initial events in T-cell activation, and should enable the design of intelligent artificial systems for adoptive immunotherapy.
Collapse
Affiliation(s)
- Benoît Carpentier
- Institut Curie, Laboratoire Physico-Chimie Curie, CNRS UMR 168, Université Paris VI, Paris, France
| | - Paolo Pierobon
- Institut Curie, Laboratoire Physico-Chimie Curie, CNRS UMR 168, Université Paris VI, Paris, France
| | - Claire Hivroz
- Institut Curie, Laboratoire Immunité et Cancer, INSERM U 653, Pavillon Pasteur, Paris, France
| | - Nelly Henry
- Institut Curie, Laboratoire Physico-Chimie Curie, CNRS UMR 168, Université Paris VI, Paris, France
- * E-mail:
| |
Collapse
|
197
|
Rumschik SM, Nydegger I, Zhao J, Kay AR. The interplay between inorganic phosphate and amino acids determines zinc solubility in brain slices. J Neurochem 2009; 108:1300-8. [PMID: 19183267 PMCID: PMC2720156 DOI: 10.1111/j.1471-4159.2009.05880.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inorganic phosphate (Pi) is an important polyanion needed for ATP synthesis and bone formation. As it is found at millimolar levels in plasma, it is usually incorporated as a constituent of artificial CSF formulations for maintaining brain slices. In this paper, we show that Pi limits the extracellular zinc concentration by inducing metal precipitation. We present data suggesting that amino acids like histidine may counteract the Pi-induced zinc precipitation by the formation of soluble zinc complexes. We propose that the interplay between Pi and amino acids in the extracellular space may influence the availability of metals for cellular uptake.
Collapse
Affiliation(s)
| | - Irma Nydegger
- Department of Biology, University of Iowa, Iowa City, IA 52242
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | | | - Alan R Kay
- Department of Biology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
198
|
Tolosa J, H. F. Bunz U. Water Soluble Cruciforms: Effect of Surfactants on Fluorescence. Chem Asian J 2009; 4:270-6. [DOI: 10.1002/asia.200800353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
199
|
Gersbach M, Boiko DL, Niclass C, Petersen CCH, Charbon E. Fast-fluorescence dynamics in nonratiometric calcium indicators. OPTICS LETTERS 2009; 34:362-364. [PMID: 19183659 DOI: 10.1364/ol.34.000362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The fluorescence decay of high-affinity nonratiometric Ca2+ indicator Oregon Green BAPTA-1 (OGB-1) is analyzed with unprecedented temporal resolution in the two-photon excitation regime. A triple exponential decay is shown to best fit the fluorescence dynamics of OGB-1. We provide a model for accurate measurements of the free Ca2+ concentration and dissociation constants of nonratiometric calcium indicators.
Collapse
Affiliation(s)
- M Gersbach
- Ecole Polytechnique Fédérale de Lausanne, Quantum Architecture Group, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
200
|
Abstract
Many aspects of animal development are dependent on the dynamic release of calcium (Ca2+) ions. Although Ca2+ release within a cell is tightly controlled, how the release dynamics result in a specific biological output in embryonic development is less clear. The integration of pharmacological and molecular-genetic studies with in vivo imaging in zebrafish and Xenopus has linked endogenous Ca2+ release to the Wnt signaling network. Our data suggests that distinct Ca2+ release dynamics lead to antagonism of the developmentally important Wnt/beta-catenin pathway while sustained Ca2+ release modulates polarized cell movements.
Collapse
|