151
|
Phelan JD, Saba I, Zeng H, Kosan C, Messer MS, Olsson HA, Fraszczak J, Hildeman DA, Aronow BJ, Möröy T, Grimes HL. Growth factor independent-1 maintains Notch1-dependent transcriptional programming of lymphoid precursors. PLoS Genet 2013; 9:e1003713. [PMID: 24068942 PMCID: PMC3772063 DOI: 10.1371/journal.pgen.1003713] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 06/25/2013] [Indexed: 11/19/2022] Open
Abstract
Growth factor independent 1 (Gfi1) is a transcriptional repressor originally identified as a gene activated in T-cell leukemias induced by Moloney-murine-leukemia virus infection. Notch1 is a transmembrane receptor that is frequently mutated in human T-cell acute lymphoblastic leukemia (T-ALL). Gfi1 is an important factor in the initiation and maintenance of lymphoid leukemias and its deficiency significantly impedes Notch dependent initiation of T-ALL in animal models. Here, we show that immature hematopoietic cells require Gfi1 to competently integrate Notch-activated signaling. Notch1 activation coupled with Gfi1 deficiency early in T-lineage specification leads to a dramatic loss of T-cells, whereas activation in later stages leaves development unaffected. In Gfi1 deficient multipotent precursors, Notch activation induces lethality and is cell autonomous. Further, without Gfi1, multipotent progenitors do not maintain Notch1-activated global expression profiles typical for T-lineage precursors. In agreement with this, we find that both lymphoid-primed multipotent progenitors (LMPP) and early T lineage progenitors (ETP) do not properly form or function in Gfi1−/− mice. These defects correlate with an inability of Gfi1−/− progenitors to activate lymphoid genes, including IL7R, Rag1, Flt3 and Notch1. Our data indicate that Gfi1 is required for hematopoietic precursors to withstand Notch1 activation and to maintain Notch1 dependent transcriptional programming to determine early T-lymphoid lineage identity. Understanding the mechanisms that protect lymphoid cells from transformation is a critical first step in developing therapies against blood cancers. Recently, we demonstrated that the Growth factor independent-1 transcriptional repressor protein is required for cancer development driven by activation of Notch1 signaling. Here, we investigated the mechanisms by which Gfi1 protects lymphoid transformation. Using complex genetic mouse models to delete Gfi1 and activate Notch1, we demonstrate that Gfi1 is required to maintain both the homeostatic levels of Notch1 target genes in normal lymphoid precursors in the bone marrow, as well as to maintain the supraphysiologic levels of Notch1 signaling present in pre-malignant lymphoid progenitors. Consequently, without Gfi1 the pool of premalignant cells available for transformation is depleted. Our data provide additional insight into the multiple mechanisms by which developmental networks may have evolved to protect lymphoid cells from transformation.
Collapse
Affiliation(s)
- James D. Phelan
- Division of Cellular and Molecular Immunology; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ingrid Saba
- Institut de recherches cliniques de Montréal IRCM, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Christian Kosan
- Institut de recherches cliniques de Montréal IRCM, Montréal, Québec, Canada
| | - Malynda S. Messer
- Division of Cellular and Molecular Immunology; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - H. Andre Olsson
- Division of Cellular and Molecular Immunology; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jennifer Fraszczak
- Institut de recherches cliniques de Montréal IRCM, Montréal, Québec, Canada
| | - David A. Hildeman
- Division of Cellular and Molecular Immunology; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal IRCM, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (TM); (HLG)
| | - H. Leighton Grimes
- Division of Cellular and Molecular Immunology; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Experimental Hematology; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (TM); (HLG)
| |
Collapse
|
152
|
Espinoza I, Pochampally R, Xing F, Watabe K, Miele L. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther 2013; 6:1249-59. [PMID: 24043949 PMCID: PMC3772757 DOI: 10.2147/ott.s36162] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Notch signaling is an evolutionarily conserved pathway involved in cell fate control during development, stem cell self-renewal, and postnatal tissue differentiation. Roles for Notch in carcinogenesis, the biology of cancer stem cells, tumor angiogenesis, and epithelial-to-mesenchymal transition (EMT) have been reported. This review describes the role of Notch in the "stemness" program in cancer cells and in metastases, together with a brief update on the Notch inhibitors currently under investigation in oncology. These agents may be useful in targeting cancer stem cells and to reverse the EMT process.
Collapse
Affiliation(s)
- Ingrid Espinoza
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Radhika Pochampally
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fei Xing
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kounosuke Watabe
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lucio Miele
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
153
|
Abstract
Ikaros is a critical regulator of lymphocyte development and homeostasis; thus, understanding its transcriptional regulation is important from both developmental and clinical perspectives. Using a mouse transgenic reporter approach, we functionally characterized a network of highly conserved cis-acting elements at the Ikzf1 locus. We attribute B-cell and myeloid but not T-cell specificity to the main Ikzf1 promoter. Although this promoter was unable to counter local chromatin silencing effects, each of the 6 highly conserved Ikzf1 intronic enhancers alleviated silencing. Working together, the Ikzf1 enhancers provided locus control region activity, allowing reporter expression in a position and copy-independent manner. Only 1 of the Ikzf1 enhancers was responsible for the progressive upregulation of Ikaros expression from hematopoietic stem cells to lymphoid-primed multipotent progenitors to T-cell precursors, which are stages of differentiation dependent on Ikaros for normal outcome. Thus, Ikzf1 is regulated by both epigenetic and transcriptional factors that target its enhancers in both redundant and specific fashions to provide an expression profile supportive of normal lymphoid lineage progression and homeostasis. Mutations in the Ikzf1 regulatory elements and their interacting factors are likely to have adverse effects on lymphopoiesis and contribute to leukemogenesis.
Collapse
|
154
|
Yang Q, Monticelli LA, Saenz SA, Chi AWS, Sonnenberg GF, Tang J, De Obaldia ME, Bailis W, Bryson JL, Toscano K, Huang J, Haczku A, Pear WS, Artis D, Bhandoola A. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 2013; 38:694-704. [PMID: 23601684 DOI: 10.1016/j.immuni.2012.12.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022]
Abstract
Group 2 innate lymphoid cells (ILC2) are innate lymphocytes that confer protective type 2 immunity during helminth infection and are also involved in allergic airway inflammation. Here we report that ILC2 development required T cell factor 1 (TCF-1, the product of the Tcf7 gene), a transcription factor also implicated in T cell lineage specification. Tcf7(-/-) mice lack ILC2, and were unable to mount ILC2-mediated innate type 2 immune responses. Forced expression of TCF-1 in bone marrow progenitors partially bypassed the requirement for Notch signaling in the generation of ILC2 in vivo. TCF-1 acted through both GATA-3-dependent and GATA-3-independent pathways to promote the generation of ILC2. These results are reminiscent of the critical roles of TCF-1 in early T cell development. Hence, transcription factors that underlie early steps of T cell development are also implicated in the development of innate lymphoid cells.
Collapse
Affiliation(s)
- Qi Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Nechanitzky R, Akbas D, Scherer S, Györy I, Hoyler T, Ramamoorthy S, Diefenbach A, Grosschedl R. Transcription factor EBF1 is essential for the maintenance of B cell identity and prevention of alternative fates in committed cells. Nat Immunol 2013; 14:867-75. [PMID: 23812095 DOI: 10.1038/ni.2641] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/11/2013] [Indexed: 12/13/2022]
Abstract
The transcription factors EBF1 and Pax5 have been linked to activation of the B cell lineage program and irreversible loss of alternative lineage potential (commitment), respectively. Here we conditionally deleted Ebf1 in committed pro-B cells after transfer into alymphoid mice. We found that those cells converted into innate lymphoid cells (ILCs) and T cells with variable-diversity-joining (VDJ) rearrangements of loci encoding both B cell and T cell antigen receptors. As intermediates in lineage conversion, Ebf1-deficient CD19(+) cells expressing Pax5 and transcriptional regulators of the ILC and T cell fates were detectable. In particular, genes encoding the transcription factors Id2 and TCF-1 were bound and repressed by EBF1. Thus, both EBF1 and Pax5 are required for B lineage commitment by repressing distinct and common determinants of alternative cell fates.
Collapse
Affiliation(s)
- Robert Nechanitzky
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
Bcl11b is a T-cell specific gene in hematopoiesis that begins expression during T-lineage commitment and is required for this process. Aberrant expression of BCL11B or proto-oncogene translocation to the vicinity of BCL11B can be a contributing factor in human T-ALL. To identify the mechanism that controls its distinctive T-lineage expression, we corrected the identified Bcl11b transcription start site and mapped a cell-type-specific differentially methylated region bracketing the Bcl11b promoter. We identified a 1.9-kb region 850 kb downstream of Bcl11b, "Major Peak," distinguished by its dynamic histone marking pattern in development that mirrors the pattern at the Bcl11b promoter. Looping interactions between promoter-proximal elements including the differentially methylated region and downstream elements in the Major Peak are required to recapitulate the T-cell specific expression of Bcl11b in stable reporter assays. Functional dissection of the Major Peak sequence showed distinct subregions, in which TCF-1 sites and a conserved element were required for T-lineage-specific activation and silencing in non-T cells. A bacterial artificial chromosome encompassing the full Bcl11b gene still required the addition of the Major Peak to exhibit T-cell specific expression. Thus, promoter-proximal and Major Peak sequences are cis-regulatory elements that interact over 850 kb to control expression of Bcl11b in hematopoietic cells.
Collapse
|
157
|
Mingueneau M, Kreslavsky T, Gray D, Heng T, Cruse R, Ericson J, Bendall S, Spitzer MH, Nolan GP, Kobayashi K, von Boehmer H, Mathis D, Benoist C, Best AJ, Knell J, Goldrath A, Joic V, Koller D, Shay T, Regev A, Cohen N, Brennan P, Brenner M, Kim F, Nageswara Rao T, Wagers A, Heng T, Ericson J, Rothamel K, Ortiz-Lopez A, Mathis D, Benoist C, Bezman NA, Sun JC, Min-Oo G, Kim CC, Lanier LL, Miller J, Brown B, Merad M, Gautier EL, Jakubzick C, Randolph GJ, Monach P, Blair DA, Dustin ML, Shinton SA, Hardy RR, Laidlaw D, Collins J, Gazit R, Rossi DJ, Malhotra N, Sylvia K, Kang J, Kreslavsky T, Fletcher A, Elpek K, Bellemare-Pelletier A, Malhotra D, Turley S. The transcriptional landscape of αβ T cell differentiation. Nat Immunol 2013; 14:619-32. [PMID: 23644507 PMCID: PMC3660436 DOI: 10.1038/ni.2590] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/19/2013] [Indexed: 12/11/2022]
Abstract
αβT cell differentiation from thymic precursors is a complex process, explored here with the breadth of ImmGen expression datasets, analyzing how differentiation of thymic precursors gives rise to transcriptomes. After surprisingly gradual changes though early T commitment, transit through the CD4+CD8+ stage involves a shutdown or rare breadth, and correlating tightly with MYC. MHC-driven selection promotes a large-scale transcriptional reactivation. We identify distinct signatures that mark cells destined for positive selection versus apoptotic deletion. Differential expression of surprisingly few genes accompany CD4 or CD8 commitment, a similarity that carries through to peripheral T cells and their activation, revealed by mass cytometry phosphoproteomics. The novel transcripts identified as candidate mediators of key transitions help define the “known unknown” of thymocyte differentiation.
Collapse
Affiliation(s)
- Michael Mingueneau
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Del Real MM, Rothenberg EV. Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. Development 2013; 140:1207-19. [PMID: 23444353 DOI: 10.1242/dev.088559] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hematopoiesis is a classic system with which to study developmental potentials and to investigate gene regulatory networks that control choices among alternate lineages. T-cell progenitors seeding the thymus retain several lineage potentials. The transcription factor PU.1 is involved in the decision to become a T cell or a myeloid cell, and the developmental outcome of expressing PU.1 is dependent on exposure to Notch signaling. PU.1-expressing T-cell progenitors without Notch signaling often adopt a myeloid program, whereas those exposed to Notch signals remain in a T-lineage pathway. Here, we show that Notch signaling does not alter PU.1 transcriptional activity by degradation/alteration of PU.1 protein. Instead, Notch signaling protects against the downregulation of T-cell factors so that a T-cell transcriptional network is maintained. Using an early T-cell line, we describe two branches of this network. The first involves inhibition of E-proteins by PU.1 and the resulting inhibition of Notch signaling target genes. Effects of E-protein inhibition can be reversed by exposure to Notch signaling. The second network is dependent on the ability of PU.1 to inhibit important T-cell transcription factor genes such as Myb, Tcf7 and Gata3 in the absence of Notch signaling. We show that maintenance of Gata3 protein levels by Myb and Notch signaling is linked to the ability to retain T-cell identity in response to PU.1.
Collapse
|
159
|
Shay T, Kang J. Immunological Genome Project and systems immunology. Trends Immunol 2013; 34:602-9. [PMID: 23631936 DOI: 10.1016/j.it.2013.03.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/20/2013] [Accepted: 03/24/2013] [Indexed: 12/23/2022]
Abstract
Immunological studies of single proteins in a single cell type have been complemented in recent years by larger studies, enabled by emerging high-throughput technologies. This trend has recently been exemplified by the discovery of gene networks controlling regulatory and effector αβ T cell subset development and human hematopoiesis. The Immunological Genome Project (ImmGen) aims to decipher the gene networks underpinning mouse hematopoiesis. The first phase, completed in 2012, profiled the transcriptome of 249 immune cell types. We discuss the utilities of the datasets in high-resolution mapping of the hematopoietic system. The immune transcriptome compendium has revealed unsuspected cell lineage relations and the network reconstruction has identified novel regulatory factors of hematopoiesis.
Collapse
Affiliation(s)
- Tal Shay
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | |
Collapse
|
160
|
Malhotra N, Narayan K, Cho OH, Sylvia KE, Yin C, Melichar H, Rashighi M, Lefebvre V, Harris JE, Berg LJ, Kang J. A network of high-mobility group box transcription factors programs innate interleukin-17 production. Immunity 2013; 38:681-93. [PMID: 23562159 PMCID: PMC3811080 DOI: 10.1016/j.immuni.2013.01.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 01/28/2013] [Indexed: 01/09/2023]
Abstract
How innate lymphoid cells (ILCs) in the thymus and gut become specialized effectors is unclear. The prototypic innate-like γδ T cells (Tγδ17) are a major source of interleukin-17 (IL-17). We demonstrate that Tγδ17 cells are programmed by a gene regulatory network consisting of a quartet of high-mobility group (HMG) box transcription factors, SOX4, SOX13, TCF1, and LEF1, and not by conventional TCR signaling. SOX4 and SOX13 directly regulated the two requisite Tγδ17 cell-specific genes, Rorc and Blk, whereas TCF1 and LEF1 countered the SOX proteins and induced genes of alternate effector subsets. The T cell lineage specification factor TCF1 was also indispensable for the generation of IL-22 producing gut NKp46(+) ILCs and restrained cytokine production by lymphoid tissue inducer-like effectors. These results indicate that similar gene network architecture programs innate sources of IL-17, independent of anatomical origins.
Collapse
MESH Headings
- Animals
- Antigens, Ly/metabolism
- Autoantigens/genetics
- Autoantigens/metabolism
- Cell Differentiation/genetics
- Cells, Cultured
- Gene Regulatory Networks/immunology
- Hepatocyte Nuclear Factor 1-alpha/genetics
- Hepatocyte Nuclear Factor 1-alpha/metabolism
- High Mobility Group Proteins/genetics
- High Mobility Group Proteins/metabolism
- Immunity, Innate/genetics
- Interleukin-17/biosynthesis
- Interleukin-17/genetics
- Interleukins/immunology
- Intestines/immunology
- Lymphocyte Subsets/immunology
- Lymphoid Enhancer-Binding Factor 1/genetics
- Lymphoid Enhancer-Binding Factor 1/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Natural Cytotoxicity Triggering Receptor 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- SOXC Transcription Factors/genetics
- SOXC Transcription Factors/metabolism
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- Transcriptional Activation/immunology
- Interleukin-22
Collapse
Affiliation(s)
- Nidhi Malhotra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
E2A transcription factors limit expression of Gata3 to facilitate T lymphocyte lineage commitment. Blood 2013; 121:1534-42. [PMID: 23297135 DOI: 10.1182/blood-2012-08-449447] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E2A transcription factors promote the development of thymus-seeding cells, but it remains unknown whether these proteins play a role in T lymphocyte lineage specification or commitment. Here, we showed that E2A proteins were required to promote T-lymphocyte commitment from DN2 thymocytes and to extinguish their potential for alternative fates. E2A proteins functioned in DN2 cells to limit expression of Gata3, which encodes an essential T-lymphocyte transcription factor whose ectopic expression can arrest T-cell differentiation. Genetic, or small interfering RNA-mediated, reduction of Gata3 rescued T-cell differentiation in the absence of E2A and restricted the development of alternative lineages by limiting the expanded self-renewal potential in E2A−/− DN2 cells. Our data support a novel paradigm in lymphocyte lineage commitment in which the E2A proteins are necessary to limit the expression of an essential lineage specification and commitment factor to restrain self-renewal and to prevent an arrest in differentiation.
Collapse
|
162
|
Ma D, Wei Y, Liu F. Regulatory mechanisms of thymus and T cell development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:91-102. [PMID: 22227346 DOI: 10.1016/j.dci.2011.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 05/31/2023]
Abstract
The thymus is a central hematopoietic organ which produces mature T lymphocytes with diverse antigen specificity. During development, the thymus primordium is derived from the third pharyngeal endodermal pouch, and then differentiates into cortical and medullary thymic epithelial cells (TECs). TECs represent the primary functional cell type that forms the unique thymic epithelial microenvironment which is essential for intrathymic T-cell development, including positive selection, negative selection and emigration out of the thymus. Our understanding of thymopoiesis has been greatly advanced by using several important animal models. This review will describe progress on the molecular mechanisms involved in thymus and T cell development with particular focus on the signaling and transcription factors involved in this process in mouse and zebrafish.
Collapse
Affiliation(s)
- Dongyuan Ma
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
163
|
Tiemessen MM, Baert MRM, Schonewille T, Brugman MH, Famili F, Salvatori DCF, Meijerink JPP, Ozbek U, Clevers H, van Dongen JJM, Staal FJT. The nuclear effector of Wnt-signaling, Tcf1, functions as a T-cell-specific tumor suppressor for development of lymphomas. PLoS Biol 2012. [PMID: 23185135 PMCID: PMC3502537 DOI: 10.1371/journal.pbio.1001430] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tcf1 is known to function as a transcriptional activator of Wnt-induced proliferation during T cell development in the thymus. Evidence for an additional contrasting role for Tcf1 as a T-cell specific tumor suppressor gene is now presented. The HMG-box factor Tcf1 is required during T-cell development in the thymus and mediates the nuclear response to Wnt signals. Tcf1−/− mice have previously been characterized and show developmental blocks at the CD4−CD8− double negative (DN) to CD4+CD8+ double positive transition. Due to the blocks in T-cell development, Tcf1−/− mice normally have a very small thymus. Unexpectedly, a large proportion of Tcf1−/− mice spontaneously develop thymic lymphomas with 50% of mice developing a thymic lymphoma/leukemia at the age of 16 wk. These lymphomas are clonal, highly metastatic, and paradoxically show high Wnt signaling when crossed with Wnt reporter mice and have high expression of Wnt target genes Lef1 and Axin2. In wild-type thymocytes, Tcf1 is higher expressed than Lef1, with a predominance of Wnt inhibitory isoforms. Loss of Tcf1 as repressor of Lef1 leads to high Wnt activity and is the initiating event in lymphoma development, which is exacerbated by activating Notch1 mutations. Thus, Notch1 and loss of Tcf1 functionally act as collaborating oncogenic events. Tcf1 deficiency predisposes to the development of thymic lymphomas by ectopic up-regulation of Lef1 due to lack of Tcf1 repressive isoforms and frequently by cooperating activating mutations in Notch1. Tcf1 therefore functions as a T-cell–specific tumor suppressor gene, besides its established role as a Wnt responsive transcription factor. Thus, Tcf1 acts as a molecular switch between proliferative and repressive signals during T-lymphocyte development in the thymus. Cancers often develop as a consequence of deregulated expression of key factors that operate during normal development. T-cell factor 1 (Tcf1) has an established role in the nuclear response to Wnt signaling during normal T-cell development in the thymus. Here we show in mice that the absence of Tcf1 can trigger tumorigenesis. As expected from previous work, lack of Tcf1 results in a small thymus with several partial blocks in T-cell development in the thymus. Surprisingly, we observe that a large proportion of Tcf1−/− mice spontaneously develop thymic lymphomas. Thorough investigation of these thymic-derived tumors revealed that the mechanism underlying these lymphomas is, paradoxically, increased levels of Wnt-signaling. We propose that Wnt-signaling in these tumors is mediated by up-regulated expression of the Tcf1-homologue, Lef1, and specifically its long isoform. Furthermore, we have evidence to propose that in a normal thymus, short isoforms of Tcf1 that cannot respond to Wnt signals act as repressors of Lef1-mediated Wnt-signaling. Thus, we propose that Tcf1 has a dual function developing T cells in mice: it functions as a T-cell–specific tumor suppressor gene in addition to its established role as a transcriptional activator of Wnt-induced proliferation. Whether loss of function of Tcf-1 as a tumor suppressor gene actually occurs in human T-cell lymphoblastic leukemias is currently under investigation.
Collapse
Affiliation(s)
- Machteld M. Tiemessen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Department Immunology, ErasmusMC, Rotterdam, The Netherlands
| | - Miranda R. M. Baert
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Department Immunology, ErasmusMC, Rotterdam, The Netherlands
| | - Tom Schonewille
- Department Immunology, ErasmusMC, Rotterdam, The Netherlands
| | - Martijn H. Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Farbod Famili
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniela C. F. Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
| | - Jules P. P. Meijerink
- Department of Pediatric Oncology/Hematology, Erasmus MC/Sophia's Children's Hospital, Rotterdam, The Netherlands
| | - Ugur Ozbek
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | | | | | - Frank J. T. Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Department Immunology, ErasmusMC, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
164
|
The TCF-1 and LEF-1 transcription factors have cooperative and opposing roles in T cell development and malignancy. Immunity 2012; 37:813-26. [PMID: 23103132 DOI: 10.1016/j.immuni.2012.08.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 07/06/2012] [Accepted: 08/16/2012] [Indexed: 11/20/2022]
Abstract
The TCF-1 and LEF-1 transcription factors are known to play critical roles in normal thymocyte development. Unexpectedly, we found that TCF-1-deficient (Tcf7(-/-)) mice developed aggressive T cell malignancy, resembling human T cell acute lymphoblastic leukemia (T-ALL). LEF-1 was aberrantly upregulated in premalignant Tcf7(-/-) early thymocytes and lymphoma cells. We further demonstrated that TCF-1 directly repressed LEF-1 expression in early thymocytes and that conditional inactivation of Lef1 greatly delayed or prevented T cell malignancy in Tcf7(-/-) mice. In human T-ALLs, an early thymic progenitor (ETP) subtype was associated with diminished TCF7 expression, and two of the ETP-ALL cases harbored TCF7 gene deletions. We also showed that TCF-1 and LEF-1 were dispensable for T cell lineage commitment but instead were required for early thymocytes to mature beyond the CD4(-)CD8(-) stage. TCF-1 thus has dual roles, i.e., acting cooperatively with LEF-1 to promote thymocyte maturation while restraining LEF-1 expression to prevent malignant transformation of developing thymocytes.
Collapse
|
165
|
Yano T, Abe G, Yokoyama H, Kawakami K, Tamura K. Mechanism of pectoral fin outgrowth in zebrafish development. Development 2012; 139:2916-25. [PMID: 22791899 DOI: 10.1242/dev.075572] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fins and limbs, which are considered to be homologous paired vertebrate appendages, have obvious morphological differences that arise during development. One major difference in their development is that the AER (apical ectodermal ridge), which organizes fin/limb development, transitions into a different, elongated organizing structure in the fin bud, the AF (apical fold). Although the role of AER in limb development has been clarified in many studies, little is known about the role of AF in fin development. Here, we investigated AF-driven morphogenesis in the pectoral fin of zebrafish. After the AER-AF transition at ∼36 hours post-fertilization, the AF was identifiable distal to the circumferential blood vessel of the fin bud. Moreover, the AF was divisible into two regions: the proximal AF (pAF) and the distal AF (dAF). Removing the AF caused the AER and a new AF to re-form. Interestingly, repeatedly removing the AF led to excessive elongation of the fin mesenchyme, suggesting that prolonged exposure to AER signals results in elongation of mesenchyme region for endoskeleton. Removal of the dAF affected outgrowth of the pAF region, suggesting that dAF signals act on the pAF. We also found that the elongation of the AF was caused by morphological changes in ectodermal cells. Our results suggest that the timing of the AER-AF transition mediates the differences between fins and limbs, and that the acquisition of a mechanism to maintain the AER was a crucial evolutionary step in the development of tetrapod limbs.
Collapse
Affiliation(s)
- Tohru Yano
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
166
|
β-catenin/TCF-1 pathway in T cell development and differentiation. J Neuroimmune Pharmacol 2012; 7:750-62. [PMID: 22535304 DOI: 10.1007/s11481-012-9367-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 04/03/2012] [Indexed: 02/04/2023]
Abstract
T cells must undergo two critical differentiation processes before they become competent effectors that can mediate actual immune responses. Progenitor T cells undergo defined stages of differentiation in the thymus, which include positive and negative selection, to generate a repertoire of T cells that will respond to foreign but not self antigens. When these immunocompetent T cells first migrate out of thymus into peripheral lymphoid tissues, they are naïve and are unable to mediate immune responses. However, upon antigen encounter, peripheral CD4+ naïve T cells undergo another differentiation process to become armed effector T cells including Th1, Th2, Th17 or regulatory T cells, all of which are capable of regulating immune responses. A canonical Wnt/β-catenin/T cell factor (TCF) pathway has been shown to regulate T cell differentiation in both the thymus and in peripheral lymphoid tissues. Dysfunction of this pathway at any stage of T cell differentiation could lead to severe autoimmunity including experimental autoimmune encephalomyelitis or immune deficiency. Understanding the role played by β-catenin/TCF-1 in T cell differentiation will facilitate our understanding of the mechanisms that regulate T cell function and assist in identifying novel therapy targets for treating both autoimmune and immune diseases. Therefore, in this review, we will focus on the function of β-catenin/TCF-1 pathway in the regulation of thymic and peripheral T cell differentiation processes.
Collapse
|
167
|
Rothenberg EV. Transcriptional drivers of the T-cell lineage program. Curr Opin Immunol 2012; 24:132-8. [PMID: 22264928 DOI: 10.1016/j.coi.2011.12.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/31/2011] [Indexed: 11/28/2022]
Abstract
The T-cell development program is specifically triggered by Notch-Delta signaling, but most transcription factors needed to establish T-cell lineage identity also have crossover roles in other hematopoietic lineages. This factor sharing complicates full definition of the core gene regulatory circuits required for T-cell specification. But new advances illuminate the roles of three of the most T-cell specific transcription factors. Commitment to the T-cell lineage is now shown to depend on Bcl11b, while initiation of the T-cell differentiation program begins earlier with the induction of TCF-1 (Tcf7 gene product) and GATA-3. Several reports now reveal how TCF-1 and GATA-3 are mobilized in early T cells and the pathways for their T-lineage specific effects.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|