151
|
Effect of troxerutin on insulin signaling molecules in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic adult male rat. Mol Cell Biochem 2014; 395:11-27. [PMID: 24880482 DOI: 10.1007/s11010-014-2107-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 01/01/2023]
Abstract
Troxerutin is a trihydroxyethylated derivative of the flavonoid, rutin. It has been reported to possess the hepatoprotective, nephroprotective, antioxidant, anti-inflammatory, and antihyperlipidemic activities. Troxerutin treatment reduced the blood glucose and glycosylated hemoglobin levels in high-cholesterol-induced insulin-resistant mice and in type-2 diabetic patients. However, the mechanism by which it exhibits antidiabetic property was unknown. Therefore, the present study was designed to evaluate the effect of troxerutin on insulin signaling molecules in gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic rats. Wistar male albino rats were selected and divided into five groups. Group I: Control. Group II: High fat and sucrose-induced type-2 diabetic rats. Group III: Type-2 diabetic rats treated with troxerutin (150 mg/kg body weight/day orally). Group IV: Type-2 diabetic rats treated with metformin (50 mg/kg body weight/day orally). Group V: Normal rats treated with troxerutin (150 mg/kg body weight/day orally). After 30 days of treatment, fasting blood glucose, oral glucose tolerance, serum lipid profile, and the levels of insulin signaling molecules, glycogen, glucose uptake, and oxidation in gastrocnemius muscle were assessed. Diabetic rats showed impairment in insulin signaling molecules (IR, p-IRS-1(Tyr632), p-Akt(Ser473), β-arrestin-2, c-Src, p-AS160(Thr642), and GLUT4 proteins), glycogen concentration, glucose uptake, and oxidation. Oral administration of troxerutin showed near normal levels of blood glucose, serum insulin, lipid profile, and insulin signaling molecules as well as GLUT4 proteins in type-2 diabetic rats. It is concluded from the present study that troxerutin may play a significant role in the management of type-2 diabetes mellitus, by improving the insulin signaling molecules and glucose utilization in the skeletal muscle.
Collapse
|
152
|
Hançer NJ, Qiu W, Cherella C, Li Y, Copps KD, White MF. Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation. J Biol Chem 2014; 289:12467-84. [PMID: 24652289 PMCID: PMC4007441 DOI: 10.1074/jbc.m114.554162] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/18/2014] [Indexed: 12/27/2022] Open
Abstract
IRS1 and IRS2 are key substrates of the insulin receptor tyrosine kinase. Mass spectrometry reveals more than 50 phosphorylated IRS1 serine and threonine residues (Ser(P)/Thr(P) residues) in IRS1 from insulin-stimulated cells or human tissues. We investigated a subset of IRS1 Ser(P)/Thr(P) residues using a newly developed panel of 25 phospho-specific monoclonal antibodies (αpS/TmAb(Irs1)). CHO cells overexpressing the human insulin receptor and rat IRS1 were stimulated with insulin in the absence or presence of inhibitors of the PI3K → Akt → mechanistic target of rapamycin (mTOR) → S6 kinase or MEK pathways. Nearly all IRS1 Ser(P)/Thr(P) residues were stimulated by insulin and significantly suppressed by PI3K inhibition; fewer were suppressed by Akt or mTOR inhibition, and none were suppressed by MEK inhibition. Insulin-stimulated Irs1 tyrosine phosphorylation (Tyr(P)(Irs1)) was enhanced by inhibition of the PI3K → Akt → mTOR pathway and correlated with decreased Ser(P)-302(Irs1), Ser(P)-307(Irs1), Ser(P)-318(Irs1), Ser(P)-325(Irs1), and Ser(P)-346(Irs1). Metabolic stress modeled by anisomycin, thapsigargin, or tunicamycin increased many of the same Ser(P)/Thr(P) residues as insulin, some of which (Ser(P)-302(Irs1), Ser(P)-307(Irs1), and four others) correlated significantly with impaired insulin-stimulated Tyr(P)(Irs1). Thus, IRS1 Ser(P)/Thr(P) is an integrated response to insulin stimulation and metabolic stress, which associates with reduced Tyr(P)(Irs1) in CHO(IR)/IRS1 cells.
Collapse
Affiliation(s)
- Nancy J. Hançer
- From the Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Wei Qiu
- From the Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Christine Cherella
- From the Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Yedan Li
- From the Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Kyle D. Copps
- From the Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Morris F. White
- From the Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
153
|
Guadalupe-Grau A, Larsen S, Guerra B, Calbet JAL, Dela F, Helge JW. Influence of age on leptin induced skeletal muscle signalling. Acta Physiol (Oxf) 2014; 211:214-28. [PMID: 24605926 DOI: 10.1111/apha.12273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/03/2013] [Accepted: 03/04/2014] [Indexed: 12/27/2022]
Abstract
AIM Age associated fat mass accumulation could be because of dysregulation of leptin signalling in skeletal muscle. Thus, we investigated total protein expression and phosphorylation levels of the long isoform of the leptin receptor (OB-Rb), and leptin signalling through janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3), insulin receptor substrate 1 (IRS-1), AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC), combined with the leptin signalling inhibitors suppressor of cytokine signalling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) in human skeletal muscle of different age. METHODS Vastus lateralis muscle biopsies were obtained from 39 men matched for BMI < 30 kg m(-2) and separated into three groups: 13 young (Y, 24 ± 4 years); 14 middle aged (MA, 44 ± 5 years) and 12 aged (A, 58 ± 8 years) subjects. RESULTS Whole body fat percentage and plasma leptin were higher (P < 0.05), whereas lean mass, plasma free testosterone and total testosterone were lower (P < 0.05) in A compared to Y. Skeletal muscle OB-Rb (170 KDa) protein expression and pTyr(1141) -OB-R170 were comparable between groups, whereas pTyr(985) -OB-R170 was lower in A compared to Y (P < 0.05). pSTAT3 levels tended (P = 0.09) to be lower (50%) in A compared to Y. In A, muscle PTP1B was greater and IRS-1 lower than Y and MA respectively (P < 0.05). PTyr(612) -IRS-1 tended to be lower in A than in Y (P = 0.09). Suppressor of cytokine signalling 3 (SOCS3) protein expression, pJAK2, pSer(1101) -IRS-1, pAMPKα and pACCβ were similar between groups. CONCLUSION Age is associated with dysregulation of the leptin signalling and increased PTP1B protein expression in skeletal muscle.
Collapse
Affiliation(s)
- A. Guadalupe-Grau
- Department of Physical Education; University of Las Palmas de Gran Canaria; Las Palmas de Gran Canaria Spain
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - S. Larsen
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - B. Guerra
- Department of Clinical Sciences; Molecular and Translational Endocrinology Group; Associate Unit of University of Las Palmas de Gran Canaria and Biomedical Institute “Alberto Sols” - CSIC; Las Palmas de Gran Canaria Spain
- ICIC; Cancer Research Institute of the Canary Islands; Las Palmas de Gran Canaria Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias; Las Palmas de Gran Canaria Spain
| | - J. A. L. Calbet
- Department of Physical Education; University of Las Palmas de Gran Canaria; Las Palmas de Gran Canaria Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias; Las Palmas de Gran Canaria Spain
| | - F. Dela
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - J. W. Helge
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
154
|
Camerino GM, Bouchè M, De Bellis M, Cannone M, Liantonio A, Musaraj K, Romano R, Smeriglio P, Madaro L, Giustino A, De Luca A, Desaphy JF, Camerino DC, Pierno S. Protein kinase C theta (PKCθ) modulates the ClC-1 chloride channel activity and skeletal muscle phenotype: a biophysical and gene expression study in mouse models lacking the PKCθ. Pflugers Arch 2014; 466:2215-28. [PMID: 24643479 DOI: 10.1007/s00424-014-1495-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/02/2014] [Accepted: 03/05/2014] [Indexed: 12/21/2022]
Abstract
In skeletal muscle, the resting chloride conductance (gCl), due to the ClC-1 chloride channel, controls the sarcolemma electrical stability. Indeed, loss-of-function mutations in ClC-1 gene are responsible of myotonia congenita. The ClC-1 channel can be phosphorylated and inactivated by protein kinases C (PKC), but the relative contribution of each PKC isoforms is unknown. Here, we investigated on the role of PKCθ in the regulation of ClC-1 channel expression and activity in fast- and slow-twitch muscles of mouse models lacking PKCθ. Electrophysiological studies showed an increase of gCl in the PKCθ-null mice with respect to wild type. Muscle excitability was reduced accordingly. However, the expression of the ClC-1 channel, evaluated by qRT-PCR, was not modified in PKCθ-null muscles suggesting that PKCθ affects the ClC-1 activity. Pharmacological studies demonstrated that although PKCθ appreciably modulates gCl, other isoforms are still active and concur to this role. The modification of gCl in PKCθ-null muscles has caused adaptation of the expression of phenotype-specific genes, such as calcineurin and myocyte enhancer factor-2, supporting the role of PKCθ also in the settings of muscle phenotype. Importantly, the lack of PKCθ has prevented the aging-related reduction of gCl, suggesting that its modulation may represent a new strategy to contrast the aging process.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, 70125, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H, Blaner WS, Karsenty G. Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 2014; 124:1-13. [PMID: 24642469 DOI: 10.1172/jci72323] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/22/2014] [Indexed: 12/24/2022] Open
Abstract
Insulin signaling in osteoblasts has been shown recently to contribute to whole-body glucose homeostasis in animals fed a normal diet; however, it is unknown whether bone contributes to the insulin resistance that develops in animals challenged by a high-fat diet (HFD). Here, we evaluated the consequences of osteoblast-specific overexpression of or loss of insulin receptor in HFD-fed mice. We determined that the severity of glucose intolerance and insulin resistance that mice develop when fed a HFD is in part a consequence of osteoblast-dependent insulin resistance. Insulin resistance in osteoblasts led to a decrease in circulating levels of the active form of osteocalcin, thereby decreasing insulin sensitivity in skeletal muscle. Insulin resistance developed in osteoblasts as the result of increased levels of free saturated fatty acids, which promote insulin receptor ubiquitination and subsequent degradation. Together, these results underscore the involvement of bone, among other tissues, in the disruption of whole-body glucose homeostasis resulting from a HFD and the involvement of insulin and osteocalcin cross-talk in glucose intolerance. Furthermore, our data indicate that insulin resistance develops in bone as the result of lipotoxicity-associated loss of insulin receptors.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Bone Resorption/metabolism
- Bone Resorption/pathology
- Bone and Bones/metabolism
- Diet, High-Fat
- Fatty Acids, Nonesterified/metabolism
- Glucose/metabolism
- Glucose Intolerance/metabolism
- Homeostasis
- Humans
- Insulin Resistance/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Biological
- Muscle, Skeletal/metabolism
- Osteoblasts/metabolism
- Osteocalcin/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Up-Regulation
Collapse
|
156
|
Abstract
The insulin receptor (IR) is an important hub in insulin signaling and its activation is tightly regulated. Upon insulin stimulation, IR is activated through autophosphorylation, and consequently phosphorylates several insulin receptor substrate (IRS) proteins, including IRS1-6, Shc and Gab1. Certain adipokines have also been found to activate IR. On the contrary, PTP, Grb and SOCS proteins, which are responsible for the negative regulation of IR, are characterized as IR inhibitors. Additionally, many other proteins have been identified as IR substrates and participate in the insulin signaling pathway. To provide a more comprehensive understanding of the signals mediated through IR, we reviewed the upstream and downstream signal molecules of IR, summarized the positive and negative modulators of IR, and discussed the IR substrates and interacting adaptor proteins. We propose that the molecular events associated with IR should be integrated to obtain a better understanding of the insulin signaling pathway and diabetes.
Collapse
Affiliation(s)
- Yipeng Du
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | |
Collapse
|
157
|
Zabielski P, Blachnio-Zabielska A, Lanza IR, Gopala S, Manjunatha S, Jakaitis DR, Persson XM, Gransee J, Klaus KA, Schimke JM, Jensen MD, Nair KS. Impact of insulin deprivation and treatment on sphingolipid distribution in different muscle subcellular compartments of streptozotocin-diabetic C57Bl/6 mice. Am J Physiol Endocrinol Metab 2014; 306:E529-42. [PMID: 24368672 PMCID: PMC3948970 DOI: 10.1152/ajpendo.00610.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/18/2013] [Indexed: 12/14/2022]
Abstract
Insulin deprivation in type 1 diabetes (T1D) individuals increases lipolysis and plasma free fatty acids (FFA) concentration, which can stimulate synthesis of intramyocellular bioactive lipids such as ceramides (Cer) and long-chain fatty acid-CoAs (LCFa-CoAs). Ceramide was shown to decrease muscle insulin sensitivity, and at mitochondrial levels it stimulates reactive oxygen species production. Here, we show that insulin deprivation in streptozotocin diabetic C57BL/6 mice increases quadriceps muscle Cer content, which was correlated with a concomitant decrease in the body fat and increased plasma FFA, glycosylated hemoglobin level (%Hb A1c), and muscular LCFa-CoA content. The alternations were accompanied by an increase in protein expression in LCFa-CoA and Cer synthesis (FATP1/ACSVL5, CerS1, CerS5), a decrease in the expression of genes implicated in muscle insulin sensitivity (GLUT4, GYS1), and inhibition of insulin signaling cascade by Aktα and GYS3β phosphorylation under acute insulin stimulation. Both the content and composition of sarcoplasmic fraction sphingolipids were most affected by insulin deprivation, whereas mitochondrial fraction sphingolipids remained stable. The observed effects of insulin deprivation were reversed, except for content and composition of LCFa-CoA, CerS protein expression, GYS1 gene expression, and phosphorylation status of Akt and GYS3β when exogenous insulin was provided by subcutaneous insulin implants. Principal component analysis and Pearson's correlation analysis revealed close relationships between the features of the diabetic phenotype, the content of LCFa-CoAs and Cers containing C18-fatty acids in sarcoplasm, but not in mitochondria. Insulin replacement did not completely rescue the phenotype, especially regarding the content of LCFa-CoA, or proteins implicated in Cer synthesis and muscle insulin sensitivity. These persistent changes might contribute to muscle insulin resistance observed in T1D individuals.
Collapse
Affiliation(s)
- Piotr Zabielski
- Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Turner N, Cooney GJ, Kraegen EW, Bruce CR. Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J Endocrinol 2014; 220:T61-79. [PMID: 24323910 DOI: 10.1530/joe-13-0397] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids (FAs) are essential elements of all cells and have significant roles as energy substrates, components of cellular structure and signalling molecules. The storage of excess energy intake as fat in adipose tissue is an evolutionary advantage aimed at protecting against starvation, but in much of today's world, humans are faced with an unlimited availability of food, and the excessive accumulation of fat is now a major risk for human health, especially the development of type 2 diabetes (T2D). Since the first recognition of the association between fat accumulation, reduced insulin action and increased risk of T2D, several mechanisms have been proposed to link excess FA availability to reduced insulin action, with some of them being competing or contradictory. This review summarises the evidence for these mechanisms in the context of excess dietary FAs generating insulin resistance in muscle, the major tissue involved in insulin-stimulated disposal of blood glucose. It also outlines potential problems with models and measurements that may hinder as well as help improve our understanding of the links between FAs and insulin action.
Collapse
Affiliation(s)
- Nigel Turner
- Department of Pharmacology School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia Diabetes and Obesity Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
159
|
Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 2014; 6:6/1/a009191. [PMID: 24384568 DOI: 10.1101/cshperspect.a009191] [Citation(s) in RCA: 979] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the wake of the worldwide increase in type-2 diabetes, a major focus of research is understanding the signaling pathways impacting this disease. Insulin signaling regulates glucose, lipid, and energy homeostasis, predominantly via action on liver, skeletal muscle, and adipose tissue. Precise modulation of this pathway is vital for adaption as the individual moves from the fed to the fasted state. The positive and negative modulators acting on different steps of the signaling pathway, as well as the diversity of protein isoform interaction, ensure a proper and coordinated biological response to insulin in different tissues. Whereas genetic mutations are causes of rare and severe insulin resistance, obesity can lead to insulin resistance through a variety of mechanisms. Understanding these pathways is essential for development of new drugs to treat diabetes, metabolic syndrome, and their complications.
Collapse
Affiliation(s)
- Jérémie Boucher
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
160
|
Akhmedov D, Berdeaux R. The effects of obesity on skeletal muscle regeneration. Front Physiol 2013; 4:371. [PMID: 24381559 PMCID: PMC3865699 DOI: 10.3389/fphys.2013.00371] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/28/2013] [Indexed: 12/18/2022] Open
Abstract
Obesity and metabolic disorders such as type 2 diabetes mellitus are accompanied by increased lipid deposition in adipose and non-adipose tissues including liver, pancreas, heart and skeletal muscle. Recent publications report impaired regenerative capacity of skeletal muscle following injury in obese mice. Although muscle regeneration has not been thoroughly studied in obese and type 2 diabetic humans and mechanisms leading to decreased muscle regeneration in obesity remain elusive, the initial findings point to the possibility that muscle satellite cell function is compromised under conditions of lipid overload. Elevated toxic lipid metabolites and increased pro-inflammatory cytokines as well as insulin and leptin resistance that occur in obese animals may contribute to decreased regenerative capacity of skeletal muscle. In addition, obesity-associated alterations in the metabolic state of skeletal muscle fibers and satellite cells may directly impair the potential for satellite cell-mediated repair. Here we discuss recent studies that expand our understanding of how obesity negatively impacts skeletal muscle maintenance and regeneration.
Collapse
Affiliation(s)
- Dmitry Akhmedov
- Department of Integrative Biology and Pharmacology and Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston Houston, TX, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology and Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston Houston, TX, USA
| |
Collapse
|
161
|
Hepatitis C virus nonstructural protein 5A favors upregulation of gluconeogenic and lipogenic gene expression leading towards insulin resistance: a metabolic syndrome. Arch Virol 2013; 159:1017-25. [PMID: 24240483 DOI: 10.1007/s00705-013-1892-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/09/2013] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis C is a lethal blood-borne infection often associated with a number of pathologies such as insulin resistance and other metabolic abnormalities. Insulin is a key hormone that regulates the expression of metabolic pathways and favors homeostasis. In this study, we demonstrated the molecular mechanism of hepatitis C virus (HCV) nonstructural protein 5A (NS5A)-induced metabolic dysregulation. We showed that transient expression of HCV NS5A in human hepatoma cells increased lipid droplet formation through enhanced lipogenesis. We also showed increased transcriptional expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and diacylglycerol acyltransferase-1 (DGAT-1) in NS5A-expressing cells. On the other hand, there was significantly reduced transcriptional expression of microsomal triglyceride transfer protein (MTP) and peroxisome proliferator-activated receptor γ (PPARγ) in cells expressing HCV NS5A. Furthermore, increased gluconeogenic gene expression was observed in HCV-NS5A-expressing cells. In addition, it was also shown that HCV-NS5A-expressing hepatoma cells show serine phosphorylation of IRS-1, thereby hampering metabolic activity and contributing to insulin resistance. Therefore, this study reveals that HCV NS5A is involved in enhanced gluconeogenic and lipogenic gene expression, which triggers metabolic abnormality and impairs insulin signaling pathway.
Collapse
|
162
|
Marino JS, Hinds TD, Potter RA, Ondrus E, Onion JL, Dowling A, McLoughlin TJ, Sanchez ER, Hill JW. Suppression of protein kinase C theta contributes to enhanced myogenesis in vitro via IRS1 and ERK1/2 phosphorylation. BMC Cell Biol 2013; 14:39. [PMID: 24053798 PMCID: PMC3848841 DOI: 10.1186/1471-2121-14-39] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/17/2013] [Indexed: 12/03/2022] Open
Abstract
Background Differentiation and fusion of skeletal muscle myoblasts into multi-nucleated myotubes is required for neonatal development and regeneration in adult skeletal muscle. Herein, we report novel findings that protein kinase C theta (PKCθ) regulates myoblast differentiation via phosphorylation of insulin receptor substrate-1 and ERK1/2. Results In this study, PKCθ knockdown (PKCθshRNA) myotubes had reduced inhibitory insulin receptor substrate-1 ser1095 phosphorylation, enhanced myoblast differentiation and cell fusion, and increased rates of protein synthesis as determined by [3H] phenylalanine incorporation. Phosphorylation of insulin receptor substrate-1 ser632/635 and extracellular signal-regulated kinase1/2 (ERK1/2) was increased in PKCθshRNA cells, with no change in ERK5 phosphorylation, highlighting a PKCθ-regulated myogenic pathway. Inhibition of PI3-kinase prevented cell differentiation and fusion in control cells, which was attenuated in PKCθshRNA cells. Thus, with reduced PKCθ, differentiation and fusion occur in the absence of PI3-kinase activity. Inhibition of the ERK kinase, MEK1/2, impaired differentiation and cell fusion in control cells. Differentiation was preserved in PKCθshRNA cells treated with a MEK1/2 inhibitor, although cell fusion was blunted, indicating PKCθ regulates differentiation via IRS1 and ERK1/2, and this occurs independently of MEK1/2 activation. Conclusion Cellular signaling regulating the myogenic program and protein synthesis are complex and intertwined. These studies suggest that PKCθ regulates myogenic and protein synthetic signaling via the modulation of IRS1and ERK1/2 phosphorylation. Myotubes lacking PKCθ had increased rates of protein synthesis and enhanced myotube development despite reduced activation of the canonical anabolic-signaling pathway. Further investigation of PKCθ regulated signaling may reveal important interactions regulating skeletal muscle health in an insulin resistant state.
Collapse
Affiliation(s)
- Joseph S Marino
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Cubbon RM, Mercer BN, Sengupta A, Kearney MT. Importance of insulin resistance to vascular repair and regeneration. Free Radic Biol Med 2013; 60:246-63. [PMID: 23466555 DOI: 10.1016/j.freeradbiomed.2013.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/22/2013] [Accepted: 02/23/2013] [Indexed: 01/14/2023]
Abstract
Metabolic insulin resistance is apparent across a spectrum of clinical disorders, including obesity and diabetes, and is characterized by an adverse clustering of cardiovascular risk factors related to abnormal cellular responses to insulin. These disorders are becoming increasingly prevalent and represent a major global public health concern because of their association with significant increases in atherosclerosis-related mortality. Endogenous repair mechanisms are thought to retard the development of vascular disease, and a growing evidence base supports the adverse impact of the insulin-resistant phenotype upon indices of vascular repair. Beyond the impact of systemic metabolic changes, emerging data from murine studies also provide support for abnormal insulin signaling at the level of vascular cells in retarding vascular repair. Interrelated pathophysiological factors, including reduced nitric oxide bioavailability, oxidative stress, altered growth factor activity, and abnormal intracellular signaling, are likely to act in conjunction to impede vascular repair while also driving vascular damage. Understanding of these processes is shaping novel therapeutic paradigms that aim to promote vascular repair and regeneration, either by recruiting endogenous mechanisms or by the administration of cell-based therapies.
Collapse
Affiliation(s)
- Richard M Cubbon
- Multidisciplinary Cardiovascular Research Centre, LIGHT Laboratories, The University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | |
Collapse
|
164
|
Nowotny B, Zahiragic L, Krog D, Nowotny PJ, Herder C, Carstensen M, Yoshimura T, Szendroedi J, Phielix E, Schadewaldt P, Schloot NC, Shulman GI, Roden M. Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans. Diabetes 2013; 62:2240-8. [PMID: 23454694 PMCID: PMC3712035 DOI: 10.2337/db12-1179] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 02/25/2013] [Indexed: 01/06/2023]
Abstract
Several mechanisms, such as innate immune responses via Toll-like receptor-4, accumulation of diacylglycerols (DAG)/ceramides, and activation of protein kinase C (PKC), are considered to underlie skeletal muscle insulin resistance. In this study, we examined initial events occurring during the onset of insulin resistance upon oral high-fat loading compared with lipid and low-dose endotoxin infusion. Sixteen lean insulin-sensitive volunteers received intravenous fat (iv fat), oral fat (po fat), intravenous endotoxin (lipopolysaccharide [LPS]), and intravenous glycerol as control. After 6 h, whole-body insulin sensitivity was reduced by iv fat, po fat, and LPS to 60, 67, and 48%, respectively (all P < 0.01), which was due to decreased nonoxidative glucose utilization, while hepatic insulin sensitivity was unaffected. Muscle PKCθ activation increased by 50% after iv and po fat, membrane Di-C18:2 DAG species doubled after iv fat and correlated with PKCθ activation after po fat, whereas ceramides were unchanged. Only after LPS, circulating inflammatory markers (tumor necrosis factor-α, interleukin-6, and interleukin-1 receptor antagonist), their mRNA expression in subcutaneous adipose tissue, and circulating cortisol were elevated. Po fat ingestion rapidly induces insulin resistance by reducing nonoxidative glucose disposal, which associates with PKCθ activation and a rise in distinct myocellular membrane DAG, while endotoxin-induced insulin resistance is exclusively associated with stimulation of inflammatory pathways.
Collapse
Affiliation(s)
- Bettina Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Lejla Zahiragic
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- University Clinics for Endocrinology and Diabetology, Heinrich Heine University, Düsseldorf, Germany
| | - Dorothea Krog
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Peter J. Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Maren Carstensen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Toru Yoshimura
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- University Clinics for Endocrinology and Diabetology, Heinrich Heine University, Düsseldorf, Germany
| | - Esther Phielix
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Peter Schadewaldt
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Nanette C. Schloot
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- University Clinics for Endocrinology and Diabetology, Heinrich Heine University, Düsseldorf, Germany
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- University Clinics for Endocrinology and Diabetology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
165
|
Sobhia ME, Grewal BK, Paul MLS, Patel J, Kaur A, Haokip T, Kokkula A. Protein kinase C inhibitors: a patent review (2010 – present). Expert Opin Ther Pat 2013; 23:1451-68. [DOI: 10.1517/13543776.2013.812073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
166
|
Badin PM, Vila IK, Louche K, Mairal A, Marques MA, Bourlier V, Tavernier G, Langin D, Moro C. High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle. Endocrinology 2013; 154:1444-53. [PMID: 23471217 DOI: 10.1210/en.2012-2029] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Elevated expression/activity of adipose triglyceride lipase (ATGL) and/or reduced activity of hormone-sensitive lipase (HSL) in skeletal muscle are causally linked to insulin resistance in vitro. We investigated here the effect of high-fat feeding on skeletal muscle lipolytic proteins, lipotoxicity, and insulin signaling in vivo. Five-week-old C3H mice were fed normal chow diet (NCD) or 45% kcal high-fat diet (HFD) for 4 weeks. Wild-type and HSL knockout mice fed NCD were also studied. Whole-body and muscle insulin sensitivity, as well as lipolytic protein expression, lipid levels, and insulin signaling in skeletal muscle, were measured. HFD induced whole-body insulin resistance and glucose intolerance and reduced skeletal muscle glucose uptake compared with NCD. HFD increased skeletal muscle total diacylglycerol (DAG) content, protein kinase Cθ and protein kinase Cε membrane translocation, and impaired insulin signaling as reflected by a robust increase of basal Ser1101 insulin receptor substrate 1 phosphorylation (2.8-fold, P < .05) and a decrease of insulin-stimulated v-Akt murine thymoma viral oncogene homolog Ser473 (-37%, P < .05) and AS160 Thr642 (-47%, P <.01) phosphorylation. We next showed that HFD strongly reduced HSL phosphorylation at Ser660. HFD significantly up-regulated the muscle protein content of the ATGL coactivator comparative gene identification 58 and triacylglycerol hydrolase activity, despite a lower ATGL protein content. We further show a defective skeletal muscle insulin signaling and DAG accumulation in HSL knockout compared with wild-type mice. Together, these data suggest a pathophysiological link between altered skeletal muscle lipase expression and DAG-mediated insulin resistance in mice.
Collapse
Affiliation(s)
- Pierre-Marie Badin
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Protein kinase C-theta (PKCθ) phosphorylates and inhibits the guanine exchange factor, GIV/Girdin. Proc Natl Acad Sci U S A 2013; 110:5510-5. [PMID: 23509302 DOI: 10.1073/pnas.1303392110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gα-interacting, vesicle-associated protein (GIV/Girdin) is a multidomain signal transducer that enhances PI3K-Akt signals downstream of both G-protein-coupled receptors and growth factor receptor tyrosine kinases during diverse biological processes and cancer metastasis. Mechanistically, GIV serves as a non-receptor guanine nucleotide exchange factor (GEF) that enhances PI3K signals by activating trimeric G proteins, Gαi1/2/3. Site-directed mutations in GIV's GEF motif disrupt its ability to bind or activate Gi and abrogate PI3K-Akt signals; however, nothing is known about how GIV's GEF function is regulated. Here we report that PKCθ, a novel protein kinase C, down-regulates GIV's GEF function by phosphorylating Ser(S)1689 located within GIV's GEF motif. We demonstrate that PKCθ specifically binds and phosphorylates GIV at S1689, and this phosphoevent abolishes GIV's ability to bind and activate Gαi. HeLa cells stably expressing the phosphomimetic mutant of GIV, GIV-S1689→D, are phenotypically identical to those expressing the GEF-deficient F1685A mutant: Actin stress fibers are decreased and cell migration is inhibited whereas cell proliferation is triggered, and Akt (a.k.a. protein kinase B, PKB) activation is impaired downstream of both the lysophosphatidic acid receptor, a G-protein-coupled receptor, and the insulin receptor, a receptor tyrosine kinase. These findings indicate that phosphorylation of GIV by PKCθ inhibits GIV's GEF function and generates a unique negative feedback loop for downregulating the GIV-Gi axis of prometastatic signaling downstream of multiple ligand-activated receptors. This phosphoevent constitutes the only regulatory pathway described for terminating signaling by any of the growing family of nonreceptor GEFs that modulate G-protein activity.
Collapse
|
168
|
Eringa EC, Serne EH, Meijer RI, Schalkwijk CG, Houben AJHM, Stehouwer CDA, Smulders YM, van Hinsbergh VWM. Endothelial dysfunction in (pre)diabetes: characteristics, causative mechanisms and pathogenic role in type 2 diabetes. Rev Endocr Metab Disord 2013; 14:39-48. [PMID: 23417760 DOI: 10.1007/s11154-013-9239-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endothelial dysfunction associated with diabetes and cardiovascular disease is characterized by changes in vasoregulation, enhanced generation of reactive oxygen intermediates, inflammatory activation, and altered barrier function. These endothelial alterations contribute to excess cardiovascular disease in diabetes, but may also play a role in the pathogenesis of diabetes, especially type 2. The mechanisms underlying endothelial dysfunction in diabetes differ between type 1 (T1D) and type 2 diabetes (T2D): hyperglycemia contributes to endothelial dysfunction in all individuals with diabetes, whereas the causative mechanisms in T2D also include impaired insulin signaling in endothelial cells, dyslipidemia and altered secretion of bioactive substances (adipokines) by adipose tissue. The close association of so-called perivascular adipose tissue with arteries and arterioles facilitates the exposure of vascular endothelium to adipokines, particularly if inflammation activates the adipose tissue. Glucose and adipokines activate specific intracellular signaling pathways in endothelium, which in concert result in endothelial dysfunction in diabetes. Here, we review the characteristics of endothelial dysfunction in diabetes, the causative mechanisms involved and the role of endothelial dysfunction(s) in the pathogenesis of T2D. Finally, we will discuss the therapeutic potential of endothelial dysfunction in T2D.
Collapse
Affiliation(s)
- Etto C Eringa
- Departments of Physiology, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Sourbier C, Scroggins BT, Ratnayake R, Prince TL, Lee S, Lee MJ, Nagy PL, Lee YH, Trepel JB, Beutler JA, Linehan WM, Neckers L. Englerin A stimulates PKCθ to inhibit insulin signaling and to simultaneously activate HSF1: pharmacologically induced synthetic lethality. Cancer Cell 2013; 23:228-37. [PMID: 23352416 PMCID: PMC3574184 DOI: 10.1016/j.ccr.2012.12.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/19/2012] [Accepted: 12/18/2012] [Indexed: 12/31/2022]
Abstract
The natural product englerin A (EA) binds to and activates protein kinase C-θ (PKCθ). EA-dependent activation of PKCθ induces an insulin-resistant phenotype, limiting the access of tumor cells to glucose. At the same time, EA causes PKCθ-mediated phosphorylation and activation of the transcription factor heat shock factor 1, an inducer of glucose dependence. By promoting glucose addiction, while simultaneously starving cells of glucose, EA proves to be synthetically lethal to highly glycolytic tumors.
Collapse
Affiliation(s)
- Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Bradley T. Scroggins
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Ranjala Ratnayake
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Thomas L. Prince
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Sunmin Lee
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Min-Jung Lee
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | | | - Young H. Lee
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Jane B. Trepel
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - John A. Beutler
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
170
|
CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. Proc Natl Acad Sci U S A 2013; 110:1869-74. [PMID: 23302688 DOI: 10.1073/pnas.1219456110] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Comparative gene identification 58 (CGI-58) is a lipid droplet-associated protein that promotes the hydrolysis of triglyceride by activating adipose triglyceride lipase. Loss-of-function mutations in CGI-58 in humans lead to Chanarin-Dorfman syndrome, a condition in which triglyceride accumulates in various tissues, including the skin, liver, muscle, and intestines. Therefore, without adequate CGI-58 expression, lipids are stored rather than used for fuel, signaling intermediates, and membrane biosynthesis. CGI-58 knockdown in mice using antisense oligonucleotide (ASO) treatment also leads to severe hepatic steatosis as well as increased hepatocellular diacylglycerol (DAG) content, a well-documented trigger of insulin resistance. Surprisingly, CGI-58 knockdown mice remain insulin-sensitive, seemingly dissociating DAG from the development of insulin resistance. Therefore, we sought to determine the mechanism responsible for this paradox. Hyperinsulinemic-euglycemic clamp studies reveal that the maintenance of insulin sensitivity with CGI-58 ASO treatment could entirely be attributed to protection from lipid-induced hepatic insulin resistance, despite the apparent lipotoxic conditions. Analysis of the cellular compartmentation of DAG revealed that DAG increased in the membrane fraction of high fat-fed mice, leading to PKCε activation and hepatic insulin resistance. However, DAG increased in lipid droplets or lipid-associated endoplasmic reticulum rather than the membrane of CGI-58 ASO-treated mice, and thus prevented PKCε translocation to the plasma membrane and induction of insulin resistance. Taken together, these results explain the disassociation of hepatic steatosis and DAG accumulation from hepatic insulin resistance in CGI-58 ASO-treated mice, and highlight the importance of intracellular compartmentation of DAG in causing lipotoxicity and hepatic insulin resistance.
Collapse
|
171
|
Penkov DN, Egorov AD, Mozgovaya MN, Tkachuk VA. Insulin resistance and adipogenesis: role of transcription and secreted factors. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:8-18. [PMID: 23379555 DOI: 10.1134/s0006297913010021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Insulin stimulates carbohydrate uptake by cells and induces their conversion into lipids as a more efficient form of energy storage. Insulin resistance is associated with a decrease in glucose uptake by muscle and adipose cells and also with a decrease in glycogen synthesis on retention of glucose synthesis by liver cells. Disorders in the insulin signaling cascade on development of insulin resistance can be caused by both changes in functioning of transcriptional factors and in the secretion profile of hormone-like substances. Diacylglycerols and ceramides responsible for activation of some kinases and phosphatases can directly trigger these changes in muscle and liver cells. In adipose tissue, insulin mainly stimulates adipogenesis (adipocyte differentiation) and lipogenesis (lipid accumulation in the cells). Thus, studies on the action mechanisms of factors influencing adipogenesis can be of help for understanding the molecular mechanisms of insulin resistance.
Collapse
Affiliation(s)
- D N Penkov
- Russian Cardiology Research and Production Center, Moscow, 121552, Russia.
| | | | | | | |
Collapse
|
172
|
Zheng Z, Xu X, Zhang X, Wang A, Zhang C, Hüttemann M, Grossman LI, Chen LC, Rajagopalan S, Sun Q, Zhang K. Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model. J Hepatol 2013; 58:148-54. [PMID: 22902548 PMCID: PMC3527686 DOI: 10.1016/j.jhep.2012.08.009] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Air pollution is a global challenge to public health. Epidemiological studies have linked exposure to ambient particulate matter with aerodynamic diameters<2.5 μm (PM(2.5)) to the development of metabolic diseases. In this study, we investigated the effect of PM(2.5) exposure on liver pathogenesis and the mechanism by which ambient PM(2.5) modulates hepatic pathways and glucose homeostasis. METHODS Using "Ohio's Air Pollution Exposure System for the Interrogation of Systemic Effects (OASIS)-1", we performed whole-body exposure of mice to concentrated ambient PM(2.5) for 3 or 10 weeks. Histological analyses, metabolic studies, as well as gene expression and molecular signal transduction analyses were performed to determine the effects and mechanisms by which PM(2.5) exposure promotes liver pathogenesis. RESULTS Mice exposed to PM(2.5) for 10 weeks developed a non-alcoholic steatohepatitis (NASH)-like phenotype, characterized by hepatic steatosis, inflammation, and fibrosis. After PM(2.5) exposure, mice displayed impaired hepatic glycogen storage, glucose intolerance, and insulin resistance. Further investigation revealed that exposure to PM(2.5) led to activation of inflammatory response pathways mediated through c-Jun N-terminal kinase (JNK), nuclear factor kappa B (NF-κB), and Toll-like receptor 4 (TLR4), but suppression of the insulin receptor substrate 1 (IRS1)-mediated signaling. Moreover, PM(2.5) exposure repressed expression of the peroxisome proliferator-activated receptor (PPAR)γ and PPARα in the liver. CONCLUSIONS Our study suggests that PM(2.5) exposure represents a significant "hit" that triggers a NASH-like phenotype and impairs hepatic glucose metabolism. The information from this work has important implications in our understanding of air pollution-associated metabolic disorders.
Collapse
Affiliation(s)
- Ze Zheng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xiaohua Xu
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH 43210, USA
| | - Xuebao Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Aixia Wang
- Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, Ohio State University, Columbus, OH 43210, USA
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH 43210, USA
| | - Chunbin Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lung Chi Chen
- Department of Environmental Medicine, New York University, Tuxedo, NY 10987, USA
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Qinghua Sun
- Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, Ohio State University, Columbus, OH 43210, USA
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH 43210, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
173
|
High-fat load: mechanism(s) of insulin resistance in skeletal muscle. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2012; 2:S31-S36. [PMID: 26052434 DOI: 10.1038/ijosup.2012.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Skeletal muscle from sedentary obese patients is characterized by depressed electron transport activity, reduced expression of genes required for oxidative metabolism, altered mitochondrial morphology and lower overall mitochondrial content. These findings imply that obesity, or more likely the metabolic imbalance that causes obesity, leads to a progressive decline in mitochondrial function, eventually culminating in mitochondrial dissolution or mitoptosis. A decrease in the sensitivity of skeletal muscle to insulin represents one of the earliest maladies associated with high dietary fat intake and weight gain. Considerable evidence has accumulated to suggest that the cytosolic ectopic accumulation of fatty acid metabolites, including diacylglycerol and ceramides, underlies the development of insulin resistance in skeletal muscle. However, an alternative mechanism has recently been evolving, which places the etiology of insulin resistance in the context of cellular/mitochondrial bioenergetics and redox systems biology. Overnutrition, particularly from high-fat diets, generates fuel overload within the mitochondria, resulting in the accumulation of partially oxidized acylcarnitines, increased mitochondrial hydrogen peroxide (H2O2) emission and a shift to a more oxidized intracellular redox environment. Blocking H2O2 emission prevents the shift in redox environment and preserves insulin sensitivity, providing evidence that the mitochondrial respiratory system is able to sense and respond to cellular metabolic imbalance. Mitochondrial H2O2 emission is a major regulator of protein redox state, as well as the overall cellular redox environment, raising the intriguing possibility that elevated H2O2 emission from nutrient overload may represent the underlying basis for the development of insulin resistance due to disruption of normal redox control mechanisms regulating protein function, including the insulin signaling and glucose transport processes.
Collapse
|
174
|
TAK-242, a small-molecule inhibitor of Toll-like receptor 4 signalling, unveils similarities and differences in lipopolysaccharide- and lipid-induced inflammation and insulin resistance in muscle cells. Biosci Rep 2012; 33:37-47. [PMID: 23050932 PMCID: PMC3522475 DOI: 10.1042/bsr20120098] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Emerging evidence suggests that TLR (Toll-like receptor) 4 and downstream pathways [MAPKs (mitogen-activated protein kinases) and NF-κB (nuclear factor κB)] play an important role in the pathogenesis of insulin resistance. LPS (lipopolysaccharide) and saturated NEFA (non-esterified fatty acids) activate TLR4, and plasma concentrations of these TLR4 ligands are elevated in obesity and Type 2 diabetes. Our goals were to define the role of TLR4 on the insulin resistance caused by LPS and saturated NEFA, and to dissect the independent contribution of LPS and NEFA to the activation of TLR4-driven pathways by employing TAK-242, a specific inhibitor of TLR4. LPS caused robust activation of the MAPK and NF-κB pathways in L6 myotubes, along with impaired insulin signalling and glucose transport. TAK-242 completely prevented the inflammatory response (MAPK and NF-κB activation) caused by LPS, and, in turn, improved LPS-induced insulin resistance. Similar to LPS, stearate strongly activated MAPKs, although stimulation of the NF-κB axis was modest. As seen with LPS, the inflammatory response caused by stearate was accompanied by impaired insulin action. TAK-242 also blunted stearate-induced inflammation; yet, the protective effect conferred by TAK-242 was partial and observed only on MAPKs. Consequently, the insulin resistance caused by stearate was only partially improved by TAK-242. In summary, TAK-242 provides complete and partial protection against LPS- and NEFA-induced inflammation and insulin resistance, respectively. Thus, LPS-induced insulin resistance depends entirely on TLR4, whereas NEFA works through TLR4-dependent and -independent mechanisms to impair insulin action.
Collapse
|
175
|
Kang JH, Toita R, Kim CW, Katayama Y. Protein kinase C (PKC) isozyme-specific substrates and their design. Biotechnol Adv 2012; 30:1662-72. [PMID: 22841933 DOI: 10.1016/j.biotechadv.2012.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 11/30/2022]
|
176
|
Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012; 55:2565-2582. [PMID: 22869320 PMCID: PMC4011499 DOI: 10.1007/s00125-012-2644-8] [Citation(s) in RCA: 733] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022]
Abstract
The insulin receptor substrate proteins IRS1 and IRS2 are key targets of the insulin receptor tyrosine kinase and are required for hormonal control of metabolism. Tissues from insulin-resistant and diabetic humans exhibit defects in IRS-dependent signalling, implicating their dysregulation in the initiation and progression of metabolic disease. However, IRS1 and IRS2 are regulated through a complex mechanism involving phosphorylation of >50 serine/threonine residues (S/T) within their long, unstructured tail regions. In cultured cells, insulin-stimulated kinases (including atypical PKC, AKT, SIK2, mTOR, S6K1, ERK1/2 and ROCK1) mediate feedback (autologous) S/T phosphorylation of IRS, with both positive and negative effects on insulin sensitivity. Additionally, insulin-independent (heterologous) kinases can phosphorylate IRS1/2 under basal conditions (AMPK, GSK3) or in response to sympathetic activation and lipid/inflammatory mediators, which are present at elevated levels in metabolic disease (GRK2, novel and conventional PKCs, JNK, IKKβ, mPLK). An emerging view is that the positive/negative regulation of IRS by autologous pathways is subverted/co-opted in disease by increased basal and other temporally inappropriate S/T phosphorylation. Compensatory hyperinsulinaemia may contribute strongly to this dysregulation. Here, we examine the links between altered patterns of IRS S/T phosphorylation and the emergence of insulin resistance and diabetes.
Collapse
Affiliation(s)
- K D Copps
- Howard Hughes Medical Institute, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, CLS 16020, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - M F White
- Howard Hughes Medical Institute, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, CLS 16020, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
177
|
Arunkumar E, Anuradha CV. Genistein promotes insulin action through adenosine monophosphate-activated protein kinase activation and p70 ribosomal protein S6 kinase 1 inhibition in the skeletal muscle of mice fed a high energy diet. Nutr Res 2012; 32:617-25. [PMID: 22935345 DOI: 10.1016/j.nutres.2012.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 06/02/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022]
Abstract
Genistein (GEN), a soy isoflavone, exerts insulin-sensitizing actions in animals; however, the underlying mechanisms have not been determined. Because GEN is a known activator of adenosine monophosphate-activated protein kinase (AMPK), we hypothesize that GEN activates insulin signaling through AMPK activation. To test this hypothesis, a high fat-high fructose diet (HFFD)-fed mice model of insulin resistance was administered GEN, and the insulin signaling pathway proteins in the skeletal muscle were examined. Hyperglycemia and hyperinsulinemia observed in HFFD-fed mice were significantly lowered by GEN. GEN increased insulin-stimulated tyrosine phosphorylation of insulin receptor-β and insulin receptor substrate (IRS) 1 but down-regulated IRS-1 serine phosphorylation in the skeletal muscle of HFFD-fed mice. Furthermore, GEN treatment improved muscle IRS-1-associated phospatidylinositol-3 kinase expression, phosphorylation of Akt at Ser(473), and translocation of glucose transporter subtype 4. Phosphorylation of AMPK at Thr(172) and acetyl coenzyme A carboxylase (ACC) at Ser(79) was augmented, whereas phosphorylation of p70 ribosomal protein S6 kinase 1 at Thr(389) was significantly decreased after GEN treatment in the skeletal muscle of HFFD-fed mice. These results suggest that GEN might improve insulin action in the skeletal muscle by targeting AMPK.
Collapse
Affiliation(s)
- Elumalai Arunkumar
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | | |
Collapse
|
178
|
Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death. Exp Cell Res 2012; 318:1745-58. [PMID: 22652453 DOI: 10.1016/j.yexcr.2012.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/25/2012] [Accepted: 04/29/2012] [Indexed: 01/02/2023]
Abstract
The adapters IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression of IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2.
Collapse
|
179
|
Reversal of muscle insulin resistance by weight reduction in young, lean, insulin-resistant offspring of parents with type 2 diabetes. Proc Natl Acad Sci U S A 2012; 109:8236-40. [PMID: 22547801 DOI: 10.1073/pnas.1205675109] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To examine the role of intramyocellular lipid (IMCL) accumulation as well as circulating cytokines, branched-chain amino acids and acylcarnitines in the pathogenesis of muscle insulin resistance in healthy, young, lean insulin-resistant offspring of parents with type 2 diabetes (IR offspring), we measured these factors in plasma and used (1)H magnetic resonance spectroscopy to assess IMCL content and hyperinsulinemic-euglycemic clamps using [6,6-(2)H(2)] glucose to assess rates of insulin-stimulated peripheral glucose metabolism before and after weight reduction. Seven lean (body mass index < 25 kg/m(2)), young, sedentary IR offspring were studied before and after weight stabilization following a hypocaloric (1,200 Kcal) diet for ∼9 wks. This diet resulted in an average weight loss of 4.1 ± 0.6 kg (P < 0.0005), which was associated with an ∼30% reduction of IMCL from 1.1 ± 0.2% to 0.8 ± 0.1% (P = 0.045) and an ∼30% improvement in insulin-stimulated muscle glucose uptake [3.7 ± 0.3 vs. 4.8 ± 0.1 mg/(kg-min), P = 0.01]. This marked improvement in insulin-stimulated peripheral insulin responsiveness occurred independently of changes in plasma concentrations of TNF-α, IL-6, total adiponectin, C-reactive protein, acylcarnitines, and branched-chain amino acids. In conclusion, these data support the hypothesis that IMCL accumulation plays an important role in causing muscle insulin resistance in young, lean IR offspring, and that both are reversible with modest weight loss.
Collapse
|
180
|
Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell 2012; 148:852-71. [PMID: 22385956 DOI: 10.1016/j.cell.2012.02.017] [Citation(s) in RCA: 1575] [Impact Index Per Article: 121.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Indexed: 02/07/2023]
Abstract
Insulin resistance is a complex metabolic disorder that defies explanation by a single etiological pathway. Accumulation of ectopic lipid metabolites, activation of the unfolded protein response (UPR) pathway, and innate immune pathways have all been implicated in the pathogenesis of insulin resistance. However, these pathways are also closely linked to changes in fatty acid uptake, lipogenesis, and energy expenditure that can impact ectopic lipid deposition. Ultimately, these cellular changes may converge to promote the accumulation of specific lipid metabolites (diacylglycerols and/or ceramides) in liver and skeletal muscle, a common final pathway leading to impaired insulin signaling and insulin resistance.
Collapse
Affiliation(s)
- Varman T Samuel
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
181
|
Inazuka F, Sugiyama N, Tomita M, Abe T, Shioi G, Esumi H. Muscle-specific knock-out of NUAK family SNF1-like kinase 1 (NUAK1) prevents high fat diet-induced glucose intolerance. J Biol Chem 2012; 287:16379-89. [PMID: 22418434 PMCID: PMC3351321 DOI: 10.1074/jbc.m111.302687] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
NUAK1 is a member of the AMP-activated protein kinase-related kinase family. Recent studies have shown that NUAK1 is involved in cellular senescence and motility in epithelial cells and fibroblasts. However, the physiological roles of NUAK1 are poorly understood because of embryonic lethality in NUAK1 null mice. The purpose of this study was to elucidate the roles of NUAK1 in adult tissues. We determined the tissue distribution of NUAK1 and generated muscle-specific NUAK1 knock-out (MNUAK1KO) mice. For phenotypic analysis, whole body glucose homeostasis and muscle glucose metabolism were examined. Quantitative phosphoproteome analysis of soleus muscle was performed to understand the molecular mechanisms underlying the knock-out phenotype. Nuak1 mRNA was preferentially expressed in highly oxidative tissues such as brain, heart, and soleus muscle. On a high fat diet, MNUAK1KO mice had a lower fasting blood glucose level, greater glucose tolerance, higher insulin sensitivity, and higher concentration of muscle glycogen than control mice. Phosphoproteome analysis revealed that phosphorylation of IRS1 Ser-1097 was markedly decreased in NUAK1-deficient muscle. Consistent with this, insulin signaling was enhanced in the soleus muscle of MNUAK1KO mice, as evidenced by increased phosphorylation of IRS1 Tyr-608, AKT Thr-308, and TBC1D4 Thr-649. These observations suggest that a physiological role of NUAK1 is to suppress glucose uptake through negative regulation of insulin signaling in oxidative muscle.
Collapse
Affiliation(s)
- Fumika Inazuka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | | | | | | | | | | |
Collapse
|
182
|
Goto-Inoue N, Manabe Y, Miyatake S, Ogino S, Morishita A, Hayasaka T, Masaki N, Setou M, Fujii NL. Visualization of dynamic change in contraction-induced lipid composition in mouse skeletal muscle by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal Bioanal Chem 2012; 403:1863-71. [DOI: 10.1007/s00216-012-5809-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
|
183
|
Eringa EC, Bakker W, van Hinsbergh VWM. Paracrine regulation of vascular tone, inflammation and insulin sensitivity by perivascular adipose tissue. Vascul Pharmacol 2012; 56:204-9. [PMID: 22366250 DOI: 10.1016/j.vph.2012.02.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 01/25/2023]
Abstract
A small amount of adipose tissue associated with small arteries and arterioles is encountered both in mice and man. This perivascular adipose tissue (PVAT) has a paracrine effect on the vascular tone regulation. PVAT is expanded in obesity and in diabetes. This expansion not only involves enlargement of fat cells, but also the accumulation of inflammatory cells and a shift in the production of adipokines and cytokines. This effect is illustrated in this review by the effect of PVAT-derived factors of insulin-mediated vasoregulation in mouse resistance arteries. Insulin sensitivity of endothelial cells is also involved in the insulin-mediated regulation of muscle glucose uptake. Insulin affects vasoregulation by acting on different signaling pathways regulating NO and endothelin-1 release. This process is influenced by various adipokines and inflammatory mediators released from PVAT, and is affected by the degree of expansion and content of inflammatory cells. It is modulated by adiponectin (via 5' adenosine monophosphate-activated protein kinase, AMPK), TNFα (via c-jun N-terminal kinase) and free fatty acids (via protein kinase C-θ). PVAT thus provides an important site of control of vascular (dys)function in obesity and type 2 diabetes. An altered profile of adipokine and cytokine production by PVAT of resistance arteries may also contribute to or modulate hypertension, but a causal role in hypertension has still to be established.
Collapse
Affiliation(s)
- Etto C Eringa
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
184
|
Gao ZG, Ye JP. Why do anti-inflammatory therapies fail to improve insulin sensitivity? Acta Pharmacol Sin 2012; 33:182-8. [PMID: 22036866 PMCID: PMC3270211 DOI: 10.1038/aps.2011.131] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/06/2011] [Indexed: 12/25/2022]
Abstract
Chronic inflammation occurs in obese conditions in both humans and animals. It also contributes to the pathogenesis of type 2 diabetes (T2D) through insulin resistance, a status in which the body loses its ability to respond to insulin. Inflammation impairs insulin signaling through the functional inhibition of IRS-1 and PPARγ. Insulin sensitizers (such as rosiglitazone and pioglitazone) inhibit inflammation while improving insulin sensitivity. Therefore, anti-inflammatory agents have been suggested as a treatment strategy for insulin resistance. This strategy has been tested in laboratory studies and clinical trials for more than 10 years; however, no significant progress has been made in any of the model systems. This status has led us to re-evaluate the biological significance of chronic inflammation in obesity. Recent studies have consistently asserted that obesity-associated inflammation helps to maintain insulin sensitivity. Inflammation stimulates local adipose tissue remodeling and promotes systemic energy expenditure. We propose that these beneficial activities of inflammation provide an underlying mechanism for the failure of anti-inflammatory therapy in the treatment of insulin resistance. Current literature will be reviewed in this article to present evidence that supports this viewpoint.
Collapse
Affiliation(s)
- Zhan-guo Gao
- Antioxidant and Gene Regulation Lab, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Jian-ping Ye
- Antioxidant and Gene Regulation Lab, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| |
Collapse
|
185
|
Osanai T, Tanaka M, Magota K, Tomita H, Okumura K. Coupling factor 6-induced activation of ecto-F1F(o) complex induces insulin resistance, mild glucose intolerance and elevated blood pressure in mice. Diabetologia 2012; 55:520-9. [PMID: 22038518 DOI: 10.1007/s00125-011-2341-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/20/2011] [Indexed: 01/03/2023]
Abstract
AIMS/HYPOTHESIS Despite advances in pharmacological treatments, diabetes with hypertension continues to be a major public health problem with high morbidity and mortality rates. We recently identified a circulating peptide coupling factor 6 (CF6), which binds to the plasma membrane ATP synthase (ecto-F(1)F(o) complex), resulting in intracellular acidosis. We investigated whether overexpression of CF6 contributes to diabetes and hypertension by intracellular acidosis. METHODS Transgenic mice overexpressing CF6 (also known as ATP5J) were generated, and physiological, biochemical and molecular biology studies were performed. RESULTS CF6 overexpression elicited a sustained decrease in intracellular pH in tissues (aorta, kidney, skeletal muscle and liver, with the exception of adipose tissue) that express its receptor, the β-subunit of ecto-F(1)F(o) complex. Consistent with the receptor distribution, phospho-insulin receptor β, phosphoinositide 3-kinase activity and the phospho-Akt1:total Akt1 ratio were all decreased in the skeletal muscle and the liver in transgenic compared with wild-type mice, resulting in a decrease of plasma membrane-bound GLUT4 and an increase in hepatic glucose production. Under a high-sucrose diet, transgenic mice had insulin resistance and mild glucose intolerance; under a high-salt diet, they had elevated blood pressure with increased renal RAS-related C3 botulinum substrate 1 (RAC1)-GTP, which is an activator of mineralocorticoid receptor. CONCLUSIONS/INTERPRETATION Through its action on the β-subunit of ecto-F(1)F(o) complex, which results in intracellular acidosis, CF6 plays a crucial role in the development of insulin resistance and hypertension. This finding might advance our understanding of the mechanisms underlying diabetes and hypertension, possibly also providing a novel therapeutic target against cardiovascular disease.
Collapse
Affiliation(s)
- T Osanai
- Department of Cardiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | | | | | | | | |
Collapse
|
186
|
Abstract
With the diabetes epidemic reaching menacing proportions worldwide, there is an urgent need for the development of cost-efficient prevention strategies to be effective at the population level. Great potential in this direction lies in properly designed, large-scale dietary interventions. The macronutrient composition and the caloric content of our diet are major determinants of glucose homeostasis and there is a continuously growing list of foods, nutrients or individual compounds that have been associated with an increased or reduced incidence of diabetes mellitus. These include fat, carbohydrates, fibre, alcohol, polyphenols and other micronutrients or individual dietary compounds, which have been shown to either promote or prevent a progression towards a (pre-)diabetic state. This review aims to briefly summarize relevant epidemiological data linking foods to diabetes and to provide insights into the mechanisms through which these effects are mediated. These include improvement of insulin sensitivity or promotion of insulin resistance, regulation of inflammatory pathways, regulation of glucose transport and tissue glucose uptake, aggravation or attenuation of postprandial glycaemia/insulinaemia, interactions with hormonal responses and β-cell-dependent mechanisms.
Collapse
Affiliation(s)
- Theodoros Thomas
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
187
|
Maeno Y, Li Q, Park K, Rask-Madsen C, Gao B, Matsumoto M, Liu Y, Wu IH, White MF, Feener EP, King GL. Inhibition of insulin signaling in endothelial cells by protein kinase C-induced phosphorylation of p85 subunit of phosphatidylinositol 3-kinase (PI3K). J Biol Chem 2011; 287:4518-30. [PMID: 22158866 DOI: 10.1074/jbc.m111.286591] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The regulation of endothelial function by insulin is consistently abnormal in insulin-resistant states and diabetes. Protein kinase C (PKC) activation has been reported to inhibit insulin signaling selectively in endothelial cells via the insulin receptor substrate/PI3K/Akt pathway to reduce the activation of endothelial nitric-oxide synthase (eNOS). In this study, it was observed that PKC activation differentially inhibited insulin receptor substrate 1/2 (IRS1/2) signaling of insulin's activation of PI3K/eNOS by decreasing only tyrosine phosphorylation of IRS2. In addition, PKC activation, by general activator and specifically by angiotensin II, increased the phosphorylation of p85/PI3K, which decreases its association with IRS1 and activation. Thr-86 of p85/PI3K was identified to be phosphorylated by PKC activation and confirmed to affect IRS1-mediated activation of Akt/eNOS by insulin and VEGF using a deletion mutant of the Thr-86 region of p85/PI3K. Thus, PKC and angiotensin-induced phosphorylation of Thr-86 of p85/PI3K may partially inhibit the activation of PI3K/eNOS by multiple cytokines and contribute to endothelial dysfunction in metabolic disorders.
Collapse
Affiliation(s)
- Yasuhiro Maeno
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Sancho V, Berna MJ, Thill M, Jensen RT. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:2145-2156. [PMID: 21810446 PMCID: PMC3217170 DOI: 10.1016/j.bbamcr.2011.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 02/08/2023]
Abstract
The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal (GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin (CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA was present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCK(A)-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125(FAK) and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ's direct association with AKT, RafA, RafC and Lyn. These results show for the first time the PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth).
Collapse
Affiliation(s)
- Veronica Sancho
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Marc J. Berna
- Universitätsklinikum Eppendorf, Medizinische Klinik I, 20246 Hamburg, Germany
| | - Michelle Thill
- Universitätsklinikum Eppendorf, Klinik und Poliklinik für Augenheilkunde, 20246 Hamburg, Germany
| | - R. T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| |
Collapse
|
189
|
Houtkooper RH, Argmann C, Houten SM, Cantó C, Jeninga EH, Andreux PA, Thomas C, Doenlen R, Schoonjans K, Auwerx J. The metabolic footprint of aging in mice. Sci Rep 2011; 1:134. [PMID: 22355651 PMCID: PMC3216615 DOI: 10.1038/srep00134] [Citation(s) in RCA: 411] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/14/2011] [Indexed: 12/19/2022] Open
Abstract
Aging is characterized by a general decline in cellular function, which ultimately will affect whole body homeostasis. Although DNA damage and oxidative stress all contribute to aging, metabolic dysfunction is a common hallmark of aging at least in invertebrates. Since a comprehensive overview of metabolic changes in otherwise healthy aging mammals is lacking, we here compared metabolic parameters of young and 2 year old mice. We systemically integrated in vivo phenotyping with gene expression, biochemical analysis, and metabolomics, thereby identifying a distinguishing metabolic footprint of aging. Among the affected pathways in both liver and muscle we found glucose and fatty acid metabolism, and redox homeostasis. These alterations translated in decreased long chain acylcarnitines and increased free fatty acid levels and a marked reduction in various amino acids in the plasma of aged mice. As such, these metabolites serve as biomarkers for aging and healthspan.
Collapse
Affiliation(s)
- Riekelt H Houtkooper
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fe´de´rale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Kewalramani G, Fink LN, Asadi F, Klip A. Palmitate-activated macrophages confer insulin resistance to muscle cells by a mechanism involving protein kinase C θ and ε. PLoS One 2011; 6:e26947. [PMID: 22046423 PMCID: PMC3202600 DOI: 10.1371/journal.pone.0026947] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/06/2011] [Indexed: 12/16/2022] Open
Abstract
Background Macrophage-derived factors contribute to whole-body insulin resistance, partly by impinging on metabolically active tissues. As proof of principle for this interaction, conditioned medium from macrophages treated with palmitate (CM-PA) reduces insulin action and glucose uptake in muscle cells. However, the mechanism whereby CM-PA confers this negative response onto muscle cells remains unknown. Methodology/Principal Findings L6-GLUT4myc myoblasts were exposed for 24 h to palmitate-free conditioned medium from RAW 264.7 macrophages pre-treated with 0.5 mM palmitate for 6 h. This palmitate-free CM-PA, containing selective cytokines and chemokines, inhibited myoblast insulin-stimulated insulin receptor substrate 1 (IRS1) tyrosine phosphorylation, AS160 phosphorylation, GLUT4 translocation and glucose uptake. These effects were accompanied by a rise in c-Jun N-terminal kinase (JNK) activation, degradation of Inhibitor of κBα (IκBα), and elevated expression of proinflammatory cytokines in myoblasts. Notably, CM-PA caused IRS1 phosphorylation on Ser1101, and phosphorylation of novel PKCθ and ε. Co-incubation of myoblasts with CM-PA and the novel and conventional PKC inhibitor Gö6983 (but not with the conventional PKC inhibitor Gö6976) prevented PKCθ and ε activation, JNK phosphorylation, restored IκBα mass and reduced proinflammatory cytokine production. Gö6983 also restored insulin signalling and glucose uptake in myoblasts. Moreover, co-silencing both novel PKC θ and ε isoforms in myoblasts by RNA interference, but not their individual silencing, prevented the inflammatory response and restored insulin sensitivity to CM-PA-treated myoblasts. Conclusions/Clinical Significance The results suggest that the block in muscle insulin action caused by CM-PA is mediated by novel PKCθ and PKCε. This study re-establishes the participation of macrophages as a relay in the action of fatty acids on muscle cells, and further identifies PKCθ and PKCε as key elements in the inflammatory and insulin resistance responses of muscle cells to macrophage products. Furthermore, it portrays these PKC isoforms as potential targets for the treatment of fatty acid-induced, inflammation-linked insulin resistance.
Collapse
Affiliation(s)
| | - Lisbeth Nielsen Fink
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | - Farzad Asadi
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- * E-mail:
| |
Collapse
|
191
|
Abstract
The mechanistic (or mammalian) target of rapamycin (mTOR), an evolutionarily conserved protein kinase, orchestrates cellular responses to growth, metabolic and stress signals. mTOR processes various extracellular and intracellular inputs as part of two mTOR protein complexes, mTORC1 or mTORC2. The mTORCs have numerous cellular targets but members of a family of protein kinases, the protein kinase (PK)A/PKG/PKC (AGC) family are the best characterized direct mTOR substrates. The AGC kinases control multiple cellular functions and deregulation of many members of this family underlies numerous pathological conditions. mTOR phosphorylates conserved motifs in these kinases to allosterically augment their activity, influence substrate specificity, and promote protein maturation and stability. Activation of AGC kinases in turn triggers the phosphorylation of diverse, often overlapping, targets that ultimately control cellular response to a wide spectrum of stimuli. This review will highlight recent findings on how mTOR regulates AGC kinases and how mTOR activity is feedback regulated by these kinases. We will discuss how this regulation can modulate downstream targets in the mTOR pathway that could account for the varied cellular functions of mTOR.
Collapse
Affiliation(s)
- Bing Su
- Department of Immunobiology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
192
|
Dolinsky VW, Rueda-Clausen CF, Morton JS, Davidge ST, Dyck JR. Continued postnatal administration of resveratrol prevents diet-induced metabolic syndrome in rat offspring born growth restricted. Diabetes 2011; 60:2274-84. [PMID: 21810598 PMCID: PMC3161324 DOI: 10.2337/db11-0374] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE A prenatal hypoxic insult leading to intrauterine growth restriction (IUGR) increases the susceptibility to develop metabolic syndrome (MetS) later in life. Since resveratrol (Resv), the polyphenol produced by plants, exerts insulin-sensitizing effects, we tested whether Resv could prevent deleterious metabolic effects of being born IUGR. RESEARCH DESIGN AND METHODS Pregnant rats were exposed to either a normoxic (control; 21% O(2)) or a hypoxic (IUGR; 11.5% O(2)) environment during the last third of gestation. After weaning, male offspring were randomly assigned to receive either a high-fat (HF; 45% fat) diet or an HF diet with Resv (4 g/kg diet) for 9 weeks when various parameters of the MetS were measured. RESULTS Relative to normoxic controls, hypoxia-induced IUGR offspring developed a more severe MetS, including glucose intolerance and insulin resistance, increased intra-abdominal fat deposition and intra-abdominal adipocyte size, and increased plasma triacylglycerol (TG) and free fatty acids, as well as peripheral accumulation of TG, diacylglycerol, and ceramides. In only IUGR offspring, the administration of Resv reduced intra-abdominal fat deposition to levels comparable with controls, improved the plasma lipid profile, and reduced accumulation of TG and ceramides in the tissues. Moreover, Resv ameliorated insulin resistance and glucose intolerance as well as impaired Akt signaling in the liver and skeletal muscle of IUGR offspring and activated AMP-activated protein kinase, which likely contributed to improved metabolic parameters in Resv-treated IUGR rats. CONCLUSIONS Our results suggest that early, postnatal administration of Resv can improve the metabolic profile of HF-fed offspring born from pregnancies complicated by IUGR.
Collapse
Affiliation(s)
- Vernon W. Dolinsky
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Christian F. Rueda-Clausen
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Jude S. Morton
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
| | - Sandra T. Davidge
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
- Department of Physiology, University of Alberta, Edmonton, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada
| | - Jason R.B. Dyck
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
- Corresponding author: Jason R.B. Dyck,
| |
Collapse
|
193
|
Chen L, Qanie D, Jafari A, Taipaleenmaki H, Jensen CH, Säämänen AM, Sanz MLN, Laborda J, Abdallah BM, Kassem M. Delta-like 1/fetal antigen-1 (Dlk1/FA1) is a novel regulator of chondrogenic cell differentiation via inhibition of the Akt kinase-dependent pathway. J Biol Chem 2011; 286:32140-9. [PMID: 21724852 DOI: 10.1074/jbc.m111.230110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Delta-like 1 (Dlk1, also known as fetal antigen-1, FA1) is a member of Notch/Delta family that inhibits adipocyte and osteoblast differentiation; however, its role in chondrogenesis is still not clear. Thus, we overexpressed Dlk1/FA1 in mouse embryonic ATDC5 cells and tested its effects on chondrogenic differentiation. Dlk1/FA1 inhibited insulin-induced chondrogenic differentiation as evidenced by reduction of cartilage nodule formation and gene expression of aggrecan, collagen Type II and X. Similar effects were obtained either by using Dlk1/FA1-conditioned medium or by addition of a purified, secreted, form of Dlk1 (FA1) directly to the induction medium. The inhibitory effects of Dlk1/FA1 were dose-dependent and occurred irrespective of the chondrogenic differentiation stage: proliferation, differentiation, maturation, or hypertrophic conversion. Overexpression or addition of the Dlk1/FA1 protein to the medium strongly inhibited the activation of Akt, but not the ERK1/2, or p38 MAPK pathways, and the inhibition of Akt by Dlk1/FA1 was mediated through PI3K activation. Interestingly, inhibition of fibronectin expression by siRNA rescued the Dlk1/FA1-mediated inhibition of Akt, suggesting interaction of Dlk1/FA1 and fibronectin in chondrogenic cells. Our results identify Dlk1/FA1 as a novel regulator of chondrogenesis and suggest Dlk1/FA1 acts as an inhibitor of the PI3K/Akt pathways that leads to its inhibitory effects on chondrogenesis.
Collapse
Affiliation(s)
- Li Chen
- Molecular Endocrinology Laboratory, Odense University Hospital, University of Southern Denmark, Odense DK-5000, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Lipina C, Hundal HS. Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance. Diabetologia 2011; 54:1596-607. [PMID: 21468641 DOI: 10.1007/s00125-011-2127-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/18/2011] [Indexed: 12/16/2022]
Abstract
Obesity is a major risk factor for a variety of chronic diseases, including diabetes mellitus, and comorbidities such as cardiovascular disorders. Despite recommended alterations in lifestyle, including physical activity and energy restriction, being the foundation of any anti-obesity therapy, this approach has so far proved to be of little success in tackling this major public health concern. Because of this, alternative means of tackling this problem are currently being investigated, including pharmacotherapeutic intervention. Consequently, much attention has been directed towards elucidating the molecular mechanisms underlying the development of insulin resistance. This review discusses some of these potential mechanisms, with particular focus on the involvement of the sphingolipid ceramide. Various factors associated with obesity, such as saturated fatty acids and inflammatory cytokines, promote the synthesis of ceramide and other intermediates. Furthermore, studies performed in cultured cells and in vivo associate these sphingolipids with impaired insulin action. In light of this, we provide an account of the research investigating how pharmacological inhibition or genetic manipulation of enzymes involved in regulating sphingolipid synthesis can attenuate the insulin-desensitising effects of these obesity-related factors. By doing so, we outline potential therapeutic targets that may prove useful in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- C Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | | |
Collapse
|
195
|
Badin PM, Louche K, Mairal A, Liebisch G, Schmitz G, Rustan AC, Smith SR, Langin D, Moro C. Altered skeletal muscle lipase expression and activity contribute to insulin resistance in humans. Diabetes 2011; 60:1734-42. [PMID: 21498783 PMCID: PMC3114384 DOI: 10.2337/db10-1364] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Insulin resistance is associated with elevated content of skeletal muscle lipids, including triacylglycerols (TAGs) and diacylglycerols (DAGs). DAGs are by-products of lipolysis consecutive to TAG hydrolysis by adipose triglyceride lipase (ATGL) and are subsequently hydrolyzed by hormone-sensitive lipase (HSL). We hypothesized that an imbalance of ATGL relative to HSL (expression or activity) may contribute to DAG accumulation and insulin resistance. RESEARCH DESIGN AND METHODS We first measured lipase expression in vastus lateralis biopsies of young lean (n = 9), young obese (n = 9), and obese-matched type 2 diabetic (n = 8) subjects. We next investigated in vitro in human primary myotubes the impact of altered lipase expression/activity on lipid content and insulin signaling. RESULTS Muscle ATGL protein was negatively associated with whole-body insulin sensitivity in our population (r = -0.55, P = 0.005), whereas muscle HSL protein was reduced in obese subjects. We next showed that adenovirus-mediated ATGL overexpression in human primary myotubes induced DAG and ceramide accumulation. ATGL overexpression reduced insulin-stimulated glycogen synthesis (-30%, P < 0.05) and disrupted insulin signaling at Ser1101 of the insulin receptor substrate-1 and downstream Akt activation at Ser473. These defects were fully rescued by nonselective protein kinase C inhibition or concomitant HSL overexpression to restore a proper lipolytic balance. We show that selective HSL inhibition induces DAG accumulation and insulin resistance. CONCLUSIONS Altogether, the data indicate that altered ATGL and HSL expression in skeletal muscle could promote DAG accumulation and disrupt insulin signaling and action. Targeting skeletal muscle lipases may constitute an interesting strategy to improve insulin sensitivity in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Pierre-Marie Badin
- INSERM, U1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France
- Paul Sabatier University, University of Toulouse, Toulouse, France
| | - Katie Louche
- INSERM, U1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France
- Paul Sabatier University, University of Toulouse, Toulouse, France
| | - Aline Mairal
- INSERM, U1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France
- Paul Sabatier University, University of Toulouse, Toulouse, France
| | - Gerhard Liebisch
- Institute of Clinical Chemistry, University of Regensburg, Regensburg, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry, University of Regensburg, Regensburg, Germany
| | - Arild C. Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes and the Burnham Institute, Florida Hospital, Winter Park, Florida
| | - Dominique Langin
- INSERM, U1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France
- Paul Sabatier University, University of Toulouse, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Biochemistry Laboratory, Biology Institute of Purpan, Toulouse, France
| | - Cedric Moro
- INSERM, U1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France
- Paul Sabatier University, University of Toulouse, Toulouse, France
- Corresponding author: Cedric Moro,
| |
Collapse
|
196
|
Emond ZM, Kibbe MR. Clinical science review article: understanding the implications of diabetes on the vascular system. Vasc Endovascular Surg 2011; 45:481-9. [PMID: 21571777 DOI: 10.1177/1538574411408354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Patients with diabetes comprise an extremely complex subset of patients for the vascular surgeon. Often, they have numerous comorbidities that can further complicate matters. The diabetic environment is highly complex and the interplay of various diseases makes this an extremely challenging condition to manage. Knowing the mechanisms by which diabetes inflicts adverse microscopic changes in the vasculature allows the clinician to anticipate problems and minimize the heightened risks observed in diabetic patients undergoing surgery. In this review, we will illustrate how diabetes affects the vasculature and how the molecular and cellular derangements that occur in diabetic environments lead to these pathophysiologic consequences.
Collapse
Affiliation(s)
- Zachary M Emond
- Department of Surgery, University of Illinois at Chicago, IL, USA
| | | |
Collapse
|
197
|
Protein kinase C isoforms: mediators of reactive lipid metabolites in the development of insulin resistance. FEBS Lett 2010; 585:269-74. [PMID: 21176778 DOI: 10.1016/j.febslet.2010.12.022] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/07/2010] [Accepted: 12/14/2010] [Indexed: 11/23/2022]
Abstract
The role of protein kinase C (PKCs) isoforms in the regulation of glucose metabolism by insulin is complex, partly due to the large PKC family consisting of three sub-groups: conventional, novel and atypical. Activation of some conventional and novel PKCs in response to increased levels of diacylglycerol (DAG) have been shown to counteract insulin signalling. However, roles of atypical PKCs (aPKCs) remain poorly understood. aPKCs act as molecular switches by promoting or suppressing signalling pathways, in response to insulin or ceramides respectively. Understanding how DAG- and ceramide-activated PKCs impair insulin signalling would help to develop treatments to fight insulin resistance.
Collapse
|
198
|
Hommelberg PPH, Langen RCJ, Schols AMWJ, Mensink RP, Plat J. Inflammatory signaling in skeletal muscle insulin resistance: green signal for nutritional intervention? Curr Opin Clin Nutr Metab Care 2010; 13:647-55. [PMID: 20842028 DOI: 10.1097/mco.0b013e32833f1acd] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW To review the evidence implying a role of inflammatory signaling pathways, specifically nuclear factor-κB and c-Jun NH2-terminal kinase, in fatty acid-induced skeletal muscle insulin resistance and to discuss the potential of dietary interventions to interfere with these processes. RECENT FINDINGS Fatty acids can induce skeletal muscle insulin resistance via inflammatory signaling after binding Toll-like receptors at the cell membrane of muscle cells or after accumulating as intramyocellular lipid metabolites. In both processes, activation of intracellular inflammatory signaling is involved. The majority of literature addressing the causality of muscle nuclear factor-κB activation in skeletal muscle insulin resistance suggests that insulin resistance does not require muscle nuclear factor-κB activation. Recently, strong evidence was given that c-Jun NH2-terminal kinase signaling is an important inflammatory pathway involved in skeletal muscle insulin resistance. Furthermore, it is well established that proinflammatory cytokines originating from the enlarged adipose tissue or from activated adipose tissue macrophages can cause muscle insulin resistance. Recently, also macrophages resided in the muscle have been proposed to play an important role in muscle insulin resistance. Because of their anti-inflammatory characteristics, several dietary components like polyphenols may be interesting candidates for manipulating skeletal muscle insulin resistance. SUMMARY Several dietary components, like polyphenols, have been reported to interfere with inflammatory signaling. To test whether these compounds can be used to prevent or reverse insulin resistance, well controlled human intervention studies have to be designed.
Collapse
Affiliation(s)
- Pascal P H Hommelberg
- Department of Human Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
199
|
Soumura M, Kume S, Isshiki K, Takeda N, Araki SI, Tanaka Y, Sugimoto T, Chin-Kanasaki M, Nishio Y, Haneda M, Koya D, Kashiwagi A, Maegawa H, Uzu T. Oleate and eicosapentaenoic acid attenuate palmitate-induced inflammation and apoptosis in renal proximal tubular cell. Biochem Biophys Res Commun 2010; 402:265-71. [PMID: 20937260 DOI: 10.1016/j.bbrc.2010.10.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 10/03/2010] [Indexed: 10/19/2022]
Abstract
Free fatty acid (FFA)-bound albumin, which is filtrated through the glomeruli and reabsorbed into proximal tubular cells, is one of the crucial mediators of tubular damage in proteinuric kidney disease. In this study, we examined the role of each kind of FFA on renal tubular damage in vitro and tried to identify its molecular mechanism. In cultured proximal tubular cells, a saturated fatty acid, palmiate, increased the expression of monocyte chemoattractant protein-1 (MCP-1), but this effect was abrogated by co-incubation of monounsaturated fatty acid, oleate, or ω-3 polyunsaturated fatty acid, eicosapentaenoic acid (EPA). Palmitate led to intracellular accumulation of diacylglycerol (DAG) and subsequent activation of protein kinase C protein family. Among the several PKC inhibitors, rottlerin, a PKCθ inhibitor, prevented palmitate-induced MCP-1 expression via inactivation of NFB pathway. Overexpression of dominant-negative PKCθ also inhibited palmitate-induced activation of MCP-1 promoter. Furthermore, palmitate enhanced PKCθ-dependent mitochondrial apoptosis, which was also prevented by co-incubation with oleate or EPA through restoration of pro-survival Akt pathway. Moreover, oleate and EPA inhibited palmitate-induced PKCθ activation through the conversion of intracellular DAG to triglyceride with the restoration of diacylglycerol acyltransferase 2 expression. These results suggest that oleate and EPA have protective effects against the palmitate-induced renal tubular cell damage by inhibiting PKCθ activation.
Collapse
Affiliation(s)
- Mariko Soumura
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Tsuchiya Y, Hatakeyama H, Emoto N, Wagatsuma F, Matsushita S, Kanzaki M. Palmitate-induced down-regulation of sortilin and impaired GLUT4 trafficking in C2C12 myotubes. J Biol Chem 2010; 285:34371-81. [PMID: 20805226 DOI: 10.1074/jbc.m110.128520] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated saturated FFAs including palmitate (C16:0) are a primary trigger for peripheral insulin resistance characterized by impaired glucose uptake/disposal in skeletal muscle, resulting from impaired GLUT4 translocation in response to insulin. We herein demonstrate that palmitate induces down-regulation of sortilin, a sorting receptor implicated in the formation of insulin-responsive GLUT4 vesicles, via mechanisms involving PKC and TNF-α-converting enzyme, but not p38, JNK, or mitochondrial reactive oxygen species generation, leading to impaired GLUT4 trafficking in C2C12 myotubes. Intriguingly, unsaturated FFAs such as palmitoleate (C16:1) and oleate (C18:1) had no such detrimental effects, appearing instead to effectively reverse palmitate-induced impairment of insulin-responsive GLUT4 recycling along with restoration of sortilin abundance by preventing aberrant PKC activation. On the other hand, shRNA-mediated reduction of sortilin in intact C2C12 myotubes inhibited insulin-induced GLUT4 recycling without dampening Akt phosphorylation. We found that the peroxisome proliferator-activated receptor γ agonist troglitazone prevented the palmitate-induced sortilin reduction and also ameliorated insulin-responsive GLUT4 recycling without altering the palmitate-evoked insults on signaling cascades; neither highly phosphorylated PKC states nor impaired insulin-responsive Akt phosphorylation was affected. Taken together, our data provide novel insights into the pathogenesis of PKC-dependent insulin resistance with respect to insulin-responsive GLUT4 translocation, which could occur not only through defects of insulin signaling but also via a reduction of sortilin, which directly controls trafficking/sorting of GLUT4 in skeletal muscle cells. In addition, our data suggest the insulin-sensitizing action of peroxisome proliferator-activated receptor γ agonists to be at least partially mediated through the restoration of proper GLUT4 trafficking/sorting events governed by sortilin.
Collapse
Affiliation(s)
- Yo Tsuchiya
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|