151
|
Development of Janus Particles as Potential Drug Delivery Systems for Diabetes Treatment and Antimicrobial Applications. Pharmaceutics 2023; 15:pharmaceutics15020423. [PMID: 36839746 PMCID: PMC9967574 DOI: 10.3390/pharmaceutics15020423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Janus particles have emerged as a novel and smart material that could improve pharmaceutical formulation, drug delivery, and theranostics. Janus particles have two distinct compartments that differ in functionality, physicochemical properties, and morphological characteristics, among other conventional particles. Recently, Janus particles have attracted considerable attention as effective particulate drug delivery systems as they can accommodate two opposing pharmaceutical agents that can be engineered at the molecular level to achieve better target affinity, lower drug dosage to achieve a therapeutic effect, and controlled drug release with improved pharmacokinetics and pharmacodynamics. This article discusses the development of Janus particles for tailored and improved delivery of pharmaceutical agents for diabetes treatment and antimicrobial applications. It provides an account of advances in the synthesis of Janus particles from various materials using different approaches. It appraises Janus particles as a promising particulate system with the potential to improve conventional delivery systems, providing a better loading capacity and targeting specificity whilst promoting multi-drugs loading and single-dose-drug administration.
Collapse
|
152
|
Wahab S, Ghazwani M, Hani U, Hakami AR, Almehizia AA, Ahmad W, Ahmad MZ, Alam P, Annadurai S. Nanomaterials-Based Novel Immune Strategies in Clinical Translation for Cancer Therapy. Molecules 2023; 28:molecules28031216. [PMID: 36770883 PMCID: PMC9920693 DOI: 10.3390/molecules28031216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Immunotherapy shows a lot of promise for addressing the problems with traditional cancer treatments. Researchers and clinicians are working to create innovative immunological techniques for cancer detection and treatment that are more selective and have lower toxicity. An emerging field in cancer therapy, immunomodulation offers patients an alternate approach to treating cancer. These therapies use the host's natural defensive systems to identify and remove malignant cells in a targeted manner. Cancer treatment is now undergoing somewhat of a revolution due to recent developments in nanotechnology. Diverse nanomaterials (NMs) have been employed to overcome the limits of conventional anti-cancer treatments such as cytotoxic, surgery, radiation, and chemotherapy. Aside from that, NMs could interact with live cells and influence immune responses. In contrast, unexpected adverse effects such as necrosis, hypersensitivity, and inflammation might result from the immune system (IS)'s interaction with NMs. Therefore, to ensure the efficacy of immunomodulatory nanomaterials, it is essential to have a comprehensive understanding of the intricate interplay that exists between the IS and NMs. This review intends to present an overview of the current achievements, challenges, and improvements in using immunomodulatory nanomaterials (iNMs) for cancer therapy, with an emphasis on elucidating the mechanisms involved in the interaction between NMs and the immune system of the host.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
- Correspondence: or (S.W.); (P.A.)
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Abdulrahim R. Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: or (S.W.); (P.A.)
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
153
|
Cai X, Jin M, Yao L, He B, Ahmed S, Safdar W, Ahmad I, Cheng DB, Lei Z, Sun T. Physicochemical properties, pharmacokinetics, toxicology and application of nanocarriers. J Mater Chem B 2023; 11:716-733. [PMID: 36594785 DOI: 10.1039/d2tb02001g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a promising delivery nanosystem for drug controlled-release, nanocarriers (NCs) have been investigated widely. Although various studies have concentrated on the preparation and characterization of nanoparticles (NPs), clinical applications are rarely reported, due to the unclear distribution, absorption, metabolism, toxicology processes and drug release mechanism. The clinical application of NCs is therefore still a long way off. This review describes the effects of the properties of NCs (including size, shape, surface properties, porosity, elasticity and so on) on pharmacological and toxicological behaviours in vivo and medical applications. Moreover, this study is intended to help the readers understand the behaviours and mechanisms of NCs and positively face the challenges caused by the variety of complicated and limited processes of NCs in vivo. Importantly, this article provides some strategies for the clinical application of NCs and may provide ideas to enhance the therapeutic efficacy of NCs without increasing the toxicology, by introducing tracing technology, which can be more suitable in contributing to the development of safety and efficacy of NCs and the growth of nanotechnology.
Collapse
Affiliation(s)
- Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Longfukang Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, China
| | - Saeed Ahmed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Waseem Safdar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Ijaz Ahmad
- Department of Animal Health, University of Agriculture, Peshawar, Pakistan
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China. .,Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
154
|
Qiao S, Li S, Song Q, Liu B. Shape-Tunable Biconcave Disc-Like Polymer Particles by Swelling-Induced Phase Separation of Seeded Particles with Hydrophilic Shells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1190-1197. [PMID: 36621841 DOI: 10.1021/acs.langmuir.2c02995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anisotropic shape-tunable polymer particles have gained significant attention for their wide applications, and their performances are usually strongly correlated to their shapes. In contrast to convex particles, the synthesis of highly uniform concave polymer particles remains a great challenge. Here, we present a facile and effective route to synthesize biconcave polystyrene (PS) discs by swelling-induced phase separation of hydrophilically modified PS microspheres and report an unexpected finding that even a tiny amount of hydrophilic units that were incorporated into PS microspheres can significantly change the shape of phase interfaces, resulting in the transformation of disc shapes from convex to flat to concave. This is realized by several typical hydrophilic monomers, such as sodium styrene sulfonate (NaSS), acrylic acid (AA), or (2-(methacryloyloxy)ethyl)trimethylammonium chloride (METAC). The effect of the distribution of hydrophilic units in microspheres was investigated, and the mechanism of shape tuning has been discussed. The curvatures of the bottom surfaces of discs show a strong correlation to the content of hydrophilic units. In particular, we emphasize that the shape control method is general since it does not depend on specific hydrophilic units. This research paves the way for precisely structuring polymer particle shapes, which is important for polymer particles to be used for self-assembly, diffusion, rheology, transport, filler, and many other applications.
Collapse
Affiliation(s)
- Shuoyuan Qiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100149, China
| | - Shanshan Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100149, China
| | - Qing Song
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100149, China
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100149, China
| |
Collapse
|
155
|
Shastri DH, Silva AC, Almeida H. Ocular Delivery of Therapeutic Proteins: A Review. Pharmaceutics 2023; 15:pharmaceutics15010205. [PMID: 36678834 PMCID: PMC9864358 DOI: 10.3390/pharmaceutics15010205] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Therapeutic proteins, including monoclonal antibodies, single chain variable fragment (ScFv), crystallizable fragment (Fc), and fragment antigen binding (Fab), have accounted for one-third of all drugs on the world market. In particular, these medicines have been widely used in ocular therapies in the treatment of various diseases, such as age-related macular degeneration, corneal neovascularization, diabetic retinopathy, and retinal vein occlusion. However, the formulation of these biomacromolecules is challenging due to their high molecular weight, complex structure, instability, short half-life, enzymatic degradation, and immunogenicity, which leads to the failure of therapies. Various efforts have been made to overcome the ocular barriers, providing effective delivery of therapeutic proteins, such as altering the protein structure or including it in new delivery systems. These strategies are not only cost-effective and beneficial to patients but have also been shown to allow for fewer drug side effects. In this review, we discuss several factors that affect the design of formulations and the delivery of therapeutic proteins to ocular tissues, such as the use of injectable micro/nanocarriers, hydrogels, implants, iontophoresis, cell-based therapy, and combination techniques. In addition, other approaches are briefly discussed, related to the structural modification of these proteins, improving their bioavailability in the posterior segments of the eye without affecting their stability. Future research should be conducted toward the development of more effective, stable, noninvasive, and cost-effective formulations for the ocular delivery of therapeutic proteins. In addition, more insights into preclinical to clinical translation are needed.
Collapse
Affiliation(s)
- Divyesh H. Shastri
- Department of Pharmaceutics & Pharmaceutical Technology, K.B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gandhinagar 382016, India
- Correspondence:
| | - Ana Catarina Silva
- FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Hugo Almeida
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mesosystem Investigação & Investimentos by Spinpark, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
156
|
Ayala YA, Omidvar R, Römer W, Rohrbach A. Thermal fluctuations of the lipid membrane determine particle uptake into Giant Unilamellar Vesicles. Nat Commun 2023; 14:65. [PMID: 36599837 PMCID: PMC9813155 DOI: 10.1038/s41467-022-35302-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/25/2022] [Indexed: 01/06/2023] Open
Abstract
Phagocytic particle uptake is crucial for the fate of both living cells and pathogens. Invading particles have to overcome fluctuating lipid membranes as the first physical barrier. However, the energy and the role of the fluctuation-based particle-membrane interactions during particle uptake are not understood. We tackle this problem by indenting the membrane of differently composed Giant Unilamellar Vesicles (GUVs) with optically trapped particles until particle uptake. By continuous 1 MHz tracking and autocorrelating the particle's positions within 30µs delays for different indentations, the fluctuations' amplitude, the damping, the mean forces, and the energy profiles were obtained. Remarkably, the uptake energy into a GUV becomes predictable since it increases for smaller fluctuation amplitudes and longer relaxation time. Our observations could be explained by a mathematical model based on continuous suppression of fluctuation modes. Hence, the reduced particle uptake energy for protein-ligand interactions LecA-Gb3 or Biotin-Streptavidin results also from pronounced, low-friction membrane fluctuations.
Collapse
Affiliation(s)
- Yareni A Ayala
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Köhler-Allee 102, 79110, Freiburg, Germany
| | - Ramin Omidvar
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104, Freiburg, Germany
| | - Alexander Rohrbach
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Köhler-Allee 102, 79110, Freiburg, Germany. .,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
| |
Collapse
|
157
|
Kaplan M, Öztürk K, Öztürk SC, Tavukçuoğlu E, Esendağlı G, Calis S. Effects of Particle Geometry for PLGA-Based Nanoparticles: Preparation and In Vitro/In Vivo Evaluation. Pharmaceutics 2023; 15:175. [PMID: 36678804 PMCID: PMC9862984 DOI: 10.3390/pharmaceutics15010175] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
The physicochemical properties (size, shape, zeta potential, porosity, elasticity, etc.) of nanocarriers influence their biological behavior directly, which may result in alterations of the therapeutic outcome. Understanding the effect of shape on the cellular interaction and biodistribution of intravenously injected particles could have fundamental importance for the rational design of drug delivery systems. In the present study, spherical, rod and elliptical disk-shaped PLGA nanoparticles were developed for examining systematically their behavior in vitro and in vivo. An important finding is that the release of the encapsulated human serum albumin (HSA) was significantly higher in spherical particles compared to rod and elliptical disks, indicating that the shape can make a difference. Safety studies showed that the toxicity of PLGA nanoparticles is not shape dependent in the studied concentration range. This study has pioneering findings on comparing spherical, rod and elliptical disk-shaped PLGA nanoparticles in terms of particle size, particle size distribution, colloidal stability, morphology, drug encapsulation, drug release, safety of nanoparticles, cellular uptake and biodistribution. Nude mice bearing non-small cell lung cancer were treated with 3 differently shaped nanoparticles, and the accumulation of nanoparticles in tumor tissue and other organs was not statistically different (p > 0.05). It was found that PLGA nanoparticles with 1.00, 4.0 ± 0.5, 7.5 ± 0.5 aspect ratios did not differ on total tumor accumulation in non-small cell lung cancer.
Collapse
Affiliation(s)
- Meryem Kaplan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Süleyman Demirel University, Isparta 32260, Turkey
| | - Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Süleyman Can Öztürk
- Centre for Laboratory Animals Research and Application, Hacettepe University, Ankara 06100, Turkey
| | - Ece Tavukçuoğlu
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara 06100, Turkey
| | - Güneş Esendağlı
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara 06100, Turkey
| | - Sema Calis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
158
|
Prashar A, Gimenez MC, Moussaoui S, Khan IS, Terebiznik MR. Filamentous Bacteria as Targets to Study Phagocytosis. Methods Mol Biol 2023; 2692:91-107. [PMID: 37365463 DOI: 10.1007/978-1-0716-3338-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Filamentous targets are internalized via phagocytic cups that last for several minutes before closing to form a phagosome. This characteristic offers the possibility to study key events in phagocytosis with greater spatial and temporal resolution than is possible to achieve using spherical particles, for which the transition from a phagocytic cup to an enclosed phagosome occurs within a few seconds after particle attachment. In this chapter, we provide methodologies to prepare filamentous bacteria and describe how they can be used as targets to study different aspects of phagocytosis.
Collapse
Affiliation(s)
- Akriti Prashar
- Program in Cell Biology, Peter Gilgan Centre of Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maria Cecilia Gimenez
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Serene Moussaoui
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Iram Sobia Khan
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
159
|
Li J, Peng X, Tao J, Yu R, Lu W, Chen D, Teng Z, Weng L. Facile synthesis of triple-hybrid organosilica/manganese dioxide hybrid nanoparticles for glutathione-adaptive shape-morphing and improving cellular drug delivery. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
160
|
Dickson BH, Heit B. Analysis of Efferocytic Receptor Dynamics and Synapse Formation in a Frustrated Efferocytosis Model. Methods Mol Biol 2023; 2692:61-77. [PMID: 37365461 DOI: 10.1007/978-1-0716-3338-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Efferocytes express multiple receptors that mediate the recognition and engulfment of apoptotic cells through a process known as efferocytosis. Ligation of these receptors induces the formation of a structured efferocytic synapse that mediates the engulfment of the apoptotic cell by the efferocyte. The lateral diffusion of these receptors allows for clustering-mediated receptor activation and is central for the formation of the efferocytic synapse. This chapter describes a single particle tracking protocol to analyze the diffusion of efferocytic receptors within a frustrated efferocytosis model. This enables high-resolution tracking of efferocytic receptors throughout synapse formation, allowing the user to simultaneously quantify synapse formation and the dynamics of receptor diffusion as the efferocytic synapse evolves.
Collapse
Affiliation(s)
- Brandon H Dickson
- Department of Microbiology and Immunology, and The Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, and The Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, Canada.
- Robarts Research Institute, London, ON, Canada.
| |
Collapse
|
161
|
Non-spherical Polymeric Nanocarriers for Therapeutics: The Effect of Shape on Biological Systems and Drug Delivery Properties. Pharmaceutics 2022; 15:pharmaceutics15010032. [PMID: 36678661 PMCID: PMC9865764 DOI: 10.3390/pharmaceutics15010032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
This review aims to highlight the importance of particle shape in the design of polymeric nanocarriers for drug delivery systems, along with their size, surface chemistry, density, and rigidity. Current manufacturing methods used to obtain non-spherical polymeric nanocarriers such as filomicelles or nanoworms, nanorods and nanodisks, are firstly described. Then, their interactions with biological barriers are presented, including how shape affects nanoparticle clearance, their biodistribution and targeting. Finally, their drug delivery properties and their therapeutic efficacy, both in vitro and in vivo, are discussed and compared with the characteristics of their spherical counterparts.
Collapse
|
162
|
Sadhu RK, Barger SR, Penič S, Iglič A, Krendel M, Gauthier NC, Gov NS. A theoretical model of efficient phagocytosis driven by curved membrane proteins and active cytoskeleton forces. SOFT MATTER 2022; 19:31-43. [PMID: 36472164 PMCID: PMC10078962 DOI: 10.1039/d2sm01152b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phagocytosis is the process of engulfment and internalization of comparatively large particles by cells, and plays a central role in the functioning of our immune system. We study the process of phagocytosis by considering a simplified coarse grained model of a three-dimensional vesicle, having a uniform adhesion interaction with a rigid particle, and containing curved membrane-bound protein complexes or curved membrane nano-domains, which in turn recruit active cytoskeletal forces. Complete engulfment is achieved when the bending energy cost of the vesicle is balanced by the gain in the adhesion energy. The presence of curved (convex) proteins reduces the bending energy cost by self-organizing with a higher density at the highly curved leading edge of the engulfing membrane, which forms the circular rim of the phagocytic cup that wraps around the particle. This allows the engulfment to occur at much smaller adhesion strength. When the curved membrane-bound protein complexes locally recruit actin polymerization machinery, which leads to outward forces being exerted on the membrane, we found that engulfment is achieved more quickly and at a lower protein density. We consider spherical and non-spherical particles and found that non-spherical particles are more difficult to engulf in comparison to the spherical particles of the same surface area. For non-spherical particles, the engulfment time crucially depends on the initial orientation of the particles with respect to the vesicle. Our model offers a mechanism for the spontaneous self-organization of the actin cytoskeleton at the phagocytic cup, in good agreement with recent high-resolution experimental observations.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Sarah R Barger
- Molecular, Cellular, Developmental Biology, Yale University, New Haven, USA
| | - Samo Penič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, USA
| | | | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
163
|
Zhang B, Galluzzi M, Zhou G, Yu H. A study of macrophage mechanical properties and functional modulation based on the Young's modulus of PLGA-PEG fibers. Biomater Sci 2022; 11:153-161. [PMID: 36385648 DOI: 10.1039/d2bm01351g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The immune response of macrophages plays an important role in defending against viral infection, tumor deterioration and repairing of contused tissue. Macrophage functional differentiation induced by nanodrugs is the leading edge of current research, but nanodrugs have toxic side effects, and the influence of their physical properties on macrophages is not clear. Here we create an alternative way to modulate macrophage function through PLGA-PEG fibers' Young's modulus. Previously, we revealed that by controlling the Young's modulus of the fibers from kPa to MPa, all the fibers entered murine macrophage cells (RWA 264.7) in a similar manner, and based on that, we found that macrophages' mechanical properties were affected by the fibers' Young's modulus, that is, hard fibers with a Young's modulus of ∼1 MPa increased the cell average Young's modulus, but did not affect the cell shape, while soft fibers with a Young's modulus of ∼100 kPa decreased the cell average Young's modulus and modulated the cell shape to a more spherical one. On the other hand, only the soft fibers induced proinflammatory cytokine secretion, indicating an M1 macrophage functional modulation by low Young's modulus fibers. This study explored the mechanical properties of the interactions between PLGA-PEG fibers and cells, in particular, when guiding the direction of the modulation of macrophage function, which is of great significance for the applications of material biology in the biomedical field.
Collapse
Affiliation(s)
- Bokai Zhang
- DGENE (Dongjin) Bighealth (Shenzhen) Co., Ltd, P.R. China. .,BenHealth Biopharmaceutical (Shenzhen) Co., Ltd, P.R. China.,Materials and Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, Guangdong, China
| | - Massimiliano Galluzzi
- Materials and Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, Guangdong, China
| | - Guoqiao Zhou
- Materials and Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, Guangdong, China
| | - Haoyang Yu
- DGENE (Dongjin) Bighealth (Shenzhen) Co., Ltd, P.R. China. .,BenHealth Biopharmaceutical (Shenzhen) Co., Ltd, P.R. China
| |
Collapse
|
164
|
Zhang W, Taheri-Ledari R, Ganjali F, Mirmohammadi SS, Qazi FS, Saeidirad M, KashtiAray A, Zarei-Shokat S, Tian Y, Maleki A. Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: a review. RSC Adv 2022; 13:80-114. [PMID: 36605676 PMCID: PMC9764328 DOI: 10.1039/d2ra06888e] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
In the field of targeted drug delivery, the effects of size and morphology of drug nanocarriers are of great importance and need to be discussed in depth. To be concise, among all the various shapes of nanocarriers, rods and tubes with a narrow cross-section are the most preferred shapes for the penetration of a cell membrane. In this regard, several studies have focused on methods to produce nanorods and nanotubes with controlled optimized size and aspect ratio (AR). Additionally, a non-spherical orientation could affect the cellular uptake process while a tangent angle of less than 45° is better at penetrating the membrane, and Ω = 90° is beneficial. Moreover, these nanocarriers show different behaviors when confronting diverse cells whose fields should be investigated in future studies. In this survey, a comprehensive classification based on carrier shape is first submitted. Then, the most commonly used methods for control over the size and shape of the carriers are reviewed. Finally, influential factors on the cellular uptake and internalization processes and related analytical methods for evaluating this process are discussed.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University No. 37, Guoxue Alley Chengdu 610041 Sichuan Province P. R. China
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Seyedeh Shadi Mirmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Amir KashtiAray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Ye Tian
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University No. 14, 3rd Section of South Renmin Road Chengdu 610041 P. R. China
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| |
Collapse
|
165
|
Xu M, Liao Z, Liu Y, Guo S, Hu H, Chen T, Wu Y, Wan S, Zhou M, Lu M, Jiluo S, Yao L, Pu X, Wang S, Fan Q. Preparation and optimization of poly (lactic-co-glycolic acid) rod-shaped particles in nano size range for paclitaxel delivery. Front Bioeng Biotechnol 2022; 10:1103990. [PMID: 36588954 PMCID: PMC9800425 DOI: 10.3389/fbioe.2022.1103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Nanoparticle shape has been acknowledged as an important design parameter due to its influence on nanoparticle interaction with biological systems. However, there is lacking of simple and scalable preparation technique for drug loaded non-spherical polymeric nanoparticles for a long time, thus hindering the potential applications. Although our previous research has modified the traditional emulsion solvent evaporation technique by adding guest molecules to prepare non-spherical poly (lactic-co-glycolic acid) (PLGA) particles, it is difficult to obtain nano-sized rods with minor axis less than 200 nm, which may have great potential in cancer therapy. Herein, in present research, the two-step ESE method was used and optimized to prepare poly (lactic-co-glycolic acid) nanorods for paclitaxel delivery. Firstly, the single-factor experiment was used to screen the influence of multi-factors including type of guest molecules, concentration of guest molecules, emulsification method, surfactant concentration, oil volume, poly (lactic-co-glycolic acid) concentration on the size and shape to determine the range of variables; based on the above range, a multi-factor and multi-level orthogonal experiment was designed. The formula is evaluated by the rod fabrication yield and the aspect ratio of major axis to minor axis. The results showed that the yield of nanorods in the optimal formula was 99% and the aspect ratio was 5.35 ± 2.05 with the minor axis of 135.49 ± 72.66 nm, and major axis of 657.77 ± 307.63 nm. In addition, the anti-cancer drug paclitaxel was successfully encapsulated in PLGA nanorods by the same technique. Our results not only enrich the ESE technique for preparing small sized poly (lactic-co-glycolic acid) nanorods, but also envision the potential application of nanorods for targeted cancer therapy with the delivery of paclitaxel.
Collapse
Affiliation(s)
- Mengyao Xu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zuyue Liao
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Liu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Shiwei Guo
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Haiyang Hu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Tao Chen
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuesong Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Shengli Wan
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Muhe Lu
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Shiluo Jiluo
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lan Yao
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaofeng Pu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shurong Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China,*Correspondence: Shurong Wang, ; Qingze Fan,
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China,*Correspondence: Shurong Wang, ; Qingze Fan,
| |
Collapse
|
166
|
Guan J. A Theoretical Model for Phagocytic Capacity of Phagocytes. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jingjiao Guan
- Department of Chemical and Biomedical Engineering FAMU‐FSU College of Engineering Florida State University 2525 Pottsdamer Street Tallahassee FL 32310‐2870 USA
| |
Collapse
|
167
|
Francis EA, Xiao H, Teng LH, Heinrich V. Mechanisms of frustrated phagocytic spreading of human neutrophils on antibody-coated surfaces. Biophys J 2022; 121:4714-4728. [PMID: 36242516 PMCID: PMC9748254 DOI: 10.1016/j.bpj.2022.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
Complex motions of immune cells are an integral part of diapedesis, chemotaxis, phagocytosis, and other vital processes. To better understand how immune cells execute such motions, we present a detailed analysis of phagocytic spreading of human neutrophils on flat surfaces functionalized with different densities of immunoglobulin G (IgG) antibodies. We visualize the cell-substrate contact region at high resolution and without labels using reflection interference contrast microscopy and quantify how the area, shape, and position of the contact region evolves over time. We find that the likelihood of the cell commitment to spreading strongly depends on the surface density of IgG, but the rate at which the substrate-contact area of spreading cells increases does not. Validated by a theoretical companion study, our results resolve controversial notions about the mechanisms controlling cell spreading, establishing that active forces generated by the cytoskeleton rather than cell-substrate adhesion primarily drive cellular protrusion. Adhesion, on the other hand, aids phagocytic spreading by regulating the cell commitment to spreading, the maximum cell-substrate contact area, and the directional movement of the contact region.
Collapse
Affiliation(s)
- Emmet A Francis
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Hugh Xiao
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Lay Heng Teng
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California Davis, Davis, California.
| |
Collapse
|
168
|
Abell-King C, Costas A, Duggin IG, Söderström B. Bacterial filamentation during urinary tract infections. PLoS Pathog 2022; 18:e1010950. [PMID: 36454736 PMCID: PMC9714745 DOI: 10.1371/journal.ppat.1010950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Charlotte Abell-King
- Australian Institute for Microbiology and Infection, University of Technology Sydney, ULTIMO, Australia
| | - Ariana Costas
- Australian Institute for Microbiology and Infection, University of Technology Sydney, ULTIMO, Australia
| | - Iain G. Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, ULTIMO, Australia
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, ULTIMO, Australia
- * E-mail:
| |
Collapse
|
169
|
Maurya S, Srivastava R, Arfin S, Hawthorne S, Jha NK, Agrawal K, Raj S, Rathi B, Kumar A, Raj R, Agrawal S, Paiva-Santos AC, Malik AA, Dua K, Rana R, Ojha S, Jha SK, Sharma A, Kumar D, El-Zahaby SA, Nagar A. Exploring state-of-the-art advances in targeted nanomedicines for managing acute and chronic inflammatory lung diseases. Nanomedicine (Lond) 2022; 17:2245-2264. [PMID: 36975758 DOI: 10.2217/nnm-2021-0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Diagnosis and treatment of lung diseases pose serious challenges. Currently, diagnostic as well as therapeutic methods show poor efficacy toward drug-resistant bacterial infections, while chemotherapy causes toxicity and nonspecific delivery of drugs. Advanced treatment methods that cure lung-related diseases, by enabling drug bioavailability via nasal passages during mucosal formation, which interferes with drug penetration to targeted sites, are in demand. Nanotechnology confers several advantages. Currently, different nanoparticles, or their combinations, are being used to enhance targeted drug delivery. Nanomedicine, a combination of nanoparticles and therapeutic agents, that delivers drugs to targeted sites increases the bioavailability of drugs at these sites. Thus, nanotechnology is superior to conventional chemotherapeutic strategies. Here, the authors review the latest advancements in nanomedicine-based drug-delivery methods for managing acute and chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Sujata Maurya
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, 248007, India
| | - Rashi Srivastava
- Chemical & Biochemical Engineering, Indian Institute of Technology, Patna, 801106, India
| | - Saniya Arfin
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, 248007, India
| | - Susan Hawthorne
- SAAD Building, School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Kirti Agrawal
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, 248007, India
| | - Sibi Raj
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, 248007, India
| | - Brijesh Rathi
- Department of Chemistry, Hansraj College, Delhi University, New Delhi, 110007, Delhi, India
| | - Arun Kumar
- Mahavir Cancer Institute & Research Centre Patna, Bihar, 800002, India
| | - Riya Raj
- Department of Biochemistry, Bangalore University, Bangalore, 560056, Karnataka, India
| | - Sharad Agrawal
- Department of Life Sciences, School of Basic Science & Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Science & Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| | - Rakesh Rana
- MSD, HILLEMAN LABS, Analytical Division, New Delhi, 110062, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Department of Biotechnology Engineering & Food Technology, Chandigarh University, Mohali, 140413, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Ankur Sharma
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Cathedral Street, Glasgow, G10RE, Scotland, UK
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, 248007, India
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Amka Nagar
- Department of Life Sciences, School of Basic Science & Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
170
|
Combined Magnetic Hyperthermia and Photothermia with Polyelectrolyte/Gold-Coated Magnetic Nanorods. Polymers (Basel) 2022; 14:polym14224913. [PMID: 36433039 PMCID: PMC9693010 DOI: 10.3390/polym14224913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Magnetite nanorods (MNRs) are synthesized based on the use of hematite nanoparticles of the desired geometry and dimensions as templates. The nanorods are shown to be highly monodisperse, with a 5:1 axial ratio, and with a 275 nm long semiaxis. The MNRs are intended to be employed as magnetic hyperthermia and photothermia agents, and as drug vehicles. To achieve a better control of their photothermia response, the particles are coated with a layer of gold, after applying a branched polyethyleneimine (PEI, 2 kDa molecular weight) shell. Magnetic hyperthermia is performed by application of alternating magnetic fields with frequencies in the range 118-210 kHz and amplitudes up to 22 kA/m. Photothermia is carried out by subjecting the particles to a near-infrared (850 nm) laser, and three monochromatic lasers in the visible spectrum with wavelengths 480 nm, 505 nm, and 638 nm. Best results are obtained with the 505 nm laser, because of the proximity between this wavelength and that of the plasmon resonance. A so-called dual therapy is also tested, and the heating of the samples is found to be faster than with either method separately, so the strengths of the individual fields can be reduced. Due to toxicity concerns with PEI coatings, viability of human hepatoblastoma HepG2 cells was tested after contact with nanorod suspensions up to 500 µg/mL in concentration. It was found that the cell viability was indistinguishable from control systems, so the particles can be considered non-cytotoxic in vitro. Finally, the release of the antitumor drug doxorubicin is investigated for the first time in the presence of the two external fields, and of their combination, with a clear improvement in the rate of drug release in the latter case.
Collapse
|
171
|
Khosravanizadeh A, Sens P, Mohammad-Rafiee F. Role of particle local curvature in cellular wrapping. J R Soc Interface 2022; 19:20220462. [PMID: 36321371 PMCID: PMC9627444 DOI: 10.1098/rsif.2022.0462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular uptake through membranes plays an important role in adsorbing nutrients and fighting infection and can be used for nanomedicine developments. Endocytosis is one of the pathways of cellular uptake which associate with elastic deformation of the membrane wrapping around the foreign particle. The deformability of the membrane is strongly regulated by the presence of a cortical cytoskeleton placed underneath the membrane. It is shown that shape and orientation of the particles influence on their internalization. Here, we study the role of particle local curvature in cellular uptake by investigating the wrapping of an elastic membrane around a long cylindrical object with an elliptical cross-section. The membrane itself is adhered to a substrate mimicking the cytoskeleton. Membrane wrapping proceeds differently whether the initial contact occurs at the target's highly curved part (vertical) or along its long side (horizontal). We obtain a wrapping phase diagram as a function of the membrane-cytoskeleton and the membrane-target adhesion energy, which includes three distinct regimes (unwrapped, partially wrapped and fully wrapped), separated by two phase transitions. We also provide analytical expressions for the boundaries between the different regimes which confirm that the transitions strongly depend on the orientation and aspect ratio of the nanowire.
Collapse
Affiliation(s)
- Amir Khosravanizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris 75013, France
| | - Pierre Sens
- Institut Curie, PSL Research University, CNRS UMR 168, Paris, 75005 France
| | - Farshid Mohammad-Rafiee
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
172
|
Xu H, Nie W, Dai L, Luo R, Lin D, Zhang M, Zhang J, Gao F. Recent advances in natural polysaccharides-based controlled release nanosystems for anti-cancer phototherapy. Carbohydr Polym 2022; 301:120311. [DOI: 10.1016/j.carbpol.2022.120311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
173
|
DeFrates KG, Engström J, Sarma NA, Umar A, Shin J, Cheng J, Xie W, Pochan D, Omar AK, Messersmith PB. The influence of molecular design on structure-property relationships of a supramolecular polymer prodrug. Proc Natl Acad Sci U S A 2022; 119:e2208593119. [PMID: 36279462 PMCID: PMC9636931 DOI: 10.1073/pnas.2208593119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Supramolecular self-assemblies of hydrophilic macromolecules functionalized with hydrophobic, structure-directing components have long been used for drug delivery. In these systems, loading of poorly soluble compounds is typically achieved through physical encapsulation during or after formation of the supramolecular assembly, resulting in low encapsulation efficiencies and limited control over release kinetics, which are predominately governed by diffusion and carrier degradation. To overcome these limitations, amphiphilic prodrugs that leverage a hydrophobic drug as both the therapeutic and structure-directing component can be used to create supramolecular materials with higher loading and controlled-release kinetics using biodegradable or enzymatically cleavable linkers. Here, we report the design, synthesis, and characterization of a library of supramolecular polymer prodrugs based on poly(ethylene glycol) (PEG) and the proregenerative drug 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (DPCA). Structure-property relationships were elucidated through experimental characterization of prodrug behavior in both the wet and dry states using scattering techniques and electron microscopy and corroborated by coarse-grained modeling. Molecular architecture and the hydrophobic-to-hydrophilic ratio of PEG-DPCA conjugates strongly influenced their physical state in water, ranging from fully soluble to supramolecular spherical assemblies and nanofibers. Molecular design and supramolecular structure, in turn, were shown to dramatically alter hydrolytic and enzymatic release and cellular transport of DPCA. In addition to potentially expanding therapeutic options for DPCA through control of supramolecular assemblies, the design principles elaborated here may inform the development of other supramolecular prodrugs based on hydrophobic small-molecule compounds.
Collapse
Affiliation(s)
- Kelsey G. DeFrates
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Joakim Engström
- Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Nivedina A. Sarma
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Athiyya Umar
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Jisoo Shin
- Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Jing Cheng
- Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Weiran Xie
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
| | - Darrin Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
| | - Ahmad K. Omar
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Phillip B. Messersmith
- Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
174
|
Abo-Aziza FAM, Albarrak SM, Zaki AKA, El-Shafey SE. Tumor necrosis factor-alpha antibody labeled-polyethylene glycol-coated nanoparticles: A mesenchymal stem cells-based drug delivery system in the rat model of cisplatin-induced nephrotoxicity. Vet World 2022; 15:2475-2490. [DOI: 10.14202/vetworld.2022.2475-2490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: A delivery system consisting of bone marrow mesenchymal stem cells (MSCs) loaded with polyethylene glycol (PEG) coated superparamagnetic iron oxide nanoparticles (SPIONs) was constructed to treat a rat model of cisplatin (Cis)-induced nephrotoxicity with 1/10 of the common dose of anti-tumor necrosis factor-alpha (TNF-α) antibodies (infliximab).
Materials and Methods: Morphology, size, crystallinity, molecular structure, and magnetic properties of uncoated and PEG-coated SPIONs were analyzed. A delivery system consisting of MSCs containing infliximab-labeled PEG-coated SPIONs (Infliximab-PEG-SPIONs-MSCs) was generated and optimized before treatment. Fifty female Wistar rats were divided into five equal groups: Group 1: Untreated control; Group 2 (Cis): Rats were administered Cis through intraperitoneal (i.p.) injection (8 mg/kg) once a week for 4 weeks; Group 3 (Infliximab): Rats were injected once with infliximab (5 mg/kg), i.p. 3 days before Cis administration; Group 4 (Cis + MSCs): Rats were injected with Cis followed by an injection of 2 × 106 MSCs into the tail vein twice at a 1-week interval; and Group 5 (Cis + Infliximab (500 μg/kg)-PEG-SPIONs-MSCs): Rats were injected with the delivery system into the tail vein twice at a 1-week interval. Besides histological examination of the kidney, the Doppler ultrasound scanner was used to scan the kidney with the Gray-color-spectral mode.
Results: In vivo, intra-renal iron uptake indicates the traffic of the delivery system from venous blood to renal tissues. Cis-induced nephrotoxicity resulted in a significant increase in TNF-α and malondialdehyde (MDA) (p < 0.05), bilirubin, creatinine, and uric acid (p < 0.01) levels compared with the untreated control group. The different treatments used in this study resulted in the amelioration of some renal parameters. However, TNF-α levels significantly decreased in Cis + Infliximab and Cis + MSCs (p < 0.05) groups. The serum levels of MDA significantly decreased in Cis + Infliximab (p < 0.05), Cis + MSCs (p < 0.05), and Cis + Infliximab-PEG-SPIONs-MSCs (p < 0.01). Furthermore, the serum activities of antioxidant enzymes were significantly elevated in the Cis + MSCs and Cis + Infliximab-PEG-SPIONs-MSCs groups (p < 0.05) compared to the Cis-induced nephrotoxicity rat model.
Conclusion: With the support of the constructed MSCs-SPIONs infliximab delivery system, it will be possible to track and monitor cell homing after therapeutic application. This infliximab-loading system may help overcome some challenges regarding drug delivery to the target organ, optimize therapeutics' efficacy, and reduce the dose. The outcomes of the current study provide a better understanding of the potential of combining MSCs and antibodies-linked nanoparticles for the treatment of nephrotoxicity. However, further investigation is recommended using different types of other drugs. For new approaches development, we should evaluate whether existing toxicity analysis and risk evaluation strategies are reliable and enough for the variety and complexity of nanoparticles.
Collapse
Affiliation(s)
- Faten A. M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Saleh M. Albarrak
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdel-Kader A. Zaki
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia; Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
175
|
Al-Nemrawi NK, Darweesh RS, Al-shriem LA, Al-Qawasmi FS, Emran SO, Khafajah AS, Abu-Dalo MA. Polymeric Nanoparticles for Inhaled Vaccines. Polymers (Basel) 2022; 14:4450. [PMID: 36298030 PMCID: PMC9607145 DOI: 10.3390/polym14204450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
Many recent studies focus on the pulmonary delivery of vaccines as it is needle-free, safe, and effective. Inhaled vaccines enhance systemic and mucosal immunization but still faces many limitations that can be resolved using polymeric nanoparticles (PNPs). This review focuses on the use of properties of PNPs, specifically chitosan and PLGA to be used in the delivery of vaccines by inhalation. It also aims to highlight that PNPs have adjuvant properties by themselves that induce cellular and humeral immunogenicity. Further, different factors influence the behavior of PNP in vivo such as size, morphology, and charge are discussed. Finally, some of the primary challenges facing PNPs are reviewed including formulation instability, reproducibility, device-related factors, patient-related factors, and industrial-level scale-up. Herein, the most important variables of PNPs that shall be defined in any PNPs to be used for pulmonary delivery are defined. Further, this study focuses on the most popular polymers used for this purpose.
Collapse
Affiliation(s)
- Nusaiba K. Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Ruba S. Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Lubna A. Al-shriem
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Farah S. Al-Qawasmi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Sereen O. Emran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Areej S. Khafajah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Muna A. Abu-Dalo
- Department of Chemistry, Faculty of Science and Art, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
176
|
Daneshyan S, Sodeifian G. Utilization of CO 2 in supercritical conditions for the synthesis of cyclic poly (N-isopropylacrylamide) via emulsion and homogeneous reactions. Sci Rep 2022; 12:17459. [PMID: 36261542 PMCID: PMC9581902 DOI: 10.1038/s41598-022-19951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, cyclic poly (N-isopropylacrylamide) (cPNIPAAM) was synthesized in supercritical carbon dioxide (SC-CO2) using emulsion and homogeneous reactions for the first time. This was accomplished by applying free radical polymerization and nitroxide compounds to produce low molecular weight precursors in the SC-CO2 solvent. The cyclization reaction occurred in a homogeneous phase in the SC-CO2 solvent, with dimethylformamide (DMF) serving as a co-solvent for dissolving the linear precursor. This reaction was also conducted in emulsion of SC-CO2 in water. The effects of pressure and time on the morphology, molecular weight, and yield of a difunctionalized chain were investigated, where a higher pressure led to a higher yield. The maximum yield was 64% at 23 MPa, and the chain molecular weight (Mw) was 4368 (gr/mol). Additionally, a lower pressure reduced the solubility of materials (particularly terminator) in SC-CO2 and resulted in a chain with a higher molecular weight 9326 (gr/mol), leading to a lower conversion. Furthermore, the effect of cyclization reaction types on the properties of cyclic polymers was investigated. In cyclic reactions, the addition of DMF as a co-solvent resulted in the formation of a polymer with a high viscosity average molecular weight (Mv) and a high degree of cyclization (100%), whereas the CO2/water emulsion resulted in the formation of a polymer with a lower Mv and increased porosity. Polymers were characterized by 1HNMR, FTIR, DSC, TLC, GPC, and viscometry tests. The results were presented and thoroughly discussed.
Collapse
Affiliation(s)
- Sahar Daneshyan
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran.,Laboratory of Supercritical Fluids and Nanotechnology, University of Kashan, Kashan, 87317-53153, Iran
| | - Gholamhossein Sodeifian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran. .,Laboratory of Supercritical Fluids and Nanotechnology, University of Kashan, Kashan, 87317-53153, Iran.
| |
Collapse
|
177
|
Jasinski J, Wilde MV, Voelkl M, Jérôme V, Fröhlich T, Freitag R, Scheibel T. Tailor-Made Protein Corona Formation on Polystyrene Microparticles and its Effect on Epithelial Cell Uptake. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47277-47287. [PMID: 36194482 DOI: 10.1021/acsami.2c13987] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microplastic particles are pollutants in the environment with a potential impact on ecology and human health. As soon as microplastic particles get in contact with complex (biological) environments, they will be covered by an eco- and/or protein corona. In this contribution, protein corona formation was conducted under defined laboratory conditions on polystyrene (PS) microparticles to investigate the influence on surface properties, protein corona evolution, particle-cell interactions, and uptake in two murine epithelial cells. To direct protein corona formation, PS particles were preincubated with five model proteins, namely, bovine serum albumin (BSA), myoglobin, β-lactoglobulin, lysozyme, and fibrinogen. Subsequently, the single-protein-coated particles were incubated in a cell culture medium containing a cocktail of serum proteins to analyze changes in the protein corona profile as well as in the binding kinetics of the model proteins. Therein, we could show that the precoating step has a critical impact on the final composition of the protein corona. Yet, since proteins building the primary corona were still detectable after additional incubations in a protein-containing medium, backtracking of the particle's history is possible. Interestingly, whereas the precoating history significantly disturbs particle-cell interactions (PCIs), the cellular response (i.e., metabolic activity, MTT assay) stays unaffected. Of note, lysozyme precoating revealed one of the highest rates in PCI for both epithelial cell lines. Taken together, we could show that particle history has a significant impact on protein corona formation and subsequently on the interaction of particles with murine intestinal epithelial-like cells. However, as this study was limited to one cell type, further work is needed to assess if these observations can be generalized to other cell types.
Collapse
Affiliation(s)
- Julia Jasinski
- Biomaterials, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Magdalena V Wilde
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, D-81377 Munich, Germany
| | - Matthias Voelkl
- Process Biotechnology, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Thomas Fröhlich
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, D-81377 Munich, Germany
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, University of Bayreuth, D-95447 Bayreuth, Germany
- Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, D-95447 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, D-95447 Bayreuth, Germany
- Bayreuth Center for Material Science (BayMAT), University of Bayreuth, D-95447 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
178
|
Zhan L, Xiao C, Li C, Zhai J, Yang F, Piao J, Ning C, Zhou Z, Yu P, Qi S. Internal Wireless Electrical Stimulation from Piezoelectric Barium Titanate Nanoparticles as a New Strategy for the Treatment of Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45032-45041. [PMID: 36153948 DOI: 10.1021/acsami.2c12668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive BC subtype with a higher metastatic rate and a worse 5-year survival ratio than the other BC. It is an urgent need to develop a noninvasive treatment with high efficiency to resist TNBC cell proliferation and invasion. Internal wireless electric stimulation (ES) based on piezoelectric materials is an emerging noninvasive strategy, with adjustable ES intensity and excellent biosafety. In this study, three different barium titanate nanoparticles (BTNPs) with different crystal phases and piezoelectric properties were studied. Varying intensities of internal ES were generated from the three BTNPs (i.e., BTO, U-BTO, P-BTO). In vitro tests revealed that the internal ES from BTNPs was efficient at reducing the proliferative potential of cancer cells, particularly BC cells. In vitro experiments on MDA-MB-231, a typical TNBC cell line, further revealed that the internal wireless ES from BTNPs significantly inhibited cell growth and migration up to about 82% and 60%, respectively. In vivo evaluation of MDA-MB-231 tumor-bearing mice indicated that internal ES not only resisted almost 70% tumor growth but also significantly inhibited lung metastasis. More importantly, in vitro and in vivo studies demonstrated a favorable correlation between the anticancer impact and the intensities of ES. The underlying mechanism of MDA-MB-231 cell proliferation and metastasis inhibition caused by internal ES was also investigated. In summary, our results revealed the effect and mechanism of internal ES from piezoelectric nanoparticles on TNBC cell proliferation and migration regulation and proposed a promising noninvasive therapeutic strategy for TNBC with minimal side effects while exhibiting good therapeutic efficiency.
Collapse
Affiliation(s)
- Lizhen Zhan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Cairong Xiao
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Changhao Li
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Jinxia Zhai
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Fabang Yang
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Jinhua Piao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chengyun Ning
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
- China-Singapore International Joint Research Institute, Guangzhou 511365, China
| | - Zhengnan Zhou
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Peng Yu
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
- China-Singapore International Joint Research Institute, Guangzhou 511365, China
| | - Suijian Qi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
179
|
Gerelkhuu Z, Lee YI, Yoon TH. Upconversion Nanomaterials in Bioimaging and Biosensor Applications and Their Biological Response. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3470. [PMID: 36234598 PMCID: PMC9565472 DOI: 10.3390/nano12193470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In recent decades, upconversion nanomaterials (UCNMs) have attracted considerable research interest because of their unique optical properties, such as large anti-Stokes shifts, sharp emissions, non-photobleaching, and long lifetime. These unique properties make them ideal candidates for unified applications in biomedical fields, including drug delivery, bioimaging, biosensing, and photodynamic therapy for specific cancers. This review describes the general mechanisms of upconversion, synthesis methods, and potential applications in biology and their biological responses. Additionally, the biological toxicity of UCNMs is explained and summarized with the associated intracellular association mechanisms. Finally, the prospects and future challenges of UCNMs at the clinical level in biological applications are described, along with a summary of opportunity for biological as well as clinical applications of UCNMs.
Collapse
Affiliation(s)
- Zayakhuu Gerelkhuu
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
| | - Yong-Ill Lee
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 71408, Vietnam
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
180
|
Li R, Chen Z, Li J, Dai Z, Yu Y. Nano-drug delivery systems for T cell-based immunotherapy. NANO TODAY 2022; 46:101621. [DOI: 10.1016/j.nantod.2022.101621] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
181
|
Mehta N, Mahigir A, Veronis G, Gartia MR. Hyperspectral dark field optical microscopy for orientational imaging of a single plasmonic nanocube using a physics-based learning method. NANOSCALE ADVANCES 2022; 4:4094-4101. [PMID: 36285219 PMCID: PMC9514559 DOI: 10.1039/d2na00469k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Rotational dynamics at the molecular level could provide additional data regarding protein diffusion and cytoskeleton formation at the cellular level. Due to the isotropic emission pattern of fluorescence molecules, it is challenging to extract rotational information from them during imaging. Metal nanoparticles show a polarization-dependent response and could be used for sensing rotational motion. Nanoparticles as an orientation sensing probe offer bio-compatibility and robustness against photo-blinking and photo-bleaching compared to conventional fluorescent molecules. Previously, asymmetric geometrical structures such as nanorods have been used for orientational imaging. Here, we show orientational imaging of symmetric geometrical structures such as 100 nm isolated silver nanocubes by coupling a hyperspectral detector and a focused ion beam (FIB)-fabricated correlating substrate. More than 100 nanocubes are analyzed to confirm spectral shifts in the scattering spectra due to variations in the orientation of the nanocubes with respect to the incoming light. Results are further validated using finite-difference time-domain simulations. Our observations suggest a novel strategy for high-throughput orientation imaging of nanoparticles.
Collapse
Affiliation(s)
- Nishir Mehta
- Department of Mechanical and Industrial Engineering, School of Electrical Engineering and Computer Science, Louisiana State University Baton Rouge Louisiana 70803 USA +1-225-578-5900
| | - Amirreza Mahigir
- School of Electrical Engineering and Computer Science, Louisiana State University Baton Rouge Louisiana 70803 USA
- Center for Computation and Technology, Louisiana State University Baton Rouge Louisiana 70803 USA
| | - Georgios Veronis
- School of Electrical Engineering and Computer Science, Louisiana State University Baton Rouge Louisiana 70803 USA
- Center for Computation and Technology, Louisiana State University Baton Rouge Louisiana 70803 USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, School of Electrical Engineering and Computer Science, Louisiana State University Baton Rouge Louisiana 70803 USA +1-225-578-5900
| |
Collapse
|
182
|
Mikhalchik E, Basyreva LY, Gusev SA, Panasenko OM, Klinov DV, Barinov NA, Morozova OV, Moscalets AP, Maltseva LN, Filatova LY, Pronkin EA, Bespyatykh JA, Balabushevich NG. Activation of Neutrophils by Mucin–Vaterite Microparticles. Int J Mol Sci 2022; 23:ijms231810579. [PMID: 36142492 PMCID: PMC9501559 DOI: 10.3390/ijms231810579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Nano- and microparticles enter the body through the respiratory airways and the digestive system, or form as biominerals in the gall bladder, salivary glands, urinary bladder, kidney, or diabetic pancreas. Calcium, magnesium, and phosphate ions can precipitate from biological fluids in the presence of mucin as hybrid nanoparticles. Calcium carbonate nanocrystallites also trap mucin and are assembled into hybrid microparticles. Both mucin and calcium carbonate polymorphs (calcite, aragonite, and vaterite) are known to be components of such biominerals as gallstones which provoke inflammatory reactions. Our study was aimed at evaluation of neutrophil activation by hybrid vaterite–mucin microparticles (CCM). Vaterite microparticles (CC) and CCM were prepared under standard conditions. The diameter of CC and CCM was 3.3 ± 0.8 µm and 5.8 ± 0.7 µm, with ƺ-potentials of −1 ± 1 mV and −7 ± 1 mV, respectively. CC microparticles injured less than 2% of erythrocytes in 2 h at 1.5 mg mL−1, and no hemolysis was detected with CCM; this let us exclude direct damage of cellular membranes by microparticles. Activation of neutrophils was analyzed by luminol- and lucigenin-dependent chemiluminescence (Lum-CL and Luc-CL), by cytokine gene expression (IL-6, IL-8, IL-10) and release (IL-1β, IL-6, IL-8, IL-10, TNF-α), and by light microscopy of stained smears. There was a 10-fold and higher increase in the amplitude of Lum-CL and Luc-CL after stimulation of neutrophils with CCM relative to CC. Adsorption of mucin onto prefabricated CC microparticles also contributed to activation of neutrophil CL, unlike mucin adsorption onto yeast cell walls (zymosan); adsorbed mucin partially suppressed zymosan-stimulated production of oxidants by neutrophils. Preliminary treatment of CCM with 0.1–10 mM NaOCl decreased subsequent activation of Lum-CL and Luc-CL of neutrophils depending on the used NaOCl concentration, presumably because of the surface mucin oxidation. Based on the results of ELISA, incubation of neutrophils with CCM downregulated IL-6 production but upregulated that of IL-8. IL-6 and IL-8 gene expression in neutrophils was not affected by CC or CCM according to RT2-PCR data, which means that post-translational regulation was involved. Light microscopy revealed adhesion of CC and CCM microparticles onto the neutrophils; CCM increased neutrophil aggregation with a tendency to form neutrophil extracellular traps (NETs). We came to the conclusion that the main features of neutrophil reaction to mucin–vaterite hybrid microparticles are increased oxidant production, cell aggregation, and NET-like structure formation, but without significant cytokine release (except for IL-8). This effect of mucin is not anion-specific since particles of powdered kidney stone (mainly calcium oxalate) in the present study or calcium phosphate nanowires in our previous report also activated Lum-CL and Luc-CL response of neutrophils after mucin sorption.
Collapse
Affiliation(s)
- Elena Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Correspondence: ; Tel.: +7-4-99-2464352
| | - Liliya Yu. Basyreva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Sergey A. Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Oleg M. Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Dmitry V. Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Nikolay A. Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga V. Morozova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- National Research Center of Epidemiology and Microbiology of N.F. Gamaleya, 123098 Moscow, Russia
| | - Alexander P. Moscalets
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Liliya N. Maltseva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Lyubov Yu. Filatova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeniy A. Pronkin
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Julia A. Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Expertise Department in Anti-Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | | |
Collapse
|
183
|
Predictive Shapes of Ellipsoid PPDL-PTHF Copolymer Particles Prepared by the Phantom Stretching Technique. Polymers (Basel) 2022; 14:polym14183762. [PMID: 36145905 PMCID: PMC9502769 DOI: 10.3390/polym14183762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ellipsoidal polymer particles can be prepared from spheres by unidirectional stretching at elevated temperatures, while the particles’ aspect ratios (AR) that result from this phantom stretching methodology are often not precisely predictable. Here, an elastic deformation model was exemplarily evaluated for ~50 µm spherical microparticles from PPDL-PTHF block copolymers. The prolate ellipsoidal particles, obtained by stretching in polyvinyl alcohol phantoms, differed in dimensions at identical relative phantoms elongations up to 150%, depending on the relative polymer composition and their systematically altered mechanical properties. Importantly, the resulting particle shapes within the studied range of AR up to ~4 matched the predictions of the elastic deformation model, which includes information of the elastic moduli of phantom and particle materials. These data suggest that the model may be applicable to predict the conditions needed to precisely prepare ellipsoids of desired AR and may be applicable to various deformable particle materials.
Collapse
|
184
|
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022; 6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Innate immunity forms the core of the human body's defense system against infection, injury, and foreign objects. It aims to maintain homeostasis by promoting inflammation and then initiating tissue repair, but it can also lead to disease when dysregulated. Although innate immune cells respond to their physical microenvironment and carry out intrinsically mechanical actions such as migration and phagocytosis, we still do not have a complete biophysical description of innate immunity. Here, we review how engineering tools can be used to study innate immune cell biophysics. We first provide an overview of innate immunity from a biophysical perspective, review the biophysical factors that affect the innate immune system, and then explore innate immune cell biophysics in the context of migration, phagocytosis, and phenotype polarization. Throughout the review, we highlight how physical microenvironments can be designed to probe the innate immune system, discuss how biophysical insight gained from these studies can be used to generate a more comprehensive description of innate immunity, and briefly comment on how this insight could be used to develop mechanical immune biomarkers and immunomodulatory therapies.
Collapse
Affiliation(s)
- Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
185
|
Kaur K, Mohammadpour R, Ghandehari H, Reilly CA, Paine R, Kelly KE. Effect of combustion particle morphology on biological responses in a Co-culture of human lung and macrophage cells. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2022; 284:119194. [PMID: 35937043 PMCID: PMC9348743 DOI: 10.1016/j.atmosenv.2022.119194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atmospheric aging of combustion particles alters their chemical composition and morphology. Previous studies have reported differences in toxicological responses after exposure to fresh versus aged particles, with chemical composition being the prime suspect behind the differences. However, less is known about the contribution of morphological differences in atmospherically aged particles to toxicological responses, possibly due to the difficulty in resolving the two properties (composition and morphology) that change simultaneously. This study altered the shape of lab-generated combustion particles, without affecting the chemical composition, from fractal-like to a more compact spherical shape, using a water condensation-evaporation method. The two shapes were exposed to a co-culture of human airway epithelial (A549) and differentiated human monocyte (THP-1) cells at air-liquid interface (ALI) conditions. The particles with different shapes were deposited using an electrostatic field-based ALI chamber. For the same mass dose, both shapes were internalized by cells, induced a pro-inflammatory response (IL-8 and TNFα), and enhanced CYP1A1 gene expression compared to air controls. The more compact spherical particles (representative of atmospherically aged particles) induced more early apoptosis and release of TNFα compared to the more fractal-like particles. These results suggest a contribution of morphology to the increased toxicity of aged combustion-derived particles.
Collapse
Affiliation(s)
- Kamaljeet Kaur
- Department of Chemical Engineering, University of Utah, United States
| | - Raziye Mohammadpour
- Utah Center for Nanomedicine, University of Utah, United States
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, United States
- mRNA Center of Excellence, Sanofi, Waltham, MA, USA
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, University of Utah, United States
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, United States
- Department of Biomedical Engineering, University of Utah, United States
| | - Christopher A. Reilly
- Utah Center for Nanomedicine, University of Utah, United States
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, United States
| | - Robert Paine
- Division of Pulmonary and Critical Care Medicine, University of Utah, United States
| | - Kerry E. Kelly
- Department of Chemical Engineering, University of Utah, United States
- Utah Center for Nanomedicine, University of Utah, United States
| |
Collapse
|
186
|
Coronel MM, Martin KE, Hunckler MD, Kalelkar P, Shah RM, García AJ. Hydrolytically Degradable Microgels with Tunable Mechanical Properties Modulate the Host Immune Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106896. [PMID: 35274457 PMCID: PMC10288386 DOI: 10.1002/smll.202106896] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Hydrogel microparticles (microgels) are an attractive approach for therapeutic delivery because of their modularity, injectability, and enhanced integration with the host tissue. Multiple microgel fabrication strategies and chemistries have been implemented, yet manipulation of microgel degradability and its effect on in vivo tissue responses remains underexplored. Here, the authors report a facile method to synthesize microgels crosslinked with ester-containing junctions to afford tunable degradation kinetics. Monodisperse microgels of maleimide-functionalized poly(ethylene-glycol) are generated using droplet microfluidics crosslinked with thiol-terminated, ester-containing molecules. Tunable mechanics are achievable based on the ratio of degradable to nondegradable crosslinkers in the continuous phase. Degradation in an aqueous medium leads to microgel deformation based on swelling and a decrease in elastic modulus. Furthermore, degradation byproducts are cytocompatible and do not cause monocytic cell activation under noninflammatory conditions. These injectable microgels possess time-dependent degradation on the order of weeks in vivo. Lastly, the evaluation of tissue responses in a subcutaneous dorsal pocket shows a dynamic type-1 like immune response to the synthetic microgels, driven by interferon gamma (IFN-γ ) expression, which can be moderated by tuning the degradation properties. Collectively, this study demonstrates the development of a hydrolytic microgel platform that can be adapted to desired host tissue immune responses.
Collapse
Affiliation(s)
- María M Coronel
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Karen E Martin
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael D Hunckler
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Pranav Kalelkar
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rahul M Shah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
187
|
Wang M, Mao X, Liu J, Deng B, Deng S, Jin S, Li W, Gong J, Deng R, Zhu J. A Versatile 3D-Confined Self-Assembly Strategy for Anisotropic and Ordered Mesoporous Carbon Microparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202394. [PMID: 35780503 PMCID: PMC9443438 DOI: 10.1002/advs.202202394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/27/2022] [Indexed: 05/19/2023]
Abstract
Mesoporous carbon microparticles (MCMPs) with anisotropic shapes and ordered structures are attractive materials that remain challenging to access. In this study, a facile yet versatile route is developed to prepare anisotropic MCMPs by combining neutral interface-guided 3D confined self-assembly (3D-CSA) of block copolymer (BCP) with a self-templated direct carbonization strategy. This route enables pre-engineering BCP into microparticles with oblate shape and hexagonal packing cylindrical mesostructures, followed by selective crosslinking and decorating of their continuous phase with functional species (such as platinum nanoparticles, Pt NPs) via in situ growth. To realize uniform in situ growth, a "guest exchange" strategy is proposed to make room for functional species and a pre-crosslinking strategy is developed to preserve the structural stability of preformed BCP microparticles during infiltration. Finally, Pt NP-loaded MCMPs are derived from the continuous phase of BCP microparticles through selective self-templated direct carbonization without using any external carbon source. This study introduces an effective concept to obtain functional species-loaded and N-doped MCMPs with oblate shape and almost hexagonal structure (p6mm), which would find important applications in fuel cells, separation, and heterogeneous catalysis.
Collapse
Affiliation(s)
- Mian Wang
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Xi Mao
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jingye Liu
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Bite Deng
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Shuai Deng
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Shaohong Jin
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Wang Li
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jiang Gong
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Renhua Deng
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die & Mould TechnologyKey Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
188
|
Sun Y, Davis EW. Multi-Stimuli-Responsive Janus Hollow Polydopamine Nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9777-9789. [PMID: 35921245 DOI: 10.1021/acs.langmuir.2c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A tubular-shaped Janus nanoparticle based on polydopamine that responds to near-infrared, magnetic, and pH stimuli is reported. The robust tubular polydopamine structure was obtained by optimizing the halloysite template-to-dopamine ratio during synthesis. The inner and outer surfaces of the tube were exposed at different steps of the template-sonication--etching process, enabling the differential surface modification of these surfaces. Poly(ethylene glycol) (PEG) and poly(N-isopropylacrylamide) (PNIPAM) were grafted to the outer and inner surface of the nanotube, respectively. The PEG-coated surface limited aggregation of the nanoparticles at elevated temperatures. The PNIPAM-coated interior enhanced doxorubicin loading and endowed the nanoparticle with temperature-responsive behavior. The deposition of precipitated Fe3O4 nanoparticles further modified the nanoparticles. The resulting magnetic Janus nanoparticles responded to pH, temperature, and magnetic fields. Temperature changes could be induced by near-infrared laser, and all three stimuli were found to influence release rates of adsorbed doxorubicin from the nanoparticles. The interaction of the stimuli on release kinetics was elucidated using a linear mixed model; reduced pH and NIR irradiation enhanced release while applying a static magnetic field retarded release. Furthermore, the mechanism was shifted toward Fickian behavior by applying a static magnetic field and low pH conditions. However, NIR irradiation only shifted the behavior toward Fickian behavior at low pH.
Collapse
Affiliation(s)
- Yuzhe Sun
- Materials Research and Education Center, Auburn University, 274 Wilmore Labs, Auburn, Alabama 36849, United States
| | - Edward W Davis
- Materials Research and Education Center, Auburn University, 274 Wilmore Labs, Auburn, Alabama 36849, United States
| |
Collapse
|
189
|
Rao C, Shi S. Development of Nanomaterials to Target Articular Cartilage for Osteoarthritis Therapy. Front Mol Biosci 2022; 9:900344. [PMID: 36032667 PMCID: PMC9402910 DOI: 10.3389/fmolb.2022.900344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is an obstinate, degradative, and complicated disease that has drawn much attention worldwide. Characterized by its stubborn symptoms and various sequela, OA causes much financial burden on both patients and the health system. What’s more, conventional systematic therapy is not effective enough and causes multiple side effects. There’s much evidence that nanoparticles have unique properties such as high penetration, biostability, and large specific surface area. Thus, it is urgent to exploit novel medications for OA. Nanomaterials have been sufficiently studied, exploiting diverse nano-drug delivery systems (DDSs) and targeted nano therapeutical molecules. The nanomaterials are primarily intra-articular injected under the advantages of high topical concentration and low dosage. After administration, the DDS and targeted nano therapeutical molecules can specifically react with the components, including cartilage and synovium of a joint in OA, furthermore attenuate the chondrocyte apoptosis, matrix degradation, and macrophage recruitment. Thus, arthritis would be alleviated. The DDSs could load with conventional anti-inflammatory drugs, antibodies, RNA, and so on, targeting chondrocytes, synovium, or extracellular matrix (ECM) and releasing the molecules sequentially. The targeted nano therapeutical molecules could directly get to the targeted tissue, alleviating the inflammation and promoting tissue healing. This review will comprehensively collect and evaluate the targeted nanomaterials to articular cartilage in OA.
Collapse
|
190
|
Shah S, Famta P, Bagasariya D, Charankumar K, Amulya E, Kumar Khatri D, Singh Raghuvanshi R, Bala Singh S, Srivastava S. Nanotechnology based drug delivery systems: Does shape really matter? Int J Pharm 2022; 625:122101. [PMID: 35961415 DOI: 10.1016/j.ijpharm.2022.122101] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
As of today, the era of nanomedicine has brought numerous breakthroughs and overcome challenges in the treatment of various disorders. Various factors like size, charge and surface hydrophilicity have garnered significant attention by nanotechnologists. However, more exploration in the field of nanoparticle shape and geometry, one of the basic physical phenomenon is required. Tuning nanoparticle shape and geometry could potentially overcome pitfalls in therapeutics and biomedical fields. Thus, in this article, we unveil the importance of tuning nanoparticle shape selection across the delivery platforms. This article provides an in-depth understanding of nanoparticle shape modulation and advise the researchers on the ideal morphology selection tailored for each implication. We deliberated the importance of nanoparticle shape selection for specific implications with respect to organ targeting, cellular internalization, pharmacokinetics and bio-distribution, protein corona formation as well as RES evasion and tumor targeting. An additional section on the significance of shape transformation, a recently introduced novel avenue with applications in drug delivery was discussed. Furthermore, regulatory concerns towards nanoparticle shape which need to be addressed for harnessing their clinical translation will be explained.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kondasingh Charankumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
191
|
Wu H, Wei X, Liu Y, Dong H, Tang Z, Wang N, Bao S, Wu Z, Shi L, Zheng X, Li X, Guo Z. Dynamic degradation patterns of porous polycaprolactone/β-tricalcium phosphate composites orchestrate macrophage responses and immunoregulatory bone regeneration. Bioact Mater 2022; 21:595-611. [PMID: 36685731 PMCID: PMC9832114 DOI: 10.1016/j.bioactmat.2022.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/17/2022] [Accepted: 07/24/2022] [Indexed: 01/25/2023] Open
Abstract
Biodegradable polycaprolactone/β-tricalcium phosphate (PT) composites are desirable candidates for bone tissue engineering applications. A higher β-tricalcium phosphate (TCP) ceramic content improves the mechanical, hydrophilic and osteogenic properties of PT scaffolds in vitro. Using a dynamic degradation reactor, we established a steady in vitro degradation model to investigate the changes in the physio-chemical and biological properties of PT scaffolds during degradation.PT46 and PT37 scaffolds underwent degradation more rapidly than PT scaffolds with lower TCP contents. In vivo studies revealed the rapid degradation of PT (PT46 and PT37) scaffolds disturbed macrophage responses and lead to bone healing failure. Macrophage co-culture assays and a subcutaneous implantation model indicated that the scaffold degradation process dynamically affected macrophage responses, especially polarization. RNA-Seq analysis indicated phagocytosis of the degradation products of PT37 scaffolds induces oxidative stress and inflammatory M1 polarization in macrophages. Overall, this study reveals that the dynamic patterns of biodegradation of degradable bone scaffolds highly orchestrate immune responses and thus determine the success of bone regeneration. Therefore, through evaluation of the biological effects of biomaterials during the entire process of degradation on immune responses and bone regeneration are necessary in order to develop more promising biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Hao Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| | - Xinghui Wei
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| | - Yichao Liu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Hui Dong
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Zhen Tang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| | - Ning Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| | - Shusen Bao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| | - Zhigang Wu
- Department of Orthopaedics, The 63750 Hospital of People's Liberation Army, Xi'an, Shaanxi, 710038, PR China
| | - Lei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Xiongfei Zheng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning, 110000, PR China
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China,Corresponding author.
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China,Corresponding author.
| |
Collapse
|
192
|
Weiss AM, Hossainy S, Rowan SJ, Hubbell JA, Esser-Kahn AP. Immunostimulatory Polymers as Adjuvants, Immunotherapies, and Delivery Systems. Macromolecules 2022; 55:6913-6937. [PMID: 36034324 PMCID: PMC9404695 DOI: 10.1021/acs.macromol.2c00854] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/16/2022] [Indexed: 12/14/2022]
Abstract
![]()
Activating innate immunity in a controlled manner is
necessary
for the development of next-generation therapeutics. Adjuvants, or
molecules that modulate the immune response, are critical components
of vaccines and immunotherapies. While small molecules and biologics
dominate the adjuvant market, emerging evidence supports the use of
immunostimulatory polymers in therapeutics. Such polymers can stabilize
and deliver cargo while stimulating the immune system by functioning
as pattern recognition receptor (PRR) agonists. At the same time,
in designing polymers that engage the immune system, it is important
to consider any unintended initiation of an immune response that results
in adverse immune-related events. Here, we highlight biologically
derived and synthetic polymer scaffolds, as well as polymer–adjuvant
systems and stimuli-responsive polymers loaded with adjuvants, that
can invoke an immune response. We present synthetic considerations
for the design of such immunostimulatory polymers, outline methods
to target their delivery, and discuss their application in therapeutics.
Finally, we conclude with our opinions on the design of next-generation
immunostimulatory polymers, new applications of immunostimulatory
polymers, and the development of improved preclinical immunocompatibility
tests for new polymers.
Collapse
Affiliation(s)
- Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Samir Hossainy
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
193
|
Francis EA, Heinrich V. Integrative experimental/computational approach establishes active cellular protrusion as the primary driving force of phagocytic spreading by immune cells. PLoS Comput Biol 2022; 18:e1009937. [PMID: 36026476 PMCID: PMC9455874 DOI: 10.1371/journal.pcbi.1009937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/08/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
The dynamic interplay between cell adhesion and protrusion is a critical determinant of many forms of cell motility. When modeling cell spreading on adhesive surfaces, traditional mathematical treatments often consider passive cell adhesion as the primary, if not exclusive, mechanistic driving force of this cellular motion. To better assess the contribution of active cytoskeletal protrusion to immune-cell spreading during phagocytosis, we here develop a computational framework that allows us to optionally investigate both purely adhesive spreading ("Brownian zipper hypothesis") as well as protrusion-dominated spreading ("protrusive zipper hypothesis"). We model the cell as an axisymmetric body of highly viscous fluid surrounded by a cortex with uniform surface tension and incorporate as potential driving forces of cell spreading an attractive stress due to receptor-ligand binding and an outward normal stress representing cytoskeletal protrusion, both acting on the cell boundary. We leverage various model predictions against the results of a directly related experimental companion study of human neutrophil phagocytic spreading on substrates coated with different densities of antibodies. We find that the concept of adhesion-driven spreading is incompatible with experimental results such as the independence of the cell-spreading speed on the density of immobilized antibodies. In contrast, the protrusive zipper model agrees well with experimental findings and, when adapted to simulate cell spreading on discrete adhesion sites, it also reproduces the observed positive correlation between antibody density and maximum cell-substrate contact area. Together, our integrative experimental/computational approach shows that phagocytic spreading is driven by cellular protrusion, and that the extent of spreading is limited by the density of adhesion sites.
Collapse
Affiliation(s)
- Emmet A. Francis
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| |
Collapse
|
194
|
In vitro review of nanoparticles attacking macrophages: Interaction and cell death. Life Sci 2022; 307:120840. [PMID: 35905812 DOI: 10.1016/j.lfs.2022.120840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
In recent years, the wide application of nanoparticles (NPs) inevitably leads to environmental pollution and human exposure, and its safety has attracted more and more attention. Since macrophages are the cells most directly exposed to multi-pathway invading NPs in the body, it is necessary to assess of toxic effects of NPs in macrophages, clarify the potential mechanisms of NPs toxicity to improve our understanding about the interaction of NPs with macrophages in vivo, and avoid body damage. Currently, studies on the toxicity of NPs to macrophages are rare and mainly focused on in vitro, so this paper integrated the toxic effect of macrophages exposed to NPs and the macrophages cellular changes following the interaction with NPs, including NPs internalization, ROS production, cytokines alterations, DNA damage and cell death, and further explored the involved mechanisms. This review aims to provide some insights into the further toxicological studies of NPs.
Collapse
|
195
|
Lv Y, Wu W, Corpstein CD, Li T, Lu Y. Biological and Intracellular Fates of Drug Nanocrystals through Different Delivery Routes: Recent Development Enabled by Bioimaging and PK Modeling. Adv Drug Deliv Rev 2022; 188:114466. [PMID: 35905948 DOI: 10.1016/j.addr.2022.114466] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 07/22/2022] [Indexed: 12/25/2022]
Abstract
Nanocrystals have contributed to exciting improvements in the delivery of poorly water-soluble drugs. The biological and intracellular fates of nanocrystals are currently under debate. Due to the remarkable commercial success in enhancing oral bioavailability, nanocrystals have originally been regarded as a simple formulation approach to enhance dissolution. However, the latest findings from novel bioimaging tools lead to an expanded view. Intact nanocrystals may offer long-term durability in the body and offer drug delivery capabilities like those of other nano-carriers. This review renews the understanding of the biological fates of nanocrystals administered via oral, intravenous, and parenteral (e.g., dermal, ocular, and pulmonary) routes. The intracellular pathways and dissolution kinetics of nanocrystals are explored. Additionally, the future trends for in vitro and in vivo quantification of nanocrystals, as well as factors impacting the biological and intracellular fates of nanocrystals are discussed. In conclusion, nanocrystals present a promising and underexplored therapeutic opportunity with immense potential.
Collapse
Affiliation(s)
- Yongjiu Lv
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
196
|
Wang Y, Hu D, Chang X, Zhu Y. Temperature-Driven Reversible Shape Transformation of Polymeric Nanoparticles from Emulsion Confined Coassembly of Block Copolymers and Poly( N-isopropylacrylamide). Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaping Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Dengwen Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Xiaohua Chang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Yutian Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| |
Collapse
|
197
|
Intraarticularly injectable silk hydrogel microspheres with enhanced mechanical and structural stability to attenuate osteoarthritis. Biomaterials 2022; 286:121611. [PMID: 35660867 DOI: 10.1016/j.biomaterials.2022.121611] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 12/18/2022]
Abstract
A silk fibroin (silk) hydrogel was prepared by using diglycidyl ether (BDDE), a chemical crosslinker commonly used to generate Food and Drug Administration (FDA)-approved hyaluronic acid (HA) medical products. The silk/BDDE hydrogels exhibited high elasticity (compressive modulus of 166 ± 15.0 kPa), anti-fatigue properties, and stable structure and mechanical strength in aqueous solution. Chemical crosslinking was conducted in a high concentration (9.3 M) of lithium bromide (LiBr) solution, a salt that is commonly used to dissolve degummed silk fibers during silk solubilization. The unfolded and extended structure of silk molecules with these reaction conditions, as well as the unique ionic environment provided by LiBr facilitated a high degree of crosslinking in the hydrogel. Similar hydrogels were not obtained when the silk was dissolved in other silk fiber-dissolving reagents (e.g., Ajisawa's, formic acid (FA)/LiBr, FA/CaCl2 solutions), likely because partially folded silk structures and the ionic conditions with these reagents were less favorable for the crosslinking reaction. Based on these findings, silk/BDDE hydrogel spheres were prepared using an oil/water (o/w) emulsification method and biocompatibility and biodegradation were evaluated in vivo, along with other silk gel control systems (e.g., enzyme-catalyzed di-tyrosine and pulverized silk/BDDE gel particles with irregular shapes). Histological and immunohistochemical analyses demonstrated that the silk/BDDE hydrogel spheres were biocompatible and served as a bio-lubricant to treat osteoarthritis (OA). The intra-articular injection of the gel spheres reduced pain as measured with OA rats, reduced cartilage damage and resisted the digestive environment in the articular cavity for extended time frames (>4 weeks), suggesting utility for pain relief and sustained drug release for future OA treatments.
Collapse
|
198
|
Liu J, Li L, Zhang B, Xu ZP. MnO2-shelled Doxorubicin/Curcumin nanoformulation for enhanced colorectal cancer chemo-immunotherapy. J Colloid Interface Sci 2022; 617:315-325. [DOI: 10.1016/j.jcis.2022.02.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 02/09/2023]
|
199
|
Nanomaterial-Based Drug Delivery System Targeting Lymph Nodes. Pharmaceutics 2022; 14:pharmaceutics14071372. [PMID: 35890268 PMCID: PMC9325242 DOI: 10.3390/pharmaceutics14071372] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays an indispensable role in humoral balance, lipid metabolism, and immune regulation. The lymph nodes (LNs) are known as the primary sites of tumor metastasis and the metastatic LNs largely affected the prognosis of the patiens. A well-designed lymphatic-targeted system favors disease treatment as well as vaccination efficacy. In recent years, development of nanotechnologies and emerging biomaterials have gained increasing attention in developing lymph-node-targeted drug-delivery systems. By mimicking the endogenous macromolecules or lipid conjugates, lymph-node-targeted nanocarries hold potential for disease diagnosis and tumor therapy. This review gives an introduction to the physiological functions of LNs and the roles of LNs in diseases, followed by a review of typical lymph-node-targeted nanomaterial-based drug-delivery systems (e.g., liposomes, micelles, inorganic nanomaterials, hydrogel, and nanocapsules). Future perspectives and conclusions concerned with lymph-node-targeted drug-delivery systems are also provided.
Collapse
|
200
|
Efferocytosis requires periphagosomal Ca 2+-signaling and TRPM7-mediated electrical activity. Nat Commun 2022; 13:3230. [PMID: 35680919 PMCID: PMC9184625 DOI: 10.1038/s41467-022-30959-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 05/26/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient clearance of apoptotic cells by phagocytosis, also known as efferocytosis, is fundamental to developmental biology, organ physiology, and immunology. Macrophages use multiple mechanisms to detect and engulf apoptotic cells, but the signaling pathways that regulate the digestion of the apoptotic cell cargo, such as the dynamic Ca2+ signals, are poorly understood. Using an siRNA screen, we identify TRPM7 as a Ca2+-conducting ion channel essential for phagosome maturation during efferocytosis. Trpm7-targeted macrophages fail to fully acidify or digest their phagosomal cargo in the absence of TRPM7. Through perforated patch electrophysiology, we demonstrate that TRPM7 mediates a pH-activated cationic current necessary to sustain phagosomal acidification. Using mice expressing a genetically-encoded Ca2+ sensor, we observe that phagosome maturation requires peri-phagosomal Ca2+-signals dependent on TRPM7. Overall, we reveal TRPM7 as a central regulator of phagosome maturation during macrophage efferocytosis. Efficient removal of apoptotic cells by phagocytosis underlies tissue development, wound repair, host defense and organ homeostasis. Here, authors identify TRPM7 as a regulator of cargo acidification and Ca2+ signaling during apoptotic cell clearance.
Collapse
|