151
|
Mwasa A, Tchuenche J. Mathematical analysis of a cholera model with public health interventions. Biosystems 2011; 105:190-200. [DOI: 10.1016/j.biosystems.2011.04.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 11/30/2022]
|
152
|
|
153
|
Flores CO, Meyer JR, Valverde S, Farr L, Weitz JS. Statistical structure of host-phage interactions. Proc Natl Acad Sci U S A 2011; 108:E288-97. [PMID: 21709225 PMCID: PMC3136311 DOI: 10.1073/pnas.1101595108] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Interactions between bacteria and the viruses that infect them (i.e., phages) have profound effects on biological processes, but despite their importance, little is known on the general structure of infection and resistance between most phages and bacteria. For example, are bacteria-phage communities characterized by complex patterns of overlapping exploitation networks, do they conform to a more ordered general pattern across all communities, or are they idiosyncratic and hard to predict from one ecosystem to the next? To answer these questions, we collect and present a detailed metaanalysis of 38 laboratory-verified studies of host-phage interactions representing almost 12,000 distinct experimental infection assays across a broad spectrum of taxa, habitat, and mode of selection. In so doing, we present evidence that currently available host-phage infection networks are statistically different from random networks and that they possess a characteristic nested structure. This nested structure is typified by the finding that hard to infect bacteria are infected by generalist phages (and not specialist phages) and that easy to infect bacteria are infected by generalist and specialist phages. Moreover, we find that currently available host-phage infection networks do not typically possess a modular structure. We explore possible underlying mechanisms and significance of the observed nested host-phage interaction structure. In addition, given that most of the available host-phage infection networks examined here are composed of taxa separated by short phylogenetic distances, we propose that the lack of modularity is a scale-dependent effect, and then, we describe experimental studies to test whether modular patterns exist at macroevolutionary scales.
Collapse
Affiliation(s)
- Cesar O. Flores
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Justin R. Meyer
- Department of Zoology, Michigan State University, East Lansing, MI 48824
| | - Sergi Valverde
- Complex Systems Lab and Institute of Evolutionary Biology, University Pompeu Fabra, E-08003 Barcelona, Spain; and
| | - Lauren Farr
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332
| | - Joshua S. Weitz
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
154
|
Alam M, Farzana T, Ahsan CR, Yasmin M, Nessa J. Distribution of coliphages against four e. Coli virotypes in hospital originated sewage sample and a sewage treatment plant in bangladesh. Indian J Microbiol 2011; 51:188-93. [PMID: 22654163 PMCID: PMC3209889 DOI: 10.1007/s12088-011-0093-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 12/17/2009] [Indexed: 10/18/2022] Open
Abstract
The distribution of coliphages infecting different Escherichia coli virotypes (EHEC, EIEC, EPEC, ETEC) and an avirulent strain (K-12) in sewage system of a hospital and a sewage treatment plant (STP) was investigated by culture-based agar overlay methods. Coliphages were found in all the samples except stool dumping site in the sewage system of the hospital and lagoon of the STP. Bacteriophage count (pfu/ml) infecting E. coli strains showed the following ascending pattern (EHEC < EIEC < EPEC < ETEC < E coli K-12) in all the collected samples except one. Phages capable of infecting avirulent E. coli K-12 strains were present in the highest number among all the examined locations. Phages specific for E. coli K-12 presented high diversity in plaque size on the bacterial lawn. Virulent E. coli specific coliphages rarely produced plaques with diameter of 1-2 mm or over. Conventional agar overlay method was found to be not satisfactory for phage community analysis from primary stool dumping site of the hospital, probably due to the presence of high concentration of antimicrobial substances. The gradual decrease seen in the five groups of coliphage quantity with the ongoing treatment process and then the absolute absence of coliphages in the outlet of the examined treatment plant is indicative of the usefulness of the treatment processes practiced there.
Collapse
Affiliation(s)
- Muntasir Alam
- Department of Microbiology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Tasmia Farzana
- Department of Microbiology, University of Dhaka, Dhaka, 1000 Bangladesh
| | | | - Mahmuda Yasmin
- Department of Microbiology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Jamalun Nessa
- Department of Microbiology, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|
155
|
Abedon ST, Thomas-Abedon C, Thomas A, Mazure H. Bacteriophage prehistory: Is or is not Hankin, 1896, a phage reference? BACTERIOPHAGE 2011; 1:174-178. [PMID: 22164351 DOI: 10.4161/bact.1.3.16591] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 01/17/2023]
Abstract
We identified 30 actual or presumptive "bacteriophage" references dating between the years 1895 and 1917 and have further explored one of the oldest: Hankin's 1896 study of a bactericidal action associated with the waters of the Ganges and Jumna rivers in India. As Hankin's work took place approximately 20 years prior to the actual discovery of bacteriophages, no claims were made as to a possible phage nature of the phenomenon. Here we suggest that it may be imprudent to assume nevertheless that it represents an early observation of phagemediated bactericidal activity. Our principal argument is that the antibacterial aspect of these river waters was able to retain full potency following "heating" for one-half hour in hermetically sealed tubes, where heating in "open" tubes resulted in loss of antibacterial activity. We also suggest that environmental phage counts would have had to have been unusually high-greater than 10(6)/ml impacting a single host strain-to achieve the rates of bacterial loss that Hankin observed.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology; The Ohio State University; Mansfield, Ohio USA
| | | | | | | |
Collapse
|
156
|
Shanan S, Abd H, Hedenström I, Saeed A, Sandström G. Detection of Vibrio cholerae and Acanthamoeba species from same natural water samples collected from different cholera endemic areas in Sudan. BMC Res Notes 2011; 4:109. [PMID: 21470437 PMCID: PMC3080310 DOI: 10.1186/1756-0500-4-109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/07/2011] [Indexed: 11/16/2022] Open
Abstract
Background Vibrio cholerae O1 and V. cholerae O139 infect humans, causing the diarrheal and waterborne disease cholera, which is a worldwide health problem. V. cholerae and the free-living amoebae Acanthamoeba species are present in aquatic environments, including drinking water and it has shown that Acanthamoebae support bacterial growth and survival. Recently it has shown that Acanthamoeba species enhanced growth and survival of V. cholerae O1 and O139. Water samples from different cholera endemic areas in Sudan were collected with the aim to detect both V. cholerae and Acanthamoeba species from same natural water samples by polymerase chain reaction (PCR). Findings For the first time both V. cholerae and Acanthamoeba species were detected in same natural water samples collected from different cholera endemic areas in Sudan. 89% of detected V. cholerae was found with Acanthamoeba in same water samples. Conclusions The current findings disclose Acanthamoedae as a biological factor enhancing survival of V. cholerae in nature.
Collapse
Affiliation(s)
- Salah Shanan
- Karolinska Institute, Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital, Huddinge, SE-141 86 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
157
|
Hazen TH, Pan L, Gu JD, Sobecky PA. The contribution of mobile genetic elements to the evolution and ecology of Vibrios. FEMS Microbiol Ecol 2011; 74:485-99. [PMID: 20662928 DOI: 10.1111/j.1574-6941.2010.00937.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
An increase in the frequency of seafood-borne gastroenteritis in humans and Vibrio-related disease of fish and invertebrates has generated interest in the ecology of disease-causing Vibrios and the mechanisms driving their evolution. Genome sequencing studies have indicated a substantial contribution of horizontal gene transfer (HGT) to the evolution of Vibrios. Of particular interest is the contribution of HGT to the evolution of Vibrios pathogens and the adaptation of disease-causing Vibrios for survival in diverse environments. In this review, we discuss the diversity and distribution of mobile genetic elements (MGEs) isolated from Vibrios and the contribution of these elements to the expansion of the ecological and pathogenic niches of the host strain. Much of the research on Vibrio MGEs has focused on understanding phages and plasmids and we will primarily discuss the evolution of these elements and also briefly highlight the other diverse elements characterized from Vibrios, which includes genomic islands and conjugative elements.
Collapse
Affiliation(s)
- Tracy H Hazen
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | |
Collapse
|
158
|
Genetic diversity of O-antigen biosynthesis regions in Vibrio cholerae. Appl Environ Microbiol 2011; 77:2247-53. [PMID: 21317260 DOI: 10.1128/aem.01663-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
O-antigen biosynthetic (wbf) regions for Vibrio cholerae serogroups O5, O8, and O108 were isolated and sequenced. Sequences were compared to those of other published V. cholerae O-antigen regions. These wbf regions showed a high degree of heterogeneity both in gene content and in gene order. Genes identified frequently showed greater similarities to polysaccharide biosynthesis genes from species other than V. cholerae. Our results demonstrate the plasticity of O-antigen genes in V. cholerae, the diversity of the genetic pool from which they are drawn, and the likelihood that new pandemic serogroups will emerge.
Collapse
|
159
|
Evidence of a dominant lineage of Vibrio cholerae-specific lytic bacteriophages shed by cholera patients over a 10-year period in Dhaka, Bangladesh. mBio 2011; 2:e00334-10. [PMID: 21304168 PMCID: PMC3037004 DOI: 10.1128/mbio.00334-10] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lytic bacteriophages are hypothesized to contribute to the seasonality and duration of cholera epidemics in Bangladesh. However, the bacteriophages contributing to this phenomenon have yet to be characterized at a molecular genetic level. In this study, we isolated and sequenced the genomes of 15 bacteriophages from stool samples from cholera patients spanning a 10-year surveillance period in Dhaka, Bangladesh. Our results indicate that a single novel bacteriophage type, designated ICP1 (for the International Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) is present in all stool samples from cholera patients, while two other bacteriophage types, one novel (ICP2) and one T7-like (ICP3), are transient. ICP1 is a member of the Myoviridae family and has a 126-kilobase genome comprising 230 open reading frames. Comparative sequence analysis of ICP1 and related isolates from this time period indicates a high level of genetic conservation. The ubiquitous presence of ICP1 in cholera patients and the finding that the O1 antigen of lipopolysaccharide (LPS) serves as the ICP1 receptor suggest that ICP1 is extremely well adapted to predation of human-pathogenic V. cholerae O1.
Collapse
|
160
|
Hashizume M, Faruque ASG, Terao T, Yunus M, Streatfield K, Yamamoto T, Moji K. The Indian Ocean dipole and cholera incidence in Bangladesh: a time-series analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:239-44. [PMID: 20980219 PMCID: PMC3040612 DOI: 10.1289/ehp.1002302] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 10/27/2010] [Indexed: 05/17/2023]
Abstract
BACKGROUND It has been reported that the El Niño-Southern Oscillation (ENSO) influences the interannual variation of endemic cholera in Bangladesh. There is increased interest in the influence of the Indian Ocean dipole (IOD), a climate mode of coupled ocean-atmosphere variability, on regional ocean climate in the Bay of Bengal and on Indian monsoon rainfall. OBJECTIVES We explored the relationship between the IOD and the number of cholera patients in Bangladesh, controlling for the effects of ENSO. METHODS Time-series regression was performed. Negative binomial models were used to estimate associations between the monthly number of hospital visits for cholera in Dhaka and Matlab (1993-2007) and the dipole mode index (DMI) controlling for ENSO index [NINO3, a measure of the average sea surface temperature (SST) in the Niño 3 region], seasonal, and interannual variations. Associations between cholera cases and SST and sea surface height (SSH) of the northern Bay of Bengal were also examined. RESULTS A 0.1-unit increase in average DMI during the current month through 3 months before was associated with an increase in cholera incidence of 2.6% [(95% confidence interval (CI), 0.0-5.2; p = 0.05] in Dhaka and 6.9% (95% CI, 3.2-10.8; p < 0.01) in Matlab. Cholera incidence in Dhaka increased by 2.4% (95% CI, 0.0-5.0; p = 0.06) after a 0.1-unit decrease in DMI 4-7 months before. Hospital visits for cholera in both areas were positively associated with SST 0-3 months before, after adjusting for SSH (p < 0.01). CONCLUSIONS These findings suggest that both negative and positive dipole events are associated with an increased incidence of cholera in Bangladesh with varying time lags.
Collapse
Affiliation(s)
- Masahiro Hashizume
- Institute of Tropical Medicine and Global Center of Excellence Program, Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
161
|
Zahid MSH, Waise Z, Kamruzzaman M, Ghosh A, Nair GB, Bashar SK, Mekalanos JJ, Faruque SM. An experimental study of phage mediated bactericidal selection & emergence of the El Tor Vibrio cholerae. Indian J Med Res 2011; 133:218-24. [PMID: 21415498 PMCID: PMC3089055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND & OBJECTIVES Factor causing the elimination of the classical biotype of Vibrio cholerae O1, and its replacement by the El Tor biotype causing the 7 th cholera pandemic are unclear. Possible ability of the El Tor strains to adapt better than the classical strains to undefined environmental forces have been largely implicated for the change. Here we describe an environmental bacteriophage designated JSF9 which might have contributed to the range of factors. METHODS Competition assays were conducted in the infant mice model and in microcosms between representative El Tor and classical biotype strains in the absence or in the presence of JSF9 phage. RESULTS The JSF9 phage was found to kill classical strains and favour enrichment of El Tor strains, when mixtures containing strains of the two biotypes and JSF9 phage were subjected to alternate passage in infant mice and in samples of environmental water. Spontaneous derivatives of the classical biotype strains, as well as transposon mutants which developed resistance to JSF9 phage were found to be defective in colonization in the infant mouse model. INTERPRETATION & CONCLUSIONS These results suggest that in addition to other factors, the inherent ability of El Tor biotype strains to evade predation by JSF9 or similar phages which kill classical biotype strains, might have enhanced the emergence of El Tor strains as the predominant pandemic biotype.
Collapse
Affiliation(s)
- M. Shamim Hasan Zahid
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Zaved Waise
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - M. Kamruzzaman
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - A.N. Ghosh
- National Institute of Cholera & Enteric Diseases, Kolkata, India
| | | | - S.A.M. Khairul Bashar
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh,Department of Life Sciences, North South University, Dhaka, Bangladesh
| | - John J. Mekalanos
- Department of Microbiology & Molecular Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Shah M. Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh,Department of Life Sciences, North South University, Dhaka, Bangladesh,Reprint requests: Dr Shah M. Faruque, Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh e-mail:
| |
Collapse
|
162
|
Reservoir of bacterial exotoxin genes in the environment. Int J Microbiol 2011; 2010:754368. [PMID: 21318166 PMCID: PMC3026987 DOI: 10.1155/2010/754368] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 12/12/2010] [Indexed: 12/03/2022] Open
Abstract
Many bacteria produce secreted virulence factors called exotoxins. Exotoxins are often encoded by mobile genetic elements, including bacteriophage (phage). Phage can transfer genetic information to the bacteria they infect. When a phage transfers virulence genes to an avirulent bacterium, the bacterium can acquire the ability to cause disease. It is important to understand the role played by the phage that carry these genes in the evolution of pathogens. This is the first report of an environmental reservoir of a bacterial exotoxin gene in an atypical host. Screening bacterial isolates from the environment via PCR identified an isolate with a DNA sequence >95% identical to the Staphylococcus aureus enterotoxin A gene (sea). 16S DNA sequence comparisons and growth studies identified the environmental isolate as a psychrophilic Pseudomonas spp. The results indicate that the sea gene is present in an alternative bacterial host, providing the first evidence for an environmental pool of exotoxin genes in bacteria.
Collapse
|
163
|
Lara R, Islam M, Yamasaki S, Neogi S, Nair G. Aquatic Ecosystems, Human Health, and Ecohydrology. TREATISE ON ESTUARINE AND COASTAL SCIENCE 2011. [PMCID: PMC7271162 DOI: 10.1016/b978-0-12-374711-2.01015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This chapter treats two main topics: the relationship between human health, aquatic ecosystems, and water use; and the necessity of interdisciplinary approaches for the development of water management policies and disease control. Main waterborne diseases, mostly affecting developing countries and relevant in terms of water management and changes in land use, such as malaria, schistosomiasis, or cholera, are discussed stressing links to the global water crisis. Also, the role of artificial and natural wetlands in influenza epidemics is treated. The effects of increasing water use and scarcity on human health are discussed considering historical and contemporary incidence of diarrheal diseases in European and South Asian megacities, relationships between dams and on waterborne diseases in Asia and Africa, and intensive agri- and aquaculture resulting in man-made ecotones, fragmented aquatic ecosystems, and pathogen mutations. It is emphasized that the comprehension of the multiple interactions among changes in environmental settings, land use, and human health requires a new synthesis of ecohydrology, biomedical sciences, and water management for surveillance and control of waterborne diseases in basin-based, transboundary health systems. Surveillance systems should monitor changes in water management, ecotones, and hydrological cycles and shifts in, for example, the outbreak timing of strongly seasonal diseases. These indicators would provide criteria for the development of innovative water management policies, combining methods of vector control and the safe creation of water reservoirs, irrigation systems, and wetland habitats.
Collapse
|
164
|
Rankin DJ, Rocha EPC, Brown SP. What traits are carried on mobile genetic elements, and why? Heredity (Edinb) 2011; 106:1-10. [PMID: 20332804 PMCID: PMC3183850 DOI: 10.1038/hdy.2010.24] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/28/2010] [Accepted: 02/02/2010] [Indexed: 01/22/2023] Open
Abstract
Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes.
Collapse
Affiliation(s)
- D J Rankin
- Department of Biochemistry, University of Zürich, Zürich, Switzerland.
| | | | | |
Collapse
|
165
|
Abstract
BACKGROUND The mechanisms underlying the seasonality of cholera are still not fully understood, despite long-standing recognition of clear bimodal seasonality in Bangladesh. We aimed to quantify the contribution of climatic factors to seasonal variations in cholera incidence. METHODS We investigated the association of seasonal and weather factors with the weekly number of cholera patients in Dhaka, Bangladesh, using Poisson regression models. The contribution of each weather factor (temperature and high and low rainfall) to seasonal variation was estimated as the mean over the study period (1983-2008) for each week of the year of each weather term. Fractions of the number of cholera patients attributed to each weather factor, assuming all values were constant at their minimum risk levels throughout the year, were estimated for spring and monsoon seasons separately. RESULTS Lower temperature predicted a lower incidence of cholera in the first 15 weeks of the year. Low rainfall predicted a peak in spring, and high rainfall predicted a peak at the end of the monsoon. The risk predicted from all the weather factors combined showed a broadly bi-modal pattern, as observed in the raw data. Low rainfall explained 18% of the spring peak, and high rainfall explained 25% of the peak at the end of the monsoon. CONCLUSIONS Seasonal variation in temperature and rainfall contribute to cholera incidence in complex ways, presumably in interaction with unmeasured environmental or behavioral factors.
Collapse
|
166
|
Levin BR. Nasty viruses, costly plasmids, population dynamics, and the conditions for establishing and maintaining CRISPR-mediated adaptive immunity in bacteria. PLoS Genet 2010; 6:e1001171. [PMID: 21060859 PMCID: PMC2965746 DOI: 10.1371/journal.pgen.1001171] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/21/2010] [Indexed: 01/21/2023] Open
Abstract
Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR) abound in the genomes of almost all archaebacteria and nearly half the eubacteria sequenced. Through a genetic interference mechanism, bacteria with CRISPR regions carrying copies of the DNA of previously encountered phage and plasmids abort the replication of phage and plasmids with these sequences. Thus it would seem that protection against infecting phage and plasmids is the selection pressure responsible for establishing and maintaining CRISPR in bacterial populations. But is it? To address this question and provide a framework and hypotheses for the experimental study of the ecology and evolution of CRISPR, I use mathematical models of the population dynamics of CRISPR-encoding bacteria with lytic phage and conjugative plasmids. The results of the numerical (computer simulation) analysis of the properties of these models with parameters in the ranges estimated for Escherichia coli and its phage and conjugative plasmids indicate: (1) In the presence of lytic phage there are broad conditions where bacteria with CRISPR-mediated immunity will have an advantage in competition with non-CRISPR bacteria with otherwise higher Malthusian fitness. (2) These conditions for the existence of CRISPR are narrower when there is envelope resistance to the phage. (3) While there are situations where CRISPR-mediated immunity can provide bacteria an advantage in competition with higher Malthusian fitness bacteria bearing deleterious conjugative plasmids, the conditions for this to obtain are relatively narrow and the intensity of selection favoring CRISPR weak. The parameters of these models can be independently estimated, the assumption behind their construction validated, and the hypotheses generated from the analysis of their properties tested in experimental populations of bacteria with lytic phage and conjugative plasmids. I suggest protocols for estimating these parameters and outline the design of experiments to evaluate the validity of these models and test these hypotheses. CRISPR is the acronym for the adaptive immune system that has been found in almost all archaebacteria and nearly half the eubacteria examined. Unlike the other defenses bacteria have for protection from phage and other deleterious DNAs, CRISPR has the virtues of specificity, memory, and the capacity to abort infections with a virtually indefinite diversity of deleterious DNAs. In this report, mathematical models of the population dynamics of bacteria, phage, and plasmids are used to determine the conditions under which CRISPR can become established and will be maintained in bacterial populations and the contribution of this adaptive immune system to the ecology and (co)evolution of bacteria and bacteriophage. The models predict realistic and broad conditions under which bacteria bearing CRISPR regions can invade and be maintained in populations of higher fitness bacteria confronted with bacteriophage and narrower conditions when the confrontation is with competitors carrying conjugative plasmids. The models predict that CRISPR can facilitate long-term co-evolutionary arms races between phage and bacteria and between phage- rather than resource-limited bacterial communities. The parameters of these models can be independently estimated, the assumptions behind their construction validated, and the hypotheses generated from the analysis of their properties tested with experimental populations of bacteria.
Collapse
Affiliation(s)
- Bruce R Levin
- Department of Biology, Emory University, Atlanta, Georgia, United States of America.
| |
Collapse
|
167
|
Wei Y, Ocampo P, Levin BR. An experimental study of the population and evolutionary dynamics of Vibrio cholerae O1 and the bacteriophage JSF4. Proc Biol Sci 2010; 277:3247-54. [PMID: 20538647 DOI: 10.1098/rspb.2010.0651] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies of Vibrio cholerae in the environment and infected patients suggest that the waning of cholera outbreaks is associated with rise in the density of lytic bacteriophage. In accordance with mathematical models, there are seemingly realistic conditions where phage predation could be responsible for declines in the incidence of cholera. Here, we present the results of experiments with the El Tor strain of V. cholerae (N16961) and a naturally occurring lytic phage (JSF4), exploring the validity of the main premise of this model: that phage predation limits the density of V. cholerae populations. At one level, the results of our experiments are inconsistent with this hypothesis. JSF4-resistant V. cholerae evolve within a short time following their confrontation with these viruses and their populations become limited by resources rather than phage predation. At a larger scale, however, the results of our experiments are not inconsistent with the hypothesis that bacteriophage modulate outbreaks of cholera. We postulate that the resistant bacteria that evolved play an insignificant role in the ecology or pathogenicity of V. cholerae. Relative to the phage-sensitive cells from whence they are derived, the evolved JSF4-resistant V. cholerae have fitness costs and other characters that are likely to impair their ability to compete with the sensitive cells in their natural habitat and may be avirulent in human hosts. The results of this in vitro study make predictions that can be tested in natural populations of V. cholerae and cholera-infected patients.
Collapse
Affiliation(s)
- Yan Wei
- Emory University, Graduate Program in Population Biology, Ecology and Evolution, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
168
|
The cyclic AMP (cAMP)-cAMP receptor protein signaling system mediates resistance of Vibrio cholerae O1 strains to multiple environmental bacteriophages. Appl Environ Microbiol 2010; 76:4233-40. [PMID: 20472740 DOI: 10.1128/aem.00008-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxigenic Vibrio cholerae, the causative agent of the epidemic diarrheal disease cholera, interacts with diverse environmental bacteriophages. These interactions promote genetic diversity or cause selective enrichment of phage-resistant bacterial clones. To identify bacterial genes involved in mediating the phage-resistant phenotype, we screened a transposon insertion library of V. cholerae O1 El Tor biotype strain C6706 to identify mutants showing altered susceptibility to a panel of phages isolated from surface waters in Bangladesh. Mutants with insertion in cyaA or crp genes encoding adenylate cyclase or cyclic AMP (cAMP) receptor protein (CRP), respectively, were susceptible to a phage designated JSF9 to which the parent strain was completely resistant. Application of the cyaA mutant as an indicator strain in environmental phage monitoring enhanced phage detection, and we identified 3 additional phages to which the parent strain was resistant. Incorporation of the cyaA or crp mutations into other V. cholerae O1 strains caused similar alterations in their phage susceptibility patterns, and the susceptibility correlated with the ability of the bacteria to adsorb these phages. Our results suggest that cAMP-CRP-mediated downregulation of phage adsorption may contribute to a mechanism for the V. cholerae O1 strains to survive predation by multiple environmental phages. Furthermore, the cyaA or crp mutant strains may be used as suitable indicators in monitoring cholera phages in the water.
Collapse
|
169
|
Lothigius Å, Sjöling Å, Svennerholm AM, Bölin I. Survival and gene expression of enterotoxigenicEscherichia coliduring long-term incubation in sea water and freshwater. J Appl Microbiol 2010; 108:1441-9. [DOI: 10.1111/j.1365-2672.2009.04548.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
170
|
Carrel M, Voss P, Streatfield PK, Yunus M, Emch M. Protection from annual flooding is correlated with increased cholera prevalence in Bangladesh: a zero-inflated regression analysis. Environ Health 2010; 9:13. [PMID: 20307294 PMCID: PMC2856547 DOI: 10.1186/1476-069x-9-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/22/2010] [Indexed: 05/26/2023]
Abstract
BACKGROUND Alteration of natural or historical aquatic flows can have unintended consequences for regions where waterborne diseases are endemic and where the epidemiologic implications of such change are poorly understood. The implementation of flood protection measures for a portion of an intensely monitored population in Matlab, Bangladesh, allows us to examine whether cholera outcomes respond positively or negatively to measures designed to control river flooding. METHODS Using a zero inflated negative binomial model, we examine how selected covariates can simultaneously account for household clusters reporting no cholera from those with positive counts as well as distinguishing residential areas with low counts from areas with high cholera counts. Our goal is to examine how residence within or outside a flood protected area interacts with the probability of cholera presence and the effect of flood protection on the magnitude of cholera prevalence. RESULTS In Matlab, living in a household that is protected from annual monsoon flooding appears to have no significant effect on whether the household experiences cholera, net of other covariates. However, counter-intuitively, among households where cholera is reported, living within the flood protected region significantly increases the number of cholera cases. CONCLUSIONS The construction of dams or other water impoundment strategies for economic or social motives can have profound and unanticipated consequences for waterborne disease. Our results indicate that the construction of a flood control structure in rural Bangladesh is correlated with an increase in cholera cases for residents protected from annual monsoon flooding. Such a finding requires attention from both the health community and from governments and non-governmental organizations involved in ongoing water management schemes.
Collapse
Affiliation(s)
- Margaret Carrel
- Department of Geography, CB3220, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Paul Voss
- Odum Institute for Research in Social Science, CB3355, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Peter K Streatfield
- Health and Demographic Surveillance Unit, International Center for Diarrheal Disease Research, Bangladesh, Mohakhali, Dhaka 1212, Bangladesh
| | - Mohammad Yunus
- Health and Demographic Surveillance Unit, International Center for Diarrheal Disease Research, Bangladesh, Mohakhali, Dhaka 1212, Bangladesh
| | - Michael Emch
- Department of Geography, CB3220, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
171
|
Begum YA, Chakraborty S, Chowdhury A, Ghosh AN, Nair GB, Sack RB, Svennerholm AM, Qadri F. Isolation of a bacteriophage specific for CS7-expressing strains of enterotoxigenic Escherichia coli. J Med Microbiol 2010; 59:266-272. [DOI: 10.1099/jmm.0.014795-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common bacterial cause of childhood diarrhoea in Bangladesh. Among the virulence factors of ETEC, toxins and colonization factors (CFs) play a major role in pathogenesis. Unlike Vibrio cholerae, the relationship between ETEC and ETEC-specific phages is poorly understood and the possible role of ETEC phages in the evolution of ETEC strains in the environment is yet to be established. This study was designed specifically to isolate phages that are specific for ETEC virulence factors. Among the 49 phages isolated from 12 different surface water samples, 13 were tested against 211 ETEC strains collected from clinical and environmental sources. One phage, designated IMM-001, showed a significant specificity towards CS7 CF as it attacked all the CS7-expressing ETEC. Electron microscopic analyses showed that the isolated phage possessed an isomeric hexagonal head and a long filamentous tail. An antibody blocking method and phage neutralization assay confirmed that CS7 pilus is required for the phage infection process, indicating the role of CS7 fimbrial protein as a potential receptor for IMM-001. In summary, this study showed the presence of a lytic phage in environmental water that is specific for the CS7 CF of ETEC.
Collapse
Affiliation(s)
- Y. A. Begum
- International Centre for Diarrhoeal Disease Research, Bangladesh, GPO Box 128, Dhaka 1000, Bangladesh
| | - S. Chakraborty
- International Centre for Diarrhoeal Disease Research, Bangladesh, GPO Box 128, Dhaka 1000, Bangladesh
| | - A. Chowdhury
- International Centre for Diarrhoeal Disease Research, Bangladesh, GPO Box 128, Dhaka 1000, Bangladesh
| | - A. N. Ghosh
- National Institute of Cholera and Enteric Diseases, Kolkata 700 010, India
| | - G. B. Nair
- National Institute of Cholera and Enteric Diseases, Kolkata 700 010, India
| | - R. B. Sack
- Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A.-M. Svennerholm
- Department of Medical Microbiology and Immunology, The Sahlgrenska Academy at Göteborg University, Box 435, S-40530 Göteborg, Sweden
| | - F. Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, GPO Box 128, Dhaka 1000, Bangladesh
| |
Collapse
|
172
|
Choi S, Dunams D, Jiang S. Transfer of cholera toxin genes from O1 to non‐O1/O139 strains by vibriophages from California coastal waters. J Appl Microbiol 2010; 108:1015-1022. [DOI: 10.1111/j.1365-2672.2009.04502.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- S. Choi
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA
- Department of Environmental Health, Science and Policy, University of California, Irvine, CA, USA
| | - D. Dunams
- Department of Environmental Health, Science and Policy, University of California, Irvine, CA, USA
| | - S.C. Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA
- Department of Environmental Health, Science and Policy, University of California, Irvine, CA, USA
| |
Collapse
|
173
|
Quorum-regulated biofilms enhance the development of conditionally viable, environmental Vibrio cholerae. Proc Natl Acad Sci U S A 2010; 107:1588-93. [PMID: 20080633 DOI: 10.1073/pnas.0913404107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The factors that enhance the waterborne spread of bacterial epidemics and sustain the pathogens in nature are unclear. The epidemic diarrheal disease cholera caused by Vibrio cholerae spreads through water contaminated with the pathogen. However, the bacteria exist in water mostly as clumps of cells, which resist cultivation by standard techniques but revive into fully virulent form in the intestinal milieu. These conditionally viable environmental cells (CVEC), alternatively called viable but nonculturable cells, presumably play a crucial role in cholera epidemiology. However, the precise mechanism causing the transition of V. cholerae to the CVEC form and this form's significance in the biology of the pathogen are unknown. Here we show that this process involves biofilm formation that is dependent on quorum sensing, a regulatory response that is controlled by cell density. V. cholerae strains carrying mutations in genes required for quorum sensing and biofilm formation displayed altered CVEC formation in environmental water following intestinal infections. Analysis of naturally occurring V. cholerae CVEC showed that organisms that adopt this quiescent physiological state typically exist as clumps of cells that comprise a single clone closely related to isolates causing the most recent local cholera epidemic. These results support a model of cholera transmission in which in vivo-formed biofilms convert to CVEC upon the introduction of cholera stools into environmental water. Our data further suggest that a temporary loss of quorum sensing due to dilution of extracellular autoinducers confers a selective advantage to communities of V. cholerae by blocking quorum-mediated regulatory responses that would break down biofilms and thus interfere with CVEC formation.
Collapse
|
174
|
Safa A, Nair GB, Kong RYC. Evolution of new variants of Vibrio cholerae O1. Trends Microbiol 2009; 18:46-54. [PMID: 19942436 DOI: 10.1016/j.tim.2009.10.003] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 12/17/2022]
Abstract
Vibrio cholerae typically contains a prophage that carries the genes encoding the cholera toxin, which is responsible for the major clinical symptoms of the disease. In recent years, new pathogenic variants of V. cholerae have emerged and spread throughout many Asian and African countries. These variants display a mixture of phenotypic and genotypic traits from the two main biotypes (known as 'classical' and 'El Tor'), suggesting that they are genetic hybrids. Classical and El Tor biotypes have been the most epidemiologically successful cholera strains during the past century, and it is believed that the new variants (which we call here 'atypical El Tor') are likely to develop successfully in a manner similar to these biotypes. Here, we describe recent advances in our understanding of the epidemiology and evolution of the atypical El Tor strains.
Collapse
Affiliation(s)
- Ashrafus Safa
- Department of Biology and Chemistry and MERIT, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR
| | | | | |
Collapse
|
175
|
Nelson EJ, Harris JB, Morris JG, Calderwood SB, Camilli A. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol 2009; 7:693-702. [PMID: 19756008 PMCID: PMC3842031 DOI: 10.1038/nrmicro2204] [Citation(s) in RCA: 343] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Zimbabwe offers the most recent example of the tragedy that befalls a country and its people when cholera strikes. The 2008-2009 outbreak rapidly spread across every province and brought rates of mortality similar to those witnessed as a consequence of cholera infections a hundred years ago. In this Review we highlight the advances that will help to unravel how interactions between the host, the bacterial pathogen and the lytic bacteriophage might propel and quench cholera outbreaks in endemic settings and in emergent epidemic regions such as Zimbabwe.
Collapse
Affiliation(s)
- Eric J Nelson
- Howard Hughes Medical Institute, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
176
|
Bertuzzo E, Casagrandi R, Gatto M, Rodriguez-Iturbe I, Rinaldo A. On spatially explicit models of cholera epidemics. J R Soc Interface 2009; 7:321-33. [PMID: 19605400 DOI: 10.1098/rsif.2009.0204] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We generalize a recently proposed model for cholera epidemics that accounts for local communities of susceptibles and infectives in a spatially explicit arrangement of nodes linked by networks having different topologies. The vehicle of infection (Vibrio cholerae) is transported through the network links that are thought of as hydrological connections among susceptible communities. The mathematical tools used are borrowed from general schemes of reactive transport on river networks acting as the environmental matrix for the circulation and mixing of waterborne pathogens. Using the diffusion approximation, we analytically derive the speed of propagation for travelling fronts of epidemics on regular lattices (either one-dimensional or two-dimensional) endowed with uniform population density. Power laws are found that relate the propagation speed to the diffusion coefficient and the basic reproduction number. We numerically obtain the related, slower speed of epidemic spreading for more complex, yet realistic river structures such as Peano networks and optimal channel networks. The analysis of the limit case of uniformly distributed population sizes proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. To that extent, the ratio between spreading and disease outbreak time scales proves the crucial parameter. The relevance of our results lies in the major differences potentially arising between the predictions of spatially explicit models and traditional compartmental models of the susceptible-infected-recovered (SIR)-like type. Our results suggest that in many cases of real-life epidemiological interest, time scales of disease dynamics may trigger outbreaks that significantly depart from the predictions of compartmental models.
Collapse
Affiliation(s)
- E Bertuzzo
- Laboratory of Ecohydrology ECHO/ISTE/ENAC, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
177
|
Relationship of cholera incidence to El Niño and solar activity elucidated by time-series analysis. Epidemiol Infect 2009; 138:99-107. [DOI: 10.1017/s0950268809990203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYUsing time-series analysis, we investigated the monthly cholera incidence in Dhaka, Bangladesh during an 18-year period for its relationship to the sea surface temperature (SST) linked to El Niño, and to the sunspot number. Dominant periodic modes identified for cholera incidence were 11·0, 4·8, 3·5, 2·9, 1·6, 1·0 and 0·5 years. The majority of these modes, e.g. the 11·0-, 4·8-, 3·5-, 1·6- and 1·0-year modes, were essentially consistent with those obtained for the SST data (dominant modes: 5·1, 3·7, 2·5, 2·1, 1·5, 1·0 years) and the sunspot number data (dominant modes: 22·1, 11·1, 7·3, 4·8, 3·1 years). We confirmed that the variations of cholera incidence were synchronous with SSTs, and were inversely correlated to the sunspot numbers. These results suggest that the cholera incidence in Bangladesh may have been influenced by the occurrence of El Niño and also by the periodic change of solar activity.
Collapse
|
178
|
Das M, Bhowmick TS, Nandy RK, Nair GB, Sarkar BL. Surveillance of vibriophages reveals their role as biomonitoring agents in Kolkata. FEMS Microbiol Ecol 2009; 67:502-10. [DOI: 10.1111/j.1574-6941.2008.00634.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
179
|
Abd H, Saeed A, Weintraub A, Sandström G. Vibrio cholerae O139 requires neither capsule nor LPS O side chain to grow inside Acanthamoeba castellanii. J Med Microbiol 2009; 58:125-131. [PMID: 19074664 PMCID: PMC2884941 DOI: 10.1099/jmm.0.004721-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, has the ability to grow and survive in the aquatic free-living amoeba Acanthamoeba castellanii. The aim of the present study was to examine the ability of the clinical isolate V. cholerae O139 MO10 to grow in A. castellanii and to determine the effect of the bacterial capsule and LPS O side chain on intracellular growth. Results from co-cultivation, viable counts, a gentamicin assay, electron microscopy and statistical analysis showed that the association of V. cholerae O139 MO10 with A. castellanii did not inhibit growth of the amoeba, and enhanced growth and survival of V. cholerae O139 MO10 occurred. The wild-type V. cholerae O139 MO10 and a capsule mutant or capsule/LPS double mutant grew inside A. castellanii. Neither the capsule nor the LPS O side chain of V. cholerae O139 was found to play an important role in the interaction with A. castellanii, disclosing the ability of V. cholerae to multiply and survive inside A. castellanii, as well as the role of A. castellanii as an environmental host for V. cholerae.
Collapse
Affiliation(s)
- Hadi Abd
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | - Amir Saeed
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden.,Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | - Andrej Weintraub
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Gunnar Sandström
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden.,Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| |
Collapse
|
180
|
Incidence, virulence factors, and clonality among clinical strains of non-O1, non-O139 Vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, India. J Clin Microbiol 2009; 47:1087-95. [PMID: 19158257 DOI: 10.1128/jcm.02026-08] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The incidence of Vibrio cholerae non-O1, non-O139 strains from hospitalized patients with acute diarrhea constituted 27.4% (n = 54) of the total 197 V. cholerae strains isolated from patients in Kolkata, India, in 2003. Of 197 strains, 135 were identified as O1 serotype Ogawa and 2 were identified as O139. In the same time period, six O1 background rough strains that possessed all known virulence factors were identified. Serotype analysis of the non-O1, non-O139 strains placed 42 strains into 19 serogroups, while 12 remained O nontypeable (ONT); the existing serotyping scheme involved antisera to 206 serogroups. Detection of a good number of ONT strains suggested that additional serogroups have arisen that need to be added to the current serotyping scheme. The non-O1, non-O139 strains were nontoxigenic except for an O36 strain (SC124), which regulated expression of cholera toxin as O1 classical strains did. Additionally, strain SC124 carried alleles of tcpA and toxT that were different from those of the O1 counterpart, and these were also found in five clonally related strains belonging to different serogroups. Strains carrying tcpA exhibited higher colonization in an animal model compared to those lacking tcpA. PCR-based analyses revealed remarkable variations in the distribution of other virulence factors, including hlyA, rtxA, Vibrio seventh pandemic island I (VSP-I), VSP-II, and type III secretion system (TTSS). Most strains contained hlyA (87%) and rtxA (81.5%) and secreted cytotoxic factors when grown in vitro. Approximately one-third of the strains (31.5%) contained the TTSS gene cluster, and most of these strains were more motile and hemolytic against rabbit erythrocytes. Partial nucleotide sequence analysis of the TTSS-containing strains revealed silent nucleotide mutations within vcsN2 (type III secretion cytoplasmic ATPase), indicating functional conservation of the TTSS apparatus.
Collapse
|
181
|
Carrel M, Emch M, Streatfield PK, Yunus M. Spatio-temporal clustering of cholera: the impact of flood control in Matlab, Bangladesh, 1983-2003. Health Place 2009; 15:741-52. [PMID: 19217821 DOI: 10.1016/j.healthplace.2008.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 11/14/2008] [Accepted: 12/20/2008] [Indexed: 10/21/2022]
Abstract
Introducing flood control to an area of endemic waterborne diseases could have significant impacts on spatio-temporal occurrence of cholera. Using 21-year data from Bangladesh, we conducted cluster analysis to explore changes in spatial and temporal distribution of cholera incidence since the construction of flood control structures. Striking changes in temporal cluster patterns emerged, including a shift from dry-season to rainy-season clusters following flood protection and delayed clustering inside the protected areas. Spatial differences in pre-flood protection and post-protection cholera clusters are weaker. Changes in spatio-temporal cholera clustering, associated with implementation of flood protection strategies, could affect local cholera prevention efforts.
Collapse
Affiliation(s)
- Margaret Carrel
- Department of Geography, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
182
|
Orsi RH, Borowsky ML, Lauer P, Young SK, Nusbaum C, Galagan JE, Birren BW, Ivy RA, Sun Q, Graves LM, Swaminathan B, Wiedmann M. Short-term genome evolution of Listeria monocytogenes in a non-controlled environment. BMC Genomics 2008; 9:539. [PMID: 19014550 PMCID: PMC2642827 DOI: 10.1186/1471-2164-9-539] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 11/13/2008] [Indexed: 12/23/2022] Open
Abstract
Background While increasing data on bacterial evolution in controlled environments are available, our understanding of bacterial genome evolution in natural environments is limited. We thus performed full genome analyses on four Listeria monocytogenes, including human and food isolates from both a 1988 case of sporadic listeriosis and a 2000 listeriosis outbreak, which had been linked to contaminated food from a single processing facility. All four isolates had been shown to have identical subtypes, suggesting that a specific L. monocytogenes strain persisted in this processing plant over at least 12 years. While a genome sequence for the 1988 food isolate has been reported, we sequenced the genomes of the 1988 human isolate as well as a human and a food isolate from the 2000 outbreak to allow for comparative genome analyses. Results The two L. monocytogenes isolates from 1988 and the two isolates from 2000 had highly similar genome backbone sequences with very few single nucleotide (nt) polymorphisms (1 – 8 SNPs/isolate; confirmed by re-sequencing). While no genome rearrangements were identified in the backbone genome of the four isolates, a 42 kb prophage inserted in the chromosomal comK gene showed evidence for major genome rearrangements. The human-food isolate pair from each 1988 and 2000 had identical prophage sequence; however, there were significant differences in the prophage sequences between the 1988 and 2000 isolates. Diversification of this prophage appears to have been caused by multiple homologous recombination events or possibly prophage replacement. In addition, only the 2000 human isolate contained a plasmid, suggesting plasmid loss or acquisition events. Surprisingly, besides the polymorphisms found in the comK prophage, a single SNP in the tRNA Thr-4 prophage represents the only SNP that differentiates the 1988 isolates from the 2000 isolates. Conclusion Our data support the hypothesis that the 2000 human listeriosis outbreak was caused by a L. monocytogenes strain that persisted in a food processing facility over 12 years and show that genome sequencing is a valuable and feasible tool for retrospective epidemiological analyses. Short-term evolution of L. monocytogenes in non-controlled environments appears to involve limited diversification beyond plasmid gain or loss and prophage diversification, highlighting the importance of phages in bacterial evolution.
Collapse
Affiliation(s)
- Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Nelson EJ, Chowdhury A, Flynn J, Schild S, Bourassa L, Shao Y, LaRocque RC, Calderwood SB, Qadri F, Camilli A. Transmission of Vibrio cholerae is antagonized by lytic phage and entry into the aquatic environment. PLoS Pathog 2008; 4:e1000187. [PMID: 18949027 PMCID: PMC2563029 DOI: 10.1371/journal.ppat.1000187] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 09/24/2008] [Indexed: 11/21/2022] Open
Abstract
Cholera outbreaks are proposed to propagate in explosive cycles powered by hyperinfectious Vibrio cholerae and quenched by lytic vibriophage. However, studies to elucidate how these factors affect transmission are lacking because the field experiments are almost intractable. One reason for this is that V. cholerae loses the ability to culture upon transfer to pond water. This phenotype is called the active but non-culturable state (ABNC; an alternative term is viable but non-culturable) because these cells maintain the capacity for metabolic activity. ABNC bacteria may serve as the environmental reservoir for outbreaks but rigorous animal studies to test this hypothesis have not been conducted. In this project, we wanted to determine the relevance of ABNC cells to transmission as well as the impact lytic phage have on V. cholerae as the bacteria enter the ABNC state. Rice-water stool that naturally harbored lytic phage or in vitro derived V. cholerae were incubated in a pond microcosm, and the culturability, infectious dose, and transcriptome were assayed over 24 h. The data show that the major contributors to infection are culturable V. cholerae and not ABNC cells. Phage did not affect colonization immediately after shedding from the patients because the phage titer was too low. However, V. cholerae failed to colonize the small intestine after 24 h of incubation in pond water—the point when the phage and ABNC cell titers were highest. The transcriptional analysis traced the transformation into the non-infectious ABNC state and supports models for the adaptation to nutrient poor aquatic environments. Phage had an undetectable impact on this adaptation. Taken together, the rise of ABNC cells and lytic phage blocked transmission. Thus, there is a fitness advantage if V. cholerae can make a rapid transfer to the next host before these negative selective pressures compound in the aquatic environment. The biological factors that control the transmission of water-borne pathogens like Vibrio cholerae during outbreaks are ill defined. In this study, a molecular analysis of the active but non-culturable (ABNC) state of V. cholerae provides insights into the physiology of environmental adaptation. The ABNC state, lytic phage, and hyperinfectivity were concurrently followed as V. cholerae passaged from cholera patients to an aquatic reservoir. The relevance to transmission of each factor was weighed against the others. As the bacteria transitioned from the patient to pond water, there was a rapid decay into the ABNC state and a rise of lytic phage that compounded to block transmission in a mouse model. These two factors give reason for V. cholerae to make a quick transit through the environment and onto the next human host. Thus, in over-crowded locations with failed water infrastructure, the opportunity for fast transmission coupled with the increased infectivity and culturability of recently shed V. cholerae creates a charged setting for explosive cholera outbreaks.
Collapse
Affiliation(s)
- Eric J. Nelson
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | | | - James Flynn
- Tufts Expression Array Core (TEAC) Facility, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Stefan Schild
- Institut fuer Molekulare Biowissenschaften, Karl-Franzens-Universitaet Graz, Graz, Austria
| | - Lori Bourassa
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Yue Shao
- Tufts Expression Array Core (TEAC) Facility, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Andrew Camilli
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
184
|
Effect of phage on the infectivity of Vibrio cholerae and emergence of genetic variants. Infect Immun 2008; 76:5266-73. [PMID: 18794293 DOI: 10.1128/iai.00578-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seasonal epidemics of cholera in Bangladesh are self-limited in nature, presumably due to phage predation of the causative Vibrio cholerae during the late stage of an epidemic, when cholera patients excrete large quantities of phage in their stools. To further understand the mechanisms involved, we studied the effect of phage on the infectivity and survival of V. cholerae shed in stools. The 50% infectious dose of stool vibrios in infant mice was approximately 10-fold higher when the stools contained a phage (1.8 x 10(3) to 5.7 x 10(6) PFU/ml) than when stools did not contain a detectable phage. In competition assays in mice using a reference strain and phage-negative cholera stools, the infectivity of biofilm-like clumped cells was 3.9- to 115.9-fold higher than that of the corresponding planktonic cells. However, the difference in infectivity of these two cell populations in phage-positive stools was significantly less than that in phage-negative stools (P = 0.0006). Coculture of a phage and V. cholerae or dilutions of phage-positive cholera stools in nutrient medium, but not in environmental water, caused rapid emergence of phage-resistant derivatives of the bacteria, and these derivatives lost their O1 antigen. In cholera stools and in intestinal contents of mice prechallenged with a mixture of V. cholerae and phage, the bacteria remained completely phage susceptible, suggesting that the intestinal environment did not favor the emergence of phage-resistant derivatives that lost the O1 antigen. Our results indicate that phages lead to the collapse of epidemics by modulating the required infectious dose of the bacteria. Furthermore, the dominance of phage-resistant variants due to the bactericidal selective mechanism occurs rarely in natural settings, and the emerging variants are thus unable to sustain the ongoing epidemic.
Collapse
|
185
|
King AA, Ionides EL, Pascual M, Bouma MJ. Inapparent infections and cholera dynamics. Nature 2008; 454:877-80. [PMID: 18704085 DOI: 10.1038/nature07084] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 05/13/2008] [Indexed: 11/09/2022]
Abstract
In many infectious diseases, an unknown fraction of infections produce symptoms mild enough to go unrecorded, a fact that can seriously compromise the interpretation of epidemiological records. This is true for cholera, a pandemic bacterial disease, where estimates of the ratio of asymptomatic to symptomatic infections have ranged from 3 to 100 (refs 1-5). In the absence of direct evidence, understanding of fundamental aspects of cholera transmission, immunology and control has been based on assumptions about this ratio and about the immunological consequences of inapparent infections. Here we show that a model incorporating high asymptomatic ratio and rapidly waning immunity, with infection both from human and environmental sources, explains 50 yr of mortality data from 26 districts of Bengal, the pathogen's endemic home. We find that the asymptomatic ratio in cholera is far higher than had been previously supposed and that the immunity derived from mild infections wanes much more rapidly than earlier analyses have indicated. We find, too, that the environmental reservoir (free-living pathogen) is directly responsible for relatively few infections but that it may be critical to the disease's endemicity. Our results demonstrate that inapparent infections can hold the key to interpreting the patterns of disease outbreaks. New statistical methods, which allow rigorous maximum likelihood inference based on dynamical models incorporating multiple sources and outcomes of infection, seasonality, process noise, hidden variables and measurement error, make it possible to test more precise hypotheses and obtain unexpected results. Our experience suggests that the confrontation of time-series data with mechanistic models is likely to revise our understanding of the ecology of many infectious diseases.
Collapse
Affiliation(s)
- Aaron A King
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
186
|
Abstract
Biosecurity is emerging as a major global health priority for which innovative and unprecedented solutions are needed. Biosecurity is a challenging biocomplexity problem involving multifaceted processes such as interactions between humans and nonhuman biota, anthropogenic environmental and ecological factors, and socioeconomic and political pressures. Key to an effective biosecurity strategy will be fundamental understanding of evolutionary, anthropogenic and environmental driving forces at play in transmission and perpetuation of infectious diseases. Biosecurity solutions will depend on increased support of basic biomedical research and public education, enhanced healthcare preparedness, alternative strategies for ensuringsafety, and improved interagency cooperation regarding global health policy. © 2008 Wiley Periodicals, Inc. Complexity, 2008.
Collapse
|
187
|
Debarbieux L. [Experimental phage therapy in the beginning of the 21st century]. Med Mal Infect 2008; 38:421-5. [PMID: 18692973 DOI: 10.1016/j.medmal.2008.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 06/27/2008] [Indexed: 11/25/2022]
Abstract
Phage therapy was gradually abandoned in the middle of the 20th century, and the scientific community has since disregarded this therapeutic approach. Then, at the end of the 20th century, pushed by the necessity to find new solutions to the rapid increase of antibiotic resistant bacteria, some scientists came back to phage therapy. If between 1980 and 2000, the number of scientific articles was low, a substantial increase was noted over the past five years. This is a review of the most recent articles, pointing out new data and questions still to be addressed.
Collapse
Affiliation(s)
- L Debarbieux
- Département de microbiologie, unité de biologie moléculaire du gène chez les extrêmophiles, Institut Pasteur, 75724 Paris cedex 15, France.
| |
Collapse
|
188
|
Acquisition of classical CTX prophage from Vibrio cholerae O141 by El Tor strains aided by lytic phages and chitin-induced competence. Proc Natl Acad Sci U S A 2008; 105:11951-6. [PMID: 18689675 DOI: 10.1073/pnas.0805560105] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The El Tor biotype of Vibrio cholerae O1, causing the current seventh pandemic of cholera, has replaced the classical biotype, which caused the sixth pandemic. The CTX prophages encoding cholera toxin in the two biotypes have distinct repressor (rstR) genes. Recently, new variants of El Tor strains that carry the classical type (CTX(class)) prophage have emerged. These "hybrid" strains apparently originate through lateral gene transfer and recombination events. To explore possible donors of the CTX(class) prophage and its mode of transfer, we tested environmental V. cholerae isolates for the presence of CTX(class) prophage and mobility of the phage genome. Of the 272 environmental V. cholerae isolates tested, 6 were found to carry the CTX(class) prophage; all of these belonged to the O141 serogroup. These O141 strains were unable to produce infectious CTX(class) phage or to transmit the prophage to recipient strains in the mouse model of infection; however, the CTX(class) prophage was acquired by El Tor strains when cultured with the O141 strains in microcosms composed of filtered environmental water, a chitin substrate, and a V. cholerae O141-specific bacteriophage. The CTX(class) prophage either coexisted with or replaced the resident CTX(ET) prophage, resulting in El Tor strains with CTX genotypes similar to those of the naturally occurring hybrid strains. Our results support a model involving phages and natural chitin substrate in the emergence of new variants of pathogenic V. cholerae. Furthermore, the O141 strains apparently represent an alternative reservoir of the CTX(class) phage genome, because the classical V. cholerae O1 strains are possibly extinct.
Collapse
|
189
|
Emch M, Feldacker C, Islam MS, Ali M. Seasonality of cholera from 1974 to 2005: a review of global patterns. Int J Health Geogr 2008; 7:31. [PMID: 18570659 PMCID: PMC2467415 DOI: 10.1186/1476-072x-7-31] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 06/20/2008] [Indexed: 11/16/2022] Open
Abstract
Background The seasonality of cholera is described in various study areas throughout the world. However, no study examines how temporal cycles of the disease vary around the world or reviews its hypothesized causes. This paper reviews the literature on the seasonality of cholera and describes its temporal cycles by compiling and analyzing 32 years of global cholera data. This paper also provides a detailed literature review on regional patterns and environmental and climatic drivers of cholera patterns. Data, Methods, and Results Cholera data are compiled from 1974 to 2005 from the World Health Organization Weekly Epidemiological Reports, a database that includes all reported cholera cases in 140 countries. The data are analyzed to measure whether season, latitude, and their interaction are significantly associated with the country-level number of outbreaks in each of the 12 preceding months using separate negative binomial regression models for northern, southern, and combined hemispheres. Likelihood ratios tests are used to determine the model of best fit. The results suggest that cholera outbreaks demonstrate seasonal patterns in higher absolute latitudes, but closer to the equator, cholera outbreaks do not follow a clear seasonal pattern. Conclusion The findings suggest that environmental and climatic factors partially control the temporal variability of cholera. These results also indirectly contribute to the growing debate about the effects of climate change and global warming. As climate change threatens to increase global temperature, resulting rises in sea levels and temperatures may influence the temporal fluctuations of cholera, potentially increasing the frequency and duration of cholera outbreaks.
Collapse
Affiliation(s)
- Michael Emch
- Department of Geography, University of North Carolina-Chapel Hill, USA.
| | | | | | | |
Collapse
|
190
|
Codeço CT, Lele S, Pascual M, Bouma M, Ko AI. A stochastic model for ecological systems with strong nonlinear response to environmental drivers: application to two water-borne diseases. J R Soc Interface 2008; 5:247-52. [PMID: 17698477 PMCID: PMC2705977 DOI: 10.1098/rsif.2007.1135] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ecological systems with threshold behaviour show drastic shifts in population abundance or species diversity in response to small variation in critical parameters. Examples of threshold behaviour arise in resource competition theory, epidemiological theory and environmentally driven population dynamics, to name a few. Although expected from theory, thresholds may be difficult to detect in real datasets due to stochasticity, finite population size and confounding effects that soften the observed shifts and introduce variability in the data. Here, we propose a modelling framework for threshold responses to environmental drivers that allows for a flexible treatment of the transition between regimes, including variation in the sharpness of the transition and the variance of the response. The model assumes two underlying stochastic processes whose mixture determines the system's response. For environmentally driven systems, the mixture is a function of an environmental covariate and the response may exhibit strong nonlinearity. When applied to two datasets for water-borne diseases, the model was able to capture the effect of rainfall on the mean number of cases as well as the variance. A quantitative description of this kind of threshold behaviour is of more general application to predict the response of ecosystems and human health to climate change.
Collapse
Affiliation(s)
- Claudia Torres Codeço
- Oswaldo Cruz Foundation, Avenida Brasil, 4365, Residência Oficial, Rio de Janeiro, RJ 21045-900, Brazil.
| | | | | | | | | |
Collapse
|
191
|
|
192
|
Allison HE. Stx-phages: drivers and mediators of the evolution of STEC and STEC-like pathogens. Future Microbiol 2007; 2:165-74. [PMID: 17661653 DOI: 10.2217/17460913.2.2.165] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteriophages, also known as phages, are viruses that infect bacteria. Until recently they have been ignored by most of the scientific community, but their impact upon our world is enormous. They are the most abundant lifeform on the globe and drive the diversity and abundance of bacteria around us, including, in many instances, the pathogenic profiles of many of mankind's most feared bacterial pathogens. This article focuses on how a group of bacteriophages, Stx-phages, which carry the genes encoding Shiga toxin, have driven and are driving the emergence of Shiga toxin-producing pathogens such as the infamous Escherichia coli O157:H7. Since the emergence of this foodborne pathogen as a cause of significant human disease in 1982, more than 500 different serogroups of E. coli have been reported to produce Shiga toxin, as well as a few other organisms. These events and many more are all controlled by the biology of Stx-phages.
Collapse
Affiliation(s)
- Heather E Allison
- University of Liverpool, School of Biological Sciences, Division of Integrative Biology, BioSciences Building, Liverpool, Merseyside, UK.
| |
Collapse
|
193
|
Complexity of rice-water stool from patients with Vibrio cholerae plays a role in the transmission of infectious diarrhea. Proc Natl Acad Sci U S A 2007; 104:19091-6. [PMID: 18024592 DOI: 10.1073/pnas.0706352104] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
At the International Centre for Diarrhoeal Disease Research, Bangladesh, one-half of the rice-water stool samples that were culture-positive for Vibrio cholerae did not contain motile V. cholerae by standard darkfield microscopy and were defined as darkfield-negative (DF(-)). We evaluated the host and microbial factors associated with DF status, as well as the impact of DF status on transmission. Viable counts of V. cholerae in DF(-) stools were three logs lower than in DF(+) stools, although DF(-) and DF(+) stools had similar direct counts of V. cholerae by microscopy. In DF(-) samples, non-V. cholerae bacteria outnumbered V. cholerae 10:1. Lytic V. cholerae bacteriophage were present in 90% of DF(-) samples compared with 35% of DF(+) samples, suggesting that bacteriophage may limit culture-positive patients from producing DF(+) stools. V. cholerae in DF(-) and DF(+) samples were found both planktonically and in distinct nonplanktonic populations; the distribution of organisms between these compartments did not differ appreciably between DF(-) and DF(+) stools. This biology may impact transmission because epidemiological data suggested that household contacts of a DF(+) index case were at greater risk of infection with V. cholerae. We propose a model in which V. cholerae multiply in the small intestine to produce a fluid niche that is dominated by V. cholerae. If lytic phage are present, viable counts of V. cholerae drop, stools become DF(-), other microorganisms bloom, and cholera transmission is reduced.
Collapse
|
194
|
Shakhnovich EA, Sturtevant D, Mekalanos JJ. Molecular mechanisms of virstatin resistance by non-O1/non-O139 strains of Vibrio cholerae. Mol Microbiol 2007; 66:1331-41. [DOI: 10.1111/j.1365-2958.2007.05984.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
195
|
Gupta SK, Sheikh MA, Islam MS, Rahman KS, Jahan N, Rahman MM, Hoekstra RM, Johnston R, Ram PK, Luby S. Usefulness of the hydrogen sulfide test for assessment of water quality in Bangladesh. J Appl Microbiol 2007; 104:388-95. [PMID: 17922823 DOI: 10.1111/j.1365-2672.2007.03562.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM To evaluate the usefulness of the hydrogen sulfide (H(2)S) test for assessing water quality in Bangladesh. METHODS AND RESULTS We tested 382 water samples from a variety of sources using locally produced H(2)S test kits and laboratory-based membrane filtration for the detection of Escherichia coli. Compared with membrane filtration, H(2)S tests, when incubated for 24 h, had both a sensitivity and positive predictive value (PPV) of <40% when analysis was restricted to water samples with E. coli levels below 100 colony forming units (CFU) per 100 ml. In contrast, for E. coli levels from 1000 to 9999 CFU per 100 ml, sensitivity was 94% and PPV 88%; specificity was 97% and negative predictive value was 99%. CONCLUSIONS The hydrogen sulfide test, when incubated at 24 h, is a promising alternative for assessing water quality where E. coli levels may be high. An improved understanding of the incremental impact of contamination level on health is needed to better determine its usefulness. SIGNIFICANCE AND IMPACT OF THE STUDY The hydrogen sulfide test is inexpensive, easy to use and portable. Its use may allow rapid assessment of water quality in situations where cost or logistics prevent use of other testing methods, such as in remote areas or during flood and other natural disasters.
Collapse
Affiliation(s)
- S K Gupta
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Blokesch M, Schoolnik GK. Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLoS Pathog 2007; 3:e81. [PMID: 17559304 PMCID: PMC1891326 DOI: 10.1371/journal.ppat.0030081] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 04/19/2007] [Indexed: 11/18/2022] Open
Abstract
The environmental reservoirs for Vibrio cholerae are natural aquatic habitats, where it colonizes the chitinous exoskeletons of copepod molts. Growth of V. cholerae on a chitin surface induces competence for natural transformation, a mechanism for intra-species gene exchange. The antigenically diverse O-serogroup determinants of V. cholerae are encoded by a genetically variable biosynthetic cluster of genes that is flanked on either side by chromosomal regions that are conserved between different serogroups. To determine whether this genomic motif and chitin-induced natural transformation might enable the exchange of serogroup-specific gene clusters between different O serogroups of V. cholerae, a strain of V. cholerae O1 El Tor was co-cultured with a strain of V. cholerae O139 Bengal within a biofilm on the same chitin surface immersed in seawater, and O1-to-O139 transformants were obtained. Serogroup conversion of the O1 recipient by the O139 donor was demonstrated by comparative genomic hybridization, biochemical and serological characterization of the O-antigenic determinant, and resistance of O1-to-O139 transformants to bacteriolysis by a virulent O1-specific phage. Serogroup conversion was shown to have occurred as a single-step exchange of large fragments of DNA. Crossovers were localized to regions of homology common to other V. cholerae serogroups that flank serogroup-specific encoding sequences. This result and the successful serogroup conversion of an O1 strain by O37 genomic DNA indicate that chitin-induced natural transformation might be a common mechanism for serogroup conversion in aquatic habitats and for the emergence of V. cholerae variants that are better adapted for survival in environmental niches or more pathogenic for humans. The reservoirs of Vibrio cholerae are aquatic environments, where it attaches to the chitin-containing shells of small crustaceans. Chitin serves as a nutrient for V. cholerae and it induces natural transformation, a process by which it acquires new genes from other microbes in the same habitat. The most compelling consequence of a V. cholerae gene acquisition event occurred in 1992 when a vast cholera epidemic erupted in India and Bangladesh and spread through Asia. Genetic analysis showed that this outbreak was due to the acquisition of a gene cluster that converted the ancestral V. cholerae O1 El Tor serogroup to an entirely new serogroup, designated O139 Bengal. This report shows that acquisition of the O139 gene cluster by an O1 El Tor strain can be mediated by natural transformation and that this can occur within a community of bacteria living on a chitin surface. The O139 derivatives of this transformation event were not killed by bacteriophages that attack O1 strains, explaining in part why O139 strains have replaced O1 strains in some Asian water sources. These results also illustrate how a combination of genetic and ecological factors can lead to the emergence of new pathogenic microbes in environmental reservoirs.
Collapse
Affiliation(s)
- Melanie Blokesch
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gary K Schoolnik
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
197
|
Zuckerman JN, Rombo L, Fisch A. The true burden and risk of cholera: implications for prevention and control. THE LANCET. INFECTIOUS DISEASES 2007; 7:521-30. [PMID: 17584531 DOI: 10.1016/s1473-3099(07)70138-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cholera is a substantial health burden on the developing world and is endemic in Africa, Asia, South America, and Central America. The exact scale of the problem is uncertain because of limitations in existing surveillance systems, differences in reporting procedures, and failure to report cholera to WHO; official figures are likely to greatly underestimate the true prevalence of the disease. We have identified, through extensive literature searches, additional outbreaks of cholera to those reported to WHO, many of which originated from the Indian subcontinent and southeast Asia. Such underestimation of cholera can have important implications for decisions on provision of health interventions for indigenous populations, and on risk assessments for travellers. Furthermore, until recently, it has not been possible to implement public-health interventions in low-income countries to eliminate disease, and the prevention of cholera in travellers has been limited to restrictive guidelines. However, a vaccine against cholera is now available that has proven efficacy and tolerability in mass vaccination campaigns in low-income countries, and among travellers.
Collapse
Affiliation(s)
- Jane N Zuckerman
- Academic Centre for Travel Medicine and Vaccines, WHO Collaborating Centre for Travel Medicine, Royal Free and University College Medical School, London, UK.
| | | | | |
Collapse
|
198
|
Mitra K, Ghosh AN. Characterization of Vibrio cholerae O1 ElTor typing phage S5. Arch Virol 2007; 152:1775-86. [PMID: 17610123 DOI: 10.1007/s00705-007-1021-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 06/05/2007] [Indexed: 11/26/2022]
Abstract
S5 (ATCC No. 51352-B2), a Vibrio cholerae O1 ElTor typing phage was characterized. The growth characteristics and inactivation kinetics (thermal, UV and pH) of this lytic phage were investigated. Phage morphology was examined by electron microscopy and was classified as belonging to the family Podoviridae. The S5 phage genome is shown to be a linear double-stranded 39-kb-long DNA as determined by electron microscopy and restriction digestion. Partial denaturation maps were constructed and were used to show that the DNA is non-permuted and terminally redundant. The replication origin of this T7-like phage was visualized by electron microscopy. The polarity of packaging of S5 DNA in the phage head was determined. SDS-PAGE of phage S5 shows two major structural polypeptides of 50 and 42 kDa. A 3D structure of the phage head was reconstructed at a resolution of 37 A using Cryo-EM and a single-particle reconstruction technique.
Collapse
Affiliation(s)
- K Mitra
- Division of Electron Microscopy, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
199
|
Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol 2007; 5:e177. [PMID: 17594176 PMCID: PMC1896187 DOI: 10.1371/journal.pbio.0050177] [Citation(s) in RCA: 1966] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 05/04/2007] [Indexed: 11/25/2022] Open
Abstract
Almost immediately after a human being is born, so too is a new microbial ecosystem, one that resides in that person's gastrointestinal tract. Although it is a universal and integral part of human biology, the temporal progression of this process, the sources of the microbes that make up the ecosystem, how and why it varies from one infant to another, and how the composition of this ecosystem influences human physiology, development, and disease are still poorly understood. As a step toward systematically investigating these questions, we designed a microarray to detect and quantitate the small subunit ribosomal RNA (SSU rRNA) gene sequences of most currently recognized species and taxonomic groups of bacteria. We used this microarray, along with sequencing of cloned libraries of PCR-amplified SSU rDNA, to profile the microbial communities in an average of 26 stool samples each from 14 healthy, full-term human infants, including a pair of dizygotic twins, beginning with the first stool after birth and continuing at defined intervals throughout the first year of life. To investigate possible origins of the infant microbiota, we also profiled vaginal and milk samples from most of the mothers, and stool samples from all of the mothers, most of the fathers, and two siblings. The composition and temporal patterns of the microbial communities varied widely from baby to baby. Despite considerable temporal variation, the distinct features of each baby's microbial community were recognizable for intervals of weeks to months. The strikingly parallel temporal patterns of the twins suggested that incidental environmental exposures play a major role in determining the distinctive characteristics of the microbial community in each baby. By the end of the first year of life, the idiosyncratic microbial ecosystems in each baby, although still distinct, had converged toward a profile characteristic of the adult gastrointestinal tract. It has been recognized for nearly a century that human beings are inhabited by a remarkably dense and diverse microbial ecosystem, yet we are only just beginning to understand and appreciate the many roles that these microbes play in human health and development. Knowing the composition of this ecosystem is a crucial step toward understanding its roles. In this study, we designed and applied a ribosomal DNA microarray-based approach to trace the development of the intestinal flora in 14 healthy, full-term infants over the first year of life. We found that the composition and temporal patterns of the microbial communities varied widely from baby to baby, supporting a broader definition of healthy colonization than previously recognized. By one year of age, the babies retained their uniqueness but had converged toward a profile characteristic of the adult gastrointestinal tract. The composition and temporal patterns of development of the intestinal microbiota in a pair of fraternal twins were strikingly similar, suggesting that genetic and environmental factors shape our gut microbiota in a reproducible way. Microarray profiling of the microbial communities of infant guts throughout the first year shows initial variation then convergence on the adult flora, providing new insight into this human ecosystem.
Collapse
Affiliation(s)
- Chana Palmer
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Elisabeth M Bik
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Daniel B DiGiulio
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - David A Relman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Patrick O Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
200
|
|