151
|
Heynen SR, Meneau I, Caprara C, Samardzija M, Imsand C, Levine EM, Grimm C. CDC42 is required for tissue lamination and cell survival in the mouse retina. PLoS One 2013; 8:e53806. [PMID: 23372671 PMCID: PMC3553133 DOI: 10.1371/journal.pone.0053806] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 12/05/2012] [Indexed: 11/28/2022] Open
Abstract
The small GTPase CDC42 has pleiotropic functions during development and in the adult. These functions include intra- as well as intercellular tasks such as organization of the cytoskeleton and, at least in epithelial cells, formation of adherens junctions. To investigate CDC42 in the neuronal retina, we generated retina-specific Cdc42-knockdown mice (Cdc42-KD) and analyzed the ensuing consequences for the developing and postnatal retina. Lack of CDC42 affected organization of the developing retina as early as E17.5, prevented correct tissue lamination, and resulted in progressive retinal degeneration and severely reduced retinal function of the postnatal retina. Despite the disorganization of the retina, formation of the primary vascular plexus was not strongly affected. However, both deeper vascular plexi developed abnormally with no clear layering of the vessels. Retinas of Cdc42-KD mice showed increased expression of pro-survival, but also of pro-apoptotic and pro-inflammatory genes and exhibited prolonged Müller glia hypertrophy. Thus, functional CDC42 is important for correct tissue organization already during retinal development. Its absence leads to severe destabilization of the postnatal retina with strong degeneration and loss of retinal function.
Collapse
Affiliation(s)
- Severin Reinhard Heynen
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Isabelle Meneau
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
| | - Christian Caprara
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Marijana Samardzija
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
| | - Cornelia Imsand
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
| | - Edward M. Levine
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Christian Grimm
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
- Center for Neuroscience, University of Zurich, Switzerland
- * E-mail:
| |
Collapse
|
152
|
Saccà SC, Roszkowska AM, Izzotti A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases. Mutat Res 2013; 752:153-171. [PMID: 23337404 DOI: 10.1016/j.mrrev.2013.01.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 02/03/2023]
Abstract
The human eye is constantly exposed to sunlight and artificial lighting. Exogenous sources of reactive oxygen species (ROS) such as UV light, visible light, ionizing radiation, chemotherapeutics, and environmental toxins contribute to oxidative damage in ocular tissues. Long-term exposure to these insults places the aging eye at considerable risk for pathological consequences of oxidative stress. Furthermore, in eye tissues, mitochondria are an important endogenous source of ROS. Over time, all ocular structures, from the tear film to the retina, undergo oxidative stress, and therefore, the antioxidant defenses of each tissue assume the role of a safeguard against degenerative ocular pathologies. The ocular surface and cornea protect the other ocular tissues and are significantly exposed to oxidative stress of environmental origin. Overwhelming of antioxidant defenses in these tissues clinically manifests as pathologies including pterygium, corneal dystrophies, and endothelial Fuch's dystrophy. The crystalline lens is highly susceptible to oxidative damage in aging because its cells and their intracellular proteins are not turned over or replaced, thus providing the basis for cataractogenesis. The trabecular meshwork, which is the anterior chamber tissue devoted to aqueous humor drainage, has a particular susceptibility to mitochondrial oxidative injury that affects its endothelium and leads to an intraocular pressure increase that marks the beginning of glaucoma. Photo-oxidative stress can cause acute or chronic retinal damage. The pathogenesis of age-related macular degeneration involves oxidative stress and death of the retinal pigment epithelium followed by death of the overlying photoreceptors. Accordingly, converging evidence indicates that mutagenic mechanisms of environmental and endogenous sources play a fundamental pathogenic role in degenerative eye diseases.
Collapse
Affiliation(s)
- Sergio C Saccà
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology unit, Genoa, Italy
| | - Anna Maria Roszkowska
- Department of Specialized Surgery, University Hospital, Ophthalmology Unit, Messina, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, I-16132, Genoa, Italy.
| |
Collapse
|
153
|
Notomi S, Hisatomi T, Murakami Y, Terasaki H, Sonoda S, Asato R, Takeda A, Ikeda Y, Enaida H, Sakamoto T, Ishibashi T. Dynamic increase in extracellular ATP accelerates photoreceptor cell apoptosis via ligation of P2RX7 in subretinal hemorrhage. PLoS One 2013; 8:e53338. [PMID: 23308196 PMCID: PMC3540091 DOI: 10.1371/journal.pone.0053338] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 11/27/2012] [Indexed: 02/05/2023] Open
Abstract
Photoreceptor degeneration is the most critical cause of visual impairment in age-related macular degeneration (AMD). In neovascular form of AMD, severe photoreceptor loss develops with subretinal hemorrhage due to choroidal neovascularization (CNV), growth of abnormal blood vessels from choroidal circulation. However, the detailed mechanisms of this process remain elusive. Here we demonstrate that neovascular AMD with subretinal hemorrhage accompanies a significant increase in extracellular ATP, and that extracellular ATP initiates neurodegenerative processes through specific ligation of Purinergic receptor P2X, ligand-gated ion channel, 7 (P2RX7; P2X7 receptor). Increased extracellular ATP levels were found in the vitreous samples of AMD patients with subretinal hemorrhage compared to control vitreous samples. Extravascular blood induced a massive release of ATP and photoreceptor cell apoptosis in co-culture with primary retinal cells. Photoreceptor cell apoptosis accompanied mitochondrial apoptotic pathways, namely activation of caspase-9 and translocation of apoptosis-inducing factor (AIF) from mitochondria to nuclei, as well as TUNEL-detectable DNA fragmentation. These hallmarks of photoreceptor cell apoptosis were prevented by brilliant blue G (BBG), a selective P2RX7 antagonist, which is an approved adjuvant in ocular surgery. Finally, in a mouse model of subretinal hemorrhage, photoreceptor cells degenerated through BBG-inhibitable apoptosis, suggesting that ligation of P2RX7 by extracellular ATP may accelerate photoreceptor cell apoptosis in AMD with subretinal hemorrhage. Our results indicate a novel mechanism that could involve neuronal cell death not only in AMD but also in hemorrhagic disorders in the CNS and encourage the potential application of BBG as a neuroprotective therapy.
Collapse
Affiliation(s)
- Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroto Terasaki
- Department of Ophthalmology, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Shozo Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryo Asato
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Enaida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taiji Sakamoto
- Department of Ophthalmology, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
154
|
Chan CC, Smith WM. Inflammatory Response and Mediators in Retinal Injury. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
155
|
Reichenbach A, Bringmann A. Cell Biology of the Müller Cell. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
156
|
|
157
|
Luhmann UFO, Carvalho LS, Robbie SJ, Cowing JA, Duran Y, Munro PMG, Bainbridge JWB, Ali RR. Ccl2, Cx3cr1 and Ccl2/Cx3cr1 chemokine deficiencies are not sufficient to cause age-related retinal degeneration. Exp Eye Res 2012; 107:80-7. [PMID: 23232206 PMCID: PMC3562441 DOI: 10.1016/j.exer.2012.11.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/22/2012] [Accepted: 11/26/2012] [Indexed: 11/28/2022]
Abstract
Monocytes, macrophages, dendritic cells and microglia play critical roles in the local immune response to acute and chronic tissue injury and have been implicated in the pathogenesis of age-related macular degeneration. Defects in Ccl2-Ccr2 and Cx3cl1-Cx3cr1 chemokine signalling cause enhanced accumulation of bloated subretinal microglia/macrophages in senescent mice and this phenomenon is reported to result in the acceleration of age-related retinal degeneration. The purpose of this study was to determine whether defects in CCL2-CCR2 and CX3CL1-CX3CR1 signalling pathways, alone or in combination, cause age-dependent retinal degeneration. We tested whether three chemokine knockout mouse lines, Ccl2(-/-), Cx3cr1(-/-) and Ccl2(-/-)/Cx3cr1(-/-), in comparison to age-matched C57Bl/6 control mice show differences in subretinal macrophage accumulation and loss of adjacent photoreceptor cells at 12-14 months of age. All mouse lines are derived from common parental strains and do not carry the homozygous rd8 mutation in the Crb1 gene that has been a major confounding factor in previous reports. We quantified subretinal macrophages by counting autofluorescent lesions in fundus images obtained by scanning laser ophthalmoscopy (AF-SLO) and by immunohistochemistry for Iba1 positive cells. The accumulation of subretinal macrophages was enhanced in Ccl2(-/-), but not in Cx3cr1(-/-) or Ccl2(-/-)/Cx3cr1(-/-) mice. We identified no evidence of retinal degeneration in any of these mouse lines by TUNEL staining or semithin histology. In conclusion, CCL2-CCR2 and/or CX3CL1-CX3CR1 signalling defects may differentially affect the trafficking of microglia and macrophages in the retina during ageing, but do not appear to cause age-related retinal degeneration in mice.
Collapse
Affiliation(s)
- Ulrich F O Luhmann
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V9EL London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Metabolic stress response implicated in diabetic retinopathy: The role of calpain, and the therapeutic impact of calpain inhibitor. Neurobiol Dis 2012; 48:556-67. [DOI: 10.1016/j.nbd.2012.07.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/12/2012] [Accepted: 07/25/2012] [Indexed: 12/30/2022] Open
|
159
|
Rutar M, Natoli R, Albarracin R, Valter K, Provis J. 670-nm light treatment reduces complement propagation following retinal degeneration. J Neuroinflammation 2012. [PMID: 23181358 PMCID: PMC3517758 DOI: 10.1186/1742-2094-9-257] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM Complement activation is associated with the pathogenesis of age-related macular degeneration (AMD). We aimed to investigate whether 670-nm light treatment reduces the propagation of complement in a light-induced model of atrophic AMD. METHODS Sprague-Dawley (SD) rats were pretreated with 9 J/cm(2) 670-nm light for 3 minutes daily over 5 days; other animals were sham treated. Animals were exposed to white light (1,000 lux) for 24 h, after which animals were kept in dim light (5 lux) for 7 days. Expression of complement genes was assessed by quantitative polymerase chain reaction (qPCR), and immunohistochemistry. Counts were made of C3-expressing monocytes/microglia using in situ hybridization. Photoreceptor death was also assessed using outer nuclear layer (ONL) thickness measurements, and oxidative stress using immunohistochemistry for 4-hydroxynonenal (4-HNE). RESULTS Following light damage, retinas pretreated with 670-nm light had reduced immunoreactivity for the oxidative damage maker 4-HNE in the ONL and outer segments, compared to controls. In conjunction, there was significant reduction in retinal expression of complement genes C1s, C2, C3, C4b, C3aR1, and C5r1 following 670 nm treatment. In situ hybridization, coupled with immunoreactivity for the marker ionized calcium binding adaptor molecule 1 (IBA1), revealed that C3 is expressed by infiltrating microglia/monocytes in subretinal space following light damage, which were significantly reduced in number after 670 nm treatment. Additionally, immunohistochemistry for C3 revealed a decrease in C3 deposition in the ONL following 670 nm treatment. CONCLUSIONS Our data indicate that 670-nm light pretreatment reduces lipid peroxidation and complement propagation in the degenerating retina. These findings have relevance to the cellular events of complement activation underling the pathogenesis of AMD, and highlight the potential of 670-nm light as a non-invasive anti-inflammatory therapy.
Collapse
Affiliation(s)
- Matt Rutar
- The John Curtin School of Medical Research, College of Medicine, Biology and Environment, The Australian National University, Building 131, Garran Rd, Canberra ACT 2601, Australia.
| | | | | | | | | |
Collapse
|
160
|
Anand A, Sharma NK, Gupta A, Prabhakar S, Sharma SK, Singh R, Gupta PK. Single nucleotide polymorphisms in MCP-1 and its receptor are associated with the risk of age related macular degeneration. PLoS One 2012. [PMID: 23185481 PMCID: PMC3503775 DOI: 10.1371/journal.pone.0049905] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly population. We have shown previously that mice deficient in monocyte chemoattractant protein-1 (MCP1/CCL2) or its receptor (CCR2) develop the features of AMD in senescent mice, however, the human genetic evidence so far is contradictory. We hypothesized that any dysfunction in the CCL2 and its receptor result could be the contributing factor in pathogenesis of AMD. Methods and Findings 133 AMD patients and 80 healthy controls were enrolled for this study. Single neucleotid Polymorphism for CCL2 and CCR2 was analyzed by real time PCR. CCL2 levels were determined by enzyme-linked immunosorbent assay (ELISA) after normalization to total serum protein and percentage (%) of CCR2 expressing peripheral blood mononuclear cells (PBMCs) was evaluated using Flow Cytometry. The genotype and allele frequency for both CCL2 and CCR2 was found to be significantly different between AMD and normal controls. The CCL2 ELISA levels were significantly higher in AMD patients and flow Cytometry analysis revealed significantly reduced CCR2 expressing PBMCs in AMD patients as compared to normal controls. Conclusions We analyzed the association between single neucleotide polymorphisms (SNPs) of CCL2 (rs4586) and CCR2 (rs1799865) with their respective protein levels. Our results revealed that individuals possessing both SNPs are at a higher risk of development of AMD.
Collapse
Affiliation(s)
- Akshay Anand
- Department of Neurology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | | | | | | | | | | | | |
Collapse
|
161
|
Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med Chem 2012; 4:1171-207. [PMID: 22709256 DOI: 10.4155/fmc.12.74] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nitrone therapeutics has been employed in the treatment of oxidative stress-related diseases such as neurodegeneration, cardiovascular disease and cancer. The nitrone-based compound NXY-059, which is the first drug to reach clinical trials for the treatment of acute ischemic stroke, has provided promise for the development of more robust pharmacological agents. However, the specific mechanism of nitrone bioactivity remains unclear. In this review, we present a variety of nitrone chemistry and biological activity that could be implicated for the nitrone's pharmacological activity. The chemistries of spin trapping and spin adduct reveal insights on the possible roles of nitrones for altering cellular redox status through radical scavenging or nitric oxide donation, and their biological effects are presented. An interdisciplinary approach towards the development of novel synthetic antioxidants with improved pharmacological properties encompassing theoretical, synthetic, biochemical and in vitro/in vivo studies is covered.
Collapse
|
162
|
Guo C, Otani A, Oishi A, Kojima H, Makiyama Y, Nakagawa S, Yoshimura N. Knockout of ccr2 alleviates photoreceptor cell death in a model of retinitis pigmentosa. Exp Eye Res 2012; 104:39-47. [PMID: 23022404 DOI: 10.1016/j.exer.2012.08.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/23/2012] [Accepted: 08/31/2012] [Indexed: 01/23/2023]
Abstract
Neuroinflammation involving CC chemokines such as monocyte chemoattractant protein-1 (MCP-1) has been demonstrated in the pathological process of retinitis pigmentosa (RP), an inherited degenerative retinal disease. However, the mechanism of MCP-1 and its receptor CCR2 involvement in the disease remains unclear. To investigate the role of MCP1/CCR2 in RP pathogenesis, ccr2 mutant RP mice (ccr2(-/-) rd10) were created and analyzed. The expression of MCP-1, RANTES, stromal cell-derived factor (SDF-1), and tumor necrosis factor-α (TNF-α) in the retinas of wild-type, rd10, and ccr2(-/-) rd10 mice was analyzed using quantitative RT-PCR. Photoreceptor apoptosis (TUNEL staining) and the number of microglia (positive for the F4/80 antibody) in the retina were examined. Retinal function was assessed using electroretinograms, and the structure of the whole retina was analyzed from images obtained using optical coherence tomography (OCT) and by histological examination. The expression levels of MCP-1, RANTES, and SDF-1 increased with time in the rd10 mice but not in the wild-type mice. Rearing the mice in the dark prevented degeneration and resulted in thicker photoreceptor layers at each time point. In those mice, the peaks of chemokine expression shifted to a later time with degeneration, suggesting that the expression of these chemokines was induced during the progression of degeneration. Although the difference was not so obvious, the retina in the ccr2(-/-) rd10 mice was consistently and significantly thicker than that in the rd10 (ccr2(+/+) rd10) mice at all time points. Rhodopsin gene expression was also higher in the ccr2(-/-) rd10 mice than in rd10 (ccr2(+/+) rd10) mice, suggesting photoreceptor survival in the former. Retinal function was also better preserved in the ccr2(-/-) rd10 mice than in the rd10 mice. The number of microglia in the retinas of the ccr2(-/-) rd10 mice was significantly lower than that in the retinas of the rd10 mice. Interestingly, the MCP-1 induction that was observed in the retinas of the rd10 mice was diminished in the retinas of the ccr2(-/-) rd10 mice. Our results suggest that the MCP-1/CCR2 system plays a role in retinal degeneration in rd mouse retinas. Retinal MCP-1 expression in the rd mouse retina may be partially controlled by ccr2-positive circulating cells.
Collapse
Affiliation(s)
- Congrong Guo
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, 54-Kawaharacho, Shogoin, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
163
|
Rutar M, Natoli R, Provis JM. Small interfering RNA-mediated suppression of Ccl2 in Müller cells attenuates microglial recruitment and photoreceptor death following retinal degeneration. J Neuroinflammation 2012; 9:221. [PMID: 22992301 PMCID: PMC3546872 DOI: 10.1186/1742-2094-9-221] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 09/06/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The recruitment and activation of inflammatory cells is thought to exacerbate photoreceptor death in retinal degenerative conditions such as age-related macular degeneration (AMD). We investigated the role of Müller cell-derived chemokine (C-C motif) ligand (Ccl)2 expression on monocyte/microglia infiltration and photoreceptor death in light-mediated retinal degeneration, using targeted small interfering (si)RNA. METHODS Adult Sprague-Dawley rats were injected intravitreally with 1 μg of either Ccl2 siRNA or scrambled siRNA, and were then exposed to 1000 lux of light for a period of 24 hours. The mice were given an overdose of barbiturate, and the retinas harvested and evaluated for the effects of bright-light exposure. Ccl2 expression was assessed by quantitative PCR, immunohistochemistry, and in situ hybridization. Monocytes/microglia were counted on retinal cryostat sections immunolabeled with the markers ED1 and ionized calcium binding adaptor (IBA)1, and photoreceptor apoptosis was assessed using terminal dUTP nick end labeling. RESULTS Intravitreal injection of Ccl2 siRNA significantly reduced the expression of Ccl2 following light damage to 29% compared with controls. In retinas injected with Ccl2 siRNA, in situ hybridization and immunohistochemistry on retinal cryostat sections showed a substantial decrease in Ccl2 within Müller cells. Cell counts showed significantly fewer ED1-positive and IBA1-positive cells in the retinal vasculature and outer nuclear layer of Ccl2 siRNA-injected retinas, compared with controls. Moreover, there was significantly less photoreceptor apoptosis in Ccl2 siRNA-injected retinas compared with controls. CONCLUSIONS Our data indicate that Ccl2 expression by Müller cells promotes the infiltration of monocytes/microglia, thereby contributing to the neuroinflammatory response and photoreceptor death following retinal injury. Modulation of exaggerated chemokine responses using siRNA may have value in reducing inflammation-mediated cell death in retinal degenerative disease such as AMD.
Collapse
Affiliation(s)
- Matt Rutar
- The John Curtin School of Medical Research, College of Medicine, Biology and Environment, The Australian National University, Building 131, Garran Rd, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
164
|
Yoshida N, Ikeda Y, Notomi S, Ishikawa K, Murakami Y, Hisatomi T, Enaida H, Ishibashi T. Clinical evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology 2012; 120:100-5. [PMID: 22986109 DOI: 10.1016/j.ophtha.2012.07.006] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 06/29/2012] [Accepted: 07/05/2012] [Indexed: 10/27/2022] Open
Abstract
PURPOSE To study the nature of inflammatory reaction in eyes of patients with retinitis pigmentosa (RP) and its possible role in the pathogenesis of RP. DESIGN Retrospective, observational study. PARTICIPANTS AND CONTROLS Three hundred seventy-one consecutive patients diagnosed with typical RP were included in this study. We included 165 patients without active inflammatory diseases, including 20 patients diagnosed with cataract, and 36 patients diagnosed with idiopathic epiretinal membrane as controls. METHODS Density of the inflammatory cells in the anterior vitreous cavity was measured and graded by slit-lamp biomicroscopy. A multiplex enzyme-linked immunosorbent assay (ELISA) was performed to evaluate the concentration of cytokines and chemokines in aqueous humor and vitreous fluid of patients with RP and controls. In addition, we investigated the relationship between visual function and anterior vitreous cells in these patients. MAIN OUTCOME MEASURES Slit-lamp biomicroscopic analysis, best-corrected visual acuity, visual field analysis, and multiplex ELISA. RESULTS In 190 of 509 eyes with RP (37.3%), "1+" (5-9 cells per field) or more cells were observed in the anterior vitreous cavity. Strong inflammatory reaction with "2+" cells (10-30 cells per field) was associated with younger age. In the elderly patients with RP, significantly decreased visual function was seen in a group with "1+" or more cells (P<0.05). Moreover, the levels of a variety of proinflammatory cytokines and chemokines, including monocyte chemotactic protein-1, were increased both in the aqueous humor and vitreous fluid of RP patients compared with the levels in control patients. CONCLUSIONS Sustained chronic inflammatory reaction may underlie the pathogenesis of RP, suggesting interventions for ocular inflammatory reaction as a potential treatment for patients with RP. FINANCIAL DISCLOSURE(S) The authors have no proprietary or commercial interest in any of the materials discussed in this article.
Collapse
Affiliation(s)
- Noriko Yoshida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
BACKGROUND Development of retinal detachment models in small animals can be difficult and expensive. Here we create and characterize a novel, cone-rich retinal detachment (RD) model in the chick. METHODOLOGY/PRINCIPAL FINDINGS Retinal detachments were created in chicks between postnatal days 7 and 21 by subretinal injections of either saline (SA) or hyaluronic acid (HA). Injections were performed through a dilated pupil with observation via surgical microscope, using the fellow eye as a control. Immunohistochemical analyses were performed at days 1, 3, 7, 10 and 14 after retinal detachment to evaluate the cellular responses of photoreceptors, Müller glia, microglia and nonastrocytic inner retinal glia (NIRG). Cell proliferation was detected with bromodeoxyuridine (BrdU)-incorporation and by the expression of proliferating cell nuclear antigen (PCNA). Cell death was detected with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). As in mammalian models of RD, there is shortening of photoreceptor outer segments and mis-trafficking of photoreceptor opsins in areas of RD. Photoreceptor cell death was maximal 1 day after RD, but continued until 14 days after RD. Müller glia up-regulated glial fibriliary acidic protein (GFAP), proliferated, showed interkinetic nuclear migration, and migrated to the subretinal space in areas of detachment. Microglia became reactive; they up-regulated CD45, acquired amoeboid morphology, and migrated toward outer retina in areas of RD. Reactive NIRG cells accumulated in detached areas. CONCLUSIONS/SIGNIFICANCE Subretinal injections of SA or HA in the chick eye successfully produced retinal detachments and cellular responses similar to those seen in standard mammalian models. Given the relatively large eye size, and considering the low cost, the chick model of RD offers advantages for high-throughput studies.
Collapse
|
166
|
Zelinka CP, Scott MA, Volkov L, Fischer AJ. The reactivity, distribution and abundance of Non-astrocytic Inner Retinal Glial (NIRG) cells are regulated by microglia, acute damage, and IGF1. PLoS One 2012; 7:e44477. [PMID: 22973454 PMCID: PMC3433418 DOI: 10.1371/journal.pone.0044477] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/07/2012] [Indexed: 12/05/2022] Open
Abstract
Recent studies have described a novel type of glial cell that is scattered across the inner layers of the avian retina and possibly the retinas of primates. These cells have been termed Non-astrocytic Inner Retinal Glial (NIRG) cells. These cells are stimulated by insulin-like growth factor 1 (IGF1) to proliferate, migrate distally into the retina, and become reactive. These changes in glial activity correlate with increased susceptibility of retinal neurons and Müller glia to excitotoxic damage. The purpose of this study was to further study the NIRG cells in retinas treated with IGF1 or acute damage. In response to IGF1, the reactivity, proliferation and migration of NIRG cells persists through 3 days after treatment. At 7 days after treatment, the numbers and distribution of NIRG cells returns to normal, suggesting that homeostatic mechanisms are in place within the retina to maintain the numbers and distribution of these glial cells. By comparison, IGF1-induced microglial reactivity persists for at least 7 days after treatment. In damaged retinas, we find a transient accumulation of NIRG cells, which parallels the accumulation of reactive microglia, suggesting that the reactivity of NIRG cells and microglia are linked. When the microglia are selectively ablated by the combination of interleukin 6 and clodronate-liposomes, the NIRG cells down-regulate transitin and perish within the following week, suggesting that the survival and phenotype of NIRG cells are somehow linked to the microglia. We conclude that the abundance, reactivity and retinal distribution of NIRG cells can be dynamic, are regulated by homoestatic mechanisms and are tethered to the microglia.
Collapse
Affiliation(s)
- Christopher P. Zelinka
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Melissa A. Scott
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Leo Volkov
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
167
|
Ritchey ER, Zelinka CP, Tang J, Liu J, Fischer AJ. The combination of IGF1 and FGF2 and the induction of excessive ocular growth and extreme myopia. Exp Eye Res 2012; 99:1-16. [PMID: 22695224 DOI: 10.1016/j.exer.2012.03.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 03/21/2012] [Accepted: 03/28/2012] [Indexed: 01/01/2023]
Abstract
Different growth factors have been shown to influence the development of form-deprivation myopia and lens-induced ametropias. However, growth factors have relatively little effect on the growth of eyes with unrestricted vision. We investigate whether the combination of insulin-like growth factor 1 (IGF1) and fibroblast growth factor 2 (FGF2) influence ocular growth in eyes with unrestricted vision. Different doses of IGF1 and FGF2 were injected into the vitreous chamber of postnatal chicks. Measurements of ocular dimensions and intraocular pressure (IOP) were made during and at the completion of different treatment paradigms. Histological and immunocytochemical analyses were performed to assess cell death, cellular proliferation and integrity of ocular tissues. Treated eyes had significant increases in equatorial diameter and vitreous chamber depth. With significant variability between individuals, IGF1/FGF2-treatment caused hypertrophy of lens and ciliary epithelia, lens thickness was increased, and anterior chamber depth was decreased. Treated eyes developed myopia, in excess of 15 diopters of refractive error. Shortly after treatment, eyes had increased intraocular pressure (IOP), which was increased in a dose-dependent manner. Seven days after treatment with IGF1 and FGF2 changes to anterior chamber depth, lens thickness and elevated IOP were reduced, whereas increases in the vitreous chamber were persistent. Some damage to ganglion cells was detected in peripheral regions of the retina at 7 days after treatment. We conclude that the extreme myopia in IGF1/FGF2-treated eyes results from increased vitreous chamber depth, decreased anterior chamber depth, and changes in the lens. We propose that factor-induced ocular enlargement and myopia result from changes to the sclera, lens and anterior chamber depth.
Collapse
Affiliation(s)
- Eric R Ritchey
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
168
|
Cho KI, Searle K, Webb M, Yi H, Ferreira PA. Ranbp2 haploinsufficiency mediates distinct cellular and biochemical phenotypes in brain and retinal dopaminergic and glia cells elicited by the Parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Cell Mol Life Sci 2012; 69:3511-27. [PMID: 22821000 PMCID: PMC3445802 DOI: 10.1007/s00018-012-1071-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/04/2012] [Accepted: 06/21/2012] [Indexed: 11/25/2022]
Abstract
Many components and pathways transducing multifaceted and deleterious effects of stress stimuli remain ill-defined. The Ran-binding protein 2 (RanBP2) interactome modulates the expression of a range of clinical and cell-context-dependent manifestations upon a variety of stressors. We examined the role of Ranbp2 haploinsufficiency on cellular and metabolic manifestations linked to tyrosine-hydroxylase (TH+) dopaminergic neurons and glial cells of the brain and retina upon acute challenge to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a parkinsonian neurotoxin, which models facets of Parkinson disease. MPTP led to stronger akinetic parkinsonism and slower recovery in Ranbp2+/− than wild-type mice without viability changes of brain TH+-neurons of either genotype, with the exception of transient nuclear atypia via changes in chromatin condensation of Ranbp2+/− TH+-neurons. Conversely, the number of wild-type retinal TH+-amacrine neurons compared to Ranbp2+/− underwent milder declines without apoptosis followed by stronger recoveries without neurogenesis. These phenotypes were accompanied by a stronger rise of EdU+-proliferative cells and non-proliferative gliosis of GFAP+-Müller cells in wild-type than Ranbp2+/− that outlasted the MPTP-insult. Finally, MPTP-treated wild-type and Ranbp2+/− mice present distinct metabolic footprints in the brain or selective regions thereof, such as striatum, that are supportive of RanBP2-mediated regulation of interdependent metabolic pathways of lysine, cholesterol, free-fatty acids, or their β-oxidation. These studies demonstrate contrasting gene-environment phenodeviances and roles of Ranbp2 between dopaminergic and glial cells of the brain and retina upon oxidative stress-elicited signaling and factors triggering a continuum of metabolic and cellular manifestations and proxies linked to oxidative stress, and chorioretinal and neurological disorders such as Parkinson.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
| | - Kelly Searle
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, 21205 MD
| | - Mason Webb
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
| | - Haiqing Yi
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
| | - Paulo A. Ferreira
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
169
|
Pennesi ME, Michaels KV, Magee SS, Maricle A, Davin SP, Garg AK, Gale MJ, Tu DC, Wen Y, Erker LR, Francis PJ. Long-term characterization of retinal degeneration in rd1 and rd10 mice using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53:4644-56. [PMID: 22562504 DOI: 10.1167/iovs.12-9611] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We characterize the in vivo changes over time in the retinal structure of wild-type mice alongside two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice) using spectral domain optical coherence tomography (SD-OCT). METHODS SD-OCT images were obtained using the Bioptigen spectral domain ophthalmic imaging system (SDOIS). Wild-type C57BL/6J, rd1 and rd10 mice ranging in age from P14 to P206 were sedated with 1% isoflurane. Horizontal and vertical linear scans through the optic nerve, and annular scans around the optic nerve were obtained. RESULTS SD-OCT imaging of wild-type mice demonstrated visibility of the inner segment/outer segment (IS/OS) junction, external limiting membrane (ELM), outer nuclear layer (ONL), and outer plexiform layer (OPL). At P14, most rd10 mice exhibited normal SD-OCT profiles, but some displayed changes in the IS/OS junction. At the same time point, rd1 mice had severe outer retinal degeneration. In rd10 mice, imaging revealed loss of the IS/OS junction by P18, hyperreflective changes in the ONL at P20, hyperreflective vitreous opacities, and shallow separation of the neural retina from the RPE. Retinal separations were not observed in rd1 mice. Segmentation analysis in wild-type mice demonstrated relatively little variability between animals, while in rd10 and rd1 mice there was a steady decline in outer retinal thickness. Histologic studies demonstrated correlation of retinal features with those seen on SD-OCT scans. Segmentation analysis provides a quantitative and reproducible method for measuring in vivo retinal changes in mice. CONCLUSIONS SD-OCT provides a non-invasive method of following long-term retinal changes in mice in vivo. Although rd10 and rd1 mice have mutations in the same gene, they demonstrate significantly different features on SD-OCT.
Collapse
Affiliation(s)
- Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Hisatomi T, Nakao S, Murakami Y, Noda K, Nakazawa T, Notomi S, Connolly E, She H, Almulki L, Ito Y, Vavvas DG, Ishibashi T, Miller JW. The regulatory roles of apoptosis-inducing factor in the formation and regression processes of ocular neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:53-61. [PMID: 22613025 PMCID: PMC3388154 DOI: 10.1016/j.ajpath.2012.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 03/08/2012] [Accepted: 03/15/2012] [Indexed: 11/23/2022]
Abstract
The role of apoptosis in the formation and regression of neovascularization is largely hypothesized, although the detailed mechanism remains unclear. Inflammatory cells and endothelial cells both participate and interact during neovascularization. During the early stage, these cells may migrate into an angiogenic site and form a pro-angiogenic microenvironment. Some angiogenic vessels appear to regress, whereas some vessels mature and remain. The control mechanisms of these processes, however, remain unknown. Previously, we reported that the prevention of mitochondrial apoptosis contributed to cellular survival via the prevention of the release of proapoptotic factors, such as apoptosis-inducing factor (AIF) and cytochrome c. In this study, we investigated the regulatory role of cellular apoptosis in angiogenesis using two models of ocular neovascularization: laser injury choroidal neovascularization and VEGF-induced corneal neovascularization in AIF-deficient mice. Averting apoptosis in AIF-deficient mice decreased apoptosis of leukocytes and endothelial cells compared to wild-type mice and resulted in the persistence of these cells at angiogenic sites in vitro and in vivo. Consequently, AIF deficiency expanded neovascularization and diminished vessel regression in these two models. We also observed that peritoneal macrophages from AIF-deficient mice showed anti-apoptotic survival compared to wild-type mice under conditions of starvation. Our data suggest that AIF-related apoptosis plays an important role in neovascularization and that mitochondria-regulated apoptosis could offer a new target for the treatment of pathological angiogenesis.
Collapse
Affiliation(s)
- Toshio Hisatomi
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Clinical Research Institute, Kyushu Medical Center, Fukuoka, Japan
| | - Shintaro Nakao
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kousuke Noda
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Toru Nakazawa
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Edward Connolly
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Haicheng She
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Lama Almulki
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Yasuhiro Ito
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Demetrios G. Vavvas
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Joan W. Miller
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
171
|
Roesch K, Stadler MB, Cepko CL. Gene expression changes within Müller glial cells in retinitis pigmentosa. Mol Vis 2012; 18:1197-214. [PMID: 22665967 PMCID: PMC3365136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 05/04/2012] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) is a progressive retinal degeneration in which the retina loses nearly all of its photoreceptor cells and undergoes major structural changes. Little is known regarding the role the resident glia, the Müller glia, play in the progression of the disease. In this article, we define gene expression changes in Müller glial cells (MGCs) from two different mouse models of RP, the retinal degeneration 1 (rd1) and rhodopsin knockout (Rhod-ko) models. The RNA repertoire of single MGCs was comprehensively profiled, and a comparison was made between MGCs from wild-type (WT) and mutant retinas. Two time points were chosen for analysis, one at the peak of rod photoreceptor death and one during the period of cone photoreceptor death. METHODS Retinas were dissociated, and single MGCs were chosen under a dissecting microscope using a micropipette. Single cell cDNAs were generated and genome-wide profiles were obtained by hybridization to Affymetrix arrays. A comparison was made among all samples to discover the changes in gene expression during the periods of rod and cone photoreceptor death. RESULTS MGCs respond to retinal degeneration by undergoing gliosis, a process marked by the upregulation of glial fibrillary acidic protein (Gfap). Many additional transcripts were found to change. These can be placed into functional clusters, such as retinal remodeling, stress response, and immune-related response. CONCLUSIONS A high degree of heterogeneity among the individual cells was observed, possibly due to their different spatial proximities to dying cells and/or inherent heterogeneity among MGCs.
Collapse
Affiliation(s)
- Karin Roesch
- Department of Genetics, Harvard Medical School, and Howard Hughes Medical Institute, Boston MA
| | - Michael B. Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Constance L. Cepko
- Department of Genetics, Harvard Medical School, and Howard Hughes Medical Institute, Boston MA
| |
Collapse
|
172
|
Differential modulation of retinal degeneration by Ccl2 and Cx3cr1 chemokine signalling. PLoS One 2012; 7:e35551. [PMID: 22545116 PMCID: PMC3335860 DOI: 10.1371/journal.pone.0035551] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/21/2012] [Indexed: 12/15/2022] Open
Abstract
Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particular interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair macrophage trafficking, but have, in several conflicting studies, been reported to show different degrees of age-related retinal degeneration. Ccl2/Cx3cr1 double knockout (CCDKO) mice show an early onset retinal degeneration and have been suggested as a model for AMD. In order to understand phenotypic discrepancies in different chemokine knockout lines and to study how defects in Ccl2 and/or Cx3cr1 signalling contribute to the described early onset retinal degeneration, we defined primary and secondary pathological events in CCDKO mice. To control for genetic background variability, we compared the original phenotype with that of single Ccl2, Cx3cr1 and Ccl2/Cx3cr1 double knockout mice obtained from backcrosses of CCDKO with C57Bl/6 mice. We found that the primary pathological event in CCDKO mice develops in the inferior outer nuclear layer independently of light around postnatal day P14. RPE and vascular lesions develop secondarily with increasing penetrance with age and are clinically similar to retinal telangiectasia not to choroidal neovascularisation. Furthermore, we provide evidence that a third autosomal recessive gene causes the degeneration in CCDKO mice and in all affected re-derived lines and subsequently demonstrated co-segregation of the naturally occurring RD8 mutation in the Crb1 gene. By comparing CCDKO mice with re-derived CCl2(-/-)/Crb1(Rd8/RD8), Cx3cr1(-/-)/Crb1(Rd8/RD8) and CCl2(-/-)/Cx3cr1(-/-)/Crb1(Rd8/RD8) mice, we observed a differential modulation of the retinal phenotype by genetic background and both chemokine signalling pathways. These findings indicate that CCDKO mice are not a model of AMD, but a model for an inherited retinal degeneration that is differentially modulated by Ccl2-Ccr2 and Cx3cl1-Cx3cr1 chemokine signalling.
Collapse
|
173
|
Coorey NJ, Shen W, Chung SH, Zhu L, Gillies MC. The role of glia in retinal vascular disease. Clin Exp Optom 2012; 95:266-81. [PMID: 22519424 DOI: 10.1111/j.1444-0938.2012.00741.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Retinal vascular diseases collectively represent a leading cause of blindness. Unsurprisingly, pathological characterisation and treatment of retinal 'vascular' diseases have primarily focused on the aetiology and consequences of vascular dysfunction. Far less research has addressed the contribution of neuronal and glial dysfunction to the disease process of retinal vascular disorders. Ample evidence now suggests that retinal vasculopathy only uncommonly occurs in isolation, usually existing in concert with neuropathy and gliopathy. Retinal glia (Müller cells, astrocytes and microglia) have been reported to exhibit morphological and functional changes in both early and advanced phases of almost every retinal vascular disease. It is anticipated that identifying the causes of glial activation and dysfunction, and their contribution to loss of vision in retinal vascular disease, will lead to a better understanding of retinal vascular diseases, which might ultimately be translated into novel clinical therapies.
Collapse
Affiliation(s)
- Nathan J Coorey
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | | | | | | | | |
Collapse
|
174
|
Abstract
Microglia, the brain's innate immune cell type, are cells of mesodermal origin that populate the central nervous system (CNS) during development. Undifferentiated microglia, also called ameboid microglia, have the ability to proliferate, phagocytose apoptotic cells and migrate long distances toward their final destinations throughout all CNS regions, where they acquire a mature ramified morphological phenotype. Recent studies indicate that ameboid microglial cells not only have a scavenger role during development but can also promote the death of some neuronal populations. In the mature CNS, adult microglia have highly motile processes to scan their territorial domains, and they display a panoply of effects on neurons that range from sustaining their survival and differentiation contributing to their elimination. Hence, the fine tuning of these effects results in protection of the nervous tissue, whereas perturbations in the microglial response, such as the exacerbation of microglial activation or lack of microglial response, generate adverse situations for the organization and function of the CNS. This review discusses some aspects of the relationship between microglial cells and neuronal death/survival both during normal development and during the response to injury in adulthood.
Collapse
|
175
|
Kunikata H, Shimura M, Nakazawa T, Sonoda KH, Yoshimura T, Ishibashi T, Nishida K. Chemokines in aqueous humour before and after intravitreal triamcinolone acetonide in eyes with macular oedema associated with branch retinal vein occlusion. Acta Ophthalmol 2012; 90:162-7. [PMID: 20456252 DOI: 10.1111/j.1755-3768.2010.01892.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To determine the aqueous humour levels of chemokines before and after an intravitreal injection of triamcinolone acetonide (IVTA) in eyes with macular oedema associated with a branch retinal vein occlusion (ME-BRVO). DESIGN Single-centre, prospective, consecutive interventional case series. PARTICIPANTS Seventeen eyes of 17 consecutive patients with ME-BRVO who underwent IVTA were studied. Seven eyes without retinal vascular disease served as control. INTERVENTION All patients with ME-BRVO underwent IVTA. MAIN OUTCOME MEASURES The optical coherence tomographically determined foveal thickness (FT) and the aqueous humour levels of inflammatory chemokines of the C-C subfamily, including eotaxin, monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), β (MIP-1β), and RANTES was determined before the IVTA (baseline) and at 1 week after the IVTA. RESULTS At the baseline, only MCP-1 and MIP-1β were detected in the aqueous, and MIP-1β was significantly higher in eyes with a ME-BRVO than in controls (p = 0.004). The level of both of these chemokines was not correlated with the FT (p = 0.654 and p = 0.608, respectively). One week after IVTA, the FT was significantly decreased (p < 0.001), and the levels of MCP-1 and MIP-1β were also significantly reduced (p < 0.001 and p = 0.044, respectively). The decrease in the FT was correlated with the decrease in only MIP-1β (r = 0.58, p = 0.020). CONCLUSIONS Alterations of the aqueous level of MIP-1β reflect the improvement of the macular oedema after IVTA in eyes with ME-BRVO. This indicates that the steroid-dependent ME-BRVO was closely related with the level of MIP-1β.
Collapse
Affiliation(s)
- Hiroshi Kunikata
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | | | | | | | | | | | | |
Collapse
|
176
|
Sung HJ, Han JI, Lee JW, Uhm KB, Heo K. TCCR/WSX-1 is a novel angiogenic factor in age-related macular degeneration. Mol Vis 2012; 18:234-40. [PMID: 22312192 PMCID: PMC3272058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/25/2012] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Age-related macular degeneration (AMD) is the major cause of blindness among persons aged 60 years and older. The current approved therapies for AMD are exclusively limited to inhibiting vascular endothelial growth factor. However, substantial improvement in vision occurs in only one-third of patients treated with vascular endothelial growth factor antagonists, and one-sixth of treated patients still progress to legal blindness. Therefore, more specific targets are needed to treat AMD. Our goal was to find secretory proteins that change in number in the aqueous humor and that cause exudative AMD disease. METHODS The number of molecules changed in the aqueous humor of patients with AMD compared to the control group was determined using antibody array analysis. The levels of angiopoietin-2 and insulin-like growth factor binding protein-related protein 7 were measured using enzyme-linked immunosorbent assay. The levels of T-cell cytokine receptor (TCCR/WSX-1) were determined using western blot. Potential TCCR/WSX-1-mediated effects on tube formation as well as phosphorylation of extracellular signal-regulated kinase in human umbilical vein endothelial cells were determined. RESULTS We found that the numbers of several molecules were changed in the aqueous humor of patients with AMD compared to the control group. Among them, angiopoietin-2 was reduced by 20% and TCCR/WSX-1 was increased twofold. Moreover, exogenous TCCR protein induced tube formation and phosphorylation of extracellular signal-regulated kinase in human umbilical vein endothelial cells. CONCLUSIONS Our study suggests that TCCR/WSX-1 is closely associated with angiogenesis and could serve as a novel therapeutic target in patients with AMD.
Collapse
Affiliation(s)
- Ho Jin Sung
- Functional Genomics Branch, Division of Convergence Technology, National Cancer Center, Gyeonggi-do, Republic of Korea,Department of Life Science, Division of Life and Pharmaceutical Sciences, and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Republic of Korea
| | - Jung Il Han
- Department of Ophthalmology, Retina Center, Kim’s Eye Hospital, Konyang University School of Medicine, Seoul, Republic of Korea
| | - Ji Won Lee
- Functional Genomics Branch, Division of Convergence Technology, National Cancer Center, Gyeonggi-do, Republic of Korea
| | - Ki Bang Uhm
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Kyun Heo
- Functional Genomics Branch, Division of Convergence Technology, National Cancer Center, Gyeonggi-do, Republic of Korea
| |
Collapse
|
177
|
Yang G, Qu X, Zhang J, Zhao W, Wang H. Sema3F downregulates p53 expression leading to axonal growth cone collapse in primary hippocampal neurons. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2012; 5:634-41. [PMID: 22977659 PMCID: PMC3438774 DOI: pmid/22977659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/26/2012] [Indexed: 11/18/2022]
Abstract
Hippocampal nerve growth is regulated by the coordinated action of numerous external stimuli, including positively acting neurotrophin-derived growth cues and restrictive semaphorin cues, however the underlying cellular mechanisms remain largely unclear. We examined the potential cellular mechanism of Semaphorin3F (Sema3F) in cultured primary hippocampal neurons. We show that Sema3F can down-regulate p53 expression in primary hippocampal neurons, thereby contributing to growth cone collapse. Sema3F suppressed p53-induced pathways, which we show to be required to maintain growth cone structure. Sema3F-induced growth cone collapse was partially reversed by overexpression of p53, which promoted growth cone extension. Inhibition of p53 function by inhibitor, siRNAs, induced axonal growth cone collapse, whereas p53 over-expression led to larger growth cones in cultured primary hippocampal neurons.These data reveal a novel mechanism by which Sema3F can induce hippocampal neuron growth cone collapse and provide evidence for an intracellular mechanism for cross talk between positive and negative axon growth cues.
Collapse
Affiliation(s)
- Guanglu Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | | | | | | | | |
Collapse
|
178
|
Wang M, Ma W, Zhao L, Fariss RN, Wong WT. Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. J Neuroinflammation 2011; 8:173. [PMID: 22152278 PMCID: PMC3251543 DOI: 10.1186/1742-2094-8-173] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/07/2011] [Indexed: 12/12/2022] Open
Abstract
Purpose Microglia and Müller cells are prominent participants in retinal responses to injury and disease that shape eventual tissue adaptation or damage. This investigation examined how microglia and Müller cells interact with each other following initial microglial activation. Methods Mouse Müller cells were cultured alone, or co-cultured with activated or unactivated retinal microglia, and their morphological, molecular, and functional responses were evaluated. Müller cell-feedback signaling to microglia was studied using Müller cell-conditioned media. Corroborative in vivo analyses of retinal microglia-Müller cell interactions in the mouse retina were also performed. Results Our results demonstrate that Müller cells exposed to activated microglia, relative to those cultured alone or with unactivated microglia, exhibit marked alterations in cell morphology and gene expression that differed from those seen in chronic gliosis. These Müller cells demonstrated in vitro (1) an upregulation of growth factors such as GDNF and LIF, and provide neuroprotection to photoreceptor cells, (2) increased pro-inflammatory factor production, which in turn increased microglial activation in a positive feedback loop, and (3) upregulated chemokine and adhesion protein expression, which allowed Müller cells to attract and adhere to microglia. In vivo activation of microglia by intravitreal injection of lipopolysaccharide (LPS) also induced increased Müller cell-microglia adhesion, indicating that activated microglia may translocate intraretinally in a radial direction using Müller cell processes as an adhesive scaffold. Conclusion Our findings demonstrate that activated microglia are able to influence Müller cells directly, and initiate a program of bidirectional microglia-Müller cell signaling that can mediate adaptive responses within the retina following injury. In the acute aftermath following initial microglia activation, Müller cell responses may serve to augment initial inflammatory responses across retinal lamina and to guide the intraretinal mobilization of migratory microglia using chemotactic cues and adhesive cell contacts. Understanding adaptive microglia-Müller cell interactions in injury responses can help discover therapeutic cellular targets for intervention in retinal disease.
Collapse
Affiliation(s)
- Minhua Wang
- Unit on Neuron-Glia Interactions in Retinal Diseases, Office of the Scientific Director, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
179
|
Ryu M, Yasuda M, Shi D, Shanab AY, Watanabe R, Himori N, Omodaka K, Yokoyama Y, Takano J, Saido T, Nakazawa T. Critical role of calpain in axonal damage-induced retinal ganglion cell death. J Neurosci Res 2011; 90:802-15. [PMID: 22065590 DOI: 10.1002/jnr.22800] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/22/2011] [Accepted: 08/30/2011] [Indexed: 12/28/2022]
Abstract
Calpain, an intracellular cysteine protease, has been widely reported to be involved in neuronal cell death. The purpose of this study is to investigate the role of calpain activation in axonal damage-induced retinal ganglion cell (RGC) death. Twelve-week-old male calpstatin (an endogenous calpain inhibitor) knockout mice (CAST KO) and wild-type (WT) mice were used in this study. Axonal damage was induced by optic nerve crush (NC) or tubulin destruction induced by leaving a gelatin sponge soaked with vinblastine (VB), a microtubule disassembly chemical, around the optic nerve. Calpain activation was assessed by immunoblot analysis, which indirectly quantified the cleaved α-fodrin, a substrate of calpain. RGCs were retrogradely labeled by injecting a fluorescent tracer, Fluoro-Gold (FG), and the retinas were harvested and flat-mounted retinas prepared. The densities of FG-labeled RGCs harvested from the WT and CAST KO groups were assessed and compared. Additionally, a calpain inhibitor (SNJ-1945, 100 mg/kg/day) was administered orally, and the density of surviving RGCs was compared with that of the vehicle control group. The mean density of surviving RGCs in the CAST KO group was significantly lower than that observed in the WT group, both in NC and in VB. The mean density of surviving RGCs in the SNJ-1945-treated group was significantly higher than that of the control group. The calpain inhibitor SNJ-1945 has a neuroprotective effect against axonal damage-induced RGC death. This pathway may be an important therapeutic target for preventing this axonal damage-induced RGC death, including glaucoma and diabetic optic neuropathy and other CNS diseases that share a common etiology.
Collapse
Affiliation(s)
- Morin Ryu
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Nam BY, Paeng J, Kim SH, Lee SH, Kim DH, Kang HY, Li JJ, Kwak SJ, Park JT, Yoo TH, Han SH, Kim DK, Kang SW. The MCP-1/CCR2 axis in podocytes is involved in apoptosis induced by diabetic conditions. Apoptosis 2011; 17:1-13. [DOI: 10.1007/s10495-011-0661-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
181
|
Notomi S, Hisatomi T, Kanemaru T, Takeda A, Ikeda Y, Enaida H, Kroemer G, Ishibashi T. Critical involvement of extracellular ATP acting on P2RX7 purinergic receptors in photoreceptor cell death. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2798-809. [PMID: 21983632 DOI: 10.1016/j.ajpath.2011.08.035] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/05/2011] [Accepted: 08/23/2011] [Indexed: 11/30/2022]
Abstract
Stressed cells release ATP, which participates in neurodegenerative processes through the specific ligation of P2RX7 purinergic receptors. Here, we demonstrate that extracellular ATP and the more specific P2RX7 agonist, 2'- and 3'-O-(4-benzoylbenzoyl)-ATP, both induce photoreceptor cell death when added to primary retinal cell cultures or when injected into the eyes from wild-type mice, but not into the eyes from P2RX7(-/-) mice. Photoreceptor cell death was accompanied by the activation of caspase-8 and -9, translocation of apoptosis-inducing factor from mitochondria to nuclei, and TUNEL-detectable chromatin fragmentation. All hallmarks of photoreceptor apoptosis were prevented by premedication or co-application of Brilliant Blue G, a selective P2RX7 antagonist that is already approved for the staining of internal limiting membranes during ocular surgery. ATP release is up-regulated by nutrient starvation in primary retinal cell cultures and seems to be an initializing event that triggers primary and/or secondary cell death via the positive feedback loop on P2RX7. Our results encourage the potential application of Brilliant Blue G as a novel neuroprotective agent in retinal diseases or similar neurodegenerative pathologies linked to excessive extracellular ATP.
Collapse
Affiliation(s)
- Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Mantopoulos D, Murakami Y, Comander J, Thanos A, Roh M, Miller JW, Vavvas DG. Tauroursodeoxycholic acid (TUDCA) protects photoreceptors from cell death after experimental retinal detachment. PLoS One 2011; 6:e24245. [PMID: 21961034 PMCID: PMC3178513 DOI: 10.1371/journal.pone.0024245] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 08/08/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Detachment of photoreceptors from the underlying retinal pigment epithelium is seen in various retinal disorders such as retinal detachment and age-related macular degeneration and leads to loss of photoreceptors and vision. Pharmacologic inhibition of photoreceptor cell death may prevent this outcome. This study tests whether systemic administration of tauroursodeoxycholic acid (TUDCA) can protect photoreceptors from cell death after experimental retinal detachment in rodents. METHODOLOGY/PRINCIPAL FINDINGS Retinal detachment was created in rats by subretinal injection of hyaluronic acid. The animals were treated daily with vehicle or TUDCA (500 mg/kg). TUNEL staining was used to evaluate cell death. Photoreceptor loss was evaluated by measuring the relative thickness of the outer nuclear layer (ONL). Macrophage recruitment, oxidative stress, cytokine levels, and caspase levels were also quantified. Three days after detachment, TUDCA decreased the number of TUNEL-positive cells compared to vehicle (651±68/mm(2) vs. 1314±68/mm(2), P = 0.001) and prevented the reduction of ONL thickness ratio (0.84±0.03 vs. 0.65±0.03, P = 0.002). Similar results were obtained after 5 days of retinal detachment. Macrophage recruitment and expression levels of TNF-a and MCP-1 after retinal detachment were not affected by TUDCA treatment, whereas increases in activity of caspases 3 and 9 as well as carbonyl-protein adducts were almost completely inhibited by TUDCA treatment. CONCLUSIONS/SIGNIFICANCE Systemic administration of TUDCA preserved photoreceptors after retinal detachment, and was associated with decreased oxidative stress and caspase activity. TUDCA may be used as a novel therapeutic agent for preventing vision loss in diseases that are characterized by photoreceptor detachment.
Collapse
Affiliation(s)
- Dimosthenis Mantopoulos
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yusuke Murakami
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jason Comander
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aristomenis Thanos
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Miin Roh
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joan W. Miller
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
183
|
Bringmann A, Wiedemann P. Müller glial cells in retinal disease. ACTA ACUST UNITED AC 2011; 227:1-19. [PMID: 21921569 DOI: 10.1159/000328979] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 11/19/2022]
Abstract
Virtually all pathogenic stimuli activate Müller cells. Reactive Müller cells exert protective and toxic effects on photoreceptors and neurons. They contribute to oxidative stress and glutamate toxicity due to malfunctions of glutamate uptake and glutathione synthesis. Downregulation of potassium conductance disrupts transcellular potassium and water transport, resulting in neuronal hyperexcitability and edema. Protective effects of reactive Müller cells include upregulation of adenosine 5'-triphosphate (ATP)-degrading ectoenzymes, which enhances the extracellular availability of the neuroprotectant adenosine, abrogation of the osmotic release of ATP, which might protect retinal ganglion cells from apoptosis, and the release of antioxidants and neurotrophic factors. The dedifferentiation of reactive Müller cells to progenitor-like cells might have an impact on future therapeutic approaches. A better understanding of the gliotic mechanisms will be helpful in developing efficient therapeutic strategies aiming at increased protective and regenerative properties and decreased toxicity of reactive Müller cells.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
184
|
Yang D, Elner SG, Chen X, Field MG, Petty HR, Elner VM. MCP-1-activated monocytes induce apoptosis in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2011; 52:6026-34. [PMID: 21447688 DOI: 10.1167/iovs.10-7023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The inflammatory response in age-related macular degeneration (AMD) is characterized by mononuclear leukocyte infiltration of the outer blood-retina barrier formed by the retinal pigment epithelium (RPE). A key mechanistic element in AMD progression is RPE dysfunction and apoptotic cell loss. The purpose of this study was to evaluate whether monocyte chemoattractant protein (MCP)-1-activated monocytes induce human RPE apoptosis and whether Ca(2+) and reactive oxygen species (ROS) are involved in this process. METHODS A cell-based fluorometric assay was used to measure intracellular Ca(2+) concentrations ([Ca(2+)](i)) in RPE cells loaded with fluorescent Ca(2+) indicator. Intracellular RPE ROS levels were measured by using the 5- and 6-chloromethyl-2',7'-dichlorodihydrofluorescence diacetate acetyl ester (CM-H(2)DCFDA) assay. RPE apoptosis was evaluated by activated caspase-3, Hoechst staining, and apoptosis ELISA. RESULTS MCP-1-activated human monocytes increased [Ca(2+)](i), ROS levels, and apoptosis in RPE cells, all of which were inhibited by 8-bromo-cyclic adenosine diphosphoribosyl ribose (8-Br-cADPR), an antagonist of cADPR. Although the ROS scavengers pyrrolidinedithiocarbamate (PDTC) and N-acetylcysteine (NAC) significantly inhibited ROS production and apoptosis induced by activated monocytes, they did not affect induced Ca(2+) levels. The induced Ca(2+) levels and apoptosis in RPE cells were inhibited by an antibody against cluster of differentiation antigen 14 (CD14), an adhesion molecule expressed by these cells. CONCLUSIONS These results indicate that CD14, Ca(2+), and ROS are involved in activated monocyte-induced RPE apoptosis and that cADPR contributes to these changes. Understanding the complex interactions among CD14, cADPR, Ca(2+), and ROS may provide new insights and treatments of retinal diseases, including AMD.
Collapse
Affiliation(s)
- Dongli Yang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105-0714, USA
| | | | | | | | | | | |
Collapse
|
185
|
Lo ACY, Woo TTY, Wong RLM, Wong D. Apoptosis and other cell death mechanisms after retinal detachment: implications for photoreceptor rescue. ACTA ACUST UNITED AC 2011; 226 Suppl 1:10-7. [PMID: 21778775 DOI: 10.1159/000328206] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Retinal detachment (RD) is one of the most common causes of blindness. This separation of the neurosensory retina from its underlying retinal pigment epithelium results in photoreceptor loss, which is the basis of permanent visual impairment. This review explores the various cell death mechanisms in photoreceptor death associated with RD. One of the major mechanisms is apoptosis, mediated by the intrinsic pathway, the Fas signalling pathway and/or the caspase-independent pathway. Other pathways of mechanisms include endoplasmic reticulum stress-mediated cell death, programmed necrosis and cytokine-related pathways. Understanding the mechanism of RD-associated photoreceptor death is likely to help us improve the current therapies or devise new strategies for this sight-threatening condition.
Collapse
Affiliation(s)
- Amy C Y Lo
- Eye Institute, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, China.
| | | | | | | |
Collapse
|
186
|
Minocycline attenuates photoreceptor degeneration in a mouse model of subretinal hemorrhage microglial: inhibition as a potential therapeutic strategy. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1265-77. [PMID: 21763674 DOI: 10.1016/j.ajpath.2011.05.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 05/09/2011] [Accepted: 05/26/2011] [Indexed: 01/09/2023]
Abstract
Hemorrhage under the neural retina (subretinal hemorrhage) can occur in the context of age-related macular degeneration and induce subsequent photoreceptor cell death and permanent vision loss. Current treatments with the objective of removing or displacing the hemorrhage are invasive and of mixed efficacy. We created a mouse model of subretinal hemorrhage to characterize the inflammatory responses and photoreceptor degeneration that occur in the acute aftermath of hemorrhage. It was observed that microglial infiltration into the outer retina commences as early as 6 hours after hemorrhage. Inflammatory cells progressively accumulate in the outer nuclear layer concurrently with photoreceptor degeneration and apoptosis. Administration of minocycline, an inhibitor of microglial activation, decreased microglial expression of chemotactic cytokines in vitro and reduced microglial infiltration and photoreceptor cell loss after subretinal hemorrhage in vivo. Inflammatory responses and photoreceptor atrophy occurred after subretinal hemorrhage, however, the degree of response and atrophy were similar between C3-deficient and C3-sufficient mice, indicating a limited role for complement-mediated processes. Our data indicate a role for inflammatory responses in driving photoreceptor cell loss in subretinal hemorrhage, and it is proposed that microglial inhibition may be beneficial in the treatment of subretinal hemorrhage.
Collapse
|
187
|
PPAR-gamma, Microglial Cells, and Ocular Inflammation: New Venues for Potential Therapeutic Approaches. PPAR Res 2011; 2008:295784. [PMID: 18382616 PMCID: PMC2276614 DOI: 10.1155/2008/295784] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 01/25/2008] [Indexed: 01/06/2023] Open
Abstract
The last decade has witnessed an increasing interest for the role played by the peroxisome proliferator-activated receptor-γ (PPAR-γ) in controlling inflammation in peripheral organs as well as in the brain. Activation of PPAR-γ has been shown to control the response of microglial cells, the main macrophage population found in brain parenchyma, and limit the inflammation. The anti-inflammatory capacity of PPAR-γ agonists has led to the hypothesis that PPAR-γ might be targeted to modulate degenerative brain diseases in which inflammation has been increasingly recognized as a significant component. Recent experimental evidence suggests that PPAR-γ agonists could be exploited to treat ocular diseases such as diabetic retinopathy, age-related macular degeneration, autoimmune uveitis, and optic neuritis where inflammation has relevant role. Additional PPAR-γ agonist beneficial effects could involve amelioration of retinal microcirculation and inhibition of neovascularization. However, PPAR-γ activation could, in some instances, aggravate the ocular pathology, for example, by increasing the synthesis of vascular endothelial growth factor, a proangiogenic factor that could trigger a vicious circle and further deteriorate retinal perfusion. The development of new in vivo and in vitro models to study ocular inflammation and how to modulate for the eye benefit will be instrumental for the search of effective therapies.
Collapse
|
188
|
Roh MI, Murakami Y, Thanos A, Vavvas DG, Miller JW. Edaravone, an ROS scavenger, ameliorates photoreceptor cell death after experimental retinal detachment. Invest Ophthalmol Vis Sci 2011; 52:3825-31. [PMID: 21310909 DOI: 10.1167/iovs.10-6797] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
PURPOSE To investigate whether edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, would be neuroprotective against photoreceptor cell death in a rat model of retinal detachment (RD). METHODS RD was induced in adult Brown Norway rats by subretinal injection of sodium hyaluronate. Edaravone (3, 5, or 10 mg/kg) or physiologic saline was administered intraperitoneally once a day until death on day 3 or 5. Oxidative stress in the retina was assessed by 4-hydroxynonenal staining or ELISA for protein carbonyl content. Photoreceptor death was assessed by TUNEL and measurement of the outer nuclear layer thickness. Western blot analysis and caspase activity assays were performed. Inflammatory cytokine secretion and inflammatory cell infiltration were evaluated by ELISA and immunostaining, respectively. RESULTS RD resulted in increased generation of ROS. Treatment with 5 mg/kg edaravone significantly reduced the ROS level, along with a decrease in TUNEL-positive cells in the photoreceptor layer. A caspase assay also confirmed decreased activation of caspase-3, -8, and -9 in RD treated with edaravone. The level of the antiapoptotic Bcl-2 was increased in detached retinas after edaravone treatment, whereas the levels of the stress-activated p-ERK1/2 were decreased. In addition, edaravone treatment resulted in a significant decrease in the levels of TNF-α, MCP-1, and macrophage infiltration. CONCLUSIONS Oxidative stress plays an important role in photoreceptor cell death after RD. Edaravone treatment may aid in preventing photoreceptor cell death after RD by suppressing ROS-induced photoreceptor damage.
Collapse
Affiliation(s)
- Mi In Roh
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
189
|
Kayama M, Nakazawa T, Thanos A, Morizane Y, Murakami Y, Theodoropoulou S, Abe T, Vavvas D, Miller JW. Heat shock protein 70 (HSP70) is critical for the photoreceptor stress response after retinal detachment via modulating anti-apoptotic Akt kinase. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1080-91. [PMID: 21356360 DOI: 10.1016/j.ajpath.2010.11.072] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/25/2010] [Accepted: 11/09/2010] [Indexed: 02/08/2023]
Abstract
Photoreceptor apoptosis is a major cause of vision loss in many ocular diseases. Significant progress has been made to elucidate the molecular pathways involved in this process, yet little is known about proteins counteracting these apoptotic pathways. It is established that heat shock proteins (HSPs) function as molecular helper proteins (chaperones) by preventing protein aggregation and facilitating refolding of dysfunctional proteins, critical to the survival of all organisms. Here, we investigated the role of HSP70 on photoreceptor survival after experimental retinal detachment (RD) in mice and rats. We found that HSP70 was up-regulated after RD and associated with phosphorylated Akt, thereby preventing its dephosphorylation and further activation of cell death pathways. Administration of quercetin, which inhibits HSP70 and suppresses Akt phosphorylation significantly increased photoreceptor apoptosis. Similarly, RD-induced photoreceptor apoptosis was augmented in mice carrying hypomorphic mutations of the genes encoding HSP70. On the other hand, administration of geranylgeranylacetone, which induces an increase in HSP70 significantly decreased photoreceptor apoptosis after RD through prolonged activation of Akt pathway. Thus, HSP70 may be a favorable potential target to increase photoreceptor cell survival after RD.
Collapse
Affiliation(s)
- Maki Kayama
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, and the Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Yang G, Meng Y, Li W, Yong Y, Fan Z, Ding H, Wei Y, Luo J, Ke Z. Neuronal MCP-1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism. Brain Pathol 2011; 21:279-97. [PMID: 21029241 PMCID: PMC3046243 DOI: 10.1111/j.1750-3639.2010.00445.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 09/03/2010] [Indexed: 11/28/2022] Open
Abstract
Chemokines are implicated in the neuroinflammation of several chronic neurodegenerative disorders. However, the precise role of chemokines in neurodegeneration is unknown. Thiamine deficiency (TD) causes abnormal oxidative metabolism in the brain as well as a well-defined microglia activation and neurodegeneration in the submedial thalamus nucleus (SmTN), which are common features of neurodegenerative diseases. We evaluated the role of chemokines in neurodegeneration and the underlying mechanism in a TD model. Among the chemokines examined, TD selectively induced neuronal expression of monocyte chemoattractant protein-1 (MCP-1) in the SmTN prior to microglia activation and neurodegeneration. The conditioned medium collected from TD-induced neurons caused microglia activation. With a neuron/microglia co-culture system, we showed that MCP-1-induced neurotoxicity required the presence of microglia, and exogenous MCP-1 was able to activate microglia and stimulated microglia to produce cytokines. A MCP-1 neutralizing antibody inhibited MCP-1-induced microglia activation and neuronal death in culture and in the thalamus. MCP-1 knockout mice were resistant to TD-induced neuronal death in SmTN. TD selectively induced the accumulation of reactive oxygen species in neurons, and antioxidants blocked TD-induced MCP-1 expression. Together, our results indicated an induction of neuronal MCP-1 during mild impairment of oxidative metabolism caused by microglia recruitment/activation, which exacerbated neurodegeneration.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Ya Meng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Wenxia Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Yue Yong
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Zhiqin Fan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Hanqing Ding
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Youzhen Wei
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Jia Luo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY
| | - Zun‐Ji Ke
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
191
|
Rutar M, Natoli R, Valter K, Provis JM. Early focal expression of the chemokine Ccl2 by Müller cells during exposure to damage-inducing bright continuous light. Invest Ophthalmol Vis Sci 2011; 52:2379-88. [PMID: 21228381 DOI: 10.1167/iovs.10-6010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To investigate the time course and localization of Ccl2 expression and recruitment of inflammatory cells associated with light-induced photoreceptor degeneration. METHODS Sprague-Dawley (SD) rats were exposed to 1000 lux light for up to 24 hours, after which some animals were allowed to recover in dim light (5 lux) for 3 or 7 days. During and after exposure to light, the animals were euthanatized and the retinas processed. Ccl2 expression was assessed by qPCR, immunohistochemistry, and in situ hybridization at each time point. Counts were made of perivascular monocytes/microglia immunolabeled with ED1, and photoreceptor apoptosis was assessed with TUNEL. RESULTS Upregulation of Ccl2 expression was evident in the retina by 12 hours of exposure and correlated with increased photoreceptor death. Ccl2 expression reached its maximum at 24 hours, coinciding with peak cell death. Immunohistochemistry and in situ hybridization showed that Ccl2 is expressed by Müller cells from 12 hours of exposure, most intensely in the superior retina, in the region of the incipient light-induced lesion. After the Müller cell-driven expression of Ccl2, there was a substantial recruitment of monocytes to the local retina and choroidal vasculature. This coincided spatially with the expression of Ccl2 in the superior retina. Peak monocyte infiltration followed maximum Ccl2 expression by up to 3 days. Furthermore, Ccl2 immunoreactivity was observed in many infiltrating monocytes after a 24-hour exposure. CONCLUSIONS The data indicate that photoreceptor death promotes region-specific expression of Ccl2 by Müller cells, which facilitates targeting of monocytes to sites of injury. The data suggest that recruitment of monocytes to developing lesions is secondary to signaling events in the retina.
Collapse
Affiliation(s)
- Matt Rutar
- Research School of Biology, The Australian National University, Canberra ACT 0200, Australia.
| | | | | | | |
Collapse
|
192
|
Suppression of phagocytic cells in retinal disorders using amphiphilic poly(γ-glutamic acid) nanoparticles containing dexamethasone. J Control Release 2011; 151:65-73. [DOI: 10.1016/j.jconrel.2010.11.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/22/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022]
|
193
|
Nakazawa T, Kayama M, Ryu M, Kunikata H, Watanabe R, Yasuda M, Kinugawa J, Vavvas D, Miller JW. Tumor necrosis factor-alpha mediates photoreceptor death in a rodent model of retinal detachment. Invest Ophthalmol Vis Sci 2011; 52:1384-91. [PMID: 21402953 DOI: 10.1167/iovs.10-6509] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Photoreceptor degeneration is a major cause of visual loss in various retinal diseases, including retinal detachment (RD) and neovascular AMD, but the underlying mechanisms remain elusive. In this study, the role of TNFα in RD-induced photoreceptor degeneration was investigated. METHODS RD was induced by subretinal injection of hyaluronic acid. Photoreceptor degeneration was assessed by counting the number of apoptotic cells with TdT-dUTP terminal nick-end labeling (TUNEL) 3 days after RD and measurement of the outer nuclear layer (ONL) thickness 7 days after RD. As the target of anti-inflammatory treatment, the expression of TNFα, with or without dexamethasone (DEX) was examined in rats by real-time PCR. To understand the role of TNFα in photoreceptor degeneration, RD was induced in mice deficient in TNFα or its receptors (TNFR1, TNFR2, and TNFR1 and -2), or in wild-type (WT) mice by using a functionally blocking antibody to TNFα. CD11b(+) cells in the outer plexiform layer (OPL) and subretinal space were counted by immunohistochemistry (IHC). RESULTS Treatment with DEX (P = 0.001) significantly suppressed RD-induced photoreceptor degeneration and the expression of TNFα. RD-induced photoreceptor degeneration was significantly suppressed with specific blockade of TNFα (P = 0.032), in mice deficient for TNFα (P < 0.001), TNFR2 (P = 0.001), or TNFR1 and -2 (P < 0.001). However, lack of TNFR1 did not protect against RD-induced photoreceptor degeneration (P = 0.060). Müller cell activation was unchanged in WT and TNFα(-/-) mice. Recruitment of CD11b(+) monocytes was significantly lower in the TNFα(-/-) mice compared to WT mice (P = 0.002). CONCLUSIONS TNFα plays a critical role in RD-induced photoreceptor degeneration. This pathway may become an important target in the prevention of RD-induced photoreceptor degeneration.
Collapse
Affiliation(s)
- Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Treatment of age-related macular degeneration: Beyond VEGF. Jpn J Ophthalmol 2011; 54:523-8. [DOI: 10.1007/s10384-010-0863-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 07/09/2010] [Indexed: 11/25/2022]
|
195
|
Raoul W, Lelièvre E, Auvynet C, Feumi C, Combadière C, Sennlaub F. [Role of chemokines in the development of age-related macular degeneration]. Biol Aujourdhui 2011; 204:311-319. [PMID: 21215248 DOI: 10.1051/jbio/2010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Indexed: 05/30/2023]
Abstract
Age-related macular degeneration (AMD) is the main cause of irreversible blindness in industrialized nations. Recent research has emphasized the importance of inflammatory processes in pathogenesis of this disease. Chemotactic cytokines also named chemokines are important mediators of inflammation and might have a role in development of this disease. They appear to be crucial in the subretinal microglia / macrophage accumulation observed in AMD and may participate in the development of retinal degeneration and in choroidal neovascularization. This paper reviews the possible implication of chemokines in the development of AMD.
Collapse
Affiliation(s)
- William Raoul
- INSERM, UMR S 872, Centre de Recherche des Cordeliers, 15 rue de l'École de Médcine, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
196
|
Raoul W, Auvynet C, Camelo S, Guillonneau X, Feumi C, Combadière C, Sennlaub F. CCL2/CCR2 and CX3CL1/CX3CR1 chemokine axes and their possible involvement in age-related macular degeneration. J Neuroinflammation 2010; 7:87. [PMID: 21126357 PMCID: PMC3003653 DOI: 10.1186/1742-2094-7-87] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/02/2010] [Indexed: 12/21/2022] Open
Abstract
The causes of age-related macular degeneration (AMD) are not well understood. Due to demographic shifts in the industrialized world a growing number of people will develop AMD in the coming decades. To develop treatments it is essential to characterize the disease's pathogenic process. Over the past few years, numerous studies have focused on the role of chemotactic cytokines, also known as chemokines. Certain chemokines, such as CCL2 and CX3CL1, appear to be crucial in subretinal microglia and macrophage accumulation observed in AMD, and participate in the development of retinal degeneration as well as in choroidal neovascularization. This paper reviews the possible implications of CCL2 and CX3CL1 signaling in AMD. Expression patterns, single nucleotide polymorphisms (SNPs) association studies, chemokine and chemokine receptor knockout models are discussed. Future AMD treatments could target chemokines and/or their receptors.
Collapse
Affiliation(s)
- William Raoul
- INSERM, UMR S 872, Centre de Recherche des Cordeliers, F-75006, Paris, France
- UPMC Univ Paris 06, UMR S 872, F-75006, Paris, France
- Université Paris Descartes, UMR S 872, F-75006, Paris, France
| | - Constance Auvynet
- INSERM, UMR S 872, Centre de Recherche des Cordeliers, F-75006, Paris, France
- UPMC Univ Paris 06, UMR S 872, F-75006, Paris, France
- Université Paris Descartes, UMR S 872, F-75006, Paris, France
- INSERM, UMR_S945, Laboratoire d'Immunologie Cellulaire, F-75013, Paris, France
| | - Serge Camelo
- INSERM, UMR S 872, Centre de Recherche des Cordeliers, F-75006, Paris, France
- UPMC Univ Paris 06, UMR S 872, F-75006, Paris, France
- Université Paris Descartes, UMR S 872, F-75006, Paris, France
| | - Xavier Guillonneau
- INSERM, UMR S 872, Centre de Recherche des Cordeliers, F-75006, Paris, France
- UPMC Univ Paris 06, UMR S 872, F-75006, Paris, France
- Université Paris Descartes, UMR S 872, F-75006, Paris, France
| | - Charles Feumi
- INSERM, UMR S 872, Centre de Recherche des Cordeliers, F-75006, Paris, France
- UPMC Univ Paris 06, UMR S 872, F-75006, Paris, France
- Université Paris Descartes, UMR S 872, F-75006, Paris, France
| | - Christophe Combadière
- INSERM, UMR_S945, Laboratoire d'Immunologie Cellulaire, F-75013, Paris, France
- UPMC Univ Paris 06, UMR_S945, F-75006, Paris, France
- AP-HP, Groupe hospitalier Pitié-Salpétrière, Service d'Immunologie, F-75013, Paris, France
| | - Florian Sennlaub
- INSERM, UMR S 872, Centre de Recherche des Cordeliers, F-75006, Paris, France
- UPMC Univ Paris 06, UMR S 872, F-75006, Paris, France
- Université Paris Descartes, UMR S 872, F-75006, Paris, France
- AP-HP, Hôtel Dieu, Service d'Ophtalmologie, F-75001, Paris, France
| |
Collapse
|
197
|
Zong H, Ward M, Madden A, Yong PH, Limb GA, Curtis TM, Stitt AW. Hyperglycaemia-induced pro-inflammatory responses by retinal Müller glia are regulated by the receptor for advanced glycation end-products (RAGE). Diabetologia 2010; 53:2656-66. [PMID: 20835858 DOI: 10.1007/s00125-010-1900-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/09/2010] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS Up-regulation of the receptor for AGEs (RAGE) and its ligands in diabetes has been observed in various tissues. Here, we sought to determine levels of RAGE and one of its most important ligands, S100B, in diabetic retina, and to investigate the regulatory role of S100B and RAGE in Müller glia. METHODS Streptozotocin-diabetes was induced in Sprague-Dawley rats. RAGE, S100B and glial fibrillary acidic protein (GFAP) were detected in retinal cryosections. In parallel, the human retinal Müller cell line, MIO-M1, was maintained in normal glucose (5.5 mmol/l) or high glucose (25 mmol/l). RAGE knockdown was achieved using small interfering RNA (siRNA), while soluble RAGE was used as a competitive inhibitor of RAGE ligand binding. RAGE, S100B and cytokines were detected using quantitative RT-PCR, western blotting, cytokine protein arrays or ELISA. Activation of mitogen-activated protein kinase (MAPK) by RAGE was determined by western blotting. RESULTS Compared with non-diabetic controls, RAGE and S100B were significantly elevated in the diabetic retina with apparent localisation in the Müller glia, occurring concomitantly with upregulation of GFAP. Exposure of MIO-M1 cells to high glucose induced increased production of RAGE and S100B. RAGE signalling via MAPK pathway was linked to cytokine production. Blockade of RAGE prevented cytokine responses induced by high glucose and S100B in Müller glia. CONCLUSIONS/INTERPRETATION Hyperglycaemia in vivo and in vitro exposure to high glucose induce upregulation of RAGE and its ligands, leading to RAGE signalling, which links to pro-inflammatory responses by retinal Müller glia. These data shed light on the potential clinical application of RAGE blockade to inhibit the progression of diabetic retinopathy.
Collapse
Affiliation(s)
- H Zong
- Centre for Vision and Vascular Science, Queen's University Belfast, Royal Victoria Hospital, Belfast BT12 6BA, Northern Ireland, UK
| | | | | | | | | | | | | |
Collapse
|
198
|
Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proc Natl Acad Sci U S A 2010; 107:21695-700. [PMID: 21098270 DOI: 10.1073/pnas.1009179107] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apoptosis has been shown to be a significant form of cell loss in many diseases. Detachment of photoreceptors from the retinal pigment epithelium, as seen in various retinal disorders, causes photoreceptor loss and subsequent vision decline. Although caspase-dependent apoptotic pathways are activated after retinal detachment, caspase inhibition by the pan-caspase inhibitor Z-VAD fails to prevent photoreceptor death; thus, we investigated other pathways leading to cell loss. Here, we show that receptor interacting protein (RIP) kinase-mediated necrosis is a significant mode of photoreceptor cell loss in an experimental model of retinal detachment and when caspases are inhibited, RIP-mediated necrosis becomes the predominant form of death. RIP3 expression, a key activator of RIP1 kinase, increased more than 10-fold after retinal detachment. Morphological assessment of detached retinas treated with Z-VAD showed decreased apoptosis but significantly increased necrotic photoreceptor death. RIP1 kinase inhibitor necrostatin-1 or Rip3 deficiency substantially prevented those necrotic changes and reduced oxidative stress and mitochondrial release of apoptosis-inducing factor. Thus, RIP kinase-mediated programmed necrosis is a redundant mechanism of photoreceptor death in addition to apoptosis, and simultaneous inhibition of RIP kinases and caspases is essential for effective neuroprotection and may be a novel therapeutic strategy for treatment of retinal disorders.
Collapse
|
199
|
Yang Y, Hayden MR, Sowers S, Bagree SV, Sowers JR. Retinal redox stress and remodeling in cardiometabolic syndrome and diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:392-403. [PMID: 21307645 PMCID: PMC3154050 DOI: 10.4161/oxim.3.6.14786] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is a significant cause of global blindness; a major cause of blindness in the United States in people aged between 20–74. There is emerging evidence that retinopathy is initiated and propagated by multiple metabolic toxicities associated with excess production of reactive oxygen species (ROS). The four traditional metabolic pathways involved in the development of DR include: increased polyol pathway flux, advanced glycation end-product formation, activation of protein kinase Cisoforms and hexosamine pathway flux. These pathways individually and synergisticallycontribute to redox stress with excess ROS resulting in retinal tissue injury resulting in significant microvascular blood retinal barrier remodeling. The toxicity of hyperinsulinemia, hyperglycemia, hypertension, dyslipidemia, increased cytokines and growth factors, in conjunction with redox stress, contribute to the development and progression of DR. Redox stress contributes to the development and progression of abnormalities of endothelial cells and pericytes in DR. This review focuses on the ultrastructural observations of the blood retinal barrier including the relationship between the endothelial cell and pericyte remodeling in young nine week old Zucker obese (fa/ fa) rat model of obesity; cardiometabolic syndrome, and the 20 week old alloxan induced diabetic porcine model. Preventing or delaying the blindness associated with these intersecting abnormal metabolic pathways may be approached through strategies targeted to reduction of tissue inflammation and oxidative—redox stress. Understanding these abnormal metabolic pathways and the accompanying redox stress and remodeling mayprovide both the clinician and researcher a new concept of approaching this complicated disease process
Collapse
Affiliation(s)
- Ying Yang
- Yunnan Province 2nd Hospital, Kunming, PR China
| | | | | | | | | |
Collapse
|
200
|
Otsuka H, Arimura N, Sonoda S, Nakamura M, Hashiguchi T, Maruyama I, Nakao S, Hafezi-Moghadam A, Sakamoto T. Stromal cell-derived factor-1 is essential for photoreceptor cell protection in retinal detachment. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2268-77. [PMID: 20889568 DOI: 10.2353/ajpath.2010.100134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stromal cell-derived factor-1 (SDF-1) causes chemotaxis of CXCR4-expressing bone marrow-derived cells. SDF-1 is involved in the pathogenesis of various vascular diseases, including those of the eye. However, the role of SDF-1 in neuronal diseases is not completely understood. Here, we show higher SDF-1 levels in the vitreous humor of patients with retinal detachment (RD) compared with normal patients. SDF-1 correlated positively with the duration as well as the extent of RD. Furthermore, SDF-1 correlated significantly with levels of interleukin-6 and interleukin-8, but not with vascular endothelial growth factor. Western blot analysis results showed significant SDF-1 up-regulation in detached rat retinas compared with normal animals. Immunohistochemistry data showed that SDF-1 was co-localized with the glial cells of the detached retina. SDF-1 blockade with a neutralizing antibody increased photoreceptor cell loss and macrophage accumulation in the subretinal space. The retinal precursor cell line R28 expressed CXCR4. SDF-1 rescued serum starvation-induced apoptosis in R28 cells and enhanced their ability to participate in wound closure in a scratch assay. Our results indicate a surprising, protective role for SDF-1 in RD. This effect may be mediated directly or indirectly through other cell types.
Collapse
Affiliation(s)
- Hiroki Otsuka
- Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|