151
|
Abstract
Cardiovascular diseases are the leading causes of death in the world. The limited regenerative capacity of adult cardiomyocytes is the major barrier for heart regeneration. After myocardial infarction, myofibroblasts are the dominant cell type in the infarct zone. Therefore, it is a good idea to reprogram terminally differentiated myofibroblasts into cardiomyocyte-like cells directly, providing a good strategy to simultaneously reduce scar tissue and increase functional cardiomyocytes. Transcription factors were first identified to reprogram myofibroblasts into cardiomyocytes. Thereafter, microRNAs and/or small molecules showed great potential to optimize the reprogramming process. Here, we systemically summarize and compare the major progress in directed cardiac reprogramming including transcription factors and miRNAs, especially the small molecules. Furthermore, we discuss the challenges needed to be overcome to apply this strategy clinically.
Collapse
Affiliation(s)
- Yueqiu Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 708 Renmin Road, Building 1, Room 1628, Suzhou, Jiangsu, 215007, China.,Institute for Cardiovascular Science, Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215007, China
| | - Ziying Yang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 708 Renmin Road, Building 1, Room 1628, Suzhou, Jiangsu, 215007, China
| | - Zhen-Ao Zhao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 708 Renmin Road, Building 1, Room 1628, Suzhou, Jiangsu, 215007, China.
| | - Zhenya Shen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of The First Affiliated Hospital, Soochow University, 708 Renmin Road, Building 1, Room 1628, Suzhou, Jiangsu, 215007, China.
| |
Collapse
|
152
|
Kurotsu S, Suzuki T, Ieda M. Direct Reprogramming, Epigenetics, and Cardiac Regeneration. J Card Fail 2017; 23:552-557. [PMID: 28529134 DOI: 10.1016/j.cardfail.2017.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 01/14/2023]
Abstract
The discovery of induced pluripotent stem cells (iPSCs) has revolutionized regenerative medicine. Autologous iPSCs can be generated by introducing 4 stem cell-specific factors (Oct4, Sox2, Klf4, c-Myc) into fibroblasts. iPSCs can propagate indefinitely and differentiate into clinically important cell types, including cardiomyocytes, in vitro. The iPSC-derived cardiomyocytes represent a promising source of cells for cell-based therapeutic approaches for cardiac regeneration. However, there are several challenges in the clinical application of iPSCs: tumorigenicity of immature cells, poor survival of the transplanted myocardial cells, and cost and efficacy of this therapeutic approach. We developed a new alternate approach for cardiac regeneration, called direct cardiac reprogramming. Instead of using stem cell factors, we overexpressed combinations of cardiac cell-specific genes in fibroblasts to directly induce cardiomyocytes without mediating through iPSCs. The direct reprogramming approach may overcome the challenges faced in the applicability of iPSC-based cell therapy. After the development of direct cardiac reprogramming, great progress has been made in improving the efficiency of direct cardiac reprogramming and applying this technology to regenerative medicine. Here, we provide an overview of the recent progress made, epigenetics, and potential clinical applications of direct cardiac reprogramming.
Collapse
Affiliation(s)
- Shota Kurotsu
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Amed Prime, Tokyo, Japan; Division of Basic Biologic Sciences, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Takeshi Suzuki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Division of Basic Biologic Sciences, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Amed Prime, Tokyo, Japan.
| |
Collapse
|
153
|
Ban K, Bae S, Yoon YS. Current Strategies and Challenges for Purification of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Theranostics 2017. [PMID: 28638487 PMCID: PMC5479288 DOI: 10.7150/thno.19427] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) are considered a most promising option for cell-based cardiac repair. Hence, various protocols have been developed for differentiating hPSCs into CMs. Despite remarkable improvement in the generation of hPSC-CMs, without purification, these protocols can only generate mixed cell populations including undifferentiated hPSCs or non-CMs, which may elicit adverse outcomes. Therefore, one of the major challenges for clinical use of hPSC-CMs is the development of efficient isolation techniques that allow enrichment of hPSC-CMs. In this review, we will discuss diverse strategies that have been developed to enrich hPSC-CMs. We will describe major characteristics of individual hPSC-CM purification methods including their scientific principles, advantages, limitations, and needed improvements. Development of a comprehensive system which can enrich hPSC-CMs will be ultimately useful for cell therapy for diseased hearts, human cardiac disease modeling, cardiac toxicity screening, and cardiac tissue engineering.
Collapse
|
154
|
Ebrahimi B. In vivo reprogramming for heart regeneration: A glance at efficiency, environmental impacts, challenges and future directions. J Mol Cell Cardiol 2017; 108:61-72. [PMID: 28502796 DOI: 10.1016/j.yjmcc.2017.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/08/2017] [Indexed: 02/08/2023]
Abstract
Replacing dying or diseased cells of a tissue with new ones that are converted from patient's own cells is an attractive strategy in regenerative medicine. In vivo reprogramming is a novel strategy that can circumvent the hurdles of autologous/allogeneic cell injection therapies. Interestingly, studies have demonstrated that direct injection of cardiac transcription factors or specific miRNAs into the infarct border zone of murine hearts following myocardial infarction converts resident cardiac fibroblasts into functional cardiomyocytes. Moreover, in vivo cardiac reprogramming not only drives cardiac tissue regeneration, but also improves cardiac function and survival rate after myocardial infarction. Thanks to the influence of cardiac microenvironment and the same developmental origin, cardiac fibroblasts seem to be more amenable to reprogramming toward cardiomyocyte fate than other cell sources (e.g. skin fibroblasts). Thus, reprogramming of cardiac fibroblasts to functional induced cardiomyocytes in the cardiac environment holds great promises for induced regeneration and potential clinical purposes. Application of small molecules in future studies may represent a major advancement in this arena and pharmacological reprogramming would convey reprogramming technology to the translational medicine paradigm. This study reviews accomplishments in the field of in vitro and in vivo mouse cardiac reprogramming and then deals with strategies for the enhancement of the efficiency and quality of the process. Furthermore, it discusses challenges ahead and provides suggestions for future research. Human cardiac reprogramming is also addressed as a foundation for possible application of in vivo cardiac reprogramming for human heart regeneration in the future.
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
155
|
Galdos FX, Guo Y, Paige SL, VanDusen NJ, Wu SM, Pu WT. Cardiac Regeneration: Lessons From Development. Circ Res 2017; 120:941-959. [PMID: 28302741 DOI: 10.1161/circresaha.116.309040] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023]
Abstract
Palliative surgery for congenital heart disease has allowed patients with previously lethal heart malformations to survive and, in most cases, to thrive. However, these procedures often place pressure and volume loads on the heart, and over time, these chronic loads can cause heart failure. Current therapeutic options for initial surgery and chronic heart failure that results from failed palliation are limited, in part, by the mammalian heart's low inherent capacity to form new cardiomyocytes. Surmounting the heart regeneration barrier would transform the treatment of congenital, as well as acquired, heart disease and likewise would enable development of personalized, in vitro cardiac disease models. Although these remain distant goals, studies of heart development are illuminating the path forward and suggest unique opportunities for heart regeneration, particularly in fetal and neonatal periods. Here, we review major lessons from heart development that inform current and future studies directed at enhancing cardiac regeneration.
Collapse
Affiliation(s)
- Francisco X Galdos
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Yuxuan Guo
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sharon L Paige
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Nathan J VanDusen
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sean M Wu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| | - William T Pu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| |
Collapse
|
156
|
Lalit PA, Rodriguez AM, Downs KM, Kamp TJ. Generation of multipotent induced cardiac progenitor cells from mouse fibroblasts and potency testing in ex vivo mouse embryos. Nat Protoc 2017; 12:1029-1054. [PMID: 28426026 DOI: 10.1038/nprot.2017.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Here we describe a protocol to generate expandable and multipotent induced cardiac progenitor cells (iCPCs) from mouse adult fibroblasts using forced expression of Mesp1, Tbx5, Gata4, Nkx2.5 and Baf60c (MTGNB) along with activation of Wnt and JAK/STAT signaling. This method does not use iPS cell factors and thus differs from cell activation and signaling-directed (CASD) reprogramming to cardiac progenitors. Our method is specific to direct CPC reprogramming, whereas CASD reprogramming can generate various cell types depending on culture conditions and raises the possibility of transitioning through a pluripotent cell state. The protocol describes how to isolate and infect primary fibroblasts; induce reprogramming and observe iCPC colonies; expand and characterize reprogrammed iCPCs by immunostaining, flow cytometry and gene expression; differentiate iCPCs in vitro into cardiac-lineage cells; and test the embryonic potency of iCPCs via injection into the cardiac crescent of mouse embryos. A scientist experienced in molecular cell biology and embryology can reproduce this protocol in 12-16 weeks. iCPCs can be used for studying cardiac biology, drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Pratik A Lalit
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adriana M Rodriguez
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karen M Downs
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
157
|
Abstract
Dramatic evolution in medical and catheter interventions and complex surgeries to treat children with congenital heart disease (CHD) has led to a growing number of patients with a multitude of long-term complications associated with morbidity and mortality. Heart failure in patients with hypoplastic left heart syndrome predicated by functional single ventricle lesions is associated with an increase in CHD prevalence and remains a significant challenge. Pathophysiological mechanisms contributing to the progression of CHD, including single ventricle lesions and dilated cardiomyopathy, and adult heart disease may inevitably differ. Although therapeutic options for advanced cardiac failure are restricted to heart transplantation or mechanical circulatory support, there is a strong impetus to develop novel therapeutic strategies. As lower vertebrates, such as the newt and zebrafish, have a remarkable ability to replace lost cardiac tissue, this intrinsic self-repair machinery at the early postnatal stage in mice was confirmed by partial ventricular resection. Although the underlying mechanistic insights might differ among the species, mammalian heart regeneration occurs even in humans, with the highest degree occurring in early childhood and gradually declining with age in adulthood, suggesting the advantage of stem cell therapy to ameliorate ventricular dysfunction in patients with CHD. Although effective clinical translation by a variety of stem cells in adult heart disease remains inconclusive with respect to the improvement of cardiac function, case reports and clinical trials based on stem cell therapies in patients with CHD may be invaluable for the next stage of therapeutic development. Dissecting the differential mechanisms underlying progressive ventricular dysfunction in children and adults may lead us to identify a novel regenerative therapy. Future regenerative technologies to treat patients with CHD are exciting prospects for heart regeneration in general practice.
Collapse
Affiliation(s)
- Hidemasa Oh
- From the Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital, Japan
| |
Collapse
|
158
|
Rastegar-Pouyani S, Khazaei N, Wee P, Yaqubi M, Mohammadnia A. Meta-Analysis of Transcriptome Regulation During Induction to Cardiac Myocyte Fate From Mouse and Human Fibroblasts. J Cell Physiol 2017; 232:2053-2062. [PMID: 27579918 DOI: 10.1002/jcp.25580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023]
Abstract
Ectopic expression of a defined set of transcription factors (TFs) can directly convert fibroblasts into a cardiac myocyte cell fate. Beside inefficiency in generating induced cardiomyocytes (iCMs), the molecular mechanisms that regulate this process remained to be well defined. The main purpose of this study was to provide better insight on the transcriptome regulation and to introduce a new strategy for candidating TFs for the transdifferentiation process. Eight mouse and three human high quality microarray data sets were analyzed to find differentially expressed genes (DEGs), which we integrated with TF-binding sites and protein-protein interactions to construct gene regulatory and protein-protein interaction networks. Topological and biological analyses of constructed gene networks revealed the main regulators and most affected biological processes. The DEGs could be categorized into two distinct groups, first, up-regulated genes that are mainly involved in cardiac-specific processes and second, down-regulated genes that are mainly involved in fibroblast-specific functions. Gata4, Mef2a, Tbx5, Tead4 TFs were identified as main regulators of cardiac-specific gene expression program; and Trp53, E2f1, Myc, Sfpi1, Lmo2, and Meis1 were identified as TFs which mainly regulate the expression of fibroblast-specific genes. Furthermore, we compared gene expression profiles and identified TFs between mouse and human to find the similarities and differences. In summary, our strategy of meta-analyzing the data of high-throughput techniques by computational approaches, besides revealing the mechanisms involved in the regulation of the gene expression program, also suggests a new approach for increasing the efficiency of the direct reprogramming of fibroblasts into iCMs. J. Cell. Physiol. 232: 2053-2062, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shima Rastegar-Pouyani
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Niusha Khazaei
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ping Wee
- Faculty of Medicine and Dentistry, Department of Medical Genetics and Signal Transduction Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Moein Yaqubi
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, Quebec, Canada.,Douglas Mental Health University Institute, McGill University, Montréal, Quebec, Canada
| | - Abdulshakour Mohammadnia
- Faculty of Medicine, Division of Hematology and Oncology, Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
159
|
Ii M. Novel direct reprogramming technique for the generation of culture-expandable cardiac progenitor cells from fibroblasts. Stem Cell Investig 2017; 4:15. [PMID: 28275645 DOI: 10.21037/sci.2017.02.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 01/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Masaaki Ii
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, Osaka, Japan
| |
Collapse
|
160
|
Abad M, Hashimoto H, Zhou H, Morales MG, Chen B, Bassel-Duby R, Olson EN. Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity. Stem Cell Reports 2017; 8:548-560. [PMID: 28262548 PMCID: PMC5355682 DOI: 10.1016/j.stemcr.2017.01.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 01/14/2023] Open
Abstract
Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies. Notch activation is a barrier for GHMT-induced cardiac cell reprogramming Notch blockade by DAPT improves GHMT-induced cardiac reprogramming DAPT increases sarcomere organization, calcium flux, and beating in GHMT reprogramming DAPT enhances transcriptional activity of MEF2C in GHMT reprogramming
Collapse
Affiliation(s)
- Maria Abad
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Cell Plasticity and Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), c/Natzaret, 115-117, Barcelona 08035, Spain.
| | - Hisayuki Hashimoto
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Huanyu Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Maria Gabriela Morales
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Beibei Chen
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
161
|
Abstract
Reprogramming cell fates towards pluripotent stem cells and other cell types has revolutionized our understanding of cellular plasticity. During the last decade, transcription factors and microRNAs have become powerful reprogramming factors for modulating cell fates. Recently, many efforts are focused on reprogramming cell fates by non-viral and non-integrating chemical approaches. Small molecules not only are useful in generating desired cell types in vitro for various applications, such as disease modeling and cell-based transplantation, but also hold great promise to be further developed as drugs to stimulate patients’ endogenous cells to repair and regenerate in vivo. Here we will focus on chemical approaches for generating induced pluripotent stem cells, neurons, cardiomyocytes, hepatocytes and pancreatic β cells. Significantly, the rapid and exciting advances in cellular reprogramming by small molecules will help us to achieve the long-term goal of curing devastating diseases, injuries, cancers and aging.
Collapse
Affiliation(s)
- Xiaojie Ma
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Linghao Kong
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Saiyong Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
162
|
Dal-Pra S, Hodgkinson CP, Mirotsou M, Kirste I, Dzau VJ. Demethylation of H3K27 Is Essential for the Induction of Direct Cardiac Reprogramming by miR Combo. Circ Res 2017; 120:1403-1413. [PMID: 28209718 DOI: 10.1161/circresaha.116.308741] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 01/10/2023]
Abstract
RATIONALE Direct reprogramming of cardiac fibroblasts to cardiomyocytes has recently emerged as a novel and promising approach to regenerate the injured myocardium. We have previously demonstrated the feasibility of this approach in vitro and in vivo using a combination of 4 microRNAs (miR-1, miR-133, miR-208, and miR-499) that we named miR combo. However, the mechanism of miR combo mediated direct cardiac reprogramming is currently unknown. OBJECTIVE Here, we investigated the possibility that miR combo initiated direct cardiac reprogramming through an epigenetic mechanism. METHODS AND RESULTS Using a quantitative polymerase chain reaction array, we found that histone methyltransferases and demethylases that regulate the trimethylation of H3K27 (H3K27me3), an epigenetic modification that marks transcriptional repression, were changed in miR combo-treated fibroblasts. Accordingly, global H3K27me3 levels were downregulated by miR combo treatment. In particular, the promoter region of cardiac transcription factors showed decreased H3K27me3 as revealed by chromatin immunoprecipitation coupled with quantitative polymerase chain reaction. Inhibition of H3K27 methyltransferases or of the PRC2 (Polycomb Repressive Complex 2) by pharmaceutical inhibition or siRNA reduced the levels of H3K27me3 and induced cardiogenic markers at the RNA and protein level, similarly to miR combo treatment. In contrast, knockdown of the H3K27 demethylases Kdm6A and Kdm6B restored the levels of H3K27me3 and blocked the induction of cardiac gene expression in miR combo-treated fibroblasts. CONCLUSIONS In summary, we demonstrated that removal of the repressive mark H3K27me3 is essential for the induction of cardiac reprogramming by miR combo. Our data not only highlight the importance of regulating the epigenetic landscape during cell fate conversion but also provide a framework to improve this technique.
Collapse
Affiliation(s)
- Sophie Dal-Pra
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Conrad P Hodgkinson
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Maria Mirotsou
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Imke Kirste
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Victor J Dzau
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC.
| |
Collapse
|
163
|
Christoforou N, Chakraborty S, Kirkton RD, Adler AF, Addis RC, Leong KW. Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage. Sci Rep 2017; 7:40285. [PMID: 28071742 PMCID: PMC5223186 DOI: 10.1038/srep40285] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/29/2016] [Indexed: 01/13/2023] Open
Abstract
Transdifferentiation has been described as a novel method for converting human fibroblasts into induced cardiomyocyte-like cells. Such an approach can produce differentiated cells to study physiology or pathophysiology, examine drug interactions or toxicities, and engineer cardiac tissues. Here we describe the transdifferentiation of human dermal fibroblasts towards the cardiac cell lineage via the induced expression of transcription factors GATA4, TBX5, MEF2C, MYOCD, NKX2–5, and delivery of microRNAs miR-1 and miR-133a. Cells undergoing transdifferentiation expressed ACTN2 and TNNT2 and partially organized their cytoskeleton in a cross-striated manner. The conversion process was associated with significant upregulation of a cohort of cardiac-specific genes, activation of pathways associated with muscle contraction and physiology, and downregulation of fibroblastic markers. We used a genetically encoded calcium indicator and readily detected active calcium transients although no spontaneous contractions were observed in transdifferentiated cells. Finally, we determined that inhibition of Janus kinase 1, inhibition of Glycogen synthase kinase 3, or addition of NRG1 significantly enhanced the efficiency of transdifferentiation. Overall, we describe a method for achieving transdifferentiation of human dermal fibroblasts into induced cardiomyocyte-like cells via transcription factor overexpression, microRNA delivery, and molecular pathway manipulation.
Collapse
Affiliation(s)
- Nicolas Christoforou
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Biomedical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Syandan Chakraborty
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Robert D Kirkton
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andrew F Adler
- Department of Neurosciences, University of California - San Diego, La Jolla, CA, USA
| | | | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
164
|
Yamazaki A, Yashiro M, Mii S, Aki R, Hamada Y, Arakawa N, Kawahara K, Hoffman RM, Amoh Y. Isoproterenol directs hair follicle-associated pluripotent (HAP) stem cells to differentiate in vitro to cardiac muscle cells which can be induced to form beating heart-muscle tissue sheets. Cell Cycle 2016; 15:760-5. [PMID: 27104748 DOI: 10.1080/15384101.2016.1146837] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells are located in the bulge area of the follicle. Previous studies have shown that HAP stem cells can differentiate to neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. HAP stem cells effected nerve and spinal cord regeneration in mouse models. Recently, we demonstrated that HAP stem cells differentiated to beating cardiac muscle cells. The differentiation potential to cardiac muscle cells was greatest in the upper part of the follicle. The beat rate of the cardiac muscle cells was stimulated by isoproterenol. In the present study, we observed that isoproterenol directs HAP stem cells to differentiate to cardiac muscle cells in large numbers in culture compared to HAP stem cells not supplemented with isoproterenol. The addition of activin A, bone morphogenetic protein 4, and basic fibroblast growth factor, along with isoproternal, induced the cardiac muscle cells to form tissue sheets of beating heart muscle cells. These results demonstrate that HAP stem cells have great potential to form beating cardiac muscle cells in tissue sheets.
Collapse
Affiliation(s)
- Aiko Yamazaki
- a Department of Dermatology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan
| | - Masateru Yashiro
- a Department of Dermatology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan
| | - Sumiyuki Mii
- a Department of Dermatology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan
| | - Ryoichi Aki
- a Department of Dermatology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan
| | - Yuko Hamada
- a Department of Dermatology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan
| | - Nobuko Arakawa
- a Department of Dermatology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan
| | - Katsumasa Kawahara
- b Department of Physiology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan.,c Department of Cellular & Molecular Physiology , Kitasato Univ Grad Sch Med Sci , Minami Ward , Sagamihara , Japan
| | - Robert M Hoffman
- d AntiCancer, Inc. , San Diego , CA , USA.,e Department of Surgery , University of California San Diego , San Diego , CA USA
| | - Yasuyuki Amoh
- a Department of Dermatology , Kitasato University School of Medicine , Minami Ward , Sagamihara , Japan
| |
Collapse
|
165
|
Psaltis PJ, Schwarz N, Toledo-Flores D, Nicholls SJ. Cellular Therapy for Heart Failure. Curr Cardiol Rev 2016; 12:195-215. [PMID: 27280304 PMCID: PMC5011188 DOI: 10.2174/1573403x12666160606121858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/18/2015] [Accepted: 12/31/1969] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of cardiomyopathy and heart failure (HF) is underpinned by complex changes at subcellular, cellular and extracellular levels in the ventricular myocardium. For all of the gains that conventional treatments for HF have brought to mortality and morbidity, they do not adequately address the loss of cardiomyocyte numbers in the remodeling ventricle. Originally conceived to address this problem, cellular transplantation for HF has already gone through several stages of evolution over the past two decades. Various cell types and delivery routes have been implemented to positive effect in preclinical models of ischemic and nonischemic cardiomyopathy, with pleiotropic benefits observed in terms of myocardial remodeling, systolic and diastolic performance, perfusion, fibrosis, inflammation, metabolism and electrophysiology. To a large extent, these salubrious effects are now attributed to the indirect, paracrine capacity of transplanted stem cells to facilitate endogenous cardiac repair processes. Promising results have also followed in early phase human studies, although these have been relatively modest and somewhat inconsistent. This review details the preclinical and clinical evidence currently available regarding the use of pluripotent stem cells and adult-derived progenitor cells for cardiomyopathy and HF. It outlines the important lessons that have been learned to this point in time, and balances the promise of this exciting field against the key challenges and questions that still need to be addressed at all levels of research, to ensure that cell therapy realizes its full potential by adding to the armamentarium of HF management.
Collapse
Affiliation(s)
- Peter J Psaltis
- Co-Director of Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia 5000.
| | | | | | | |
Collapse
|
166
|
Singh VP, Mathison M, Patel V, Sanagasetti D, Gibson BW, Yang J, Rosengart TK. MiR-590 Promotes Transdifferentiation of Porcine and Human Fibroblasts Toward a Cardiomyocyte-Like Fate by Directly Repressing Specificity Protein 1. J Am Heart Assoc 2016; 5:e003922. [PMID: 27930352 PMCID: PMC5210349 DOI: 10.1161/jaha.116.003922] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/23/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells represents a promising potential new therapy for treating heart disease, inducing significant improvements in postinfarct ventricular function in rodent models. Because reprogramming factors effective in transdifferentiating rodent cells are not sufficient to reprogram human cells, we sought to identify reprogramming factors potentially applicable to human studies. METHODS AND RESULTS Lentivirus vectors expressing Gata4, Mef2c, and Tbx5 (GMT); Hand2 (H), Myocardin (My), or microRNA (miR)-590 were administered to rat, porcine, and human cardiac fibroblasts in vitro. induced cardiomyocyte-like cell production was then evaluated by assessing expression of the cardiomyocyte marker, cardiac troponin T (cTnT), whereas signaling pathway studies were performed to identify reprogramming factor targets. GMT administration induced cTnT expression in ≈6% of rat fibroblasts, but failed to induce cTnT expression in porcine or human cardiac fibroblasts. Addition of H/My and/or miR-590 to GMT administration resulted in cTNT expression in ≈5% of porcine and human fibroblasts and also upregulated the expression of the cardiac genes, MYH6 and TNNT2. When cocultured with murine cardiomyocytes, cTnT-expressing porcine cardiac fibroblasts exhibited spontaneous contractions. Administration of GMT plus either H/My or miR-590 alone also downregulated fibroblast genes COL1A1 and COL3A1. miR-590 was shown to directly suppress the zinc finger protein, specificity protein 1 (Sp1), which was able to substitute for miR-590 in inducing cellular reprogramming. CONCLUSIONS These data support porcine studies as a surrogate for testing human cardiac reprogramming, and suggest that miR-590-mediated repression of Sp1 represents an alternative pathway for enhancing human cardiac cellular reprogramming.
Collapse
Affiliation(s)
- Vivek P Singh
- Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Megumi Mathison
- Department of Surgery, Baylor College of Medicine, Houston, TX
| | | | | | - Brian W Gibson
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX
| | - Jianchang Yang
- Department of Surgery, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
167
|
Srivastava D, DeWitt N. In Vivo Cellular Reprogramming: The Next Generation. Cell 2016; 166:1386-1396. [PMID: 27610565 DOI: 10.1016/j.cell.2016.08.055] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022]
Abstract
Cellular reprogramming technology has created new opportunities in understanding human disease, drug discovery, and regenerative medicine. While a combinatorial code was initially found to reprogram somatic cells to pluripotency, a "second generation" of cellular reprogramming involves lineage-restricted transcription factors and microRNAs that directly reprogram one somatic cell to another. This technology was enabled by gene networks active during development, which induce global shifts in the epigenetic landscape driving cell fate decisions. A major utility of direct reprogramming is the potential of harnessing resident support cells within damaged organs to regenerate lost tissue by converting them into the desired cell type in situ. Here, we review the progress in direct cellular reprogramming, with a focus on the paradigm of in vivo reprogramming for regenerative medicine, while pointing to hurdles that must be overcome to translate this technology into future therapeutics.
Collapse
Affiliation(s)
- Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, San Francisco, CA 94158, USA; Roddenberry Stem Cell Center at Gladstone, University of California, San Francisco, San Francisco, CA 94158, USA; Departments of Pediatrics and Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Natalie DeWitt
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
168
|
Yamakawa H. Heart regeneration for clinical application update 2016: from induced pluripotent stem cells to direct cardiac reprogramming. Inflamm Regen 2016; 36:23. [PMID: 29259696 PMCID: PMC5725846 DOI: 10.1186/s41232-016-0028-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/07/2016] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease remains a major cause of death for which current therapeutic regimens are limited. Following myocardial injury, endogenous cardiac fibroblasts, which account for more than half of the cells in the heart, proliferate and synthesize extracellular matrix, leading to fibrosis and heart failure. As terminally differentiated cardiomyocytes have little regenerative capacity following injury, the development of cardiac regenerative therapy is highly desired. Embryonic stem and induced pluripotent stem (iPS) cells are promising tools for regenerative medicine. However, these stem cells demonstrate variable cardiac differentiation efficiency and tumorigenicity, which must be resolved prior to clinical regenerative applications. Until the last decade, an established theory was that cardiomyocytes could only be produced from fibroblasts through iPS cell generation. In 2010, we first reported cardiac differentiation from fibroblasts by direct reprogramming, and we demonstrated that various cardiac reprogramming pathways exist. This review summarizes the latest trends in stem cell and regenerative research regarding iPS cells, a partial reprogramming strategy, and direct cardiac reprogramming. We also examine the many recent advances in direct cardiac reprogramming and explore the suitable utilization of these methods for regenerative medicine in the cardiovascular field.
Collapse
Affiliation(s)
- Hiroyuki Yamakawa
- Department of Clinical and Molecular Cardiovascular Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
169
|
Sia J, Yu P, Srivastava D, Li S. Effect of biophysical cues on reprogramming to cardiomyocytes. Biomaterials 2016; 103:1-11. [DOI: 10.1016/j.biomaterials.2016.06.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 01/12/2023]
|
170
|
Engineering cell fate: Spotlight on cell-activation and signaling-directed lineage conversion. Tissue Cell 2016; 48:475-87. [DOI: 10.1016/j.tice.2016.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/13/2016] [Accepted: 07/25/2016] [Indexed: 12/23/2022]
|
171
|
Mathison M, Singh VP, Chiuchiolo MJ, Sanagasetti D, Mao Y, Patel VB, Yang J, Kaminsky SM, Crystal RG, Rosengart TK. In situ reprogramming to transdifferentiate fibroblasts into cardiomyocytes using adenoviral vectors: Implications for clinical myocardial regeneration. J Thorac Cardiovasc Surg 2016; 153:329-339.e3. [PMID: 27773576 DOI: 10.1016/j.jtcvs.2016.09.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells improves ventricular function in myocardial infarction models. Only integrating persistent expression vectors have thus far been used to induce reprogramming, potentially limiting its clinical applicability. We therefore tested the reprogramming potential of nonintegrating, acute expression adenoviral (Ad) vectors. METHODS Ad or lentivirus vectors encoding Gata4 (G), Mef2c (M), and Tbx5 (T) were validated in vitro. Sprague-Dawley rats then underwent coronary ligation and Ad-mediated administration of vascular endothelial growth factor to generate infarct prevascularization. Three weeks later, animals received Ad or lentivirus encoding G, M, or T (AdGMT or LentiGMT) or an equivalent dose of a null vector (n = 11, 10, and 10, respectively). Outcomes were analyzed by echocardiography, magnetic resonance imaging, and histology. RESULTS Ad and lentivirus vectors provided equivalent G, M, and T expression in vitro. AdGMT and LentiGMT both likewise induced expression of the cardiomyocyte marker cardiac troponin T in approximately 6% of cardiac fibroblasts versus <1% cardiac troponin T expression in AdNull (adenoviral vector that does not encode a transgene)-treated cells. Infarcted myocardium that had been treated with AdGMT likewise demonstrated greater density of cells expressing the cardiomyocyte marker beta myosin heavy chain 7 compared with AdNull-treated animals. Echocardiography demonstrated that AdGMT and LentiGMT both increased ejection fraction compared with AdNull (AdGMT: 21% ± 3%, LentiGMT: 14% ± 5%, AdNull: -0.4% ± 2%; P < .05). CONCLUSIONS Ad vectors are at least as effective as lentiviral vectors in inducing cardiac fibroblast transdifferentiation into induced cardiomyocyte-like cells and improving cardiac function in postinfarct rat hearts. Short-term expression Ad vectors may represent an important means to induce cardiac cellular reprogramming in humans.
Collapse
Affiliation(s)
- Megumi Mathison
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Vivek P Singh
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Maria J Chiuchiolo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Deepthi Sanagasetti
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Yun Mao
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Vivekkumar B Patel
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Jianchang Yang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Todd K Rosengart
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Tex.
| |
Collapse
|
172
|
Ieda M. Heart Development, Diseases, and Regeneration - New Approaches From Innervation, Fibroblasts, and Reprogramming. Circ J 2016; 80:2081-8. [PMID: 27599529 DOI: 10.1253/circj.cj-16-0815] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well known that cardiac function is tightly controlled by neural activity; however, the molecular mechanism of cardiac innervation during development and the relationship with heart disease remain undetermined. My work has revealed the molecular networks that govern cardiac innervation and its critical roles in heart diseases such as silent myocardial ischemia and arrhythmias. Cardiomyocytes proliferate during embryonic development, but lose their proliferative capacity after birth. Cardiac fibroblasts are a major source of cells during fibrosis and induce cardiac hypertrophy after myocardial injury in the adult heart. Despite the importance of fibroblasts in the adult heart, the role of fibroblasts in embryonic heart development was previously not determined. I demonstrated that cardiac fibroblasts play important roles in myocardial growth and cardiomyocyte proliferation during embryonic development, and I identified key paracrine factors and signaling pathways. In contrast to embryonic cardiomyocytes, adult cardiomyocytes have little regenerative capacity, leading to heart failure and high mortality rates after myocardial infarction. Leveraging the knowledge of developmental biology, I identified cardiac reprogramming factors that can directly convert resident cardiac fibroblasts into cardiomyocytes for heart regeneration. These findings greatly improved our understanding of heart development and diseases, and provide a new strategy for heart regenerative therapy. (Circ J 2016; 80: 2081-2088).
Collapse
Affiliation(s)
- Masaki Ieda
- Department of Cardiology, Keio University School of Medicine
| |
Collapse
|
173
|
Abstract
OPINION STATEMENT Direct cardiac cellular reprogramming of endogenous cardiac fibroblasts directly into induced cardiomyocytes is a highly feasible, promising therapeutic option for patients with advanced heart failure. The most successful cardiac reprogramming strategy will likely be a multimodal approach involving an optimal combination of cardio-differentiating factors, suppression of fibroblast gene expression, and induction of angiogenic factors.
Collapse
|
174
|
miR-322/-503 cluster is expressed in the earliest cardiac progenitor cells and drives cardiomyocyte specification. Proc Natl Acad Sci U S A 2016; 113:9551-6. [PMID: 27512039 DOI: 10.1073/pnas.1608256113] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Understanding the mechanisms of early cardiac fate determination may lead to better approaches in promoting heart regeneration. We used a mesoderm posterior 1 (Mesp1)-Cre/Rosa26-EYFP reporter system to identify microRNAs (miRNAs) enriched in early cardiac progenitor cells. Most of these miRNA genes bear MESP1-binding sites and active histone signatures. In a calcium transient-based screening assay, we identified miRNAs that may promote the cardiomyocyte program. An X-chromosome miRNA cluster, miR-322/-503, is the most enriched in the Mesp1 lineage and is the most potent in the screening assay. It is specifically expressed in the looping heart. Ectopic miR-322/-503 mimicking the endogenous temporal patterns specifically drives a cardiomyocyte program while inhibiting neural lineages, likely by targeting the RNA-binding protein CUG-binding protein Elav-like family member 1 (Celf1). Thus, early miRNAs in lineage-committed cells may play powerful roles in cell-fate determination by cross-suppressing other lineages. miRNAs identified in this study, especially miR-322/-503, are potent regulators of early cardiac fate.
Collapse
|
175
|
Tanabe K, Haag D, Wernig M. Direct somatic lineage conversion. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140368. [PMID: 26416679 DOI: 10.1098/rstb.2014.0368] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The predominant view of embryonic development and cell differentiation has been that rigid and even irreversible epigenetic marks are laid down along the path of cell specialization ensuring the proper silencing of unrelated lineage programmes. This model made the prediction that specialized cell types are stable and cannot be redirected into other lineages. Accordingly, early attempts to change the identity of somatic cells had little success and was limited to conversions between closely related cell types. Nuclear transplantation experiments demonstrated, however, that specialized cells even from adult mammals can be reprogrammed into a totipotent state. The discovery that a small combination of transcription factors can reprogramme cells to pluripotency without the need of oocytes further supported the view that these epigenetic barriers can be overcome much easier than assumed, but the extent of this flexibility was still unclear. When we showed that a differentiated mesodermal cell can be directly converted to a differentiated ectodermal cell without a pluripotent intermediate, it was suggested that in principle any cell type could be converted into any other cell type. Indeed, the work of several groups in recent years has provided many more examples of direct somatic lineage conversions. Today, the question is not anymore whether a specific cell type can be generated by direct reprogramming but how it can be induced.
Collapse
Affiliation(s)
- Koji Tanabe
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Haag
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
176
|
Affiliation(s)
- Ian Y Chen
- From Stanford Cardiovascular Institute (I.Y.C., J.C.W.), Division of Cardiovascular Medicine, Department of Medicine (I.Y.C., J.C.W.), and Department of Radiology (J.C.W.), Stanford University School of Medicine, CA
| | - Joseph C Wu
- From Stanford Cardiovascular Institute (I.Y.C., J.C.W.), Division of Cardiovascular Medicine, Department of Medicine (I.Y.C., J.C.W.), and Department of Radiology (J.C.W.), Stanford University School of Medicine, CA.
| |
Collapse
|
177
|
Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res 2016; 365:563-81. [PMID: 27324127 PMCID: PMC5010608 DOI: 10.1007/s00441-016-2431-9] [Citation(s) in RCA: 630] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/07/2016] [Indexed: 12/11/2022]
Abstract
Ischemic cell death during a myocardial infarction leads to a multiphase reparative response in which the damaged tissue is replaced with a fibrotic scar produced by fibroblasts and myofibroblasts. This also induces geometrical, biomechanical, and biochemical changes in the uninjured ventricular wall eliciting a reactive remodeling process that includes interstitial and perivascular fibrosis. Although the initial reparative fibrosis is crucial for preventing rupture of the ventricular wall, an exaggerated fibrotic response and reactive fibrosis outside the injured area are detrimental as they lead to progressive impairment of cardiac function and eventually to heart failure. In this review, we summarize current knowledge of the mechanisms of both reparative and reactive cardiac fibrosis in response to myocardial infarction, discuss the potential of inducing cardiac regeneration through direct reprogramming of fibroblasts and myofibroblasts into cardiomyocytes, and review the currently available and potential future therapeutic strategies to inhibit cardiac fibrosis. Graphical abstract Reparative response following a myocardial infarction. Hypoxia-induced cardiomyocyte death leads to the activation of myofibroblasts and a reparative fibrotic response in the injured area. Right top In adult mammals, the fibrotic scar formed at the infarcted area is permanent and promotes reactive fibrosis in the uninjured myocardium. Right bottom In teleost fish and newts and in embryonic and neonatal mammals, the initial formation of a fibrotic scar is followed by regeneration of the cardiac muscle tissue. Induction of post-infarction cardiac regeneration in adult mammals is currently the target of intensive research and drug discovery attempts.
Collapse
Affiliation(s)
- Virpi Talman
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| | - Heikki Ruskoaho
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| |
Collapse
|
178
|
Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu JD, Nie B, Xie M, Zhang M, Wang H, Ma T, Xu T, Shi G, Srivastava D, Ding S. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 2016. [DOI: 10.1126/science.aaf1502\] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Making cardiac cells from fibroblasts
Reprogramming noncardiac cells into functional cardiomyocytes without any genetic manipulation could open up new avenues for cardiac regenerative therapies. Cao
et al.
identified a combination of nine small molecules that could epigenetically activate human fibroblasts, efficiently reprogramming them into chemically induced cardiomyocytes (ciCMs). The ciCMs contracted uniformly and resembled human cardiomyocytes. This method may be adapted for reprogramming multiple cell types and have important implications in regenerative medicine.
Science
, this issue p.
1216
Collapse
Affiliation(s)
- Nan Cao
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA 94158, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Jiashun Zheng
- Department of Biochemistry and Biophysics, University of California–San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biosciences, University of California–San Francisco, San Francisco, CA 94158, USA
| | - C. Ian Spencer
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Yu Zhang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA 94158, USA
| | - Ji-Dong Fu
- Department of Medicine, Heart and Vascular Research Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Baoming Nie
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA 94158, USA
| | - Min Xie
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA 94158, USA
| | - Mingliang Zhang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA 94158, USA
| | - Haixia Wang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA 94158, USA
| | - Tianhua Ma
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA 94158, USA
| | - Tao Xu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA 94158, USA
| | - Guilai Shi
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA 94158, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California–San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California–San Francisco, San Francisco, CA 94158, USA
| | - Sheng Ding
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
179
|
Kareta MS. Bioinformatic and Genomic Analyses of Cellular Reprogramming and Direct Lineage Conversion. CURRENT PHARMACOLOGY REPORTS 2016; 2:103-112. [PMID: 35663262 PMCID: PMC9165525 DOI: 10.1007/s40495-016-0054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cellular reprogramming, whereby cell fate can be changed by the expression of a few defined factors, is a remarkable process that harnesses the innate ability of a cell's own genome to rework its expressional networks and function. Since cell lineages are defined by global regulation of gene expression, transcriptional regulators, and coupled to the epigenetic markings of the chromatin, changing the cell fate necessitates broad changes to these central cellular features. To properly characterize these changes, and the mechanisms that drive them, computational and genomic approaches are perfectly suited to provide a holistic picture of the reprogramming mechanisms. In particular, the use of bioinformatic analysis has been a major driver in the study of cellular reprogramming, both as it relates to induced pluripotency or direct lineage conversion. This review will summarize many of the bioinformatic studies that have advanced our knowledge of reprogramming and address future directions for these investigations.
Collapse
Affiliation(s)
- Michael S Kareta
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
180
|
Ebert AD, Diecke S, Chen IY, Wu JC. Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand? EMBO Mol Med 2016; 7:1090-103. [PMID: 26183451 PMCID: PMC4568945 DOI: 10.15252/emmm.201504395] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Heart disease remains a leading cause of mortality and a major worldwide healthcare burden. Recent advances in stem cell biology have made it feasible to derive large quantities of cardiomyocytes for disease modeling, drug development, and regenerative medicine. The discoveries of reprogramming and transdifferentiation as novel biological processes have significantly contributed to this paradigm. This review surveys the means by which reprogramming and transdifferentiation can be employed to generate induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and induced cardiomyocytes (iCMs). The application of these patient-specific cardiomyocytes for both in vitro disease modeling and in vivo therapies for various cardiovascular diseases will also be discussed. We propose that, with additional refinement, human disease-specific cardiomyocytes will allow us to significantly advance the understanding of cardiovascular disease mechanisms and accelerate the development of novel therapeutic options.
Collapse
Affiliation(s)
- Antje D Ebert
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastian Diecke
- Max Delbrück Center, Berlin, Germany Berlin Institute of Health, Berlin, Germany
| | - Ian Y Chen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
181
|
Xu A, Cheng L. Chemical transdifferentiation: closer to regenerative medicine. Front Med 2016; 10:152-65. [PMID: 27142989 DOI: 10.1007/s11684-016-0445-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/21/2016] [Indexed: 12/15/2022]
Abstract
Cell transdifferentiation, which directly switches one type of differentiated cells into another cell type, is more advantageous than cell reprogramming to generate pluripotent cells and differentiate them into functional cells. This process is crucial in regenerative medicine. However, the cell-converting strategies, which mainly depend on the virus-mediated expression of exogenous genes, have clinical safety concerns. Small molecules with compelling advantages are a potential alternative in manipulating cell fate conversion. In this review, we briefly retrospect the nature of cell transdifferentiation and summarize the current developments in the research of small molecules in promoting cell conversion. Particularly, we focus on the complete chemical compound-induced cell transdifferentiation, which is closer to the clinical translation in cell therapy. Despite these achievements, the mechanisms underpinning chemical transdifferentiation remain largely unknown. More importantly, identifying drugs that induce resident cell conversion in vivo to repair damaged tissue remains to be the end-goal in current regenerative medicine.
Collapse
Affiliation(s)
- Aining Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
182
|
Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu JD, Nie B, Xie M, Zhang M, Wang H, Ma T, Xu T, Shi G, Srivastava D, Ding S. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 2016; 352:1216-20. [PMID: 27127239 DOI: 10.1126/science.aaf1502] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/15/2016] [Indexed: 12/11/2022]
Abstract
Reprogramming somatic fibroblasts into alternative lineages would provide a promising source of cells for regenerative therapy. However, transdifferentiating human cells into specific homogeneous, functional cell types is challenging. Here we show that cardiomyocyte-like cells can be generated by treating human fibroblasts with a combination of nine compounds that we term 9C. The chemically induced cardiomyocyte-like cells uniformly contracted and resembled human cardiomyocytes in their transcriptome, epigenetic, and electrophysiological properties. 9C treatment of human fibroblasts resulted in a more open-chromatin conformation at key heart developmental genes, enabling their promoters and enhancers to bind effectors of major cardiogenic signals. When transplanted into infarcted mouse hearts, 9C-treated fibroblasts were efficiently converted to chemically induced cardiomyocyte-like cells. This pharmacological approach to lineage-specific reprogramming may have many important therapeutic implications after further optimization to generate mature cardiac cells.
Collapse
Affiliation(s)
- Nan Cao
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA. Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Jiashun Zheng
- Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, CA 94158, USA. California Institute for Quantitative Biosciences, University of California-San Francisco, San Francisco, CA 94158, USA
| | - C Ian Spencer
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Yu Zhang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA. Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Ji-Dong Fu
- Department of Medicine, Heart and Vascular Research Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Baoming Nie
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA. Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Min Xie
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA. Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Mingliang Zhang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA. Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Haixia Wang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA. Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Tianhua Ma
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA. Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Tao Xu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA. Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Guilai Shi
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA. Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA. Department of Pediatrics, University of California-San Francisco, San Francisco, CA 94158, USA. Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Sheng Ding
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA. Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
183
|
Small Molecules Facilitate Single Factor-Mediated Hepatic Reprogramming. Cell Rep 2016; 15:814-829. [PMID: 27149847 DOI: 10.1016/j.celrep.2016.03.071] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/10/2016] [Accepted: 03/18/2016] [Indexed: 01/11/2023] Open
Abstract
Recent studies have shown that defined factors could lead to the direct conversion of fibroblasts into induced hepatocyte-like cells (iHeps). However, reported conversion efficiencies are very low, and the underlying mechanism of the direct hepatic reprogramming is largely unknown. Here, we report that direct conversion into iHeps is a stepwise transition involving the erasure of somatic memory, mesenchymal-to-epithelial transition, and induction of hepatic cell fate in a sequential manner. Through screening for additional factors that could potentially enhance the conversion kinetics, we have found that c-Myc and Klf4 (CK) dramatically accelerate conversion kinetics, resulting in remarkably improved iHep generation. Furthermore, we identified small molecules that could lead to the robust generation of iHeps without CK. Finally, we show that Hnf1α supported by small molecules is sufficient to efficiently induce direct hepatic reprogramming. This approach might help to fully elucidate the direct conversion process and also facilitate the translation of iHep into the clinic.
Collapse
|
184
|
Aigha I, Raynaud C. Maturation of pluripotent stem cell derived cardiomyocytes: The new challenge. Glob Cardiol Sci Pract 2016; 2016:e201606. [PMID: 29043256 PMCID: PMC5642835 DOI: 10.21542/gcsp.2016.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stem cell therapy appears to be a promising area of research for cardiac regeneration following ischemic heart failure. However, in vitro differentiation of cardiomyocytes from pluripotent stem cells, or directly from somatic cells, leads to generation of "immature" cardiomyocytes that differ from their adult counterparts in various ways. This immaturity triggers some challenges for their potential clinical use, and multiple techniques reviewed here have been developed for in vitro maturation of those cells. Nevertheless, full maturity of cardiomyocytes remains elusive and will remain the main challenge for stem cell therapy in the near future.
Collapse
Affiliation(s)
- Idil Aigha
- Qatar Cardiovascular Research Center, Qatar Foundation, Education City, Doha, Qatar
| | - Christophe Raynaud
- Qatar Cardiovascular Research Center, Qatar Foundation, Education City, Doha, Qatar
| |
Collapse
|
185
|
Gowran A, Rasponi M, Visone R, Nigro P, Perrucci GL, Righetti S, Zanobini M, Pompilio G. Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:4287158. [PMID: 27110250 PMCID: PMC4823509 DOI: 10.1155/2016/4287158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/09/2016] [Indexed: 01/01/2023] Open
Abstract
A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Patrizia Nigro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Gianluca L. Perrucci
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Stefano Righetti
- Cardiology Unit, San Gerardo Hospital, Via Giambattista Pergolesi 33, 20052 Monza, Italy
| | - Marco Zanobini
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| |
Collapse
|
186
|
Zhou Y, Wang L, Vaseghi HR, Liu Z, Lu R, Alimohamadi S, Yin C, Fu JD, Wang GG, Liu J, Qian L. Bmi1 Is a Key Epigenetic Barrier to Direct Cardiac Reprogramming. Cell Stem Cell 2016; 18:382-95. [PMID: 26942853 PMCID: PMC4779178 DOI: 10.1016/j.stem.2016.02.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/01/2015] [Accepted: 02/12/2016] [Indexed: 02/08/2023]
Abstract
Direct reprogramming of induced cardiomyocytes (iCMs) suffers from low efficiency and requires extensive epigenetic repatterning, although the underlying mechanisms are largely unknown. To address these issues, we screened for epigenetic regulators of iCM reprogramming and found that reducing levels of the polycomb complex gene Bmi1 significantly enhanced induction of beating iCMs from neonatal and adult mouse fibroblasts. The inhibitory role of Bmi1 in iCM reprogramming is mediated through direct interactions with regulatory regions of cardiogenic genes, rather than regulation of cell proliferation. Reduced Bmi1 expression corresponded with increased levels of the active histone mark H3K4me3 and reduced levels of repressive H2AK119ub at cardiogenic loci, and de-repression of cardiogenic gene expression during iCM conversion. Furthermore, Bmi1 deletion could substitute for Gata4 during iCM reprogramming. Thus, Bmi1 acts as a critical epigenetic barrier to iCM production. Bypassing this barrier simplifies iCM generation and increases yield, potentially streamlining iCM production for therapeutic purposes.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Haley Ruth Vaseghi
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ziqing Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rui Lu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sahar Alimohamadi
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chaoying Yin
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ji-Dong Fu
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH 44109, USA
| | - Greg G Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
187
|
Feric NT, Radisic M. Strategies and Challenges to Myocardial Replacement Therapy. Stem Cells Transl Med 2016; 5:410-6. [PMID: 26933042 PMCID: PMC4798743 DOI: 10.5966/sctm.2015-0288] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022] Open
Abstract
Cardiac cell-based regenerative therapies include application of a cell suspension and the implantation of an in vitro engineered tissue construct to the damaged area of the heart. Both strategies have their advantages and challenges. This review discusses the current state of the art in myocardial regeneration, the challenges to success, and the future direction of the field. Cardiovascular diseases account for the majority of deaths globally and are a significant drain on economic resources. Although heart transplants and left-ventricle assist devices are the solution for some, the best chance for many patients who suffer because of a myocardial infarction, heart failure, or a congenital heart disease may be cell-based regenerative therapies. Such therapies can be divided into two categories: the application of a cell suspension and the implantation of an in vitro engineered tissue construct to the damaged area of the heart. Both strategies have their advantages and challenges, and in this review, we discuss the current state of the art in myocardial regeneration, the challenges to success, and the future direction of the field.
Collapse
Affiliation(s)
- Nicole T Feric
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
188
|
Kamps JAAM, Krenning G. Micromanaging cardiac regeneration: Targeted delivery of microRNAs for cardiac repair and regeneration. World J Cardiol 2016; 8:163-179. [PMID: 26981212 PMCID: PMC4766267 DOI: 10.4330/wjc.v8.i2.163] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/12/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
The loss of cardiomyocytes during injury and disease can result in heart failure and sudden death, while the adult heart has a limited capacity for endogenous regeneration and repair. Current stem cell-based regenerative medicine approaches modestly improve cardiomyocyte survival, but offer neglectable cardiomyogenesis. This has prompted the need for methodological developments that crease de novo cardiomyocytes. Current insights in cardiac development on the processes and regulatory mechanisms in embryonic cardiomyocyte differentiation provide a basis to therapeutically induce these pathways to generate new cardiomyocytes. Here, we discuss the current knowledge on embryonic cardiomyocyte differentiation and the implementation of this knowledge in state-of-the-art protocols to the direct reprogramming of cardiac fibroblasts into de novo cardiomyocytes in vitro and in vivo with an emphasis on microRNA-mediated reprogramming. Additionally, we discuss current advances on state-of-the-art targeted drug delivery systems that can be employed to deliver these microRNAs to the damaged cardiac tissue. Together, the advances in our understanding of cardiac development, recent advances in microRNA-based therapeutics, and innovative drug delivery systems, highlight exciting opportunities for effective therapies for myocardial infarction and heart failure.
Collapse
|
189
|
Abstract
Cardiovascular and neurodegenerative diseases are major health threats in many
developed countries. Recently, target tissues derived from human embryonic stem
(hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes
(CMs) or neurons, have been actively mobilized for drug screening. Knowledge of
drug toxicity and efficacy obtained using stem cell-derived tissues could
parallel that obtained from human trials. Furthermore, iPSC disease models could
be advantageous in the development of personalized medicine in various parts of
disease sectors. To obtain the maximum benefit from iPSCs in disease modeling,
researchers are now focusing on aging, maturation, and metabolism to
recapitulate the pathological features seen in patients. Compared to pediatric
disease modeling, adult-onset disease modeling with iPSCs requires proper
maturation for full manifestation of pathological features. Herein, the success
of iPSC technology, focusing on patient-specific drug treatment,
maturation-based disease modeling, and alternative approaches to compensate for
the current limitations of patient iPSC modeling, will be further discussed.
[BMB Reports 2015; 48(5): 256-265]
Collapse
Affiliation(s)
- Changsung Kim
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| |
Collapse
|
190
|
Lalit PA, Salick MR, Nelson DO, Squirrell JM, Shafer CM, Patel NG, Saeed I, Schmuck EG, Markandeya YS, Wong R, Lea MR, Eliceiri KW, Hacker TA, Crone WC, Kyba M, Garry DJ, Stewart R, Thomson JA, Downs KM, Lyons GE, Kamp TJ. Lineage Reprogramming of Fibroblasts into Proliferative Induced Cardiac Progenitor Cells by Defined Factors. Cell Stem Cell 2016; 18:354-67. [PMID: 26877223 DOI: 10.1016/j.stem.2015.12.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 08/14/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022]
Abstract
Several studies have reported reprogramming of fibroblasts into induced cardiomyocytes; however, reprogramming into proliferative induced cardiac progenitor cells (iCPCs) remains to be accomplished. Here we report that a combination of 11 or 5 cardiac factors along with canonical Wnt and JAK/STAT signaling reprogrammed adult mouse cardiac, lung, and tail tip fibroblasts into iCPCs. The iCPCs were cardiac mesoderm-restricted progenitors that could be expanded extensively while maintaining multipotency to differentiate into cardiomyocytes, smooth muscle cells, and endothelial cells in vitro. Moreover, iCPCs injected into the cardiac crescent of mouse embryos differentiated into cardiomyocytes. iCPCs transplanted into the post-myocardial infarction mouse heart improved survival and differentiated into cardiomyocytes, smooth muscle cells, and endothelial cells. Lineage reprogramming of adult somatic cells into iCPCs provides a scalable cell source for drug discovery, disease modeling, and cardiac regenerative therapy.
Collapse
Affiliation(s)
- Pratik A Lalit
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Max R Salick
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Institutes for Discovery, University of Wisconsin-Madison, Madison, WI 53705, USA; Material Science Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daryl O Nelson
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jayne M Squirrell
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christina M Shafer
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Neel G Patel
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Imaan Saeed
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Eric G Schmuck
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Rachel Wong
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Martin R Lea
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kevin W Eliceiri
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wendy C Crone
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Institutes for Discovery, University of Wisconsin-Madison, Madison, WI 53705, USA; Material Science Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael Kyba
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ron Stewart
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - James A Thomson
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Karen M Downs
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gary E Lyons
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
191
|
Hayashi K, Ochiai-Shino H, Shiga T, Onodera S, Saito A, Shibahara T, Azuma T. Transplantation of human-induced pluripotent stem cells carried by self-assembling peptide nanofiber hydrogel improves bone regeneration in rat calvarial bone defects. BDJ Open 2016; 2:15007. [PMID: 29607061 PMCID: PMC5842822 DOI: 10.1038/bdjopen.2015.7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/12/2015] [Accepted: 12/08/2015] [Indexed: 01/08/2023] Open
Abstract
Objectives/Aims The requisite conditions for successful bone tissue engineering are efficient stem cell differentiation into osteogenic cells and a suitable scaffold. In this study, we investigated in vivo bone regeneration from transplanted induced pluripotent stem cells (iPSCs). Materials and Methods Two critical-sized calvarial bone defects were created in 36 rats. The surgical sites were randomly assigned to one of three treatments to test the healing effectiveness of the scaffold alone, scaffold with iPSCs or a salt solution as a control. The effectiveness of the treatments was evaluated after 2 or 4 weeks using radiographic and histological analyses of bone regeneration in the six groups. Results Micro-computed tomography (CT) analysis of the bone defects found minimal bone regeneration with the salt solution and nanofiber scaffold and increased bone regeneration in defects repaired with iPSCs delivered in the nanofiber scaffold. Conclusion Transplanted iPSCs encapsulated in a nanofiber scaffold can regenerate bone in critical-sized defects.
Collapse
Affiliation(s)
- Kamichika Hayashi
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | | | - Takeaki Shiga
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Akiko Saito
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Takahiko Shibahara
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
192
|
Affiliation(s)
- Mo Li
- From the Gene Expression Laboratory, the Salk Institute for Biological Studies, La Jolla, CA (M.L., J.C.I.B.); and Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, Murcia, Spain (M.L.)
| | - Juan Carlos Izpisua Belmonte
- From the Gene Expression Laboratory, the Salk Institute for Biological Studies, La Jolla, CA (M.L., J.C.I.B.); and Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, Murcia, Spain (M.L.)
| |
Collapse
|
193
|
Lee ES, Kim SHL, Lee H, Hwang NS. Non-viral approaches for direct conversion into mesenchymal cell types: Potential application in tissue engineering. J Biomed Mater Res B Appl Biomater 2016; 104:686-97. [PMID: 26729213 DOI: 10.1002/jbm.b.33601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/06/2015] [Accepted: 12/03/2015] [Indexed: 12/16/2022]
Abstract
Acquiring adequate number of cells is one of the crucial factors to apply tissue engineering strategies in order to recover critical-sized defects. While the reprogramming technology used for inducing pluripotent stem cells (iPSCs) opened up a direct path for generating pluripotent stem cells, a direct conversion strategy may provide another possibility to obtain desired cells for tissue engineering. In order to convert a somatic cell into any other cell type, diverse approaches have been investigated. Conspicuously, in contrast to traditional viral transduction method, non-viral delivery of conversion factors has the merit of lowering immune responses and provides safer genetic manipulation, thus revolutionizing the generation of directly converted cells and its application in therapeutics. In addition, applying various microenvironmental modulations have potential to ameliorate the conversion of somatic cells into different lineages. In this review, we discuss the recent progress in direct conversion technologies, specifically focusing on generating mesenchymal cell types.
Collapse
Affiliation(s)
- Eun-Seo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, N-Bio Institute, Seoul National University, Seoul, South Korea
| | - Seung Hyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Hwajin Lee
- Johns Hopkins University School of Medicine, Cellular and Molecular Medicine, Baltimore, Maryland
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, N-Bio Institute, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
194
|
Abstract
The direct lineage reprogramming of one specialized cell type into another using defined factors has fundamentally re-shaped traditional concepts regarding the epigenetic stability of differentiated cells. With the rapid increase in cell types generated through direct conversion in recent years, this strategy has become a promising approach for producing functional cells. Here, we review recent advances in lineage reprogramming, including the identification of novel reprogramming factors, underlying molecular mechanisms, strategies for generating functionally mature cells, and assays for characterizing induced cells. We also discuss progress toward the application of lineage reprogramming and the major future challenges for this strategy.
Collapse
|
195
|
Batty JA, Lima JAC, Kunadian V. Direct cellular reprogramming for cardiac repair and regeneration. Eur J Heart Fail 2015; 18:145-56. [PMID: 26635186 DOI: 10.1002/ejhf.446] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/02/2015] [Accepted: 10/22/2015] [Indexed: 01/10/2023] Open
Abstract
Heart failure is a major cause of morbidity and mortality, characterized by depletion of functioning cardiomyocytes, myocardial remodelling, and impaired contractile function. As the heart has a limited capacity for repair, and current treatments do not reverse myocardial attrition, novel regenerative strategies are imperative. Although cell delivery-based approaches remain promising, in situ reprogramming of endogenous cardiac fibroblasts (which are pathophysiologically implicated in cardiac remodelling) into functional cardiomyocytes may represent an advantageous approach. Several groups report successful in vitro and in vivo reprogramming of murine fibroblasts, using critical transcription factors, microRNA mimics, and small molecules, to cells demonstrating cardiomyocyte-like morphology, gene expression, and spontaneous contraction, which improve cardiac function in post-infarct models. Although proof-of-concept studies demonstrate reprogramming in human fibroblasts, significant barriers to therapeutic reprogramming remain. In this review, we evaluate the current status of reprogramming strategies for cardiac repair, and explore future perspectives within the context of clinical translation.
Collapse
Affiliation(s)
- Jonathan A Batty
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Royal Victoria Infirmary, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jose A C Lima
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Vijay Kunadian
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
196
|
Homogeneous generation of iDA neurons with high similarity to bona fide DA neurons using a drug inducible system. Biomaterials 2015; 72:152-62. [DOI: 10.1016/j.biomaterials.2015.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 12/12/2022]
|
197
|
Yang Y, Jiao J, Gao R, Le R, Kou X, Zhao Y, Wang H, Gao S, Wang Y. Enhanced Rejuvenation in Induced Pluripotent Stem Cell-Derived Neurons Compared with Directly Converted Neurons from an Aged Mouse. Stem Cells Dev 2015; 24:2767-77. [PMID: 26192905 DOI: 10.1089/scd.2015.0137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yuanyuan Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiao Jiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yixuan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
198
|
Gaining myocytes or losing fibroblasts: Challenges in cardiac fibroblast reprogramming for infarct repair. J Mol Cell Cardiol 2015; 93:108-14. [PMID: 26640115 DOI: 10.1016/j.yjmcc.2015.11.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/09/2015] [Accepted: 11/26/2015] [Indexed: 01/08/2023]
Abstract
Unlike most somatic tissues, the heart possesses a very limited inherent ability to repair itself following damage. Attempts to therapeutically salvage the myocardium after infarction, either by sparing surviving myocytes or by injection of exogenous cells of varied provenance, have met with limited success. Cardiac fibroblasts are numerous, resistant to hypoxia, and amenable to phenotype reprogramming to cardiomyocytes - a potential panacea to an intractable problem. However, the long-term effects of mass conversion of fibroblasts are as-yet unknown. Since fibroblasts play key roles in normal cardiac function, treating these cells as a ready source of replacements for myocytes may have the effect of swapping one problem for another. This review briefly examines the roles of cardiac fibroblasts, recaps the strides made so far in their reprogramming to cardiomyocytes both in vitro and in vivo, and discusses the potential ramifications of large-scale cellular identity swapping. While such therapy offers great promise, the potential repercussions require consideration and careful study.
Collapse
|
199
|
Yamakawa H, Muraoka N, Miyamoto K, Sadahiro T, Isomi M, Haginiwa S, Kojima H, Umei T, Akiyama M, Kuishi Y, Kurokawa J, Furukawa T, Fukuda K, Ieda M. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions. Stem Cell Reports 2015; 5:1128-1142. [PMID: 26626177 PMCID: PMC4682292 DOI: 10.1016/j.stemcr.2015.10.019] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming.
Collapse
Affiliation(s)
- Hiroyuki Yamakawa
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Naoto Muraoka
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazutaka Miyamoto
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Taketaro Sadahiro
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mari Isomi
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Sho Haginiwa
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hidenori Kojima
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomohiko Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mizuha Akiyama
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuki Kuishi
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tetsushi Furukawa
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan; JST, CREST, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
200
|
Uosaki H, Cahan P, Lee DI, Wang S, Miyamoto M, Fernandez L, Kass DA, Kwon C. Transcriptional Landscape of Cardiomyocyte Maturation. Cell Rep 2015; 13:1705-16. [PMID: 26586429 DOI: 10.1016/j.celrep.2015.10.032] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/19/2015] [Accepted: 10/09/2015] [Indexed: 01/06/2023] Open
Abstract
Decades of progress in developmental cardiology has advanced our understanding of the early aspects of heart development, including cardiomyocyte (CM) differentiation. However, control of the CM maturation that is subsequently required to generate adult myocytes remains elusive. Here, we analyzed over 200 microarray datasets from early embryonic to adult hearts and identified a large number of genes whose expression shifts gradually and continuously during maturation. We generated an atlas of integrated gene expression, biological pathways, transcriptional regulators, and gene regulatory networks (GRNs), which show discrete sets of key transcriptional regulators and pathways activated or suppressed during CM maturation. We developed a GRN-based program named MatStat(CM) that indexes CM maturation status. MatStat(CM) reveals that pluripotent-stem-cell-derived CMs mature early in culture but are arrested at the late embryonic stage with aberrant regulation of key transcription factors. Our study provides a foundation for understanding CM maturation.
Collapse
Affiliation(s)
- Hideki Uosaki
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Johns Hopkins Institute for Cell Engineering, Baltimore, MD 21205, USA
| | - Patrick Cahan
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Dong I Lee
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Songnan Wang
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Johns Hopkins Institute for Cell Engineering, Baltimore, MD 21205, USA
| | - Matthew Miyamoto
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Johns Hopkins Institute for Cell Engineering, Baltimore, MD 21205, USA
| | - Laviel Fernandez
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Johns Hopkins Institute for Cell Engineering, Baltimore, MD 21205, USA
| | - David A Kass
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Johns Hopkins Institute for Cell Engineering, Baltimore, MD 21205, USA.
| |
Collapse
|