151
|
Zhao X, Posmantur R, Kampfl A, Liu SJ, Wang KK, Newcomb JK, Pike BR, Clifton GL, Hayes RL. Subcellular localization and duration of mu-calpain and m-calpain activity after traumatic brain injury in the rat: a casein zymography study. J Cereb Blood Flow Metab 1998; 18:161-7. [PMID: 9469158 DOI: 10.1097/00004647-199802000-00006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Casein zymographic assays were performed to identify changes in mu-calpain and m-calpain activity in naive, sham-injured, and injured rat cortex at 15 minutes, 3 hours, 6 hours, and 24 hours after unilateral cortical impact brain injury. Cortical samples ipsilateral and contralateral to the site of injury were separated into cytosolic and total membrane fractions. Marked increases in mu-calpain activity in cytosolic fractions in the ipsilateral cortex occurred as early as 15 minutes, became maximal at 6 hours, and decreased at 24 hours to levels observed at 15 minutes after injury. A similar temporal profile of cytosolic mu-calpain activity in the contralateral cortex was observed, although the increases in the contralateral cortex were substantially lower than those in the ipsilateral cortex. Differences were also noted between cytosolic and total membrane fractions. The detection of a shift in mu-calpain activity to the total membrane fraction first occurred at 3 hours after traumatic brain injury and became maximal at 24 hours after traumatic brain injury. This shift in mu-calpain activity between the two fractions could be due to the redistribution of mu-calpain from the cytosol to the membrane. m-Calpain activity was detected only in cytosolic fractions. m-Calpain activity in cytosolic fractions did not differ significantly between ipsilateral and contralateral cortices, and increased in both cortices from 15 minutes to 6 hours after injury. Relative magnitudes of m-calpain versus mu-calpain activity in cytosolic fractions differed at different time points after injury. These studies suggest that traumatic brain injury can activate both calpain isoforms and that calpain activity is not restricted to sites of focal contusion and cell death at the site of impact injury but may represent a more global response to injury.
Collapse
Affiliation(s)
- X Zhao
- Vivian L. Smith Center for Neurologic Research, University of Texas-Houston Health Science Center, Department of Neurosurgery 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
James T, Matzelle D, Bartus R, Hogan EL, Banik NL. New inhibitors of calpain prevent degradation of cytoskeletal and myelin proteins in spinal cord in vitro. J Neurosci Res 1998; 51:218-22. [PMID: 9469575 DOI: 10.1002/(sici)1097-4547(19980115)51:2<218::aid-jnr10>3.0.co;2-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have determined the effects of the calpain inhibitors AK275 and AK295 upon purified m-calpain and calcium-mediated degradation of neurofilament protein (NFP) in rat spinal cord in vitro. After incubation, the soluble radioactivity and/or extent of myelin basic protein (MBP) or NFP degradation was determined. Fifty percent of caseinolytic activity was inhibited by both inhibitors at 0.6 microM concentration, while more than 90% inhibition was seen at 1.6 microM. In contrast, 37% and 64% inhibition of MBP degradation was seen with AK295 and AK275, respectively, at 10 microM concentration. The extent of NFP degradation in spinal cord was quantified from immunoblot enhanced chemiluminescence. The calcium-mediated breakdown of NFP was inhibited by both AK275 and AK295, and the inhibition was dose-dependent. A 50% inhibition of NFP degradation was seen with AK295 at 10 microM and was almost completely inhibited at 25-50 microM. AK295 was slightly more potent than AK275. These studies suggest that these potent calpain inhibitors may be used therapeutically to provide neuroprotection in vivo in experimental central nervous system trauma and ischemia.
Collapse
Affiliation(s)
- T James
- Department of Neurology, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | |
Collapse
|
153
|
Morrison RS, Kinoshita Y, Xiang H, Johnson MD, Kuntz C, Ghatan S, Ho JT, Schwartzkroin PA. Mechanisms of neuronal cell death. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1098-2779(1998)4:3<157::aid-mrdd3>3.0.co;2-l] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
154
|
Abstract
For a long time now, two ubiquitously expressed mammalian calpain isoenzymes have been used to explore the structure and function of calpain. Although these two calpains, mu- and m-calpains, still attract intensive interest because of their unique characteristics, various distinct homologues to the protease domain of mu- and m-calpains have been identified in a variety of organisms. Some of these 'novel' calpain homologues are involved in important biological functions. For example, p94 (also called calpain 3), a mammalian calpain homologue predominantly expressed in skeletal muscle, is genetically proved to be responsible for limb-girdle muscular dystrophy type 2A. Tra-3, a calpain homologue in nematodes, is involved in the sex determination cascade during early development. PalB, a key gene product involved in the alkaline adaptation of Aspergillus nidulans, is the first example of a calpain homologue present in fungi. These findings indicate various important functional roles for intracellular proteases belonging to the calpain superfamily.
Collapse
Affiliation(s)
- H Sorimachi
- Laboratory of Molecular Structure and Function, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan
| | | | | |
Collapse
|
155
|
Drugs in the Management of Cute Traumatic Brain Injury. Phys Med Rehabil Clin N Am 1997. [DOI: 10.1016/s1047-9651(18)30294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
156
|
Abstract
Calpains are a family of calcium-dependent thiol-proteases which are proposed to be involved in many physiological processes as well as pathological conditions. Calpains are likely to be involved in processing of numerous enzymes and cytoskeletal components, thereby linking their activity to a variety of intracellular events. Although widely studied, the precise mechanism(s) involved in calpain activation and activity in vivo remain poorly understood. Initial studies suggested that calpain exists primarily as an inactive proenzyme that required autolytic cleavage for activation. It was also hypothesized that calpain associated with membrane phospholipids, serving to increase calcium sensitivity, facilitating autolytic conversion and thus activating the enzyme. These hypotheses, however, have not been universally accepted and there is increasing evidence that intact, non-autolyzed calpain is the physiologically active calpain form.
Collapse
Affiliation(s)
- G V Johnson
- Department of Psychiatry, University of Alabama at Birmingham, USA.
| | | |
Collapse
|
157
|
Abstract
Excitotoxicity has been implicated as a mechanism of neuronal death in acute and chronic neurologic diseases. Cerebral ischemia, head and spinal cord injury, and prolonged seizure activity are associated with excessive release of glutamate into the extracellular space and subsequent neurotoxicity. Accumulating evidence suggests that impairment of intracellular energy metabolism increases neuronal vulnerability to glutamate which, even when present at physiologic concentrations, can damage neurons. This mechanism of slow excitotoxicity may be involved in neuronal death in chronic neurodegenerative diseases such as the mitochondrial encephalomyopathies, Huntington's disease, spinocerebellar degeneration syndromes, and motor neuron diseases. If so, glutamate antagonists in combination with agents that selectively inhibit the multiple steps downstream of the excitotoxic cascade or help improve intracellular energy metabolism may slow the neurodegenerative process and offer a therapeutic approach to treat these disorders.
Collapse
Affiliation(s)
- P Bittigau
- Department of Pediatric Neurology, Children's Hospital, Humboldt University, Berlin, Germany
| | | |
Collapse
|
158
|
Affiliation(s)
- R C Lin
- Department of Neurobiology and Anatomy, Allegheny University, Philadelphia, Pennsylvania 19102, USA.
| | | | | |
Collapse
|
159
|
Lee KS, Yanamoto H, Fergus A, Hong SC, Kang SD, Cappelletto B, Toyoda T, Kassell NF, Bavbek M, Kwan AL. Calcium-activated proteolysis as a therapeutic target in cerebrovascular disease. Ann N Y Acad Sci 1997; 825:95-103. [PMID: 9369978 DOI: 10.1111/j.1749-6632.1997.tb48419.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- K S Lee
- Department of Neurological Surgery, University of Virginia, Charlottesville 22908, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Saatman KE, Contreras PC, Smith DH, Raghupathi R, McDermott KL, Fernandez SC, Sanderson KL, Voddi M, McIntosh TK. Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp Neurol 1997; 147:418-27. [PMID: 9344566 DOI: 10.1006/exnr.1997.6629] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We evaluated the efficacy of insulin-like growth factor-1 (IGF-1) in attenuating neurobehavioral deficits following lateral fluid percussion (FP) brain injury. Male Sprague-Dawley rats (345-425 g, n = 88) were anesthetized and subjected to FP brain injury of moderate severity (2.4-2.9 atm). In Study 1, IGF-1 (1.0 mg/kg, n = 9) or vehicle (n = 14) was administered by subcutaneous injection at 15 min postinjury and similarly at 12-h intervals for 14 days. In animals evaluated daily for 14 days, IGF-1 treatment attenuated motor dysfunction over the 2-week period (P < 0.02). In Study 2, IGF-1 (4 mg/kg/day, n = 8 uninjured, n = 13 injured) or vehicle (n = 8 uninjured, n = 13 injured) was administered for 2 weeks via a subcutaneous pump implanted 15 min postinjury. IGF-1 administration was associated with increased body weight and mild, transient hypoglycemia which was more pronounced in brain-injured animals. At 2 weeks postinjury (P < 0.05), but not at 48 h or 1 week, brain-injured animals receiving IGF-1 showed improved neuromotor function compared with those receiving vehicle. IGF-1 administration also enhanced learning ability (P < 0.03) and memory retention (P < 0.01) in brain-injured animals at 2 weeks postinjury. Taken together, these data suggest that chronic, posttraumatic administration of the trophic factor IGF-1 may be efficacious in ameliorating neurobehavioral dysfunction associated with traumatic brain injury.
Collapse
Affiliation(s)
- K E Saatman
- Center for Injury Research, Department of Neurosurgery, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Bartus RT. The Calpain Hypothesis of Neurodegeneration: Evidence for a Common Cytotoxic Pathway. Neuroscientist 1997. [DOI: 10.1177/107385849700300513] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Calpain's general function and pathogenic role in the CNS are reviewed. Collectively, the literature indicates that calpain proteolysis plays a common and important role in a variety of acute neurodegenerative conditions, including focal ischemia (stroke), global ischemia, traumatic brain injury, and spinal cord injury. This evidence indicates that 1) calpain is activated in an abnormally sustained fashion during cellular events commonly associated with neurodegeneration (e.g., excessive interstitial glutamate and cytosolic calcium); 2) many of calpain's preferred substrates are degraded as important components in these neurodegenerative conditions; 3) calpain activation occurs early in the pathogenic cascade of each, prior to onset of substantial cell death; and 4) calpain inhibitors can effectively reduce the severity of neuronal damage and loss of function normally associated with these acute neurodegenerative perturbations. Calpain proteolysis is also implicated in chronic neurodegenerative diseases, with the strength of current evidence varying among specific diseases. The evidence accumulated for a plausible role in Alzheimer's disease (AD) is currently the strongest. For example, empirical links have been established between abnormal calpain proteolysis and 1) the cellular formation of classic Alzheimer's pathology, such as β-amyloid plaques, neurofibrillary tangles, and Alz-50 immunoreactivity; 2) the brain regions with greatest concentrations of AD-related pathology; and 3) the degeneration of key brain pathways vulnerable in the early stages of the disease. Similar, though less extensive, evidence exists for a potential role of abnormal calpain proteolysis in Parkinson's disease. Finally, for several other chronic neurodegenerative conditions (e.g., Huntington's disease and amyotrophic lateral sclerosis), early evidence is emerging that calpain may also play some pathogenic role. Thus, these data support the possibility that uncontrolled calpain proteolysis may contribute to and/or accelerate the loss of neurons associated with a wide range of neurodegenerative conditions and may, therefore, represent an important, final common cytotoxic pathway for many diverse forms of neurodegeneration. NEUROSCIENTIST 3:314–327, 1997
Collapse
Affiliation(s)
- Raymond T. Bartus
- Alkermes, Inc. Cambridge, Massachusetts Tufts University Medical Center Boston, Massachusetts
| |
Collapse
|
162
|
Abstract
Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities for treatment with novel neuroprotective strategies.
Collapse
Affiliation(s)
- T K McIntosh
- Department of Neurosurgery, Bioengineering, and Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | |
Collapse
|
163
|
Local blockade of sodium channels by tetrodotoxin ameliorates tissue loss and long-term functional deficits resulting from experimental spinal cord injury. J Neurosci 1997. [PMID: 9151752 DOI: 10.1523/jneurosci.17-11-04359.1997] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although relatively little is known of the mechanisms involved in secondary axonal loss after spinal cord injury (SCI), recent data from in vitro models of white matter (WM) injury have implicated abnormal sodium influx as a key event. We hypothesized that blockade of sodium channels after SCI would reduce WM loss and long-term functional deficits. To test this hypothesis, a sufficient and safe dose (0.15 nmol) of the potent Na+ channel blocker tetrodotoxin (TTX) was determined through a dose-response study. We microinjected TTX or vehicle (VEH) into the injury site at 15 min after a standardized contusive SCI in the rat. Behavioral tests were performed 1 d after injury and weekly thereafter. Quantitative histopathology at 8 weeks postinjury showed that TTX treatment significantly reduced tissue loss at the injury site, with greater effect on sparing of WM than gray matter. TTX did not change the pattern of chronic histopathology typical of this SCI model, but restricted its extent, tripled the area of residual WM at the epicenter, and reduced the average length of the lesions. Serotonin immunoreactivity caudal to the epicenter, a marker for descending motor control axons, was nearly threefold that of VEH controls. The increase in WM at the epicenter was significantly correlated with the decrease in functional deficits. The TTX group exhibited a significantly enhanced recovery of coordinated hindlimb functions, more normal hindlimb reflexes, and earlier establishment of a reflex bladder. The results demonstrate that Na+ channels play a critical role in WM loss in vivo after SCI.
Collapse
|
164
|
Baldwin SA, Gibson T, Callihan CT, Sullivan PG, Palmer E, Scheff SW. Neuronal cell loss in the CA3 subfield of the hippocampus following cortical contusion utilizing the optical disector method for cell counting. J Neurotrauma 1997; 14:385-98. [PMID: 9219853 DOI: 10.1089/neu.1997.14.385] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Unilateral cortical contusion in the rat results in cell loss in both the cortex and hippocampus. Pharmacological intervention with growth factors or excitatory neurotransmitter antagonists may reduce cell loss and improve neurological outcome. The window of opportunity for such intervention remains unclear because a detailed temporal analysis of neuronal loss has not been performed in the rodent cortical contusion model. To elucidate the time course of hippocampal CA3 neuronal death ensuing cortical contusion, we employed the optical disector method for assessing the total number of CA3 neurons at 1 and 6 hours, 1, 2, 10, and 30 days following injury. This stereological technique allows reporting of total cell numbers within a given region and is unaffected by change in the volume of the structure or cell size. A rapid and significant reduction in neurons/mm3 in the ipsilateral CA3 field was observed by 1 h following trauma. However, a significant increase in neurons/mm3 was seen at 30 days postinjury. This surprising finding is a result of CA3 volume shrinkage and redistribution of CA3 neurons. Utilization of the optical disector reveals that regardless of an increase in neurons/mm3 at 30 days following injury, CA3 cell loss reaches 41% of control animals by 1 day posttrauma and remains near that level at all subsequent time points examined. It is estimated that there are about 156,000 neurons in the CA3 region in control animals. By 1 h following cortical contusion the cell population decreases to 93,000 neurons indicating a very rapid cell loss. This suggests a window of less than 24 h for pharmacological intervention in order to save CA3 neurons following cortical contusion.
Collapse
Affiliation(s)
- S A Baldwin
- Sanders-Brown Center on Aging, Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536, USA
| | | | | | | | | | | |
Collapse
|
165
|
Teng YD, Wrathall JR. Local blockade of sodium channels by tetrodotoxin ameliorates tissue loss and long-term functional deficits resulting from experimental spinal cord injury. J Neurosci 1997; 17:4359-66. [PMID: 9151752 PMCID: PMC6573566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although relatively little is known of the mechanisms involved in secondary axonal loss after spinal cord injury (SCI), recent data from in vitro models of white matter (WM) injury have implicated abnormal sodium influx as a key event. We hypothesized that blockade of sodium channels after SCI would reduce WM loss and long-term functional deficits. To test this hypothesis, a sufficient and safe dose (0.15 nmol) of the potent Na+ channel blocker tetrodotoxin (TTX) was determined through a dose-response study. We microinjected TTX or vehicle (VEH) into the injury site at 15 min after a standardized contusive SCI in the rat. Behavioral tests were performed 1 d after injury and weekly thereafter. Quantitative histopathology at 8 weeks postinjury showed that TTX treatment significantly reduced tissue loss at the injury site, with greater effect on sparing of WM than gray matter. TTX did not change the pattern of chronic histopathology typical of this SCI model, but restricted its extent, tripled the area of residual WM at the epicenter, and reduced the average length of the lesions. Serotonin immunoreactivity caudal to the epicenter, a marker for descending motor control axons, was nearly threefold that of VEH controls. The increase in WM at the epicenter was significantly correlated with the decrease in functional deficits. The TTX group exhibited a significantly enhanced recovery of coordinated hindlimb functions, more normal hindlimb reflexes, and earlier establishment of a reflex bladder. The results demonstrate that Na+ channels play a critical role in WM loss in vivo after SCI.
Collapse
Affiliation(s)
- Y D Teng
- Department of Cell Biology, Neurobiology Division, Georgetown University, Washington, D.C. 20007, USA
| | | |
Collapse
|
166
|
Newcomb JK, Kampfl A, Posmantur RM, Zhao X, Pike BR, Liu SJ, Clifton GL, Hayes RL. Immunohistochemical study of calpain-mediated breakdown products to alpha-spectrin following controlled cortical impact injury in the rat. J Neurotrauma 1997; 14:369-83. [PMID: 9219852 DOI: 10.1089/neu.1997.14.369] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study examined the effect of unilateral controlled cortical impact on the appearance of calpain-mediated alpha-spectrin breakdown products (BDPs) in the rat cortex and hippocampus at various times following injury. Coronal sections were taken from animals at 15 min, 1 h, 3 h, 6 h, and 24 h after injury and immunolabeled with an antibody that recognizes calpain-mediated BDPs to alpha-spectrin (Roberts-Lewis et al., 1994). Sections from a separate group of rats were also taken at the same times and stained with hematoxylin and eosin. Analyses of early time points (15 min, 1 h, 3 h, and 6 h following injury) revealed alpha-spectrin BDPs in structurally intact neuronal soma and dendrites in cortex ipsilateral to site of injury that was not present in tissue from sham-injured control rats. By 24 h after injury labeling was not restricted to clearly defined neuronal structures in ipsilateral cortex, although there was an increased extent of diffuse labeling. BDPs to alpha-spectrin in axons were not detected until 24 h after injury, in contrast to the more rapid accumulation of BDPs observed in neuronal soma and dendrites. The presence of BDPs to alpha-spectrin in the cortex at the site of impact, and in the rostral and contralateral cortex, coincided with morphopathology detected by hematoxylin and eosin. alpha-Spectrin BDPs were also observed in the hippocampus ipsilateral to the injury in the absence of overt cell death. This investigation provides further evidence that calpain is activated after controlled cortical impact and could contribute to necrosis at the site of injury. The appearance of calpain-mediated BDPs at sites distal to the contusion site and in the hippocampus also suggests that calpain activation may precede and/or occur in the absence of extensive morphopathological changes.
Collapse
Affiliation(s)
- J K Newcomb
- Vivian L. Smith Center for Neurologic Research, Department of Neurosurgery, University of Texas Houston Health Science Center, Houston 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
The calcium-dependent protease calpain may contribute to neuronal death in acute neurological insults and may be activated very early in the neuronal injury cascade. We assessed the role of calpain in a model of rapid, reversible dendritic injury in murine cortical cultures. Brief sublethal NMDA exposure (10-30 microM for 10 min) resulted in focal swellings, or varicosities, along the length of neuronal dendrites as visualized with the lipophilic membrane tracer Dil or with immunostaining using antibodies to the somatodendritic protein MAP2. These varicosities appeared within minutes of NMDA exposure and recovered spontaneously within 2 hr after NMDA removal. Addition of the calpain inhibitors MDL28,170, calpain inhibitors I and II, and leupeptin (all 1-100 microM) had little effect on the development of NMDA-induced dendrite injury. However, the resolution of varicosities was substantially delayed by addition of calpain inhibitors after sublethal excitotoxic exposure. Using Western blots and immunocytochemistry, we observed reactivity for a calpain-specific spectrin proteolytic fragment during the period of recovery from dendritic swelling, but not during its formation. Spectrin breakdown product immunoreactivity could be blocked by the calpain inhibitor MDL28,170 and appeared in neuronal cell bodies and neurites in a time course that paralleled dendritic recovery. These observations suggest that calcium-dependent proteolysis contributes to recovery of dendritic structure after NMDA exposure. Calpain activation is not necessarily detrimental and may play a role in dendritic remodeling after neuronal injury.
Collapse
|
168
|
Kampfl A, Posmantur RM, Zhao X, Schmutzhard E, Clifton GL, Hayes RL. Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: implications for pathology and therapy: a review and update. J Neurotrauma 1997; 14:121-34. [PMID: 9104930 DOI: 10.1089/neu.1997.14.121] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Much recent research has focused on the pathological significance of calcium accumulation in the central nervous system (CNS) following cerebral ischemia, spinal cord injury (SCI), and traumatic brain injury (TBI). Disturbances in neuronal calcium homeostasis may result in the activation of several calcium-sensitive enzymes, including lipases, kinases, phosphatases, and proteases. One potential pathogenic event in a number of acute CNS insults, including TBI, is the activation of the calpains, calcium-activated intracellular proteases. This article reviews new evidence indicating that overactivation of calpains plays a major role in the neurodegenerative cascade following TBI in vivo. Further, this article presents an overview from in vivo and in vitro models of CNS injuries suggesting that administration of calpain inhibitors during the initial 24-h period following injury can attenuate injury-induced derangements of neuronal structure and function. Lastly, this review addresses the potential contribution of other proteases to neuronal damage following TBI.
Collapse
Affiliation(s)
- A Kampfl
- Department of Neurology, University of Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
169
|
Faddis BT, Hasbani MJ, Goldberg MP. Calpain activation contributes to dendritic remodeling after brief excitotoxic injury in vitro. J Neurosci 1997; 17:951-9. [PMID: 8994050 PMCID: PMC6573163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The calcium-dependent protease calpain may contribute to neuronal death in acute neurological insults and may be activated very early in the neuronal injury cascade. We assessed the role of calpain in a model of rapid, reversible dendritic injury in murine cortical cultures. Brief sublethal NMDA exposure (10-30 microM for 10 min) resulted in focal swellings, or varicosities, along the length of neuronal dendrites as visualized with the lipophilic membrane tracer Dil or with immunostaining using antibodies to the somatodendritic protein MAP2. These varicosities appeared within minutes of NMDA exposure and recovered spontaneously within 2 hr after NMDA removal. Addition of the calpain inhibitors MDL28,170, calpain inhibitors I and II, and leupeptin (all 1-100 microM) had little effect on the development of NMDA-induced dendrite injury. However, the resolution of varicosities was substantially delayed by addition of calpain inhibitors after sublethal excitotoxic exposure. Using Western blots and immunocytochemistry, we observed reactivity for a calpain-specific spectrin proteolytic fragment during the period of recovery from dendritic swelling, but not during its formation. Spectrin breakdown product immunoreactivity could be blocked by the calpain inhibitor MDL28,170 and appeared in neuronal cell bodies and neurites in a time course that paralleled dendritic recovery. These observations suggest that calcium-dependent proteolysis contributes to recovery of dendritic structure after NMDA exposure. Calpain activation is not necessarily detrimental and may play a role in dendritic remodeling after neuronal injury.
Collapse
Affiliation(s)
- B T Faddis
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
170
|
Li Z, Ortega-Vilain AC, Patil GS, Chu DL, Foreman JE, Eveleth DD, Powers JC. Novel peptidyl alpha-keto amide inhibitors of calpains and other cysteine proteases. J Med Chem 1996; 39:4089-98. [PMID: 8831774 DOI: 10.1021/jm950541c] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A series of new dipeptidyl alpha-keto amides of the general structure R1-L-Leu-D,L-AA-CONH-R2 were synthesized and evaluated as inhibitors for the cysteine proteases calpain I, calpain II, and cathepsin B. They combine 10 different N-protecting groups (R1), 3 amino acids residues in P1 (AA), and 44 distinct substituents on the alpha-keto amide nitrogen (R2). In general, calpain II was more sensitive to these inhibitors than calpain I, with a large number of inhibitors displaying dissociation constants (Ki) in the 10-100 nM range. Calpain I was also effectively inhibited, but very low Ki values were observed with a smaller number of inhibitors than with calpain II. Cathepsin B was weakly inhibited by most compounds in this study. The best inhibitors for calpain II were Z-Leu-Abu-CONH-CH2-CHOH-C6H5 (Ki = 15 nM), Z-Leu-Abu-CONH-CH2-2-pyridyl (Ki = 17 nM), and Z-Leu-Abu-CONH-CH2-C6H3(3,5(OMe)2) (Ki = 22 nM). The best calpain I inhibitor in this study was Z-Leu-Nva-CONH-CH2-2-pyridyl (Ki = 19 nM). The peptide alpha-keto amide Z-Leu-Abu-CONH-(CH2)2-3-indolyl was the best inhibitor for cathepsin B (Ki = 31 nM). Some compounds acted as specific calpain inhibitors, with comparable activity on both calpains I and II and a lack of activity on cathepsin B (e.g., 40, 42, 48, 70). Others were specific inhibitors for calpain I (e.g., 73) or calpain II (e.g., 18, 19, 33, 35, 56). Such inhibitors may be useful in elucidating the physiological and pathological events involving these proteases and may become possible therapeutic agents.
Collapse
Affiliation(s)
- Z Li
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, USA
| | | | | | | | | | | | | |
Collapse
|
171
|
Kimura H, Meaney DF, McGowan JC, Grossman RI, Lenkinski RE, Ross DT, McIntosh TK, Gennarelli TA, Smith DH. Magnetization transfer imaging of diffuse axonal injury following experimental brain injury in the pig: characterization by magnetization transfer ratio with histopathologic correlation. J Comput Assist Tomogr 1996; 20:540-6. [PMID: 8708052 DOI: 10.1097/00004728-199607000-00007] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Our goal was to evaluate the use of the magnetization transfer ratio (MTR) in the detection of diffuse axonal injury (DAI) resulting from traumatic brain injury in a swine model. METHOD DAI was created by applying a nonimpact, coronal plane, rotational acceleration to the heads of miniature swine (n = 4). GE imaging was performed with and without off-resonance MT saturation. Histologic correlation of axonal injury with MRI was performed 7 days postinjury. Thirty-one subcortical white matter regions and 10 deep white matter regions were selected for the direct comparison of histologic data and MTR measurements. RESULTS Nineteen of 41 examined locations exhibited histologic evidence of axonal injury. The mean MTR in regions with axonal damage was significantly less than in regions without axonal damage. These changes were observed both in regions demonstrating high signal intensity on T2-weighted images (T2WI) (p <0.0001, n = 6) and in regions with no signal intensity change on T2WI (p < 0.05, n = 13). CONCLUSION These results suggest that the measurement of MTR may have the potential for evaluation axonal damage in DAI following traumatic brain injury even when conventional T2WI does not demonstrate the lesion.
Collapse
Affiliation(s)
- H Kimura
- Department of Radiology, University of Pennsylvania School of Medicine, PA 19104-6316, USA
| | | | | | | | | | | | | | | | | |
Collapse
|