151
|
Dorrell MW, Heberle FA, Katsaras J, Maibaum L, Lyman E, Sodt AJ. Laterally Resolved Small-Angle Scattering Intensity from Lipid Bilayer Simulations: An Exact and a Limited-Range Treatment. J Chem Theory Comput 2020; 16:5287-5300. [PMID: 32579370 DOI: 10.1021/acs.jctc.0c00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When combined, molecular simulations and small-angle scattering experiments are able to provide molecular-scale resolution of structure. Separately, scattering experiments provide only intermingled pair correlations between atoms, while molecular simulations are limited by model quality and the relatively short time scales that they can access. Their combined strength relies on agreement between the experimental spectra and those computed by simulation. To date, computing the neutron spectra from a molecular simulation of a lipid bilayer is straightforward only if the structure is approximated by laterally averaging the in-plane bilayer structure. However, this neglects all information about lateral heterogeneity, e.g., clustering of components in a lipid mixture. This paper presents two methods for computing the scattering intensity of simulated bilayers with in-plane heterogeneity, enabling a full treatment of both the transverse and lateral bilayer structure for the first time. The first method, termed the Dirac Brush, computes the exact spectra including spurious artifacts resulting from using information from neighboring periodic cells to account for the long-range structure of the bilayer. The second method, termed PFFT, applies a mean-field treatment in the field far from a scattering element, resulting in a correlation range that can be tuned (eliminating correlations with neighboring periodic images), but with computational cost that prohibits obtaining the exact (Dirac Brush) spectra. Following their derivation, the two methods are applied to a coarse-grained molecular simulation of a bilayer inhomogeneity, demonstrating the contributions of lateral correlations to the resulting spectra.
Collapse
Affiliation(s)
- Mitchell W Dorrell
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892, United States
| | | | - John Katsaras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Lutz Maibaum
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Alexander J Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892, United States
| |
Collapse
|
152
|
Sengupta P, Lippincott-Schwartz J. Revisiting Membrane Microdomains and Phase Separation: A Viral Perspective. Viruses 2020; 12:v12070745. [PMID: 32664429 PMCID: PMC7412473 DOI: 10.3390/v12070745] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Retroviruses selectively incorporate a specific subset of host cell proteins and lipids into their outer membrane when they bud out from the host plasma membrane. This specialized viral membrane composition is critical for both viral survivability and infectivity. Here, we review recent findings from live cell imaging of single virus assembly demonstrating that proteins and lipids sort into the HIV retroviral membrane by a mechanism of lipid-based phase partitioning. The findings showed that multimerizing HIV Gag at the assembly site creates a liquid-ordered lipid phase enriched in cholesterol and sphingolipids. Proteins with affinity for this specialized lipid environment partition into it, resulting in the selective incorporation of proteins into the nascent viral membrane. Building on this and other work in the field, we propose a model describing how HIV Gag induces phase separation of the viral assembly site through a mechanism involving transbilayer coupling of lipid acyl chains and membrane curvature changes. Similar phase-partitioning pathways in response to multimerizing structural proteins likely help sort proteins into the membranes of other budding structures within cells.
Collapse
|
153
|
Schubert T, Sych T, Madl J, Xu M, Omidvar R, Patalag LJ, Ries A, Kettelhoit K, Brandel A, Mely Y, Steinem C, Werz DB, Thuenauer R, Römer W. Differential recognition of lipid domains by two Gb3-binding lectins. Sci Rep 2020; 10:9752. [PMID: 32546842 PMCID: PMC7297801 DOI: 10.1038/s41598-020-66522-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
The two lectins LecA from Pseudomonas aeruginosa and the B-subunit of Shiga toxin from Shigella dysenteriae (StxB) share the glycosphingolipid globotriaosylceramide (Gb3) as receptor. Counterintuitively, we found that LecA and StxB segregated into different domains after recognizing Gb3 at the plasma membrane of cells. We hypothesized that the orientation of the carbohydrate head group of Gb3 embedded in the lipid bilayer differentially influences LecA and StxB binding. To test this hypothesis, we reconstituted lectin-Gb3 interaction using giant unilamellar vesicles and were indeed able to rebuild LecA and StxB segregation. Both, the Gb3 fatty acyl chain structure and the local membrane environment, modulated Gb3 recognition by LecA and StxB. Specifically, StxB preferred more ordered membranes compared to LecA. Based on our findings, we propose comparing staining patterns of LecA and StxB as an alternative method to assess membrane order in cells. To verify this approach, we re-established that the apical plasma membrane of epithelial cells is more ordered than the basolateral plasma membrane. Additionally, we found that StxB recognized Gb3 at the primary cilium and the periciliary membrane, whereas LecA only bound periciliary Gb3. This suggests that the ciliary membrane is of higher order than the surrounding periciliary membrane.
Collapse
Affiliation(s)
- Thomas Schubert
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Synthetic Biology of Signalling Processes, Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Toolbox, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Taras Sych
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Synthetic Biology of Signalling Processes, Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Faculty of Pharmacy, University of Strasbourg, Strasbourg, France
| | - Josef Madl
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Synthetic Biology of Signalling Processes, Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Maokai Xu
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Synthetic Biology of Signalling Processes, Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ramin Omidvar
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Synthetic Biology of Signalling Processes, Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Lukas J Patalag
- Technische Universität Braunschweig, Institut für Organische Chemie, Braunschweig, Germany
| | - Annika Ries
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Katharina Kettelhoit
- Technische Universität Braunschweig, Institut für Organische Chemie, Braunschweig, Germany
| | - Annette Brandel
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Synthetic Biology of Signalling Processes, Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Yves Mely
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Faculty of Pharmacy, University of Strasbourg, Strasbourg, France
| | - Claudia Steinem
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institut für Organische Chemie, Braunschweig, Germany
| | - Roland Thuenauer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany. .,Synthetic Biology of Signalling Processes, Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Freiburg, Germany. .,Advanced Light and Fluorescence Microscopy Facility, Centre for Structural Systems Biology (CSSB) and University of Hamburg, Hamburg, Germany.
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany. .,Synthetic Biology of Signalling Processes, Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Freiburg, Germany.
| |
Collapse
|
154
|
Peripheral myelin protein 22 preferentially partitions into ordered phase membrane domains. Proc Natl Acad Sci U S A 2020; 117:14168-14177. [PMID: 32513719 PMCID: PMC7322011 DOI: 10.1073/pnas.2000508117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The preferential partitioning of single-span membrane proteins for ordered phase domains in phase-separated membranes is now reasonably well understood, but little is known about this phase preference for multispan helical membrane proteins. Here, it is shown that the disease-linked tetraspan membrane protein, PMP22, displays a pronounced preference to partition into the ordered phase, a preference that is reversed by disease mutations. This phase preference may be related to the role of PMP22 in cholesterol homeostasis in myelinating Schwann cells, a role that is also known to be disrupted under conditions of Charcot–Marie–Tooth disease (CMTD) peripheral neuropathy caused by pmp22 mutations. The ordered environment of cholesterol-rich membrane nanodomains is thought to exclude many transmembrane (TM) proteins. Nevertheless, some multispan helical transmembrane proteins have been proposed to partition into these environments. Here, giant plasma membrane vesicles (GPMVs) were employed to quantitatively show that the helical tetraspan peripheral myelin protein 22 (PMP22) exhibits a pronounced preference for, promotes the formation of, and stabilizes ordered membrane domains. Neither S-palmitoylation of PMP22 nor its putative cholesterol binding motifs are required for this preference. In contrast, Charcot–Marie–Tooth disease-causing mutations that disrupt the stability of PMP22 tertiary structure reduce or eliminate this preference in favor of the disordered phase. These studies demonstrate that the ordered phase preference of PMP22 derives from global structural features associated with the folded form of this protein, providing a glimpse at the structural factors that promote raft partitioning for multispan helical membrane proteins.
Collapse
|
155
|
Affiliation(s)
- Ilya Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX. mailto:
| | - Hong-Yin Wang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
156
|
Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J Lipid Res 2020; 61:636-654. [PMID: 31871065 PMCID: PMC7193971 DOI: 10.1194/jlr.tr119000427] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson's, Huntington's, and Alzheimer's diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.jlr;61/5/636/F1F1f1.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy. mailto:
| |
Collapse
|
157
|
|
158
|
Bringing light to ER contacts and a new phase in organelle communication. Proc Natl Acad Sci U S A 2020; 117:9668-9670. [PMID: 32345722 DOI: 10.1073/pnas.2003620117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
159
|
Khan AK, Ho JCS, Roy S, Liedberg B, Nallani M. Facile Mixing of Phospholipids Promotes Self-Assembly of Low-Molecular-Weight Biodegradable Block Co-Polymers into Functional Vesicular Architectures. Polymers (Basel) 2020; 12:E979. [PMID: 32331448 PMCID: PMC7240622 DOI: 10.3390/polym12040979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022] Open
Abstract
In this work, we have used low-molecular-weight (PEG12-b-PCL6, PEG12-b-PCL9 or PEG16-b-PLA38; MW, 1.25-3.45 kDa) biodegradable block co-polymers to construct nano- and micron-scaled hybrid (polymer/lipid) vesicles, by solvent dispersion and electroformation methods, respectively. The hybrid vesicles exhibit physical properties (size, bilayer thickness and small molecule encapsulation) of a vesicular boundary, confirmed by cryogenic transmission electron microscopy, calcein leakage assay and dynamic light scattering. Importantly, we find that these low MW polymers, on their own, do not self-assemble into polymersomes at nano and micron scales. Using giant unilamellar vesicles (GUVs) model, their surface topographies are homogeneous, independent of cholesterol, suggesting more energetically favorable mixing of lipid and polymer. Despite this mixed topography with a bilayer thickness similar to that of a lipid bilayer, variation in surface topology is demonstrated using the interfacial sensitive phospholipase A2 (sPLA2). The biodegradable hybrid vesicles are less sensitive to the phospholipase digestion, reminiscent of PEGylated vesicles, and the degree of sensitivity is polymer-dependent, implying that the nano-scale surface topology can further be tuned by its chemical composition. Our results reveal and emphasize the role of phospholipids in promoting low MW polymers for spontaneous vesicular self-assembly, generating a functional hybrid lipid-polymer interface.
Collapse
Affiliation(s)
- Amit Kumar Khan
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; (A.K.K.); (J.C.S.H.); (S.R.); (B.L.)
- ACM Biolabs Pte. Ltd., NTU Innovation Center, 71 Nanyang Drive, Singapore 638075, Singapore
| | - James C. S. Ho
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; (A.K.K.); (J.C.S.H.); (S.R.); (B.L.)
| | - Susmita Roy
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; (A.K.K.); (J.C.S.H.); (S.R.); (B.L.)
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; (A.K.K.); (J.C.S.H.); (S.R.); (B.L.)
| | - Madhavan Nallani
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; (A.K.K.); (J.C.S.H.); (S.R.); (B.L.)
- ACM Biolabs Pte. Ltd., NTU Innovation Center, 71 Nanyang Drive, Singapore 638075, Singapore
| |
Collapse
|
160
|
Patches and Blebs: A Comparative Study of the Composition and Biophysical Properties of Two Plasma Membrane Preparations from CHO Cells. Int J Mol Sci 2020; 21:ijms21072643. [PMID: 32290157 PMCID: PMC7177368 DOI: 10.3390/ijms21072643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 11/30/2022] Open
Abstract
This study was aimed at preparing and characterizing plasma membranes (PM) from Chinese Hamster Ovary (CHO) cells. Two methods of PM preparation were applied, one based on adhering cells to a poly-lysine-coated surface, followed by hypotonic lysis and removal of intracellular components, so that PM patches remain adhered to each other, and a second one consisting of bleb induction in cells, followed by separation of giant plasma membrane vesicles (GPMV). Both methods gave rise to PM in sufficient amounts to allow biophysical and biochemical characterization. Laurdan generalized polarization was used to measure molecular order in membranes, PM preparations were clearly more ordered than the average cell membranes (GP ≈0.450 vs. ≈0.20 respectively). Atomic force microscopy was used in the force spectroscopy mode to measure breakthrough forces of PM, both PM preparations provided values in the 4–6 nN range, while the corresponding value for whole cell lipid extracts was ≈2 nN. Lipidomic analysis of the PM preparations revealed that, as compared to the average cell membranes, PM were enriched in phospholipids containing 30–32 C atoms in their acyl chains but were relatively poor in those containing 34–40 C atoms. PM contained more saturated and less polyunsaturated fatty acids than the average cell membranes. Blebs (GPMV) and patches were very similar in their lipid composition, except that blebs contained four-fold the amount of cholesterol of patches (≈23 vs. ≈6 mol% total membrane lipids) while the average cell lipids contained 3 mol%. The differences in lipid composition are in agreement with the observed variations in physical properties between PM and whole cell membranes.
Collapse
|
161
|
Dadhich R, Mishra M, Ning S, Jana S, Sarpe VA, Mahato J, Duan M, Kulkarni SS, Kapoor S. A Virulence-Associated Glycolipid with Distinct Conformational Attributes: Impact on Lateral Organization of Host Plasma Membrane, Autophagy, and Signaling. ACS Chem Biol 2020; 15:740-750. [PMID: 32078292 DOI: 10.1021/acschembio.9b00991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) serves as the epitome of how lipids-next to proteins-are utilized as central effectors in pathogenesis. It synthesizes an arsenal of structurally atypical lipids (C60-C90) to impact various membrane-dependent steps involved in host interactions. There is a growing precedent to support insertion of these exposed lipids into the host membrane as part of their mode of action. However, the vital role of specific virulence-associated lipids in modulating cellular functions by altering the host membrane organization and associated signaling pathways remain unanswered questions. Here, we combined chemical synthesis, biophysics, cell biology, and molecular dynamics simulations to elucidate host membrane structure modifications and modulation of membrane-associated signaling using synthetic Mycobacterium tuberculosis sulfoglycolipids (Mtb SL). We reveal that Mtb SL reorganizes the host cell plasma membrane domains while showing higher preference for fluid membrane regions. This rearrangement is governed by the distinct conformational states sampled by SL acyl chains. Physicochemical assays with SL analogues reveal insights into their structure-function relationships, highlighting specific roles of lipid acyl chains and headgroup, along with effects on autophagy and cytokine profiles. Our findings uncover a mechanism whereby Mtb uses specific chemical moieties on its lipids to fine-tune host lipid interactions and confer control of the downstream functions by modifying the cell membrane structure and function. These findings will inspire development of chemotherapeutics against Mtb by counteracting their effects on the host-cell membrane.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Manjari Mishra
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shangbo Ning
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Santanu Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Vikram A. Sarpe
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jaladhar Mahato
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Mojie Duan
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
162
|
Abstract
Membrane phase behavior in cells permits transient concentration of specific proteins and lipids into dynamic nanoscopic domains. Here, we tested the existence and role of such phase behavior in endoplasmic reticulum (ER) membranes. Employing hypotonic cell swelling, we created large intracellular vesicles (LICVs) from internal organelles. ER LICVs maintained stable interorganelle contacts, with known protein tethers concentrated at the contact sites. Cooled ER LICVs underwent reversible phase separation into microscopically visible domains with different lipid order and membrane fluidity. The phase-separated domains specified sites of contact between the ER and different organelles. The endoplasmic reticulum (ER) is the site of synthesis of secretory and membrane proteins and contacts every organelle of the cell, exchanging lipids and metabolites in a highly regulated manner. How the ER spatially segregates its numerous and diverse functions, including positioning nanoscopic contact sites with other organelles, is unclear. We demonstrate that hypotonic swelling of cells converts the ER and other membrane-bound organelles into micrometer-scale large intracellular vesicles (LICVs) that retain luminal protein content and maintain contact sites with each other through localized organelle tethers. Upon cooling, ER-derived LICVs phase-partition into microscopic domains having different lipid-ordering characteristics, which is reversible upon warming. Ordered ER lipid domains mark contact sites with ER and mitochondria, lipid droplets, endosomes, or plasma membrane, whereas disordered ER lipid domains mark contact sites with lysosomes or peroxisomes. Tethering proteins concentrate at ER–organelle contact sites, allowing time-dependent behavior of lipids and proteins to be studied at these sites. These findings demonstrate that LICVs provide a useful model system for studying the phase behavior and interactive properties of organelles in intact cells.
Collapse
|
163
|
Pinigin KV, Kondrashov OV, Jiménez-Munguía I, Alexandrova VV, Batishchev OV, Galimzyanov TR, Akimov SA. Elastic deformations mediate interaction of the raft boundary with membrane inclusions leading to their effective lateral sorting. Sci Rep 2020; 10:4087. [PMID: 32139760 PMCID: PMC7058020 DOI: 10.1038/s41598-020-61110-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Liquid-ordered lipid domains represent a lateral inhomogeneity in cellular membranes. These domains have elastic and physicochemical properties different from those of the surrounding membrane. In particular, their thickness exceeds that of the disordered membrane. Thus, elastic deformations arise at the domain boundary in order to compensate for the thickness mismatch. In equilibrium, the deformations lead to an incomplete register of monolayer ordered domains: the elastic energy is minimal if domains in opposing monolayers lie on the top of each other, and their boundaries are laterally shifted by about 3 nm. This configuration introduces a region, composed of one ordered and one disordered monolayers, with an intermediate bilayer thickness. Besides, a jump in a local monolayer curvature takes place in this intermediate region, concentrating here most of the elastic stress. This region can participate in a lateral sorting of membrane inclusions by offering them an optimal bilayer thickness and local curvature conditions. In the present study, we consider the sorting of deformable lipid inclusions, undeformable peripheral and deeply incorporated peptide inclusions, and undeformable transmembrane inclusions of different molecular geometry. With rare exceptions, all types of inclusions have an affinity to the ordered domain boundary as compared to the bulk phases. The optimal lateral distribution of inclusions allows relaxing the elastic stress at the boundary of domains.
Collapse
Affiliation(s)
- Konstantin V Pinigin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Oleg V Kondrashov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Irene Jiménez-Munguía
- National University of Science and Technology "MISiS", 4 Leninskiy prospect, Moscow, 119049, Russia
| | | | - Oleg V Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.
| |
Collapse
|
164
|
Soloviov D, Cai YQ, Bolmatov D, Suvorov A, Zhernenkov K, Zav'yalov D, Bosak A, Uchiyama H, Zhernenkov M. Functional lipid pairs as building blocks of phase-separated membranes. Proc Natl Acad Sci U S A 2020; 117:4749-4757. [PMID: 32071249 PMCID: PMC7060688 DOI: 10.1073/pnas.1919264117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the lateral membrane heterogeneity and the formation of domains, or rafts, are driven by lipid-lipid and lipid-protein interactions. Nevertheless, the underlying mechanisms regulating membrane heterogeneity remain poorly understood. In the present work, we combine inelastic X-ray scattering with molecular dynamics simulations to provide direct evidence for the existence of strongly coupled transient lipid pairs. These lipid pairs manifest themselves experimentally through optical vibrational (a.k.a. phononic) modes observed in binary (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]-cholesterol) and ternary (DPPC-1,2-dioleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-glycero-3-phosphocholine [DOPC/POPC]-cholesterol) systems. The existence of a phononic gap in these vibrational modes is a direct result of the finite size of patches formed by these lipid pairs. The observation of lipid pairs provides a spatial (subnanometer) and temporal (subnanosecond) window into the lipid-lipid interactions in complex mixtures of saturated/unsaturated lipids and cholesterol. Our findings represent a step toward understanding the lateral organization and dynamics of membrane domains using a well-validated probe with a high spatial and temporal resolution.
Collapse
Affiliation(s)
- Dmytro Soloviov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Frank Laboratory for Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
- Department of Physics, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
- Nuclear Facility Safety Department, Institute for Safety Problems of Nuclear Power Plants of National Academy of Science of Ukraine, Chornobyl 07270, Ukraine
| | - Yong Q Cai
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973
| | - Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996
| | - Alexey Suvorov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973
| | - Kirill Zhernenkov
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, 85748 Garching, Germany
- Frank Laboratory for Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Dmitry Zav'yalov
- Department of Physics, Volgograd State Technical University, Volgograd 400005, Russia
| | - Alexey Bosak
- Experiments Division, European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Hiroshi Uchiyama
- Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Mikhail Zhernenkov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973;
| |
Collapse
|
165
|
Jacobson K, Liu P, Lagerholm BC. The Lateral Organization and Mobility of Plasma Membrane Components. Cell 2020; 177:806-819. [PMID: 31051105 DOI: 10.1016/j.cell.2019.04.018] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 02/01/2019] [Accepted: 04/09/2019] [Indexed: 01/22/2023]
Abstract
Over the last several decades, an impressive array of advanced microscopic and analytical tools, such as single-particle tracking and nanoscopic fluorescence correlation spectroscopy, has been applied to characterize the lateral organization and mobility of components in the plasma membrane. Such analysis can tell researchers about the local dynamic composition and structure of membranes and is important for predicting the outcome of membrane-based reactions. However, owing to the unresolved complexity of the membrane and the structures peripheral to it, identification of the detailed molecular origin of the interactions that regulate the organization and mobility of the membrane has not proceeded quickly. This Perspective presents an overview of how cell-surface structure may give rise to the types of lateral mobility that are observed and some potentially fruitful future directions to elucidate the architecture of these structures in more molecular detail.
Collapse
Affiliation(s)
- Ken Jacobson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Ping Liu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
166
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
167
|
Effect of dipole moment on amphiphile solubility and partition into liquid ordered and liquid disordered phases in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183157. [PMID: 31846646 DOI: 10.1016/j.bbamem.2019.183157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Association of amphiphiles with biomembranes is important for their availability at specific locations in organisms and cells, being critical for their biological function. A prominent role is usually attributed to the hydrophobic effect, and to electrostatic interactions between charged amphiphiles and lipids. This work explores a closely related and complementary aspect, namely the contribution made by dipole moments to the strength of the interactions established. Two xanthene amphiphiles with opposite relative orientations of their dipole and amphiphilic moments have been selected (Rhodamine-C14 and Carboxyfluorescein-C14). The membranes studied have distinct lipid compositions, representing typical cell membrane pools, ranging from internal membranes to the outer and inner leaflet of the plasma membrane. A comprehensive study is reported, including the affinity of the amphiphiles for the different membranes, the stability of the amphiphiles as monomers and their tendency to form small clusters, as well as their transverse location in the membrane. The orientation of the amphiphile dipole moment, which determines whether its interaction with the membrane dipole potential is repulsive or attractive, is found to exert a large influence on the association of the amphiphile with ordered lipid membranes. These interactions are also responsible for the formation of small clusters or stabilization of amphiphile monomers in the membrane. The results obtained allow understanding the prevalence of protein lipidation at the N-terminal for efficient targeting to the plasma membrane, as well as the tendency of GPI-anchored proteins (usually lipidated at the C-terminal) to form small clusters in the membrane ordered domains.
Collapse
|
168
|
Chemical manipulations to facilitate membrane blebbing and vesicle shedding on the cellular cortex. Biotechnol Lett 2020; 42:1137-1145. [PMID: 32112174 DOI: 10.1007/s10529-020-02848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Most attention has been focused on physiologically generated membrane blebs on the cellular cortex, whereas artificial membrane blebs induced by chemicals are studied to a lesser extent. RESULTS We found that exposure of HeLa human cervical cancer cells to paraformaldehyde (PFA), followed by incubation in phosphate-buffered saline (PBS) efficiently induced large membrane blebs on the cellular cortex. Intriguingly, sequential exposure of the PFA-treated cells to PBS containing dimethyl sulfoxide (DMSO) facilitated shedding of the blebs from the cellular cortex, yielding a high quantity of large extracellular vesicles in the supernatant, which was applicable to assess the potentials of compounds and proteins as membrane influencers. Similar effects of PFA and DMSO were detected on the cellular cortex of other human, mouse, and fish cells. CONCLUSIONS Our procedure to facilitate membrane blebbing and vesicle shedding by chemicals may be practical for the manipulation of membrane dynamics and the development of vesicle-inspired technologies using a wide variety of cell types.
Collapse
|
169
|
Loschwitz J, Olubiyi OO, Hub JS, Strodel B, Poojari CS. Computer simulations of protein-membrane systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:273-403. [PMID: 32145948 PMCID: PMC7109768 DOI: 10.1016/bs.pmbts.2020.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interactions between proteins and membranes play critical roles in signal transduction, cell motility, and transport, and they are involved in many types of diseases. Molecular dynamics (MD) simulations have greatly contributed to our understanding of protein-membrane interactions, promoted by a dramatic development of MD-related software, increasingly accurate force fields, and available computer power. In this chapter, we present available methods for studying protein-membrane systems with MD simulations, including an overview about the various all-atom and coarse-grained force fields for lipids, and useful software for membrane simulation setup and analysis. A large set of case studies is discussed.
Collapse
Affiliation(s)
- Jennifer Loschwitz
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Olujide O Olubiyi
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Birgit Strodel
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
170
|
Grimmer M, Bacia K. Giant Endoplasmic Reticulum vesicles (GERVs), a novel model membrane tool. Sci Rep 2020; 10:3100. [PMID: 32080222 PMCID: PMC7033103 DOI: 10.1038/s41598-020-59700-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Artificial giant vesicles have proven highly useful as membrane models in a large variety of biophysical and biochemical studies. They feature accessibility for manipulation and detection, but lack the compositional complexity needed to reconstitute complicated cellular processes. For the plasma membrane (PM), this gap was bridged by the establishment of giant PM vesicles (GPMVs). These native membranes have facilitated studies of protein and lipid diffusion, protein interactions, electrophysiology, fluorescence analysis of lateral domain formation and protein and lipid partitioning as well as mechanical membrane properties and remodeling. The endoplasmic reticulum (ER) is key to a plethora of biological processes in any eukaryotic cell. However, its intracellular location and dynamic and intricate tubular morphology makes it experimentally even less accessible than the PM. A model membrane, which will allow the afore-mentioned types of studies on GPMVs to be performed on ER membranes outside the cell, is therefore genuinely needed. Here, we introduce the formation of giant ER vesicles, termed GERVs, as a new tool for biochemistry and biophysics. To obtain GERVs, we have isolated ER membranes from Saccharomyces cerevisiae and fused them by exploiting the atlastin-like fusion protein Sey1p. We demonstrate the production of GERVs and their utility for further studies.
Collapse
Affiliation(s)
- Mona Grimmer
- Biophysical Chemistry, Institute of Chemistry, Charles-Tanford Protein Center, University of Halle, Kurt-Mothes-Str. 3 A, 06120, Halle, Germany
| | - Kirsten Bacia
- Biophysical Chemistry, Institute of Chemistry, Charles-Tanford Protein Center, University of Halle, Kurt-Mothes-Str. 3 A, 06120, Halle, Germany.
| |
Collapse
|
171
|
Levental I, Levental KR, Heberle FA. Lipid Rafts: Controversies Resolved, Mysteries Remain. Trends Cell Biol 2020; 30:341-353. [PMID: 32302547 DOI: 10.1016/j.tcb.2020.01.009] [Citation(s) in RCA: 368] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/08/2023]
Abstract
The lipid raft hypothesis postulates that lipid-lipid interactions can laterally organize biological membranes into domains of distinct structures, compositions, and functions. This proposal has in equal measure exhilarated and frustrated membrane research for decades. While the physicochemical principles underlying lipid-driven domains has been explored and is well understood, the existence and relevance of such domains in cells remains elusive, despite decades of research. Here, we review the conceptual underpinnings of the raft hypothesis and critically discuss the supporting and contradicting evidence in cells, focusing on why controversies about the composition, properties, and even the very existence of lipid rafts remain unresolved. Finally, we highlight several recent breakthroughs that may resolve existing controversies and suggest general approaches for moving beyond questions of the existence of rafts and towards understanding their physiological significance.
Collapse
Affiliation(s)
- Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 70030, USA.
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 70030, USA
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 33830, USA
| |
Collapse
|
172
|
Beckers D, Urbancic D, Sezgin E. Impact of Nanoscale Hindrances on the Relationship between Lipid Packing and Diffusion in Model Membranes. J Phys Chem B 2020; 124:1487-1494. [PMID: 32026676 PMCID: PMC7050011 DOI: 10.1021/acs.jpcb.0c00445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Membrane
models have allowed for precise study of the plasma membrane’s
biophysical properties, helping to unravel both structural and dynamic
motifs within cell biology. Freestanding and supported bilayer systems
are popular models to reconstitute membrane-related processes. Although
it is well-known that each have their advantages and limitations,
comprehensive comparison of their biophysical properties is still
lacking. Here, we compare the diffusion and lipid packing in giant
unilamellar vesicles, planar and spherical supported membranes, and
cell-derived giant plasma membrane vesicles. We apply florescence
correlation spectroscopy (FCS), spectral imaging, and super-resolution
stimulated emission depletion FCS to study the diffusivity, lipid
packing, and nanoscale architecture of these membrane systems, respectively.
Our data show that lipid packing and diffusivity is tightly correlated
in freestanding bilayers. However, nanoscale interactions in the supported
bilayers cause deviation from this correlation. These data are essential
to develop accurate theoretical models of the plasma membrane and
will serve as a guideline for suitable model selection in future studies
to reconstitute biological processes.
Collapse
Affiliation(s)
- Daniel Beckers
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , U.K
| | - Dunja Urbancic
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , U.K.,Faculty of Pharmacy , University of Ljubljana , Askerceva cesta 7 , 1000 Ljubljana , Slovenia
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , U.K.,Science for Life Laboratory, Department of Women's and Children's Health , Karolinska Institutet , Solna , Sweden
| |
Collapse
|
173
|
Sezgin E, Carugo D, Levental I, Stride E, Eggeling C. Creating Supported Plasma Membrane Bilayers Using Acoustic Pressure. MEMBRANES 2020; 10:E30. [PMID: 32085393 PMCID: PMC7074417 DOI: 10.3390/membranes10020030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 01/12/2023]
Abstract
Model membrane systems are essential tools for the study of biological processes in a simplified setting to reveal the underlying physicochemical principles. As cell-derived membrane systems, giant plasma membrane vesicles (GPMVs) constitute an intermediate model between live cells and fully artificial structures. Certain applications, however, require planar membrane surfaces. Here, we report a new approach for creating supported plasma membrane bilayers (SPMBs) by bursting cell-derived GPMVs using ultrasound within a microfluidic device. We show that the mobility of outer leaflet molecules is preserved in SPMBs, suggesting that they are accessible on the surface of the bilayers. Such model membrane systems are potentially useful in many applications requiring detailed characterization of plasma membrane dynamics.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Dario Carugo
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, Institute for Life Sciences (IfLS), University of Southampton, SO17 1BJ Southampton, UK;
| | - Ilya Levental
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK;
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
174
|
Cammarota E, Soriani C, Taub R, Morgan F, Sakai J, Veatch SL, Bryant CE, Cicuta P. Criticality of plasma membrane lipids reflects activation state of macrophage cells. J R Soc Interface 2020; 17:20190803. [PMID: 32019470 PMCID: PMC7061703 DOI: 10.1098/rsif.2019.0803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Signalling is of particular importance in immune cells, and upstream in the signalling pathway many membrane receptors are functional only as complexes, co-locating with particular lipid species. Work over the last 15 years has shown that plasma membrane lipid composition is close to a critical point of phase separation, with evidence that cells adapt their composition in ways that alter the proximity to this thermodynamic point. Macrophage cells are a key component of the innate immune system, are responsive to infections and regulate the local state of inflammation. We investigate changes in the plasma membrane’s proximity to the critical point as a response to stimulation by various pro- and anti-inflammatory agents. Pro-inflammatory (interferon γ, Kdo 2-Lipid A, lipopolysaccharide) perturbations induce an increase in the transition temperature of giant plasma membrane vesicles; anti-inflammatory interleukin 4 has the opposite effect. These changes recapitulate complex plasma membrane composition changes, and are consistent with lipid criticality playing a master regulatory role: being closer to critical conditions increases membrane protein activity.
Collapse
Affiliation(s)
- Eugenia Cammarota
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.,Alembic, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Soriani
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Raphaelle Taub
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Fiona Morgan
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Jiro Sakai
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Sarah L Veatch
- Biophysics Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
175
|
Skinkle AD, Levental KR, Levental I. Cell-Derived Plasma Membrane Vesicles Are Permeable to Hydrophilic Macromolecules. Biophys J 2020; 118:1292-1300. [PMID: 32053777 DOI: 10.1016/j.bpj.2019.12.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022] Open
Abstract
Giant plasma membrane vesicles (GPMVs) are a widely used experimental platform for biochemical and biophysical analysis of isolated mammalian plasma membranes (PMs). A core advantage of these vesicles is that they maintain the native lipid and protein diversity of the PM while affording the experimental flexibility of synthetic giant vesicles. In addition to fundamental investigations of PM structure and composition, GPMVs have been used to evaluate the binding of proteins and small molecules to cell-derived membranes and the permeation of drug-like molecules through them. An important assumption of such experiments is that GPMVs are sealed, i.e., that permeation occurs by diffusion through the hydrophobic core rather than through hydrophilic pores. Here, we demonstrate that this assumption is often incorrect. We find that most GPMVs isolated using standard preparations are passively permeable to various hydrophilic solutes as large as 40 kDa, in contrast to synthetic giant unilamellar vesicles. We attribute this leakiness to stable, relatively large, and heterogeneous pores formed by rupture of vesicles from cells. Finally, we identify preparation conditions that minimize poration and allow evaluation of sealed GPMVs. These unexpected observations of GPMV poration are important for interpreting experiments utilizing GPMVs as PM models, particularly for drug permeation and membrane asymmetry.
Collapse
Affiliation(s)
- Allison D Skinkle
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas; Biological and Biomedical Sciences Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
176
|
Gu RX, Baoukina S, Tieleman DP. Phase Separation in Atomistic Simulations of Model Membranes. J Am Chem Soc 2020; 142:2844-2856. [DOI: 10.1021/jacs.9b11057] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ruo-Xu Gu
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | - Svetlana Baoukina
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
177
|
Li G, Wang Q, Kakuda S, London E. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids. J Lipid Res 2020; 61:758-766. [PMID: 31964764 DOI: 10.1194/jlr.ra119000565] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/06/2020] [Indexed: 01/04/2023] Open
Abstract
The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains.
Collapse
Affiliation(s)
- Guangtao Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Qing Wang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Shinako Kakuda
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215. mailto:
| |
Collapse
|
178
|
Bag N, Holowka DA, Baird BA. Imaging FCS delineates subtle heterogeneity in plasma membranes of resting mast cells. Mol Biol Cell 2020; 31:709-723. [PMID: 31895009 PMCID: PMC7202073 DOI: 10.1091/mbc.e19-10-0559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A myriad of transient, nanoscopic lipid- and protein-based interactions confer a steady-state organization of the plasma membrane in resting cells that is poised to orchestrate assembly of key signaling components upon reception of an extracellular stimulus. Although difficult to observe directly in live cells, these subtle interactions can be discerned by their impact on the diffusion of membrane constituents. Here, we quantified the diffusion properties of a panel of structurally distinct lipid, lipid-anchored, and transmembrane (TM) probes in RBL mast cells by imaging fluorescence correlation spectroscopy (ImFCS). We developed a statistical analysis of data combined from many pixels over multiple cells to characterize differences in diffusion coefficients as small as 10%, which reflect differences in underlying interactions. We found that the distinctive diffusion properties of lipid probes can be explained by their dynamic partitioning into Lo-like proteolipid nanodomains, which encompass a major fraction of the membrane and whose physical properties are influenced by actin polymerization. Effects on diffusion of functional protein modules in both lipid-anchored and TM probes reflect additional complexity in steady state membrane organization. The contrast we observe between different probes diffusing through the same membrane milieu represents the dynamic resting steady state, which serves as a baseline for monitoring plasma membrane remodeling that occurs upon stimulation.
Collapse
Affiliation(s)
- Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
179
|
Abstract
Caveolins, major components of small plasma membrane invaginations called caveolae, play a role in signaling, particularly in mechanosignaling. These proteins are known to interact with a variety of effector molecules, including G-protein-coupled receptors, Src family kinases, ion channels, endothelial nitric oxide synthase (eNOS), adenylyl cyclases, protein kinase A (PKA), and mitogen-activated PKs (MAPKs). There is, however, speculation on the relevance of these interactions and the mechanisms by which caveolins may control intracellular signaling. This chapter introduces a method of isolation of giant plasma membrane-derived vesicles (GPMVs), which possess full complexity of membrane they originate from, thus comprising an excellent platform to revisit some of the previously described interactions in a cleaner environment and possibly identifying new binding partners. It is also a powerful technique for studying membrane mechanics, as it was previously used to demonstrate the role of caveolae in mechanoprotection.
Collapse
|
180
|
Ghysels A, Krämer A, Venable RM, Teague WE, Lyman E, Gawrisch K, Pastor RW. Permeability of membranes in the liquid ordered and liquid disordered phases. Nat Commun 2019; 10:5616. [PMID: 31819053 PMCID: PMC6901538 DOI: 10.1038/s41467-019-13432-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/06/2019] [Indexed: 11/09/2022] Open
Abstract
The functional significance of ordered nanodomains (or rafts) in cholesterol rich eukaryotic cell membranes has only begun to be explored. This study exploits the correspondence of cellular rafts and liquid ordered (Lo) phases of three-component lipid bilayers to examine permeability. Molecular dynamics simulations of Lo phase dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and cholesterol show that oxygen and water transit a leaflet through the DOPC and cholesterol rich boundaries of hexagonally packed DPPC microdomains, freely diffuse along the bilayer midplane, and escape the membrane along the boundary regions. Electron paramagnetic resonance experiments provide critical validation: the measured ratio of oxygen concentrations near the midplanes of liquid disordered (Ld) and Lo bilayers of DPPC/DOPC/cholesterol is 1.75 ± 0.35, in very good agreement with 1.3 ± 0.3 obtained from simulation. The results show how cellular rafts can be structurally rigid signaling platforms while remaining nearly as permeable to small molecules as the Ld phase.
Collapse
Affiliation(s)
- An Ghysels
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052, Gent, Belgium.
| | - Andreas Krämer
- Laboratory of Computational Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard M Venable
- Laboratory of Computational Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Walter E Teague
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Edward Lyman
- Department of Physics and Astronomy and Department of Chemistry and Biochemistry, University of Delaware, Newark, 19716, DE, USA
| | - Klaus Gawrisch
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
181
|
Asano S, Pal R, Tanaka HN, Imamura A, Ishida H, Suzuki KGN, Ando H. Development of Fluorescently Labeled SSEA-3, SSEA-4, and Globo-H Glycosphingolipids for Elucidating Molecular Interactions in the Cell Membrane. Int J Mol Sci 2019; 20:ijms20246187. [PMID: 31817926 PMCID: PMC6941013 DOI: 10.3390/ijms20246187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 01/02/2023] Open
Abstract
Glycosphingolipids (GSLs), such as the globo-series GSLs stage-specific embryonic antigen 3 (SSEA-3), SSEA-4, and Globo-H, are specifically expressed on pluripotent stem cells and cancer cells, and are known to be associated with various biological processes such as cell recognition, cell adhesion, and signal transduction. However, the behavior and biological roles of these GSLs are still unclear. In our previous study, we observed the interactions between the lipid raft and GSLs in real-time using single-molecule imaging, where we successfully synthesized various fluorescent analogs of GSLs (e.g., GM1 and GM3). Here, we have developed fluorescent analogs of SSEA-3, SSEA-4, and Globo-H using chemical synthesis. The biophysical properties of these analogs as raft markers were examined by partitioning giant plasma membrane vesicles from RBL-2H3 cells into detergent-resistant membrane fractions and liquid-ordered/liquid-disordered phases. The results indicated that the analogs were equivalent to native-type GSLs. The analogs could be used to observe the behavior of globo-series GSLs for detailing the structure and biological roles of lipid rafts and GSL-enriched nanodomains during cell differentiation and cell malignancy.
Collapse
Affiliation(s)
- Sachi Asano
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.A.); (A.I.); (H.I.)
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Rita Pal
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Hide-Nori Tanaka
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.A.); (A.I.); (H.I.)
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akihiro Imamura
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.A.); (A.I.); (H.I.)
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Hideharu Ishida
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.A.); (A.I.); (H.I.)
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kenichi G. N. Suzuki
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.A.); (A.I.); (H.I.)
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Correspondence: (K.G.N.S.); (H.A.)
| | - Hiromune Ando
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.A.); (A.I.); (H.I.)
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Correspondence: (K.G.N.S.); (H.A.)
| |
Collapse
|
182
|
Dürre K, Bausch AR. Formation of phase separated vesicles by double layer cDICE. SOFT MATTER 2019; 15:9676-9681. [PMID: 31663090 DOI: 10.1039/c8sm02491j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, continuous droplet interface crossing encapsulation (cDICE) was developed, which allows fast and efficient production of giant unilamellar vesicles (GUVs) under high salt conditions, at low temperature and with low consumption of the encapsulated proteins. Unfortunately, cholesterol encapsulation within the lipid bilayer was not efficient for the cDICE protocol so far and thus the formation of phase separated vesicles was limited. Here we present a modified version of cDICE that allows incorporation of cholesterol into lipid bilayers and enables the reproducible formation of phase-separated vesicles. We show that cholesterol incorporation relies on the amount of mineral oil in the lipid-oil emulsions, which is essential for protein encapsulation inside GUVs by cDICE. The possibility of creating phase separated vesicles by cDICE will enable the study of the interdependence between phase separation and cytoskeletal proteins under confinement.
Collapse
Affiliation(s)
- Katharina Dürre
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
| | | |
Collapse
|
183
|
Leung SSW, Brewer J, Bagatolli LA, Thewalt JL. Measuring molecular order for lipid membrane phase studies: Linear relationship between Laurdan generalized polarization and deuterium NMR order parameter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183053. [DOI: 10.1016/j.bbamem.2019.183053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 01/03/2023]
|
184
|
Goodchild JA, Walsh DL, Connell SD. Nanoscale Substrate Roughness Hinders Domain Formation in Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15352-15363. [PMID: 31626551 DOI: 10.1021/acs.langmuir.9b01990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Supported lipid bilayers are model membranes formed at solid substrate surfaces. This architecture renders the membrane experimentally accessible to surface-sensitive techniques used to study their properties, including atomic force microscopy, optical fluorescence microscopy, quartz crystal microbalance, and X-ray/neutron reflectometry, and allows integration with technology for potential biotechnological applications such as drug screening devices. The experimental technique often dictates substrate choice or treatment, and it is anecdotally recognized that certain substrates are suitable for a particular experiment, but the exact influence of the substrate has not been comprehensively investigated. Here, we study the behavior of a simple model bilayer, phase-separating on a variety of commonly used substrates, including glass, mica, silicon, and quartz, with drastically different results. The distinct micron-scale domains observed on mica, identical to those seen in free-floating giant unilamellar vesicles, are reduced to nanometer-scale domains on glass and quartz. The mechanism for the arrest of domain formation is investigated, and the most likely candidate is nanoscale surface roughness, acting as a drag on the hydrodynamic motion of small domains during phase separation. Evidence was found that the physicochemical properties of the surface have a mediating effect, most likely because of the changes in the lubricating interstitial water layer between the surface and bilayer.
Collapse
Affiliation(s)
- James A Goodchild
- School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , U.K
| | - Danielle L Walsh
- School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , U.K
| | - Simon D Connell
- School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , U.K
| |
Collapse
|
185
|
Kubánková M, Summers PA, López-Duarte I, Kiryushko D, Kuimova MK. Microscopic Viscosity of Neuronal Plasma Membranes Measured Using Fluorescent Molecular Rotors: Effects of Oxidative Stress and Neuroprotection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36307-36315. [PMID: 31513373 DOI: 10.1021/acsami.9b10426] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular mobility in neuronal plasma membranes is a crucial factor in brain function. Microscopic viscosity is an important parameter that determines molecular mobility. This study presents the first direct measurement of the microviscosity of plasma membranes of live neurons. Microviscosity maps were obtained using fluorescence lifetime imaging of environment-sensing dyes termed "molecular rotors". Neurons were investigated both in the basal state and following common neurodegenerative stimuli, excitotoxicity, or oxidative stress. Both types of neurotoxic challenges induced microviscosity decrease in cultured neurons, and oxidant-induced membrane fluidification was counteracted by the wide-spectrum neuroprotectant, the H3 peptide. These results provide new insights into molecular mobility in neuronal membranes, paramount for basic brain function, and suggest that preservation of membrane stability may be an important aspect of neuroprotection in brain insults and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Darya Kiryushko
- Centre for Neuroinflammation and Neurodegeneration , Imperial College London , Hammersmith Hospital Campus, Burlington Danes Building, 160 Du Cane Road , London W12 0NN , U.K
| | | |
Collapse
|
186
|
Fu Y, Yogurtcu ON, Kothari R, Thorkelsdottir G, Sodt AJ, Johnson ME. An implicit lipid model for efficient reaction-diffusion simulations of protein binding to surfaces of arbitrary topology. J Chem Phys 2019; 151:124115. [PMID: 31575182 DOI: 10.1063/1.5120516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Localization of proteins to a membrane is an essential step in a broad range of biological processes such as signaling, virion formation, and clathrin-mediated endocytosis. The strength and specificity of proteins binding to a membrane depend on the lipid composition. Single-particle reaction-diffusion methods offer a powerful tool for capturing lipid-specific binding to membrane surfaces by treating lipids explicitly as individual diffusible binding sites. However, modeling lipid particle populations is expensive. Here, we present an algorithm for reversible binding of proteins to continuum surfaces with implicit lipids, providing dramatic speed-ups to many body simulations. Our algorithm can be readily integrated into most reaction-diffusion software packages. We characterize changes to kinetics that emerge from explicit vs implicit lipids as well as surface adsorption models, showing excellent agreement between our method and the full explicit lipid model. Compared to models of surface adsorption, which couple together binding affinity and lipid concentration, our implicit lipid model decouples them to provide more flexibility for controlling surface binding properties and lipid inhomogeneity, thus reproducing binding kinetics and equilibria. Crucially, we demonstrate our method's application to membranes of arbitrary curvature and topology, modeled via a subdivision limit surface, again showing excellent agreement with explicit lipid simulations. Unlike adsorption models, our method retains the ability to bind lipids after proteins are localized to the surface (through, e.g., a protein-protein interaction), which can greatly increase the stability of multiprotein complexes on the surface. Our method will enable efficient cell-scale simulations involving proteins localizing to realistic membrane models, which is a critical step for predictive modeling and quantification of in vitro and in vivo dynamics.
Collapse
Affiliation(s)
- Yiben Fu
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, USA
| | - Osman N Yogurtcu
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, USA
| | - Ruchita Kothari
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Gudrun Thorkelsdottir
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Alexander J Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Margaret E Johnson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, USA
| |
Collapse
|
187
|
Ortiz A, Arciniegas S, Prat J, Muñoz-Juncosa M, Pujol M. Lipid domains in LB films and giant vesicles to study GBV-C peptides interaction in the context of HIV-1 FP inhibition at membranes. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
188
|
Conrard L, Tyteca D. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules 2019; 9:E513. [PMID: 31547139 PMCID: PMC6843150 DOI: 10.3390/biom9100513] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium ions (Ca2+) are major messengers in cell signaling, impacting nearly every aspect of cellular life. Those signals are generated within a wide spatial and temporal range through a large variety of Ca2+ channels, pumps, and exchangers. More and more evidences suggest that Ca2+ exchanges are regulated by their surrounding lipid environment. In this review, we point out the technical challenges that are currently being overcome and those that still need to be defeated to analyze the Ca2+ transport protein-lipid interactions. We then provide evidences for the modulation of Ca2+ transport proteins by lipids, including cholesterol, acidic phospholipids, sphingolipids, and their metabolites. We also integrate documented mechanisms involved in the regulation of Ca2+ transport proteins by the lipid environment. Those include: (i) Direct interaction inside the protein with non-annular lipids; (ii) close interaction with the first shell of annular lipids; (iii) regulation of membrane biophysical properties (e.g., membrane lipid packing, thickness, and curvature) directly around the protein through annular lipids; and (iv) gathering and downstream signaling of several proteins inside lipid domains. We finally discuss recent reports supporting the related alteration of Ca2+ and lipids in different pathophysiological events and the possibility to target lipids in Ca2+-related diseases.
Collapse
Affiliation(s)
- Louise Conrard
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
189
|
Steinkühler J, Sezgin E, Urbančič I, Eggeling C, Dimova R. Mechanical properties of plasma membrane vesicles correlate with lipid order, viscosity and cell density. Commun Biol 2019; 2:337. [PMID: 31531398 PMCID: PMC6744421 DOI: 10.1038/s42003-019-0583-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/15/2019] [Indexed: 11/08/2022] Open
Abstract
Regulation of plasma membrane curvature and composition governs essential cellular processes. The material property of bending rigidity describes the energetic cost of membrane deformations and depends on the plasma membrane molecular composition. Because of compositional fluctuations and active processes, it is challenging to measure it in intact cells. Here, we study the plasma membrane using giant plasma membrane vesicles (GPMVs), which largely preserve the plasma membrane lipidome and proteome. We show that the bending rigidity of plasma membranes under varied conditions is correlated to readout from environment-sensitive dyes, which are indicative of membrane order and microviscosity. This correlation holds across different cell lines, upon cholesterol depletion or enrichment of the plasma membrane, and variations in cell density. Thus, polarity- and viscosity-sensitive probes represent a promising indicator of membrane mechanical properties. Additionally, our results allow for identifying synthetic membranes with a few well defined lipids as optimal plasma membrane mimetics.
Collapse
Affiliation(s)
- Jan Steinkühler
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS UK
| | - Iztok Urbančič
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS UK
- Condensed Matter Physics Department, “Jožef Stefan” Institute, Ljubljana, Slovenia
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS UK
- Institute of Applied Optics Friedrich‐Schiller‐University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Rumiana Dimova
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
190
|
Abstract
Lipid microenvironments in the plasma membrane are known to influence many signal transduction pathways. Several of those pathways are critical for both the etiology and treatment of depression. Further, several signaling proteins are modified, covalently, by lipids, a process that alters their interface with the microenvironments mentioned above. This review presents a brief discussion of the interface of the above elements as well as a discussion about the participation of lipids and lipid moieties in the action of antidepressants.
Collapse
Affiliation(s)
- Nathan H Wray
- University of Illinois College of Medicine, Department of Physiology & Biophysics, Chicago, IL, United States; The Graduate Program in Neuroscience, Chicago, IL, United States
| | - Mark M Rasenick
- University of Illinois College of Medicine, Department of Physiology & Biophysics, Chicago, IL, United States; The Graduate Program in Neuroscience, Chicago, IL, United States; Department of Psychiatry, Chicago, IL, United States; The Jesse Brown VAMC, Chicago, IL, United States.
| |
Collapse
|
191
|
Khawar MB, Abbasi MH, Siddique Z, Arif A, Sheikh N. An Update on Novel Therapeutic Warfronts of Extracellular Vesicles (EVs) in Cancer Treatment: Where We Are Standing Right Now and Where to Go in the Future. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9702562. [PMID: 31428232 PMCID: PMC6683766 DOI: 10.1155/2019/9702562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/03/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-bounded vesicles that are believed to be produced and secreted by presumably all cell types under physiological and pathological conditions, including tumors. EVs are very important vehicles in intercellular communications for both shorter and longer distances and are able to deliver a wide range of cargos including proteins, lipids, and various species of nucleic acids effectively. EVs have been emerging as a novel biotherapeutic platform to efficiently deliver therapeutic cargos to treat a broad range of diseases including cancer. This vast potential of drug delivery lies in their abilities to carry a variety of cargos and their ease in crossing the biological membranes. Similarly, their presence in a variety of body fluids makes them a potential biomarker for early diagnosis, prognostication, and surveillance of cancer. Here, we discuss the relatively least and understudied aspects of EV biology and tried to highlight the obstacles and limitations in their clinical applications and also described most of the new warfronts to beat cancer at multiple stages. However, much more challenges still remain to evaluate EV-based therapeutics, and we are very much hopeful that the current work prompts further discovery.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muddasir Hassan Abbasi
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Zerwa Siddique
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Amin Arif
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
192
|
Girish V, Pazzi J, Li A, Subramaniam AB. Fabrics of Diverse Chemistries Promote the Formation of Giant Vesicles from Phospholipids and Amphiphilic Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9264-9273. [PMID: 31276413 DOI: 10.1021/acs.langmuir.9b01621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Giant vesicles composed of phospholipids and amphiphilic block copolymers are useful for biomimetic drug delivery, for biophysical experiments, and for creating synthetic cells. Here, we report that large numbers of giant unilamellar vesicles (GUVs) can be formed on a broad range of fabrics composed of entangled cylindrical fibers. We show that fabrics woven from fibers of silk, wool, rayon, nylon, polyester, and fiberglass promote the formation of GUVs and giant polymer vesicles (polymersomes) in aqueous solutions. The result extends significantly previous reports on the formation of GUVs on cellulose paper and cotton fabric. Giant vesicles formed on all the fabrics from lipids with various headgroup charges, chains lengths, and chain saturations. Giant vesicles could be formed from multicomponent lipid mixtures, from extracts of plasma membranes, and from amphiphilic diblock and triblock copolymers, in both low ionic strength and high ionic strength solutions. Intriguingly, statistical characterization using a model lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine, revealed that the majority of the fabrics yielded similar average counts of vesicles. Additionally, the vesicle populations obtained from the different fabrics had similar distributions of sizes. Fabrics are ubiquitous in society in consumer, technical, and biomedical applications. The discovery herein that biomimetic GUVs grow on fabrics opens promising new avenues in vesicle-based smart materials design.
Collapse
Affiliation(s)
- Vaishnavi Girish
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| | - Joseph Pazzi
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| | - Alexander Li
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| | - Anand Bala Subramaniam
- Department of Bioengineering , University of California, Merced , Merced , California 95343 , United States
| |
Collapse
|
193
|
Pinkwart K, Schneider F, Lukoseviciute M, Sauka-Spengler T, Lyman E, Eggeling C, Sezgin E. Nanoscale dynamics of cholesterol in the cell membrane. J Biol Chem 2019; 294:12599-12609. [PMID: 31270209 PMCID: PMC6709632 DOI: 10.1074/jbc.ra119.009683] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
Cholesterol constitutes ∼30-40% of the mammalian plasma membrane, a larger fraction than of any other single component. It is a major player in numerous signaling processes as well as in shaping molecular membrane architecture. However, our knowledge of the dynamics of cholesterol in the plasma membrane is limited, restricting our understanding of the mechanisms regulating its involvement in cell signaling. Here, we applied advanced fluorescence imaging and spectroscopy approaches on in vitro (model membranes) and in vivo (live cells and embryos) membranes as well as in silico analysis to systematically study the nanoscale dynamics of cholesterol in biological membranes. Our results indicate that cholesterol diffuses faster than phospholipids in live membranes, but not in model membranes. Interestingly, a detailed statistical diffusion analysis suggested two-component diffusion for cholesterol in the plasma membrane of live cells. One of these components was similar to a freely diffusing phospholipid analogue, whereas the other one was significantly faster. When a cholesterol analogue was localized to the outer leaflet only, the fast diffusion of cholesterol disappeared, and it diffused similarly to phospholipids. Overall, our results suggest that cholesterol diffusion in the cell membrane is heterogeneous and that this diffusional heterogeneity is due to cholesterol's nanoscale interactions and localization in the membrane.
Collapse
Affiliation(s)
- Kerstin Pinkwart
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Falk Schneider
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Martyna Lukoseviciute
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Edward Lyman
- Departments of Physics and Astronomy and Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
194
|
Moreno-Pescador G, Florentsen CD, Østbye H, Sønder SL, Boye TL, Veje EL, Sonne AK, Semsey S, Nylandsted J, Daniels R, Bendix PM. Curvature- and Phase-Induced Protein Sorting Quantified in Transfected Cell-Derived Giant Vesicles. ACS NANO 2019; 13:6689-6701. [PMID: 31199124 DOI: 10.1021/acsnano.9b01052] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Eukaryotic cells possess a dynamic network of membranes that vary in lipid composition. To perform numerous biological functions, cells modulate their shape and the lateral organization of proteins associated with membranes. The modulation is generally facilitated by physical cues that recruit proteins to specific regions of the membrane. Analyzing these cues is difficult due to the complexity of the membrane conformations that exist in cells. Here, we examine how different types of membrane proteins respond to changes in curvature and to lipid phases found in the plasma membrane. By using giant plasma membrane vesicles derived from transfected cells, the proteins were positioned in the correct orientation and the analysis was performed in plasma membranes with a biological composition. Nanoscale membrane curvatures were generated by extracting nanotubes from these vesicles with an optical trap. The viral membrane protein neuraminidase was not sensitive to curvature, but it did exhibit strong partitioning (coefficient of K = 0.16) disordered membrane regions. In contrast, the membrane repair protein annexin 5 showed a preference for nanotubes with a density up to 10-15 times higher than that on the more flat vesicle membrane. The investigation of nanoscale effects in isolated plasma membranes provides a quantitative platform for studying peripheral and integral membrane proteins in their natural environment.
Collapse
Affiliation(s)
| | | | - Henrik Østbye
- Department of Biochemistry and Biophysics , Stockholm University , 10691 Stockholm , Sweden
| | - Stine L Sønder
- Membrane Integrity Group, Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease , Danish Cancer Society Research Center , Strandboulevarden 49 , DK-2100 Copenhagen , Denmark
| | - Theresa L Boye
- Membrane Integrity Group, Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease , Danish Cancer Society Research Center , Strandboulevarden 49 , DK-2100 Copenhagen , Denmark
| | - Emilie L Veje
- Niels Bohr Institute , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Alexander K Sonne
- Niels Bohr Institute , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Szabolcs Semsey
- Niels Bohr Institute , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Jesper Nylandsted
- Membrane Integrity Group, Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease , Danish Cancer Society Research Center , Strandboulevarden 49 , DK-2100 Copenhagen , Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences , University of Copenhagen , DK-2200 Copenhagen N , Denmark
| | - Robert Daniels
- Department of Biochemistry and Biophysics , Stockholm University , 10691 Stockholm , Sweden
| | - Poul Martin Bendix
- Niels Bohr Institute , University of Copenhagen , DK-2100 Copenhagen , Denmark
| |
Collapse
|
195
|
Liu Q, Bi C, Li J, Liu X, Peng R, Jin C, Sun Y, Lyu Y, Liu H, Wang H, Luo C, Tan W. Generating Giant Membrane Vesicles from Live Cells with Preserved Cellular Properties. RESEARCH (WASHINGTON, D.C.) 2019; 2019:6523970. [PMID: 31549076 PMCID: PMC6750080 DOI: 10.34133/2019/6523970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/10/2019] [Indexed: 11/28/2022]
Abstract
Biomimetic giant membrane vesicles, with size and lipid compositions comparable to cells, have been recognized as an attractive experimental alternative to living systems. Due to the similarity of their membrane structure to that of body cells, cell-derived giant plasma membrane vesicles have been used as a membrane model for studying lipid/protein behavior of plasma membranes. However, further application of biomimetic giant membrane vesicles has been hampered by the side-effects of chemical vesiculants and the utilization of osmotic buffer. We herein develop a facile strategy to derive giant membrane vesicles (GMVs) from mammalian cells in biofriendly medium with high yields. These GMVs preserve membrane properties and adaptability for surface modification and encapsulation of exogenous molecules, which would facilitate their potential biological applications. Moreover, by loading GMVs with therapeutic drugs, GMVs could be employed for drug transport to tumor cells, which represents another step forward in the biomedical application of giant membrane vesicles. This study highlights biocompatible GMVs with biomimicking membrane surface properties and adaptability as an ideal platform for drug delivery strategies with potential clinical applications.
Collapse
Affiliation(s)
- Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Cheng Bi
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Jiangling Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Xuejiao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Cheng Jin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Yang Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Huijing Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Can Luo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Departments of Chemistry, Physiology and Functional Genomics, Molecular Genetics and Microbiology and Pathology and Laboratory Medicine, UF Health Cancer Center, Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, FL, USA
| |
Collapse
|
196
|
Ge Y, Gao J, Jordan R, Naumann CA. Changes in Cholesterol Level Alter Integrin Sequestration in Raft-Mimicking Lipid Mixtures. Biophys J 2019; 114:158-167. [PMID: 29320683 DOI: 10.1016/j.bpj.2017.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022] Open
Abstract
The influence of cholesterol (CHOL) level on integrin sequestration in raft-mimicking lipid mixtures forming coexisting liquid-ordered (lo) and liquid-disordered (ld) lipid domains is investigated using complementary, single-molecule-sensitive, confocal detection methods. Systematic analysis of membrane protein distribution in such a model membrane environment demonstrates that variation of CHOL level has a profound influence on lo-ld sequestration of integrins, thereby exhibiting overall ld preference in the absence of ligands and lo affinity upon vitronectin addition. Accompanying photon-counting histogram analysis of integrins in the different model membrane mixtures shows that the observed changes of integrin sequestration in response to variations of membrane CHOL level are not associated with altering integrin oligomerization states. Instead, our experiments suggest that the strong CHOL dependence of integrin sequestration can be attributed to CHOL-mediated changes of lipid packing and bilayer thickness in coexisting lo and ld domains, highlighting the significance of a biophysical mechanism of CHOL-mediated regulation of integrin sequestration. We envision that this model membrane study may help clarify the influence of CHOL in integrin functionality in plasma membranes, thus providing further insight into the role of lipid heterogeneities in membrane protein distribution and function in a cellular membrane environment.
Collapse
Affiliation(s)
- Yifan Ge
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Jiayun Gao
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Rainer Jordan
- Makromolekulare Chemie, TU Dresden, Dresden, Germany
| | - Christoph A Naumann
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana; Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana.
| |
Collapse
|
197
|
Lin X, Gorfe AA, Levental I. Protein Partitioning into Ordered Membrane Domains: Insights from Simulations. Biophys J 2019; 114:1936-1944. [PMID: 29694870 DOI: 10.1016/j.bpj.2018.03.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/09/2018] [Accepted: 03/22/2018] [Indexed: 11/24/2022] Open
Abstract
Cellular membranes are laterally organized into domains of distinct structures and compositions by the differential interaction affinities between various membrane lipids and proteins. A prominent example of such structures are lipid rafts, which are ordered, tightly packed domains that have been widely implicated in cellular processes. The functionality of raft domains is driven by their selective recruitment of specific membrane proteins to regulate their interactions and functions; however, there have been few general insights into the factors that determine the partitioning of membrane proteins between coexisting liquid domains. In this work, we used extensive coarse-grained and atomistic molecular dynamics simulations, potential of mean force calculations, and conceptual models to describe the partitioning dynamics and energetics of a model transmembrane domain from the linker of activation of T cells. We find that partitioning between domains is determined by an interplay between protein-lipid interactions and differential lipid packing between raft and nonraft domains. Specifically, we show that partitioning into ordered domains is promoted by preferential interactions between peptides and ordered lipids, mediated in large part by modification of the peptides by saturated fatty acids (i.e., palmitoylation). Ordered phase affinity is also promoted by elastic effects, specifically hydrophobic matching between the membrane and the peptide. Conversely, ordered domain partitioning is disfavored by the tight molecular packing of the lipids therein. The balance of these dominant drivers determines partitioning. In the case of the wild-type linker of activation of T cells transmembrane domain, these factors combine to yield enrichment of the peptide at Lo/Ld interfaces. These results define some of the general principles governing protein partitioning between coexisting membrane domains and potentially explain previous disparities among experiments and simulations across model systems.
Collapse
Affiliation(s)
- Xubo Lin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas; School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
198
|
Velasco-Olmo A, Ormaetxea Gisasola J, Martinez Galvez JM, Vera Lillo J, Shnyrova AV. Combining patch-clamping and fluorescence microscopy for quantitative reconstitution of cellular membrane processes with Giant Suspended Bilayers. Sci Rep 2019; 9:7255. [PMID: 31076583 PMCID: PMC6510758 DOI: 10.1038/s41598-019-43561-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 04/26/2019] [Indexed: 01/24/2023] Open
Abstract
In vitro reconstitution and microscopic visualization of membrane processes is an indispensable source of information about a cellular function. Here we describe a conceptionally novel free-standing membrane template that facilitates such quantitative reconstitution of membrane remodelling at different scales. The Giant Suspended Bilayers (GSBs) spontaneously swell from lipid lamella reservoir deposited on microspheres. GSBs attached to the reservoir can be prepared from virtually any lipid composition following a fast procedure. Giant unilamellar vesicles can be further obtained by GSB detachment from the microspheres. The reservoir stabilizes GSB during deformations, mechanical micromanipulations, and fluorescence microscopy observations, while GSB-reservoir boundary enables the exchange of small solutes with GSB interior. These unique properties allow studying macro- and nano-scale membrane deformations, adding membrane-active compounds to both sides of GSB membrane and applying patch-clamp based approaches, thus making GSB a versatile tool for reconstitution and quantification of cellular membrane trafficking events.
Collapse
Affiliation(s)
- Ariana Velasco-Olmo
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Julene Ormaetxea Gisasola
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Juan Manuel Martinez Galvez
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Javier Vera Lillo
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Anna V Shnyrova
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain.
| |
Collapse
|
199
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
200
|
Dimova R. Giant Vesicles and Their Use in Assays for Assessing Membrane Phase State, Curvature, Mechanics, and Electrical Properties. Annu Rev Biophys 2019; 48:93-119. [DOI: 10.1146/annurev-biophys-052118-115342] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Giant unilamellar vesicles represent a promising and extremely useful model biomembrane system for systematic measurements of mechanical, thermodynamic, electrical, and rheological properties of lipid bilayers as a function of membrane composition, surrounding media, and temperature. The most important advantage of giant vesicles over other model membrane systems is that the membrane responses to external factors such as ions, (macro)molecules, hydrodynamic flows, or electromagnetic fields can be directly observed under the microscope. Here, we briefly review approaches for giant vesicle preparation and describe several assays used for deducing the membrane phase state and measuring a number of material properties, with further emphasis on membrane reshaping and curvature.
Collapse
Affiliation(s)
- Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|