151
|
Gónzalez-Párraga P, Alonso-Monge R, Plá J, Argüelles JC. Adaptive tolerance to oxidative stress and the induction of antioxidant enzymatic activities in Candida albicans are independent of the Hog1 and Cap1-mediated pathways. FEMS Yeast Res 2010; 10:747-56. [PMID: 20608985 DOI: 10.1111/j.1567-1364.2010.00654.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In the pathogenic yeast Candida albicans, the MAP-kinase Hog1 mediates an essential protective role against oxidative stress, a feature shared with the transcription factor Cap1. We analysed the adaptive oxidative response of strains with both elements altered. Pretreatment with gentle doses of oxidants or thermal upshifts (28-->37 and 37-->42 degrees C) improved survival in the face of high concentrations of oxidants (50 mM H(2)O(2) or 40 mM menadione), pointing to a functional cross-protective mechanism in the mutants. The oxidative challenge promoted a marked intracellular synthesis of trehalose, although hog1 (but not cap1) cells always displayed high basal trehalose levels. Hydrogen peroxide (H(2)O(2)) induced mRNA expression of the trehalose biosynthetic genes (TPS1 and TPS2) in the tested strains. Furthermore, oxidative stress also triggered a differential activation of various antioxidant activities, whose intensity was greater after HOG1 and CAP1 deletion. The pattern of activity was dependent on the oxidant dosage applied: low concentrations of H(2)O(2) (0.5-5 mM) clearly induced catalase and glutathione reductase (GR), whereas drastic H(2)O(2) exposure (50 mM) increased Mn-superoxide dismutase (SOD) isozyme-mediated SOD activity. These results firmly support the existence in C. albicans of both Hog1- and Cap1-independent mechanisms against oxidative stress.
Collapse
|
152
|
Saharan RK, Kanwal S, Sharma SC. Role of glutathione in ethanol stress tolerance in yeast Pachysolen tannophilus. Biochem Biophys Res Commun 2010; 397:307-10. [DOI: 10.1016/j.bbrc.2010.05.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
|
153
|
Lambou K, Lamarre C, Beau R, Dufour N, Latge JP. Functional analysis of the superoxide dismutase family inAspergillus fumigatus. Mol Microbiol 2010; 75:910-23. [DOI: 10.1111/j.1365-2958.2009.07024.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
154
|
Abstract
Fungi are amongst the most industrially important microorganisms in current use within the biotechnology industry. Most such fungal cultures are highly aerobic in nature, a character that has been frequently referred to in both reactor design and fungal physiology. The most fundamentally significant outcome of the highly aerobic growth environment in fermenter vessels is the need for the fungal culture to effectively combat in the intracellular environment the negative consequences of high oxygen transfer rates. The use of oxygen as the respiratory substrate is frequently reported to lead to the development of oxidative stress, mainly due to oxygen-derived free radicals, which are collectively termed as reactive oxygen species (ROS). Recently, there has been extensive research on the occurrence, extent, and consequences of oxidative stress in microorganisms, and the underlying mechanisms through which cells prevent and repair the damage caused by ROS. In the present study, we critically review the current understanding of oxidative stress events in industrially relevant fungi. The review first describes the current state of knowledge of ROS concisely, and then the various antioxidant strategies employed by fungal cells to counteract the deleterious effects, together with their implications in fungal bioprocessing are also discussed. Finally, some recommendations for further research are made.
Collapse
Affiliation(s)
- Qiang Li
- Strathclyde Fermentation Centre, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | |
Collapse
|
155
|
Luján R, Lledías F, Martínez LM, Barreto R, Cassab GI, Nieto-Sotelo J. Small heat-shock proteins and leaf cooling capacity account for the unusual heat tolerance of the central spike leaves in Agave tequilana var. Weber. PLANT, CELL & ENVIRONMENT 2009; 32:1791-1803. [PMID: 19703117 DOI: 10.1111/j.1365-3040.2009.02035.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Agaves are perennial crassulacean acid metabolism (CAM) plants distributed in tropical and subtropical arid environments, features that are attractive for studying the heat-shock response. In agaves, the stress response can be analysed easily during leaf development, as they form a spirally shaped rosette, having the meristem surrounded by folded leaves in the centre (spike) and the unfolded and more mature leaves in the periphery. Here, we report that the spike of Agave tequilana is the most thermotolerant part of the rosette withstanding shocks of up to 55 degrees C. This finding was inconsistent with the patterns of heat-shock protein (Hsp) gene expression, as maximal accumulation of Hsp transcripts was at 44 degrees C in all sectors (spike, inner, middle and outer). However, levels of small HSP (sHSP)-CI and sHSP-CII proteins were conspicuously higher in spike leaves at all temperatures correlating with their thermotolerance. In addition, spike leaves showed a higher stomatal density and abated more efficiently their temperature several degrees below that of air. We propose that the greater capacity for leaf cooling during the day in response to heat stress, and the elevated levels of sHSPs, constitute part of a set of strategies that protect the SAM and folded leaves of A. tequilana from high temperatures.
Collapse
Affiliation(s)
- Rosario Luján
- Departmento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, P.O. Box 510-3, Cuernavaca, Mor. Mexico 62250
| | | | | | | | | | | |
Collapse
|
156
|
Cáp M, Váchová L, Palková Z. Yeast colony survival depends on metabolic adaptation and cell differentiation rather than on stress defense. J Biol Chem 2009; 284:32572-81. [PMID: 19801643 DOI: 10.1074/jbc.m109.022871] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Enzymes scavenging reactive oxygen species (ROS) are important for cell protection during stress and aging. A deficiency in these enzymes leads to ROS imbalance, causing various disorders in many organisms, including yeast. In contrast to liquid cultures, where fitness of the yeast population depends on its ROS scavenging capability, the present study suggests that Saccharomyces cerevisiae cells growing in colonies capable of ammonia signaling use a broader protective strategy. Instead of maintaining high levels of antioxidant enzymes for ROS detoxification, colonies activate an alternative metabolism that prevents ROS production. Colonies of the strain deficient in cytosolic superoxide dismutase Sod1p thus developed the same way as wild type colonies. They produced comparable levels of ammonia and underwent similar developmental changes (expression of genes of alternative metabolism and center margin differentiation in ROS production, cell death occurrence, and activities of stress defense enzymes) and did not accumulate stress-resistant suppressants. An absence of cytosolic catalase Ctt1p, however, brought colonies developmental problems, which were even more prominent in the absence of mitochondrial Sod2p. sod2Delta and ctt1Delta colonies failed in ammonia production and sufficient activation of the alternative metabolism and were incapable of center margin differentiation, but they did not increase ROS levels. These new data indicate that colony disorders are not accompanied by ROS burst but could be a consequence of metabolic defects, which, however, could be elicited by imbalance in ROS produced in early developmental phases. Sod2p and homeostasis of ROS may participate in regulatory events leading to ammonia signaling.
Collapse
Affiliation(s)
- Michal Cáp
- Department of Genetics and Microbiology, Faculty of Sciences, Charles University in Prague, Vinicná 5, 128 44 Prague 2, Czech Republic
| | | | | |
Collapse
|
157
|
Wu CY, Steffen J, Eide DJ. Cytosolic superoxide dismutase (SOD1) is critical for tolerating the oxidative stress of zinc deficiency in yeast. PLoS One 2009; 4:e7061. [PMID: 19756144 PMCID: PMC2737632 DOI: 10.1371/journal.pone.0007061] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 08/14/2009] [Indexed: 11/18/2022] Open
Abstract
Zinc deficiency causes oxidative stress in many organisms including the yeast Saccharomyces cerevisiae. Previous studies of this yeast indicated that the Tsa1 peroxiredoxin is required for optimal growth in low zinc because of its role in degrading H2O2. In this report, we assessed the importance of other antioxidant genes to zinc-limited growth. Our results indicated that the cytosolic superoxide dismutase Sod1 is also critical for growth under zinc-limiting conditions. We also found that Ccs1, the copper-delivering chaperone required for Sod1 activity is essential for optimal zinc-limited growth. To our knowledge, this is the first demonstration of the important roles these proteins play under this condition. It has been proposed previously that a loss of Sod1 activity due to inefficient metallation is one source of reactive oxygen species (ROS) under zinc-limiting conditions. Consistent with this hypothesis, we found that both the level and activity of Sod1 is diminished in zinc-deficient cells. However, under conditions in which Sod1 was overexpressed in zinc-limited cells and activity was restored, we observed no decrease in ROS levels. Thus, these data indicate that while Sod1 activity is critical for low zinc growth, diminished Sod1 activity is not a major source of the elevated ROS observed under these conditions.
Collapse
Affiliation(s)
- Chang-Yi Wu
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | | |
Collapse
|
158
|
Yu DY, Zhao QL, Wei ZL, Shehata M, Kondo T. Enhancement of hyperthermia-induced apoptosis by sanazole in human lymphoma U937 cells. Int J Hyperthermia 2009; 25:364-73. [DOI: 10.1080/02656730902967418] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
159
|
Silva CG, Raulino RJ, Cerqueira DM, Mannarino SC, Pereira MD, Panek AD, Silva JFM, Menezes FS, Eleutherio ECA. In vitro and in vivo determination of antioxidant activity and mode of action of isoquercitrin and Hyptis fasciculata. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:761-767. [PMID: 19200698 DOI: 10.1016/j.phymed.2008.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/18/2008] [Accepted: 12/22/2008] [Indexed: 05/27/2023]
Abstract
Reactive oxygen species (ROS) are thought to underline the process of ageing and the pathogenicity of various diseases, such as neurodegenerative disorders and cancer. The use of traditional medicine is widespread and plants still present a large source of natural antioxidants that might serve as leads for the development of novel drugs. In this paper, the alcoholic extract from leaves of Hyptis fasciculata, a Brazilian medicinal plant, and isoquercitrin, a flavonoid identified in this species, showed to be active as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavengers. The extract of Hyptis fasciculata and isoquercitrin were also able to increase tolerance of the eukaryotic microorganism Saccharomyces cerevisiae to both hydrogen peroxide and menadione, a source of superoxide. Cellular protection was correlated with a decrease in oxidative stress markers, such as levels of ROS, protein carbonylation and lipid peroxidation, confirming the antioxidant potential of Hyptis fasciculata and isoquercitrin.
Collapse
Affiliation(s)
- C G Silva
- Departamento de Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Ye Y, Zhu Y, Pan L, Li L, Wang X, Lin Y. Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways. Biochem Biophys Res Commun 2009; 385:357-362. [PMID: 19463789 DOI: 10.1016/j.bbrc.2009.05.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 05/13/2009] [Indexed: 11/19/2022]
Abstract
Extensive alteration of gene expression and metabolic remodeling enable the budding yeast Saccharomyces cerevisiae to ensure cellular homeostasis and adaptation to heat shock. The response logic of the cells to heat shock is still not entirely clear. In this study, we combined the expression profiles with metabolic pathways to investigate the logical relations between heat shock response metabolic pathways. The results showed that the heat-stressed S. cerevisiae cell accumulated trehalose and glycogen, which protect cellular proteins against denaturation, and modulate its phospholipid structure to sustain stability of the cell wall. The TCA cycle was enhanced, and the heat shock-induced turnover of amino acids and nucleotides served to meet the extra energy requirement due to heat-induced protein metabolism and modification. The enhanced respiration led to oxidative stress, and subsequently induced the aldehyde detoxification system. These results indicated that new insight into the response logic of S. cerevisiae to heat shock can be gained by integrating expression profiles and the logical relations between heat shock response metabolic pathways.
Collapse
Affiliation(s)
- Yanrui Ye
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, PR China
| | | | | | | | | | | |
Collapse
|
161
|
Gius D, Mattson D, Bradbury CM, Smart DK, Spitz DR. Thermal stress and the disruption of redox-sensitive signalling and transcription factor activation: possible role in radiosensitization. Int J Hyperthermia 2009; 20:213-23. [PMID: 15195515 DOI: 10.1080/02656730310001619505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In spite of ongoing research efforts, the specific mechanism(s) of heat-induced alterations in the cellular response to ionizing radiation (IR) remain ambiguous, in part because they likely involve multiple mechanisms and potential targets. One such group of potential targets includes a class of cytoplasmic signalling and/or nuclear transcription factors known as immediate early response genes, which have been suggested to perform cytotoxic as well as cytoprotective roles during cancer therapy. One established mechanism regulating the activity of these early response elements involves changes in cellular oxidation/reduction (redox) status. After establishing common alterations in early response genes by oxidative stress and heat exposure, one could infer that heat shock may have similarities to other forms of environmental antagonists that induce oxidative stress. In this review, recent evidence supporting a mechanistic link between heat shock and oxidative stress will be summarized. In addition, the hypothesis that one mechanism whereby heat shock alters cellular responses to anticancer agents (including hyperthermic radiosensitization) is through heat-induced disruption of redox-sensitive signalling factors will be discussed.
Collapse
Affiliation(s)
- D Gius
- Molecular Radiation Oncology Section, Radiation Oncology Branch, Radiation Oncology Sciences Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
162
|
Ahmed K, Zhao QL, Matsuya Y, Yu DY, Salunga TL, Nemoto H, Kondo T. Enhancement of macrosphelide-induced apoptosis by mild hyperthermia. Int J Hyperthermia 2009; 23:353-61. [PMID: 17558734 DOI: 10.1080/02656730701299682] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Hyperthermia is a useful adjunct in cancer therapy as it can increase the effectiveness and decrease the toxicity of currently available cancer treatments such as chemotherapy and radiation. In the present study, we investigated whether 41 degrees C hyperthermia (mild HT) for 20 min can enhance macrosphelide (MS5)-induced apoptosis in human lymphoma U937 cells. Our results revealed that, compared with MS5 (5 microM) and mild HT alone, the combined treatment exhibited significant enhancement in apoptosis at 6 h, which was evaluated by observing morphological changes and DNA fragmentation. Marked increase in the reactive oxygen species (ROS) generation was observed immediately after the combined treatment. Significant increase in Fas externalization, caspase-8 and caspase-3 activation, and loss of mitochondrial membrane potential (MMP) was found after the combined treatment compared with MS5 and mild HT alone. Moreover, this combination can also alter the expression of apoptosis-related proteins as evident by the cleavage of Bid and down-regulation of Bcl-2 while no change in the expression of Bax was observed. Furthermore, an immediate rise in the intracellular calcium ion ([Ca(2+)]i) concentration was observed after the combined treatment, which continuously increased in a time-dependent manner. In addition, mild HT treatment alone also increases [Ca(2+)]i concentration without inducing apoptosis. Our data indicate that early increase in ROS generation is mainly responsible for the enhancement of apoptosis after the combined treatment.
Collapse
Affiliation(s)
- K Ahmed
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
163
|
Park SK, Jung YJ, Lee JR, Lee YM, Jang HH, Lee SS, Park JH, Kim SY, Moon JC, Lee SY, Chae HB, Shin MR, Jung JH, Kim MG, Kim WY, Yun DJ, Lee KO, Lee SY. Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. PLANT PHYSIOLOGY 2009; 150:552-61. [PMID: 19339505 PMCID: PMC2689952 DOI: 10.1104/pp.109.135426] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/26/2009] [Indexed: 05/18/2023]
Abstract
A large number of thioredoxins (Trxs), small redox proteins, have been identified from all living organisms. However, many of the physiological roles played by these proteins remain to be elucidated. We isolated a high M(r) (HMW) form of h-type Trx from the heat-treated cytosolic extracts of Arabidopsis (Arabidopsis thaliana) suspension cells and designated it as AtTrx-h3. Using bacterially expressed recombinant AtTrx-h3, we find that it forms various protein structures ranging from low and oligomeric protein species to HMW complexes. And the AtTrx-h3 performs dual functions, acting as a disulfide reductase and as a molecular chaperone, which are closely associated with its molecular structures. The disulfide reductase function is observed predominantly in the low M(r) forms, whereas the chaperone function predominates in the HMW complexes. The multimeric structures of AtTrx-h3 are regulated not only by heat shock but also by redox status. Two active cysteine residues in AtTrx-h3 are required for disulfide reductase activity, but not for chaperone function. AtTrx-h3 confers enhanced heat-shock tolerance in Arabidopsis, primarily through its chaperone function.
Collapse
Affiliation(s)
- Soo Kwon Park
- Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center , and Division of Applied Life Science (BK21 program), Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Gosslau A, Jao DLE, Butler R, Liu AYC, Chen KY. Thermal killing of human colon cancer cells is associated with the loss of eukaryotic initiation factor 5A. J Cell Physiol 2009; 219:485-93. [PMID: 19160416 DOI: 10.1002/jcp.21696] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Heat-induced cell death appears to be a cell-specific event. Chronic heat stress was lethal to human colon cancer cells (Caco-2, HT29, and HCT116), but not to normal diploid fibroblasts and other cancer cells (BJ-T, WI38, HeLa, ovarian 2008, WI38VA). Acute heat stress (45-51 degrees C, 30 min) caused cell death of colon cancer cells during recovery at physiological temperature. Thermal killing of Caco-2 cells was not mediated via oxidative stress since Caco-2 cells were much more resistant than HeLa and other cancer cells to H(2)O(2)-induced cell death. Acute heat stress caused a striking loss of eukaryotic initiation factor 5A (eIF5A) in colon cancer cells, but not in HeLa and other normal or transformed human fibroblasts. The heat-induced loss of eIF5A is likely to be due to changes in the protein stability. The half-life of eIF5A was changed from >20 h to less than 30 min during the acute heat stress. Sequence analysis of the eIF5A gene from Caco-2 and HeLa cells did not reveal any difference, suggesting that the change in stability in Caco-2 cells was not due to any eIF5A mutation. Pretreatment of cells with protease inhibitors such as phenylmethyl sulfonyl fluoride (PMSF) partially blocked the heat-induced loss of eIF5A and prevented heat-induced cell death. In light of the essential role of eIF5A in cell survival and proliferation, our results suggest that the stability of eIF5A may have an important role in determining the fate of the particular cell type after severe heat stress.
Collapse
Affiliation(s)
- Alexander Gosslau
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
165
|
Abrashev RI, Pashova SB, Stefanova LN, Vassilev SV, Dolashka-Angelova PA, Angelova MB. Heat-shock-induced oxidative stress and antioxidant response in Aspergillus niger 26. Can J Microbiol 2009; 54:977-83. [PMID: 19096452 DOI: 10.1139/w08-091] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To extend the knowledge about the relationship between heat shock and oxidative stress in lower eukaryotes, the filamentous fungus Aspergillus niger 26 was chosen as a model system. Here, the response of A. niger cells to heat shock is reported. The temperature treatment significantly increased the levels of reactive oxygen species, superoxide anions (O2), and hydrogen peroxide and the rate of cyanide-resistant respiration as a marker of oxidative stress. Enhanced reactive oxygen species generation coincided with an increase in the content of oxidative damaged protein and in the accumulation of the storage carbohydrates trehalose and glycogen. Thermal survival of the A. niger cells corresponded to a significant increase in the levels of the antioxidant enzymes superoxide dismutase and catalase for all variants. These observations suggest that heat and oxidative stress have a common cellular effect.
Collapse
Affiliation(s)
- Radoslav I Abrashev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Academician G. Bonchev, 1113 Sofia, Bulgaria
| | | | | | | | | | | |
Collapse
|
166
|
Almeselmani M, Deshmukh P, Sairam R. High temperature stress tolerance in wheat genotypes: Role of antioxidant defence enzymes. ACTA ACUST UNITED AC 2009. [DOI: 10.1556/aagr.57.2009.1.1] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two wheat genotypes, C 306 (tolerant) and PBW 343 (susceptible to temperature stress) were grown in growth chambers in the phytotron facility of IARI, New Delhi. The plants were maintained at 18/23°C (control) and 25/35°C (temperature stress) night/day temperatures after maximum tillering. Water potential was significantly reduced at anthesis, and at 7 and 15 days after anthesis in both genotypes in the heat stress treatment, and a greater reduction was recorded in PBW 343. The membrane stability index was also lower in the heat stress treatment in both genotypes at the vegetative stage, at anthesis and at 15 days after anthesis, and a greater reduction was observed in PBW 343 than in C 306. The hydrogen peroxide content increased as the plants advanced in age, and a higher hydrogen peroxide content was recorded in PBW 343 than in C 306 at different stages of growth in the heat stress treatment. The superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and peroxidase (POX) activities increased significantly at all stages of growth in C 306 in response to heat stress treatment, while PBW 343 showed a significant reduction in catalase, glutathione reductase and peroxidase activities in the high temperature treatment. Northern blot showed a significant increase in the
APX
-mRNA level under heat stress at the vegetative and anthesis stages, and the expression was greater in C 306. From the results it is apparent that the antioxidant defence mechanism plays an important role in the heat stress tolerance of wheat genotypes.
Collapse
Affiliation(s)
- M. Almeselmani
- 1 Indian Agricultural Research Institute Division of Plant Physiology New Delhi India
| | - P. Deshmukh
- 1 Indian Agricultural Research Institute Division of Plant Physiology New Delhi India
| | - R. Sairam
- 1 Indian Agricultural Research Institute Division of Plant Physiology New Delhi India
| |
Collapse
|
167
|
Chung K, Cho JK, Park ES, Breedveld V, Lu H. Three-Dimensional in Situ Temperature Measurement in Microsystems Using Brownian Motion of Nanoparticles. Anal Chem 2008; 81:991-9. [DOI: 10.1021/ac802031j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kwanghun Chung
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Jae Kyu Cho
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Edward S. Park
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Victor Breedveld
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
168
|
Schurig-Briccio LA, Farías RN, Rodríguez-Montelongo L, Rintoul MR, Rapisarda VA. Protection against oxidative stress in Escherichia coli stationary phase by a phosphate concentration-dependent genes expression. Arch Biochem Biophys 2008; 483:106-10. [PMID: 19138658 DOI: 10.1016/j.abb.2008.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/18/2008] [Accepted: 12/23/2008] [Indexed: 11/17/2022]
Abstract
Escherichia coli gradually decline the capacity to resist oxidative stress during stationary phase. Besides the aerobic electron transport chain components are down-regulated in response to growth arrest. However, we have previously reported that E. coli cells grown in media containing at least 37mM phosphate maintained ndh expression in stationary phase, having high viability and low NADH/NAD(+) ratio. Here we demonstrated that, in the former condition, other aerobic respiratory genes (nuoAB, sdhC, cydA, and ubiC) expression was maintained. In addition, reactive oxygen species production was minimal and consequently the levels of thiobarbituric acid-reactive substances and protein carbonylation were lower than the expected for stationary cells. Interestingly, defense genes (katG and ahpC) expression was also maintained during this phase. Our results indicate that cells grown in high phosphate media exhibit advantages to resist endogenous and exogenous oxidative stress in stationary phase.
Collapse
Affiliation(s)
- Lici A Schurig-Briccio
- Departamento Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas, Técnicas-Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | | | | | | | | |
Collapse
|
169
|
Nevarez L, Vasseur V, Le Dréan G, Tanguy A, Guisle-Marsollier I, Houlgatte R, Barbier G. Isolation and analysis of differentially expressed genes in Penicillium glabrum subjected to thermal stress. Microbiology (Reading) 2008; 154:3752-3765. [PMID: 19047743 DOI: 10.1099/mic.0.2008/021386-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- L. Nevarez
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Université Européenne de Bretagne, Ecole Supérieure de Microbiologie et Sécurité Alimentaire de Brest, Technopôle Brest-Iroise, 28280 Plouzané, France
| | - V. Vasseur
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Université Européenne de Bretagne, Ecole Supérieure de Microbiologie et Sécurité Alimentaire de Brest, Technopôle Brest-Iroise, 28280 Plouzané, France
| | - G. Le Dréan
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Université Européenne de Bretagne, Ecole Supérieure de Microbiologie et Sécurité Alimentaire de Brest, Technopôle Brest-Iroise, 28280 Plouzané, France
| | - A. Tanguy
- Evolution et Génétique des Populations Marines, UMR CNRS 7144, Université Pierre et Marie Curie, Station Biologique de Roscoff, Place Georges Teissier, 29682 Roscoff Cedex, France
| | - I. Guisle-Marsollier
- Plate-forme Transcriptomique Ouest-Génopôle, Institut du Thorax INSERM U533, 1 Rue Gaston Veil, BP 53508, 44035 Nantes, Cedex 1, France
| | - R. Houlgatte
- Plate-forme Transcriptomique Ouest-Génopôle, Institut du Thorax INSERM U533, 1 Rue Gaston Veil, BP 53508, 44035 Nantes, Cedex 1, France
| | - G. Barbier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Université Européenne de Bretagne, Ecole Supérieure de Microbiologie et Sécurité Alimentaire de Brest, Technopôle Brest-Iroise, 28280 Plouzané, France
| |
Collapse
|
170
|
Aragon AD, Imani RA, Blackburn VR, Cunningham C. Microarray based analysis of temperature and oxidative stress induced messenger RNA in Schistosoma mansoni. Mol Biochem Parasitol 2008; 162:134-41. [PMID: 18775750 PMCID: PMC2591067 DOI: 10.1016/j.molbiopara.2008.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/10/2008] [Accepted: 08/11/2008] [Indexed: 01/06/2023]
Abstract
The body's defense against schistosome infection can take many forms. For example, upon developing acute schistosomiasis, patients often have fever coinciding with larval maturation, migration and early oviposition. As the infection becomes established, the parasite comes under oxidative stress generated by the host immune system. The most common treatment for schistosomiasis is the anti-helminthic drug praziquantel. Its effectiveness, however, is limited due to its inability to kill schistosomes 2-4 weeks post-infection. Clearly there is a need for new anti-schistosomal drugs. We hypothesize that gene products expressed as part of a protective response against heat and/or oxidative stress are potential therapeutic targets for future drug development. Using a 12,166 element oligonucleotide microarray to characterize Schistosoma mansoni genes induced by heat and oxidative stress we found that 1878 S. mansoni elements were significantly induced by heat stress. These included previously reported heat-shock genes expressing homologs of HSP40, HSP70 and HSP86. One thousand and one elements were induced by oxidative stress including those expressing homologs of superoxide dismutase, glutathione peroxidase and aldehyde dehydrogenase. Seventy-two elements were common to both stressors and could potentially be exploited in the development of novel anti-schistosomal therapeutics.
Collapse
Affiliation(s)
| | | | - Vint R. Blackburn
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Charles Cunningham
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
171
|
Mannarino SC, Amorim MA, Pereira MD, Moradas-Ferreira P, Panek AD, Costa V, Eleutherio EC. Glutathione is necessary to ensure benefits of calorie restriction during ageing in Saccharomyces cerevisiae. Mech Ageing Dev 2008; 129:700-5. [DOI: 10.1016/j.mad.2008.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 08/11/2008] [Accepted: 09/08/2008] [Indexed: 01/18/2023]
|
172
|
Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA (NEW YORK, N.Y.) 2008; 14:2095-103. [PMID: 18719243 PMCID: PMC2553748 DOI: 10.1261/rna.1232808] [Citation(s) in RCA: 453] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Accepted: 06/30/2008] [Indexed: 05/19/2023]
Abstract
Recent results have identified a diversity of small RNAs in a wide range of organisms. In this work, we demonstrate that Saccharomyces cerevisiae contains a small RNA population consisting primarily of tRNA halves and rRNA fragments. Both 5' and 3' fragments of tRNAs are detectable by Northern blot analysis, suggesting a process of endonucleolytic cleavage. tRNA and rRNA fragment production in yeast is most pronounced during oxidative stress conditions, especially during entry into stationary phase. Similar tRNA fragments are also observed in human cell lines and in plants during oxidative stress. These results demonstrate that tRNA cleavage is a conserved aspect of the response to oxidative stress.
Collapse
Affiliation(s)
- Debrah M Thompson
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
173
|
Abstract
It has been known for many years that oxygen (O2) may have toxic effects on aerobically growing microorganisms, mainly due to the threat arising from reactive oxygen species (ROS). In submerged culture industrial fermentation processes, maintenance of adequate levels of O2 (usually measured as dissolved oxygen tension (DOT)) can often be critical to the success of the manufacturing process. In viscous cultures of filamentous cultures, actively respiring, supplying adequate levels of O2 to the cultures by conventional air sparging is difficult and various strategies have been adopted to improve or enhance O2 transfer. However, adoption of those strategies to maintain adequate levels of DOT, that is, to avoid O2 limitation, may expose the fungi to potential oxidative damage caused by enhanced flux through the respiratory system. In the past, there have been numerous studies investigating the effects of DOT on fungal bioprocesses. Generally, in these studies moderately enhanced levels of O2 supply resulted in improvement in growth, product formation and acceptable morphological changes, while the negative impact of higher levels of DOT on morphology and product synthesis were generally assumed to be a consequence of "oxidative stress." However, very little research has actually been focused on investigation of this implicit link, and the mechanisms by which such effects might be mediated within industrial fungal processes. To elucidate this neglected topic, this review first surveys the basic knowledge of the chemistry of ROS, defensive systems in fungi and the effects of DOT on fungal growth, metabolism and morphology. The physiological responses of fungal cells to oxidative stress imposed by artificial and endogenous stressors are then critically reviewed. It is clear that fungi have a range of methods available to minimize the negative impacts of elevated ROS, but also that development of the various defensive systems or responses, can itself have profound consequences upon many process-related parameters. It is also clear that many of the practically convenient and widely used experimental methods of simulating oxidative stress, for example, addition of exogenous menadione or hydrogen peroxide, have effects on fungal cultures quite distinct from the effects of elevated levels of O2, and care must thus be exercised in the interpretation of results from such studies. The review critically evaluates our current understanding of the responses of fungal cultures to elevated O2 levels, and highlights key areas requiring further research to remedy gaps in knowledge.
Collapse
Affiliation(s)
- Zhonghu Bai
- Strathclyde Fermentation Center, Department of Bioscience, Strathclyde University, Glasgow, UK
| | | | | |
Collapse
|
174
|
DeSalvo MK, Voolstra CR, Sunagawa S, Schwarz JA, Stillman JH, Coffroth MA, Szmant AM, Medina M. Differential gene expression during thermal stress and bleaching in the Caribbean coralMontastraea faveolata. Mol Ecol 2008; 17:3952-71. [PMID: 18662230 DOI: 10.1111/j.1365-294x.2008.03879.x] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- M K DeSalvo
- School of Natural Sciences, University of California, Merced, PO Box 2039, Merced, CA 95344, USA
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Biryukova EN, Medentsev AG, Arinbasarova AY, Akimenko VK. Respiratory activity of yeast Yarrowia lipolytica under oxidative stress and heat shock. Microbiology (Reading) 2008. [DOI: 10.1134/s0026261708040024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
176
|
Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress. Biochem J 2008; 414:301-11. [DOI: 10.1042/bj20071537] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, arsenic detoxification involves the activation of Yap8, a member of the Yap (yeast AP-1-like) family of transcription factors, which in turn regulates ACR2 and ACR3, genes encoding an arsenate reductase and a plasma-membrane arsenite-efflux protein respectively. In addition, Yap1 is involved in the arsenic adaptation process through regulation of the expression of the vacuolar pump encoded by YCF1 (yeast cadmium factor 1 gene) and also contributing to the regulation of ACR genes. Here we show that Yap1 is also involved in the removal of ROS (reactive oxygen species) generated by arsenic compounds. Data on lipid peroxidation and intracellular oxidation indicate that deletion of YAP1 and YAP8 triggers cellular oxidation mediated by inorganic arsenic. In spite of the increased amounts of As(III) absorbed by the yap8 mutant, the enhanced transcriptional activation of the antioxidant genes such as GSH1 (γ- glutamylcysteine synthetase gene), SOD1 (superoxide dismutase 1 gene) and TRX2 (thioredoxin 2 gene) may prevent protein oxidation. In contrast, the yap1 mutant exhibits high contents of protein carbonyl groups and the GSSG/GSH ratio is severely disturbed on exposure to arsenic compounds in these cells. These results point to an additional level of Yap1 contribution to arsenic stress responses by preventing oxidative damage in cells exposed to these compounds. Transcriptional profiling revealed that genes of the functional categories related to sulphur and methionine metabolism and to the maintenance of cell redox homoeostasis are activated to mediate adaptation of the wild-type strain to 2 mM arsenate treatment.
Collapse
|
177
|
The effects of elevated process temperature on the protein carbonyls in the filamentous fungus, Aspergillus niger B1-D. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
178
|
Gaitanaki C, Mastri M, Aggeli IKS, Beis I. Differential roles of p38-MAPK and JNKs in mediating early protection or apoptosis in the hyperthermic perfused amphibian heart. J Exp Biol 2008; 211:2524-32. [DOI: 10.1242/jeb.018960] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In the present study the activation of p38 mitogen-activated protein kinase(p38-MAPK) and c-Jun N-terminal kinases (JNKs) by hyperthermia was investigated in the isolated perfused Rana ridibunda heart. Hyperthermia (42°C) was found to profoundly stimulate p38-MAPK phosphorylation within 0.5 h, with maximal values being attained at 1 h[4.503(±0.577)-fold relative to control, P<0.01]. JNKs were also activated under these conditions in a sustained manner for at least 4 h[2.641(±0.217)-fold relative to control, P<0.01]. Regarding their substrates, heat shock protein 27 (Hsp27) was maximally phosphorylated at 1 h [2.261(±0.327)-fold relative to control, P<0.01] and c-Jun at a later phase [3 h: 5.367(±0.081)-fold relative to control, P<0.001]. Hyperthermia-induced p38-MAPK activation was found to be dependent on the Na+/H+ exchanger 1 (NHE1) and was also suppressed by catalase (Cat) and superoxide dismutase (SOD), implicating the generation of reactive oxygen species (ROS). ROS were also implicated in the activation of JNKs by hyperthermia, with the Na+/K+-ATPase acting as a mediator of this effect at an early stage and the NHE1 getting involved at a later time point. Finally, JNKs were found to be the principal mediators of the apoptosis induced under hyperthermic conditions, as their inhibition abolished poly(ADP-ribose)polymerase (PARP) cleavage after 4 h at 42°C. Overall, to our knowledge,this study highlights for the first time the variable mediators implicated in the transduction of the hyperthermic signal in the isolated perfused heart of an ectotherm and deciphers a potential salutary effect of p38-MAPK as well as the fundamental role of JNKs in the induced apoptosis.
Collapse
Affiliation(s)
- Catherine Gaitanaki
- Department of Animal and Human Physiology, School of Biology, University of Athens, Panepistimioupolis, 157 84 Athens, Greece
| | - Michalis Mastri
- Department of Animal and Human Physiology, School of Biology, University of Athens, Panepistimioupolis, 157 84 Athens, Greece
| | - Ioanna-Katerina S. Aggeli
- Department of Animal and Human Physiology, School of Biology, University of Athens, Panepistimioupolis, 157 84 Athens, Greece
| | - Isidoros Beis
- Department of Animal and Human Physiology, School of Biology, University of Athens, Panepistimioupolis, 157 84 Athens, Greece
| |
Collapse
|
179
|
Lee SJ, Yang ES, Kim SY, Kim SY, Shin SW, Park JW. Regulation of heat shock-induced apoptosis by sensitive to apoptosis gene protein. Free Radic Biol Med 2008; 45:167-76. [PMID: 18454945 DOI: 10.1016/j.freeradbiomed.2008.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 03/25/2008] [Accepted: 03/31/2008] [Indexed: 02/08/2023]
Abstract
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Sensitive to apoptosis gene (SAG) protein, a novel zinc RING finger protein that protects mammalian cells from apoptosis by redox reagents, is a metal chelator and a potential reactive oxygen species scavenger, but its antioxidant properties have not been completely defined. In this report, we demonstrate that modulation of SAG expression in U937 cells regulates heat shock-induced apoptosis. When we examined the protective role of SAG against heat shock-induced apoptosis with U937 cells transfected with the cDNA for SAG, a clear inverse relationship was observed between the amount of SAG expressed in target cells and their susceptibility to apoptosis. We also observed a significant decrease in the endogenous production of reactive oxygen species and oxidative DNA damage in SAG-overexpressed cells compared to control cells on exposure to heat shock. In addition, transfection of PC3 cells with SAG small interfering RNA markedly decreased the expression of SAG, enhancing the susceptibility of heat shock-induced apoptosis. Taken together, these results indicate that SAG may play an important role in regulating the apoptosis induced by heat shock presumably through maintaining the cellular redox status.
Collapse
Affiliation(s)
- Sun Joo Lee
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | | | | | | | | | | |
Collapse
|
180
|
Enhancement of hyperthermia-induced apoptosis by a new synthesized class of benzocycloalkene compounds. Apoptosis 2008; 13:448-61. [DOI: 10.1007/s10495-008-0178-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
181
|
Sharkey TD, Wiberley AE, Donohue AR. Isoprene emission from plants: why and how. ANNALS OF BOTANY 2008; 101:5-18. [PMID: 17921528 PMCID: PMC2701830 DOI: 10.1093/aob/mcm240] [Citation(s) in RCA: 314] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/04/2007] [Accepted: 08/09/2007] [Indexed: 05/18/2023]
Abstract
BACKGROUND Some, but not all, plants emit isoprene. Emission of the related monoterpenes is more universal among plants, but the amount of isoprene emitted from plants dominates the biosphere-atmosphere hydrocarbon exchange. SCOPE The emission of isoprene from plants affects atmospheric chemistry. Isoprene reacts very rapidly with hydroxyl radicals in the atmosphere making hydroperoxides that can enhance ozone formation. Aerosol formation in the atmosphere may also be influenced by biogenic isoprene. Plants that emit isoprene are better able to tolerate sunlight-induced rapid heating of leaves (heat flecks). They also tolerate ozone and other reactive oxygen species better than non-emitting plants. Expression of the isoprene synthase gene can account for control of isoprene emission capacity as leaves expand. The emission capacity of fully expanded leaves varies through the season but the biochemical control of capacity of mature leaves appears to be at several different points in isoprene metabolism. CONCLUSIONS The capacity for isoprene emission evolved many times in plants, probably as a mechanism for coping with heat flecks. It also confers tolerance of reactive oxygen species. It is an example of isoprenoids enhancing membrane function, although the mechanism is likely to be different from that of sterols. Understanding the regulation of isoprene emission is advancing rapidly now that the pathway that provides the substrate is known.
Collapse
Affiliation(s)
- Thomas D Sharkey
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
182
|
Silencing of mitochondrial NADP+-dependent isocitrate dehydrogenase by small interfering RNA enhances heat shock-induced apoptosis. Biochem Biophys Res Commun 2007; 366:1012-8. [PMID: 18096511 DOI: 10.1016/j.bbrc.2007.12.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Accepted: 12/09/2007] [Indexed: 11/22/2022]
Abstract
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm) produces NADPH, an essential reducing equivalent for the antioxidant system. In this report, we demonstrate that silencing of IDPm expression in HeLa cells greatly enhances apoptosis induced by heat shock. Transfection of HeLa cells with an IDPm small interfering RNA (siRNA) markedly decreased activity of IDPm, enhancing the susceptibility of heat shock-induced apoptosis reflected by morphological evidence of apoptosis, DNA fragmentation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. These results indicate that IDPm may play an important role in regulating the apoptosis induced by heat shock and the sensitizing effect of IDPm siRNA on the apoptotic cell death of HeLa cells offers the possibility of developing a modifier of cancer therapy.
Collapse
|
183
|
Almeida T, Marques M, Mojzita D, Amorim MA, Silva RD, Almeida B, Rodrigues P, Ludovico P, Hohmann S, Moradas-Ferreira P, Côrte-Real M, Costa V. Isc1p plays a key role in hydrogen peroxide resistance and chronological lifespan through modulation of iron levels and apoptosis. Mol Biol Cell 2007; 19:865-76. [PMID: 18162582 DOI: 10.1091/mbc.e07-06-0604] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The inositolphosphosphingolipid phospholipase C (Isc1p) of Saccharomyces cerevisiae belongs to the family of neutral sphingomyelinases that generates the bioactive sphingolipid ceramide. In this work the role of Isc1p in oxidative stress resistance and chronological lifespan was investigated. Loss of Isc1p resulted in a higher sensitivity to hydrogen peroxide that was associated with an increase in oxidative stress markers, namely intracellular oxidation, protein carbonylation, and lipid peroxidation. Microarray analysis showed that Isc1p deficiency up-regulated the iron regulon leading to increased levels of iron, which is known to catalyze the production of the highly reactive hydroxyl radicals via the Fenton reaction. In agreement, iron chelation suppressed hydrogen peroxide sensitivity of isc1Delta mutants. Cells lacking Isc1p also displayed a shortened chronological lifespan associated with oxidative stress markers and aging of parental cells was correlated with a decrease in Isc1p activity. The analysis of DNA fragmentation and caspase-like activity showed that Isc1p deficiency increased apoptotic cell death associated with oxidative stress and aging. Furthermore, deletion of Yca1p metacaspase suppressed the oxidative stress sensitivity and premature aging phenotypes of isc1Delta mutants. These results indicate that Isc1p plays an important role in the regulation of cellular redox homeostasis, through modulation of iron levels, and of apoptosis.
Collapse
Affiliation(s)
- Teresa Almeida
- IBMC, Instituto de Biologia Molecular e Celular, Grupo de Microbiologia Celular e Aplicada, 4150-180 Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Wang CC, Chen F, Kim E, Harrison LE. Thermal sensitization through ROS modulation: a strategy to improve the efficacy of hyperthermic intraperitoneal chemotherapy. Surgery 2007; 142:384-92. [PMID: 17723891 DOI: 10.1016/j.surg.2007.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 03/14/2007] [Accepted: 03/21/2007] [Indexed: 11/15/2022]
Abstract
BACKGROUND The purpose of this study was to investigate whether modulation of cellular reactive oxygen species (ROS) provides a synergistic effect with hyperthermia to induce tumor cell death in a colon cancer cell line. MATERIALS AND METHODS HT-29 colon cancer cells were exposed to heat (43 degrees C) in the presence of the ROS-generating drug, 2-2'-azobis-(2-amidinopropane) dihydrochloride (AAPH) for 1 h. Viable cell mass and apoptosis was measured by MTT and annexin V staining, respectively. Oxidative stress was evaluated by DCFH fluorescence. Protein levels were determined by Western blot analysis. RESULTS A synergistic effect on cell viability with AAPH was noted under hyperthermic conditions as compared with hyperthermia alone (P < .05). The number of nonviable cells after hyperthermia and AAPH exposure was also significantly increased compared with AAPH at 37 degrees C (42% vs 20%, P < .05). ROS levels were increased modestly with AAPH at 37 degrees C, whereas they increased significantly in a dose-dependent manner with AAPH at 43 degrees C. Transient increases of phosphorylated-p38 and ERK and decreases in phosphorylated-AKT were observed in the cells exposed to AAPH at 43 degrees C. Pretreatment of inhibitors of p38 yielded additional decreases in cell mass when used in combination with AAPH and hyperthermia (P < .05). Increased expression of HSP 27 observed at 43 degrees C was abrogated with AAPH exposure. CONCLUSIONS Oxidative stress increased the cytotoxic effects of hyperthermia in colon cancer cells. Thermal sensitization through modulation of cellular ROS may represent a novel approach to increase the efficacy of hyperthermia as an anticancer modality.
Collapse
Affiliation(s)
- Chia-Chi Wang
- Division of Surgical Oncology, UMDNJ--New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
185
|
Adamis PDB, Panek AD, Eleutherio ECA. Vacuolar compartmentation of the cadmium-glutathione complex protects Saccharomyces cerevisiae from mutagenesis. Toxicol Lett 2007; 173:1-7. [PMID: 17644279 DOI: 10.1016/j.toxlet.2007.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 11/21/2022]
Abstract
In the yeast Saccharomyces cerevisiae, gamma-glutamyl transferase (gamma-GT; EC 2.3.2.2) is a vacuolar-membrane bound enzyme. In this work we verified that S. cerevisiae cells deficient in gamma-GT absorbed almost 2.5-fold as much cadmium as the wild-type (wt) cells, suggesting that this enzyme might be responsible for the recycle of cadmium-glutathione complex stored in the vacuole. The mutant strain showed difficulty in keeping constant levels of glutathione (GSH) during the stress, although the GSH-reductase activity was practically the same in both wt and mutant strains, before and after metal stress. This difficulty to maintain the GSH levels in the gamma-GT mutant strain led to high levels of lipid peroxidation and carbonyl proteins in response to cadmium, higher than in the wt, but lower than in a mutant deficient in GSH synthesis. Although the increased levels of oxidative stress, gamma-GT mutant strain showed to be tolerant to cadmium and showed similar mutation rates to the wt, indicating that the compartmentation of the GSH-cadmium complex in vacuole protects cells against the mutagenic action of the metal. Confirming this hypothesis, a mutant strain deficient in Ycf1, which present high concentrations of GSH-cadmium in cytoplasm due to its deficiency in transport the complex to vacuole, showed increased mutation rates.
Collapse
Affiliation(s)
- Paula D B Adamis
- Departamento de Bioquímica, I.Q., UFRJ, 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
186
|
Smirnova GV, Muzyka NG, Oktyabrsky ON. Enhanced resistance to peroxide stress in Escherichia coli grown outside their niche temperatures. J Therm Biol 2007. [DOI: 10.1016/j.jtherbio.2007.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
187
|
Rao RP, Yuan C, Allegood JC, Rawat SS, Edwards MB, Wang X, Merrill AH, Acharya U, Acharya JK. Ceramide transfer protein function is essential for normal oxidative stress response and lifespan. Proc Natl Acad Sci U S A 2007; 104:11364-9. [PMID: 17592126 PMCID: PMC1899189 DOI: 10.1073/pnas.0705049104] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ceramide transfer protein (CERT) transfers ceramide from the endoplasmic reticulum to the Golgi complex, a process critical in synthesis and maintenance of normal levels of sphingolipids in mammalian cells. However, how its function is integrated into development and physiology of the animal is less clear. Here, we report the in vivo consequences of loss of functional CERT protein. We generated Drosophila melanogaster mutant flies lacking a functional CERT (Dcert) protein using chemical mutagenesis and a Western blot-based genetic screen. The mutant flies die early between days 10 and 30, whereas controls lived between 75 and 90 days. They display >70% decrease in ceramide phosphoethanolamine (the sphingomyelin analog in Drosophila) and ceramide. These changes resulted in increased plasma membrane fluidity that renders them susceptible to reactive oxygen species and results in enhanced oxidative damage to cellular proteins. Consequently, the flies showed reduced thermal tolerance that was exacerbated with aging and metabolic compromise such as decreasing ATP and increasing glucose levels, reminiscent of premature aging. Our studies demonstrate that maintenance of physiological levels of ceramide phosphoethanolamine by CERT in vivo is required to prevent oxidative damages to cellular components that are critical for viability and normal lifespan of the animal.
Collapse
Affiliation(s)
- Raghavendra Pralhada Rao
- *Laboratory of Cell and Developmental Signaling, National Cancer Institute Frederick, Frederick, MD 21702
| | - Changqing Yuan
- *Laboratory of Cell and Developmental Signaling, National Cancer Institute Frederick, Frederick, MD 21702
| | - Jeremy C. Allegood
- Schools of Biology and Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332; and
| | - Satinder S. Rawat
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605
| | - Michael Beth Edwards
- *Laboratory of Cell and Developmental Signaling, National Cancer Institute Frederick, Frederick, MD 21702
| | - Xin Wang
- *Laboratory of Cell and Developmental Signaling, National Cancer Institute Frederick, Frederick, MD 21702
| | - Alfred H. Merrill
- Schools of Biology and Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332; and
| | - Usha Acharya
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jairaj K. Acharya
- *Laboratory of Cell and Developmental Signaling, National Cancer Institute Frederick, Frederick, MD 21702
- To whom correspondence should be addressed at:
National Cancer Institute Frederick, Room 22-6, Building 560, 1050 Boyle Street, Frederick, MD 21702. E-mail:
| |
Collapse
|
188
|
Wei P, Li Z, Lin Y, He P, Jiang N. Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment. Biotechnol Lett 2007; 29:1501-8. [PMID: 17541503 DOI: 10.1007/s10529-007-9419-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/01/2007] [Accepted: 05/02/2007] [Indexed: 01/22/2023]
Abstract
An effective, simple, and convenient method to improve yeast's multiple-stress tolerance, and ethanol production was developed. After an ethanologenic Saccharomyces cerevisiae strain SC521 was treated by nine cycles of freeze-thaw, a mutant FT9-11 strain with higher multiple-stress tolerance was isolated, whose viabilities under acetic acid, ethanol, freeze-thaw, H(2)O(2), and heat-shock stresses were, respectively, 23-, 26-, 10- and 7-fold more than the parent strain at an initial value 2 x 10(7) c.f.u. per ml. Ethanol production of FT9-11 was similar (91.5 g ethanol l(-1)) to SC521 at 30 degrees C with 200 g glucose l(-1), and was better than the parent strain at 37 degrees C (72.5 g ethanol l(-1)), with 300 (111 g ethanol l(-1)) or with 400 (85 g ethanol l(-1)) g glucose l(-1).
Collapse
Affiliation(s)
- Pingying Wei
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, P.R. China
| | | | | | | | | |
Collapse
|
189
|
Yu DY, Matsuya Y, Zhao QL, Ahmed K, Wei ZL, Nemoto H, Kondo T. Enhancement of hyperthermia-induced apoptosis by a new synthesized class of furan-fused tetracyclic compounds. Apoptosis 2007; 12:1523-32. [PMID: 17458712 DOI: 10.1007/s10495-007-0080-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The combined effects of hyperthermia (44 degrees C, 20 min) or X-rays (10 Gy) and a new class of furan-fused tetracyclic synthesized compounds (DFs), on apoptosis in human lymphoma U937 cells were investigated. Among the tested compounds (DF1 approximately 6), the combined treatment of 10 microM DF with TIPS (triisopropylsilyloxy) (Designated #3 DF3) and hyperthermia showed the largest potency to induce DNA fragmentation at 6 h after hyperthermia but no enhancement was observed if it was combined with X-rays. Enhancement of hyperthermia-induced apoptosis by DF3 in a dose-dependent manner was observed. When the cells were treated first with DF3 at a nontoxic concentration of 20 microM, and exposed to hyperthermia afterwards, a significant enhancement of heat-induced apoptosis was evidenced by DNA fragmentation, morphological changes and phosphatidylserine externalization. The activation of Bid, but no change of Bax and Bcl-2 were observed after the combined treatment. The release of cytochrome c from mitochondria to cytosol, which was induced by hyperthermia, was enhanced by DF3. Mitochondrial transmembrane potential was decreased and the activation of caspase-3 and caspase-8 was enhanced in the cells treated with the combination. Externalization of Fas was observed following the combined treatment. Flow cytometry revealed rapid and sustained increase of intracellular superoxide due to DF3, and showed subsequent and transient increase in the formation of intracellular hydrogen peroxide (H(2)O(2)), which was further increased when hyperthermia was combined. These results indicate that the intracellular superoxide and H(2)O(2) generated by DF3 enhance the hyperthermia-induced apoptosis via the Fas-mediated mitochondrial caspase-dependent pathway.
Collapse
Affiliation(s)
- Da-Yong Yu
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | | | | | | | | | | | | |
Collapse
|
190
|
Biryukova EN, Medentsev AG, Arinbasarova AY, Akimenko VK. Adaptation of the yeast Yarrowia lipolytica to heat shock. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707020051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
191
|
Du X, Takagi H. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl Microbiol Biotechnol 2007; 75:1343-51. [PMID: 17387467 DOI: 10.1007/s00253-007-0940-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/07/2007] [Accepted: 03/08/2007] [Indexed: 10/23/2022]
Abstract
N-Acetyltransferase Mpr1 of Saccharomyces cerevisiae can reduce intracellular oxidation levels and protect yeast cells under oxidative stress, including H(2)O(2), heat-shock, or freeze-thaw treatment. Unlike many antioxidant enzyme genes induced in response to oxidative stress, the MPR1 gene seems to be constitutively expressed in yeast cells. Based on a recent report that ethanol toxicity is correlated with the production of reactive oxygen species (ROS), we examined here the role of Mpr1 under ethanol stress conditions. The null mutant of the MPR1 and MPR2 genes showed hypersensitivity to ethanol stress, and the expression of the MPR1 gene conferred stress tolerance. We also found that yeast cells exhibited increased ROS levels during exposure to ethanol stress, and that Mpr1 protects yeast cells from ethanol stress by reducing intracellular ROS levels. When the MPR1 gene was overexpressed in antioxidant enzyme-deficient mutants, increased resistance to H(2)O(2) or heat shock was observed in cells lacking the CTA1, CTT1, or GPX1 gene encoding catalase A, catalase T, or glutathione peroxidase, respectively. These results suggest that Mpr1 might compensate the function of enzymes that detoxify H(2)O(2). Hence, Mpr1 has promising potential for the breeding of novel ethanol-tolerant yeast strains.
Collapse
Affiliation(s)
- Xiaoyi Du
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka-cho, Fukui 910-1195, Japan
| | | |
Collapse
|
192
|
Işık K, Ayar Kayalı H, Şahin N, Öztürk Gündoğdu E, Tarhan L. Antioxidant response of a novel Streptomyces sp. M3004 isolated from legume rhizosphere to H2O2 and paraquat. Process Biochem 2007. [DOI: 10.1016/j.procbio.2006.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
193
|
Moraitis C, Curran BPG. Can the different heat shock response thresholds found in fermenting and respiring yeast cells be attributed to their differential redox states? Yeast 2007; 24:653-66. [PMID: 17533621 DOI: 10.1002/yea.1498] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this study we used a heat-shock (HS) reporter gene to demonstrate that respiring cells are intrinsically less sensitive (by 5 degrees C) than their fermenting counterparts to a sublethal heat shock. We also used an oxidant-sensitive fluorescent probe to demonstrate that this correlates with lower levels of sublethal reactive oxygen species (ROS) accumulation in heat-stressed respiring cells. Moreover, this relationship between HS induction of the reporter gene and ROS accumulation extends to respiring cells that have had their ROS levels modified by treatment with the anti-oxidant ascorbic acid and the pro-oxidant H(2)O(2). Thus, by demonstrating that the ROS/HSR correlation previously demonstrated in fermenting cells also holds for respiring cells (despite their greater HS insensitivity and higher level of intrinsic thermotolerance), we provide evidence that the intracellular redox state may influence both the sensitivity of the heat-shock response (HSR) and stress tolerance in the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Christos Moraitis
- School of Biological and Chemical Sciences, Queen Mary College, University of London, Mile End Road, London E1 4NS, U.K
| | | |
Collapse
|
194
|
Wheeler DS, Wong HR. Heat shock response and acute lung injury. Free Radic Biol Med 2007; 42:1-14. [PMID: 17157189 PMCID: PMC1790871 DOI: 10.1016/j.freeradbiomed.2006.08.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 08/23/2006] [Accepted: 08/29/2006] [Indexed: 11/19/2022]
Abstract
All cells respond to stress through the activation of primitive, evolutionarily conserved genetic programs that maintain homeostasis and assure cell survival. Stress adaptation, which is known in the literature by a myriad of terms, including tolerance, desensitization, conditioning, and reprogramming, is a common paradigm found throughout nature, in which a primary exposure of a cell or organism to a stressful stimulus (e.g., heat) results in an adaptive response by which a second exposure to the same stimulus produces a minimal response. More interesting is the phenomenon of cross-tolerance, by which a primary exposure to a stressful stimulus results in an adaptive response whereby the cell or organism is resistant to a subsequent stress that is different from the initial stress (i.e., exposure to heat stress leading to resistance to oxidant stress). The heat shock response is one of the more commonly described examples of stress adaptation and is characterized by the rapid expression of a unique group of proteins collectively known as heat shock proteins (also commonly referred to as stress proteins). The expression of heat shock proteins is well described in both whole lungs and in specific lung cells from a variety of species and in response to a variety of stressors. More importantly, in vitro data, as well as data from various animal models of acute lung injury, demonstrate that heat shock proteins, especially Hsp27, Hsp32, Hsp60, and Hsp70 have an important cytoprotective role during lung inflammation and injury.
Collapse
Affiliation(s)
- Derek S. Wheeler
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center; Kindervelt Laboratory for Critical Care Medicine Research, Children’s Hospital Research Foundation;]Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Hector R. Wong
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center; Kindervelt Laboratory for Critical Care Medicine Research, Children’s Hospital Research Foundation;]Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
195
|
Qin G, Tian S, Chan Z, Li B. Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of Penicillium expansum: analysis based on proteomics approach. Mol Cell Proteomics 2006; 6:425-38. [PMID: 17194899 DOI: 10.1074/mcp.m600179-mcp200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Penicillium expansum, a widespread filamentous fungus, is a major causative agent of fruit decay and may lead to the production of mycotoxin that causes harmful effects on human health. In this study, we compared the cellular and extracellular proteomes of P. expansum in the absence and presence of borate, which affects the virulence of the fungal pathogen. The differentially expressed proteins were identified using ESI-Q-TOF-MS/MS. Several proteins related to stress response (glutathione S-transferase, catalase, and heat shock protein 60) and basic metabolism (glyceraldehyde-3-phosphate dehydrogenase, dihydroxy-acid dehydratase, and arginase) were identified in the cellular proteome. Catalase and glutathione S-transferase, the two antioxidant enzymes, exhibited reduced levels of expression upon exposure to borate. Because catalase and glutathione S-transferase are related to oxidative stress response, we further investigated the reactive oxygen species (ROS) levels and oxidative protein carbonylation (damaged proteins) in P. expansum. Higher amounts of ROS and carbonylated proteins were observed after borate treatment, indicating that catalase and glutathione S-transferase are important in scavenging ROS and protecting cellular proteins from oxidative damage. Additionally to find secretory proteins that contribute to the virulence, we studied the extracellular proteome of P. expansum under stress condition with reduced virulence. The expression of three protein spots were repressed in the presence of borate and identified as the same hydrolytic enzyme, polygalacturonase.
Collapse
Affiliation(s)
- Guozheng Qin
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
196
|
Narasaiah KV, Sashidhar RB, Subramanyam C. Biochemical analysis of oxidative stress in the production of aflatoxin and its precursor intermediates. Mycopathologia 2006; 162:179-89. [PMID: 16944285 DOI: 10.1007/s11046-006-0052-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The relevance of oxidative stress in the production of aflatoxin and its precursors was examined in different mutants of Aspergillus parasiticus, which produce aflatoxin or its precursor intermediates, and compared with results obtained from a non-toxigenic strain. In comparison to the non-toxigenic strain (SRRC 255), an aflatoxin producing strain (NRRL 2999) or mutants that accumulate aflatoxin precursors such as norsolorinic acid (by SRRC 162) or versicolorin (by NRRL 6196) or O-methyl sterigmatocystin (by SRRC 2043) had greater oxygen requirements and higher contents of reactive oxygen species. These changes were in the graded order of NRRL 2999 > SRRC 2043 > NRRL 6196 > SRRC 162 > SRRC 255, indicating incremental accumulation of reactive oxygen species, being least in the non-toxigenic strain and increasing progressively during the ternary steps of aflatoxin formation. Oxidative stress in these strains was evident by increased activities of xanthine oxidase and free radical scavenging enzymes (superoxide dismutase and glutathione peroxidase) as compared to the non-toxigenic strain (SRRC 255). Culturing the toxigenic strain in presence of 0.1-10 muM H(2)O(2 )in the medium resulted in enhanced aflatoxin production, which could be related to dose-dependent increase in [(14)C]-acetate incorporation into aflatoxin B(1) and increased acetyl CoA carboxylase activity. The combined results suggest that formation of secondary metabolites such as aflatoxin and its precursors by A. parasiticus may occur as a compensatory response to reactive oxygen species accumulation.
Collapse
Affiliation(s)
- Kolliputi V Narasaiah
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad, 500 007, India
| | | | | |
Collapse
|
197
|
Castro FAV, Herdeiro RS, Panek AD, Eleutherio ECA, Pereira MD. Menadione stress in Saccharomyces cerevisiae strains deficient in the glutathione transferases. Biochim Biophys Acta Gen Subj 2006; 1770:213-20. [PMID: 17157989 DOI: 10.1016/j.bbagen.2006.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 10/04/2006] [Accepted: 10/20/2006] [Indexed: 01/17/2023]
Abstract
Using S. cerevisiae as a eukaryotic cell model we have analyzed the involvement of both glutathione transferase isoforms, Gtt1 and Gtt2, in constitutive resistance and adaptive response to menadione, a quinone which can exert its toxicity as redox cycling and/or electrophiles. The detoxification properties, of these enzymes, have also been analyzed by the appearance of S-conjugates in the media. Direct exposure to menadione (20 mM/60 min) showed to be lethal for cells deficient on both Gtt1 and Gtt2 isoforms. However, after pre-treatment with a low menadione concentration, cells deficient in Gtt2 displayed reduced ability to acquire tolerance when compared with the control and the Gtt1 deficient strains. Analyzing the toxic effects of menadione we observed that the gtt2 mutant showed no reduction in lipid peroxidation levels. Moreover, measuring the levels of intracellular oxidation during menadione stress we have shown that the increase of this oxidative stress parameter was due to the capacity menadione possesses in generating reactive oxygen species (ROS) and that both GSH and Gtt2 isoform were required to enhance ROS production. Furthermore, the efflux of the menadione-GSH conjugate, which is related with detoxification of xenobiotic pathways, was not detected in the gtt2 mutant. Taken together, these results suggest that acquisition of tolerance against stress generated by menadione and the process of detoxification through S-conjugates are dependent upon Gtt2 activity. This assessment was corroborated by the increase of GTT2 expression, and not of GTT1, after menadione treatment.
Collapse
Affiliation(s)
- F A V Castro
- Laboratório de Investigação de Fatores de Estresse (LIFE), Departamento de Bioquímica, Instituto de Química, UFRJ, 21949-900, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
198
|
Lee KS, Kim BY, Kim HJ, Seo SJ, Yoon HJ, Choi YS, Kim I, Han YS, Je YH, Lee SM, Kim DH, Sohn HD, Jin BR. Transferrin inhibits stress-induced apoptosis in a beetle. Free Radic Biol Med 2006; 41:1151-61. [PMID: 16962940 DOI: 10.1016/j.freeradbiomed.2006.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/27/2006] [Accepted: 07/01/2006] [Indexed: 11/23/2022]
Abstract
Transferrin in insects is known as an iron transporter, an antibiotic agent, a vitellogenin, and a juvenile hormone-regulated protein. We show here a novel functional role for insect transferrin. Stresses, such as iron overload, bacterial or fungal challenge, cold or heat shock, wounding, and H2O2 or paraquat exposure, cause upregulation of the beetle Apriona germari transferrin (AgTf) gene in the fat body and epidermis, and they cause increased AgTf protein levels. RNA interference (RNAi)-mediated AgTf reduction results in rapid induction of apoptotic cell death in the fat body during exposure to heat stress. The observed effect of AgTf RNAi indicates that AgTf inhibits heat stress-induced apoptotic cell death, suggesting a functional role for AgTf in defense and stress responses in the beetle.
Collapse
Affiliation(s)
- Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Kim HJ, Shin SW, Oh CJ, Lee MH, Yang CH, Park JW. N-t-Butyl hydroxylamine regulates heat shock-induced apoptosis in U937 cells. Redox Rep 2006; 10:287-93. [PMID: 16438800 DOI: 10.1179/135100005x83662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Therefore, compounds that scavenge reactive oxygen species may regulate heat shock-induced cell death. Recently, it has been shown that the decomposition product of the spin-trapping agent alpha-phenyl-N-t-butylnitrone, N-t-butyl hydroxylamine (NtBHA), mimics alpha-phenyl-N-t-butylnitrone and is much more potent in delaying reactive oxygen species-associated senescence. We investigated the protective role of NtBHA against heat shock-induced apoptosis in U937 cells. Upon exposure to heat shock, there was a distinct difference between the untreated cells and the cells pre-treated with 0.1 mM NtBHA for 2 h in regard to apoptotic parameters, cellular redox status, and mitochondrial function. Upon exposure to heat shock, NtBHA pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax, and down-regulation of Bcl-2 compared to untreated cells. This study indicates that NtBHA may play an important role in regulating the apoptosis induced by heat shock, presumably through scavenging of reactive oxygen species.
Collapse
Affiliation(s)
- Hyun Jeong Kim
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu, Korea
| | | | | | | | | | | |
Collapse
|
200
|
Vasilaki A, McArdle F, Iwanejko LM, McArdle A. Adaptive responses of mouse skeletal muscle to contractile activity: The effect of age. Mech Ageing Dev 2006; 127:830-9. [PMID: 16996110 DOI: 10.1016/j.mad.2006.08.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 07/31/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
This study has characterised the time course of two major transcriptional adaptive responses to exercise (changes in antioxidant defence enzyme activity and heat shock protein (HSP) content) in muscles of adult and old male mice following isometric contractions and has examined the mechanisms involved in the age-related reduction in transcription factor activation. Muscles of B6XSJL mice were subjected to isometric contractions and analysed for antioxidant defence enzyme activities, heat shock protein content and transcription factor DNA binding activity. Data demonstrated a significant increase in superoxide dismutase (SOD) and catalase activity and HSP content of muscles of adult mice following contractile activity which was associated with increased activation of the transcription factors, nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1) and heat shock factor (HSF) following contractions. Significant increases in SOD and catalase activity and heat shock cognate (HSC70) content were seen in quiescent muscles of old mice. The increase in antioxidant defence enzyme activity following contractile activity seen in muscles of adult mice was not seen in muscles of old mice and this was associated with a failure to fully activate NF-kappaB and AP-1 following contractions. In contrast, although the production of HSPs was also reduced in muscles of old mice following contractile activity compared with muscles of adult mice following contractions, this was not due to a gross reduction in the DNA binding activity of HSF.
Collapse
Affiliation(s)
- A Vasilaki
- School of Clinical Sciences, University of Liverpool, Liverpool L69 3GA, United Kingdom
| | | | | | | |
Collapse
|