151
|
Villarreal A, Seoane R, González Torres A, Rosciszewski G, Angelo MF, Rossi A, Barker PA, Ramos AJ. S100B protein activates a RAGE-dependent autocrine loop in astrocytes: implications for its role in the propagation of reactive gliosis. J Neurochem 2014; 131:190-205. [DOI: 10.1111/jnc.12790] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/09/2014] [Accepted: 06/10/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Alejandro Villarreal
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Rocío Seoane
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Agustina González Torres
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Gerardo Rosciszewski
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Maria Florencia Angelo
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Alicia Rossi
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Philip A. Barker
- Montreal Neurological Institute; Center for Neuronal Survival; McGill University; Montreal Québec Canada
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
152
|
Kim EA, Han AR, Choi J, Ahn JY, Choi SY, Cho SW. Anti-inflammatory mechanisms of N-adamantyl-4-methylthiazol-2-amine in lipopolysaccharide-stimulated BV-2 microglial cells. Int Immunopharmacol 2014; 22:73-83. [PMID: 24975832 DOI: 10.1016/j.intimp.2014.06.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 01/03/2023]
Abstract
The activation of microglia is crucially associated with the neurodegeneration observed in many neuroinflammatory pathologies, such as multiple sclerosis, Parkinson's disease, and Alzheimer's disease. We have examined various thiazole derivatives with the goal of developing new anti-neuroinflammatory drugs. Thiazole derivatives are attractive candidates for drug development, because they are efficiently synthesized and active against a number of disease organisms and conditions, including neurodegenerative disorders. The present study investigated the effects of a new compound, N-adamantyl-4-methylthiazol-2-amine (KHG26693), against lipopolysaccharide (LPS)-induced inflammation in cultured BV-2 microglial cells. KHG26693 suppressed several inflammatory responses in LPS-activated cells, as evidenced by decreased levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), hydrogen peroxide (H(2)O(2)), reactive oxygen species (ROS), nitric oxide (NO), and lipid peroxidation. These anti-inflammatory/antioxidative actions occurred as a result of the downregulation of NADPH oxidase (NOX), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) content, but not as a result of the upregulation of superoxide dismutase (SOD) or catalase activity. The pharmacological properties of KHG26693 were also facilitated via inhibition of both the cluster of differentiation 14 (CD14)/toll-like receptor 4 (TLR4)-dependent nuclear factor kappa B (NF-κB) signaling pathway and extracellular signal-regulated kinase (ERK) phosphorylation. Furthermore, KHG26693 successfully blocked the migration of LPS-activated microglia, most likely by modulating the ERK pathway. Taken together, these results demonstrate that the anti-inflammatory and antioxidative actions of KHG26693 are mediated, at least in part, through the control of microglial activation.
Collapse
Affiliation(s)
- Eun-A Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - A Reum Han
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jiyoung Choi
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea.
| |
Collapse
|
153
|
Mikuła E, Wysłouch-Cieszyńska A, Zhukova L, Puchalska M, Verwilst P, Dehaen W, Radecki J, Radecka H. Voltammetric detection of S100B protein using His-tagged receptor domains for advanced glycation end products (RAGE) immobilized onto a gold electrode surface. SENSORS 2014; 14:10650-63. [PMID: 24940866 PMCID: PMC4118347 DOI: 10.3390/s140610650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/15/2014] [Accepted: 05/26/2014] [Indexed: 11/16/2022]
Abstract
In this work we report on an electrochemical biosensor for the determination of the S100B protein. The His-tagged VC1 domains of Receptors for Advanced Glycation End (RAGE) products used as analytically active molecules were covalently immobilized on a monolayer of a thiol derivative of pentetic acid (DPTA) complex with Cu(II) deposited on a gold electrode surface. The recognition processes between the RAGE VC1 domain and the S100B protein results in changes in the redox activity of the DPTA-Cu(II) centres which were measured by Osteryoung square-wave voltammetry (OSWV). In order to verify whether the observed analytical signal originates from the recognition process between the His6–RAGE VC1 domains and the S100B protein, the electrode modified with the His6–RAGE C2 and His6–RAGE VC1 deleted domains which have no ability to bind S100B peptides were applied. The proposed biosensor was quite sensitive, with a detection limit of 0.52 pM recorded in the buffer solution. The presence of diluted human plasma and 10 nM Aβ1-40 have no influence on the biosensor performance.
Collapse
Affiliation(s)
- Edyta Mikuła
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | | | - Liliya Zhukova
- Institute of Biochemistry and Biophysics of Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| | - Monika Puchalska
- Institute of Biochemistry and Biophysics of Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| | - Peter Verwilst
- Chemistry Department, University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Wim Dehaen
- Chemistry Department, University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
154
|
Gross SR, Sin CGT, Barraclough R, Rudland PS. Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell Mol Life Sci 2014; 71:1551-79. [PMID: 23811936 PMCID: PMC11113901 DOI: 10.1007/s00018-013-1400-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/12/2022]
Abstract
The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used.
Collapse
Affiliation(s)
- Stephane R. Gross
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET UK
| | - Connie Goh Then Sin
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET UK
| | - Roger Barraclough
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Philip S. Rudland
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| |
Collapse
|
155
|
Xiao L, Sun W, Lan W, Xiong Y, Duan Z, Zhang Z, Fan W, Xu L, Xie X, Ma N, Ye R, Xu G, Liu X, Zhu W. Correlation between cerebral microbleeds and S100B/RAGE in acute lacunar stroke patients. J Neurol Sci 2014; 340:208-12. [DOI: 10.1016/j.jns.2014.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/27/2014] [Accepted: 03/03/2014] [Indexed: 11/16/2022]
|
156
|
Hartman KG, Vitolo MI, Pierce AD, Fox JM, Shapiro P, Martin SS, Wilder PT, Weber DJ. Complex formation between S100B protein and the p90 ribosomal S6 kinase (RSK) in malignant melanoma is calcium-dependent and inhibits extracellular signal-regulated kinase (ERK)-mediated phosphorylation of RSK. J Biol Chem 2014; 289:12886-95. [PMID: 24627490 DOI: 10.1074/jbc.m114.561613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S100B is a prognostic marker for malignant melanoma. Increasing S100B levels are predictive of advancing disease stage, increased recurrence, and low overall survival in malignant melanoma patients. Using S100B overexpression and shRNA(S100B) knockdown studies in melanoma cell lines, elevated S100B was found to enhance cell viability and modulate MAPK signaling by binding directly to the p90 ribosomal S6 kinase (RSK). S100B-RSK complex formation was shown to be Ca(2+)-dependent and to block ERK-dependent phosphorylation of RSK, at Thr-573, in its C-terminal kinase domain. Additionally, the overexpression of S100B sequesters RSK into the cytosol and prevents it from acting on nuclear targets. Thus, elevated S100B contributes to abnormal ERK/RSK signaling and increased cell survival in malignant melanoma.
Collapse
Affiliation(s)
- Kira G Hartman
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Chen M, Glenn JV, Dasari S, McVicar C, Ward M, Colhoun L, Quinn M, Bierhaus A, Xu H, Stitt AW. RAGE regulates immune cell infiltration and angiogenesis in choroidal neovascularization. PLoS One 2014; 9:e89548. [PMID: 24586862 PMCID: PMC3935881 DOI: 10.1371/journal.pone.0089548] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/23/2014] [Indexed: 12/17/2022] Open
Abstract
Purpose RAGE regulates pro-inflammatory responses in diverse cells and tissues. This study has investigated if RAGE plays a role in immune cell mobilization and choroidal neovascular pathology that is associated with the neovascular form of age-related macular degeneration (nvAMD). Methods RAGE null (RAGE−/−) mice and age-matched wild type (WT) control mice underwent laser photocoagulation to generate choroidal neovascularization (CNV) lesions which were then analyzed for morphology, S100B immunoreactivity and inflammatory cell infiltration. The chemotactic ability of bone marrow derived macrophages (BMDMs) towards S100B was investigated. Results RAGE expression was significantly increased in the retina during CNV of WT mice (p<0.001). RAGE−/− mice exhibited significantly reduced CNV lesion size when compared to WT controls (p<0.05). S100B mRNA was upregulated in the lasered WT retina but not RAGE−/− retina and S100B immunoreactivity was present within CNV lesions although levels were less when RAGE−/− mice were compared to WT controls. Activated microglia in lesions were considerably less abundant in RAGE−/− mice when compared to WT counterparts (p<0.001). A dose dependent chemotactic migration was observed in BMDMs from WT mice (p<0.05–0.01) but this was not apparent in cells isolated from RAGE−/− mice. Conclusions RAGE-S100B interactions appear to play an important role in CNV lesion formation by regulating pro-inflammatory and angiogenic responses. This study highlights the role of RAGE in inflammation-mediated outer retinal pathology.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- Chemotaxis
- Choroidal Neovascularization/immunology
- Choroidal Neovascularization/metabolism
- Choroidal Neovascularization/pathology
- Disease Models, Animal
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/physiology
- Retina/immunology
- Retina/metabolism
- Retina/pathology
- Reverse Transcriptase Polymerase Chain Reaction
- S100 Calcium Binding Protein beta Subunit/genetics
- S100 Calcium Binding Protein beta Subunit/metabolism
Collapse
Affiliation(s)
- Mei Chen
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Josephine V. Glenn
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Shilpa Dasari
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Carmel McVicar
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Michael Ward
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Liza Colhoun
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Michael Quinn
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Angelika Bierhaus
- Department of Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Heping Xu
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Alan W. Stitt
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
- * E-mail:
| |
Collapse
|
158
|
Fujiya A, Nagasaki H, Seino Y, Okawa T, Kato J, Fukami A, Himeno T, Uenishi E, Tsunekawa S, Kamiya H, Nakamura J, Oiso Y, Hamada Y. The role of S100B in the interaction between adipocytes and macrophages. Obesity (Silver Spring) 2014; 22:371-9. [PMID: 23804363 DOI: 10.1002/oby.20532] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The S100 calcium binding protein B (S100B) implicated in brain inflammation acts via the receptor of advanced glycation end products (RAGE) and is also secreted from adipocytes. We investigated the role of S100B in the interaction between adipocytes and macrophages using a cell-culture model. DESIGN AND METHODS RAW264.7 macrophages (RAW) were stimulated by recombinant S100B to observe alterations in TNF-α and M1 markers; 3T3-L1 adipocytes (L1) were stimulated by TNF-α to examine S100B secretion. RAW and L1 were then mutually stimulated with conditioned media of each other, or co-cultured. The effects of S100B silencing or a RAGE-neutralizing antibody were also investigated. RESULTS S100B upregulated TNF-α and M1 markers in RAW, and TNF-α augmented S100B secretion from L1. L1 conditioned media stimulated TNF-α secretion from RAW, and RAW conditioned media increased S100B secretion from L1. The co-culture of RAW and L1 increased TNF-α, S100B, and the expression of M1 markers and the MCP-1 receptor CCR2. The silencing of S100B or RAGE neutralization significantly ameliorated TNF-α hypersecretion from RAW that were stimulated with L1 conditioned media. CONCLUSIONS Thus, S100B as an adipokine may play a role in the interaction between adipocytes and macrophages to establish a vicious paracrine loop.
Collapse
Affiliation(s)
- Atsushi Fujiya
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA, Leak RK, Gao Y, Sun BL, Zheng P, Chen J. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol 2013; 115:6-24. [PMID: 24374228 DOI: 10.1016/j.pneurobio.2013.12.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/28/2013] [Accepted: 12/17/2013] [Indexed: 12/26/2022]
Abstract
Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialog between the brain and peripheral immune system show promise as potential novel treatments for stroke.
Collapse
Affiliation(s)
- Chengrui An
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yejie Shi
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Peiying Li
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Yu Gan
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ruth A Stetler
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Bao-Liang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, China.
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
160
|
Rogers LK, Graf AE, Bhatia A, Leonhart KL, Oza-Frank R. Associations between maternal and infant morbidities and sRAGE within the first week of life in extremely preterm infants. PLoS One 2013; 8:e82537. [PMID: 24324804 PMCID: PMC3855742 DOI: 10.1371/journal.pone.0082537] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/24/2013] [Indexed: 01/11/2023] Open
Abstract
Background Soluble RAGE (sRAGE) has been associated with multiple inflammatory responses including maternal chorioamnionitis and preeclampsia. Analysis of umbilical cord blood levels have also indicated that sRAGE levels in the infant are affected by maternal inflammation. S100b is a ligand for RAGE and increases in circulating S100b levels are associated with poor neurological outcome in preterm infants. The objective of this study was to determine whether sRAGE or s100b levels in plasma samples from extremely preterm infants at the end of the first week of life were correlated with infant morbidities and whether sRAGE and s100b levels at this time point were still associated with maternal inflammation. Methods Plasma samples were collected from 130 preterm infants (≤28 weeks) at days of life 5, 6, or 7. sRAGE and s100b levels were measured by ELISA and data were analyzed by Pearson’s correlation or Generalized Estimating Equations. Results sRAGE was negatively correlated with development of sepsis (p=0.024), the FiO2 requirement of the infant at the time of sampling (p=0.030), as well as maternal preeclampsia (p=0.046), and positively correlated with maternal chorioamnionitis (p=0.006). s100b levels were positively associated with maternal chorioamnionitis (p=0.039). No correlations were observed with other infant morbidities. Conclusion These data indicate that sRAGE could potentially be a biomarker of early severe inflammatory responses in the preterm infant. However, more studies are needed to confirm the present findings.
Collapse
Affiliation(s)
- Lynette K. Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Amanda E. Graf
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Anisha Bhatia
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Karen L. Leonhart
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Reena Oza-Frank
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
161
|
Gao J, Teng J, Liu H, Han X, Chen B, Xie A. Association of RAGE gene polymorphisms with sporadic Parkinson's disease in Chinese Han population. Neurosci Lett 2013; 559:158-62. [PMID: 24304868 DOI: 10.1016/j.neulet.2013.11.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 11/28/2022]
Abstract
Previous studies have corroborated receptor for advanced glycation end-products (RAGE) ablation had a protective effect on nigral dopaminergic neurons in the MPTP model of Parkinson's disease (PD). Genetic variation of RAGE gene may be associated with the development of onset of sporadic PD. The present study aimed to explore the possible association of RAGE gene polymorphisms namely -374T/A,-429T/C, and G82S with PD. A total of 285 PD patients and 285 healthy-matched individuals in Chinese Han population were enrolled. Genotype analyses were performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Only the -429T/C polymorphism denoted a significant difference between PD patients and controls (P=0.015) of the three examined single nucleotide polymorphisms (SNPs). Our data also revealed that -429C allele carriers seem to have a decreased risk of PD (OR=0.617, P=0.007). Moreover, there were significant differences in genotype distribution in female PD group and its healthy-matched control subgroup (P=0.014), as well as between late-onset PD (LOPD) and the controls subgroup (P=0.016). However, for -374T/A and 82GS polymorphisms, there was no significant difference in the genotype and allele frequencies between PD patients and the controls, as well as gender- and age-related differences. Our present findings indicate that the RAGE -429T/C polymorphism may be associated with the susceptibility of PD and the CC genotype of -429T/C may be a protective factor for PD in Chinese Han population.
Collapse
Affiliation(s)
- Jing Gao
- Department of Neurology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Jijun Teng
- Department of Neurology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Hongxin Liu
- Department of Neurology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Xun Han
- Department of Neurology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Biao Chen
- Department of Neurology, Beijing Xuanwu Hospital, Chinese Human Genetic Center, Beijing, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
162
|
Wang X, Hu D, Zhang L, Lian G, Zhao S, Wang C, Yin J, Wu C, Yang J. Gomisin A inhibits lipopolysaccharide-induced inflammatory responses in N9 microglia via blocking the NF-κB/MAPKs pathway. Food Chem Toxicol 2013; 63:119-27. [PMID: 24211520 DOI: 10.1016/j.fct.2013.10.048] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/11/2013] [Accepted: 10/29/2013] [Indexed: 01/30/2023]
Abstract
Gomisin A, one of the major dibenzocyclooctadiene lignans isolated from Schisandra chinensis Baill., has proved to possess a variety of pharmacological effects. The aim of the present study was to investigate the anti-inflammatory and neuroprotective effects of gomisin A as well as its potential molecular mechanisms. It was found that gomisin A not only inhibited the production of NO and PGE2 in a concentration-dependent manner but also suppressed the expressions of iNOS and COX-2 in LPS-stimulated N9 microglia without observable cytotoxicity. Gomisin A was also able to attenuate the mRNA expression and the production of pro-inflammatory factors TNF-α, IL-1β and IL-6. Moreover, LPS induced reactive oxygen species (ROS) production, NADPH oxidase activation, and gp91phox expression, which were markedly inhibited by gomisin A in microglia. Furthermore, the data showed that gomisin A significantly down-regulated the TLR4 protein expression, and inhibited nuclear transcription factor (NF)-κB and mitogen-activated protein kinases (MAPKs) signaling pathways. Additionally, gomisin A alleviated the cell death of SH-SY5Y neuroblastoma, rat primary cortical and hippocampal neurons induced by the conditioned-media from activated microglia. In summary, gomisin A may exert neuroprotective effects by attenuating the microglia-mediated neuroinflammatory response via inhibiting the TLR4-mediated NF-κB and MAPKs signaling pathways.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Di Hu
- Development and Utilization Key Laboratory of Northeast Plant Materials of Liaoning Province, Department of Pharmacognosy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Lijia Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Guoning Lian
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Siqi Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China.
| | - Chunming Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials of Liaoning Province, Department of Pharmacognosy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China.
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, PR China.
| |
Collapse
|
163
|
Dimethyl fumarate regulates histone deacetylase expression in astrocytes. J Neuroimmunol 2013; 263:13-9. [DOI: 10.1016/j.jneuroim.2013.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/13/2013] [Accepted: 07/09/2013] [Indexed: 12/26/2022]
|
164
|
Liu B, Liu Y, Yang G, Xu Z, Chen J. Ursolic acid induces neural regeneration after sciatic nerve injury. Neural Regen Res 2013; 8:2510-9. [PMID: 25206561 PMCID: PMC4145935 DOI: 10.3969/j.issn.1673-5374.2013.27.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
In this study, we aimed to explore the role of ursolic acid in the neural regeneration of the injured sciatic nerve. BALB/c mice were used to establish models of sciatic nerve injury through unilateral sciatic nerve complete transection and microscopic anastomosis at 0.5 cm below the ischial tube-rosity. The successfully generated model mice were treated with 10, 5, or 2.5 mg/kg ursolic acid via intraperitoneal injection. Enzyme-linked immunosorbent assay results showed that serum S100 protein expression level gradually increased at 1-4 weeks after sciatic nerve injury, and significantly decreased at 8 weeks. As such, ursolic acid has the capacity to significantly increase S100 protein expression levels. Real-time quantitative PCR showed that S100 mRNA expression in the L4-6 segments on the injury side was increased after ursolic acid treatment. In addition, the muscular mass index in the soleus muscle was also increased in mice treated with ursolic acid. Toluidine blue staining revealed that the quantity and average diameter of myelinated nerve fibers in the injured sciatic nerve were significantly increased after treatment with ursolic acid. 10 and 5 mg/kg of ursolic acid produced stronger effects than 2.5 mg/kg of ursolic acid. Our findings indicate that ursolic acid can dose-dependently increase S100 expression and promote neural regeneration in BALB/c mice following sciatic nerve injury.
Collapse
Affiliation(s)
- Biao Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Guang Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Zemin Xu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
165
|
Abstract
The S100 protein family consists of 24 members functionally distributed into three main subgroups: those that only exert intracellular regulatory effects, those with intracellular and extracellular functions and those which mainly exert extracellular regulatory effects. S100 proteins are only expressed in vertebrates and show cell-specific expression patterns. In some instances, a particular S100 protein can be induced in pathological circumstances in a cell type that does not express it in normal physiological conditions. Within cells, S100 proteins are involved in aspects of regulation of proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and migration/invasion through interactions with a variety of target proteins including enzymes, cytoskeletal subunits, receptors, transcription factors and nucleic acids. Some S100 proteins are secreted or released and regulate cell functions in an autocrine and paracrine manner via activation of surface receptors (e.g. the receptor for advanced glycation end-products and toll-like receptor 4), G-protein-coupled receptors, scavenger receptors, or heparan sulfate proteoglycans and N-glycans. Extracellular S100A4 and S100B also interact with epidermal growth factor and basic fibroblast growth factor, respectively, thereby enhancing the activity of the corresponding receptors. Thus, extracellular S100 proteins exert regulatory activities on monocytes/macrophages/microglia, neutrophils, lymphocytes, mast cells, articular chondrocytes, endothelial and vascular smooth muscle cells, neurons, astrocytes, Schwann cells, epithelial cells, myoblasts and cardiomyocytes, thereby participating in innate and adaptive immune responses, cell migration and chemotaxis, tissue development and repair, and leukocyte and tumor cell invasion.
Collapse
Affiliation(s)
- R Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
166
|
|
167
|
Yang XT, Pan DC, Chen ET, Bi YY, Feng DF. Glial cells activation potentially contributes to the upregulation of stromal cell-derived factor-1α after optic nerve crush in rats. Neurochem Res 2013; 38:1996-2008. [PMID: 23832528 DOI: 10.1007/s11064-013-1106-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/17/2013] [Accepted: 06/29/2013] [Indexed: 02/04/2023]
Abstract
Stromal cell-derived factor-1α (SDF-1α) plays an important role after injury. However, little is known regarding its temporal and spatial expression patterns or how it interacts with glial cells after optic nerve crush injury. We characterized the temporal and spatial expression pattern of SDF-1α in the retina and optic nerve following optic nerve crush and demonstrated that SDF-1α is localized to the glial cells that are distributed in the retina and optic nerve. CXCR4, the receptor for SDF-1α, is expressed along the ganglion cell layer (GCL). The relative expression levels of Sdf-1α mRNA and SDF-1α protein in the retina and optic nerve 1, 2, 3, 5, 7, 10 and 14 days after injury were determined using real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay, respectively, and the Cxcr4 mRNA expression was determined using real-time PCR. Immunofluorescence and immunohistochemical approaches were used to detect the localization of SDF-1α and CXCR4 after injury. The upregulation of Sdf-1α and Cxcr4 mRNA was detected as early as day one after injury in the retina and day two in the optic nerve, the expression peaks 5-7 days after injury. The expression of Sdf-1α and Cxcr4 mRNA was maintained for at least 14 days after the optic nerve crush injury. Furthermore, SDF-1α-positive zones were distributed locally in the reactive glial cells, which suggested potential autocrine stimulation. CXCR4 was mainly expressed in the GCL, which was also adjacent to the the glial cells. These findings suggest that following optic nerve crush, the levels of endogenous SDF-1α and CXCR4 increase in the retina and optic nerve, where activated glial cells may act as a source of increased SDF-1α protein.
Collapse
Affiliation(s)
- Xi-Tao Yang
- Department of Neurosurgery, Shanghai Third People's Hospital, Shanghai Jiaotong University School of Medicine, 280 Mo-He Road, Shanghai, 201900, China,
| | | | | | | | | |
Collapse
|
168
|
Wang H, Zhang L, Zhang IY, Chen X, Da Fonseca A, Wu S, Ren H, Badie S, Sadeghi S, Ouyang M, Warden CD, Badie B. S100B promotes glioma growth through chemoattraction of myeloid-derived macrophages. Clin Cancer Res 2013; 19:3764-75. [PMID: 23719262 DOI: 10.1158/1078-0432.ccr-12-3725] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE S100B is member of a multigenic family of Ca(2+)-binding proteins, which is overexpressed by gliomas. Recently, we showed that low concentrations of S100B attenuated microglia activation through the induction of Stat3. We hypothesized that overexpression of S100B in gliomas could promote tumor growth by modulating the activity of tumor-associated macrophages (TAM). EXPERIMENTAL DESIGN We stably transfected GL261 glioma cell lines with constructs that overexpressed (S100B(high)) or underexpressed (S100B(low)) S100B and compared their growth characteristics to intracranial wild-type (S100B(wt)) tumors. RESULTS Downregulation of S100B in gliomas had no impact on cell division in vitro but abrogated tumor growth in vivo. Interestingly, compared to S100B(low) tumors, S100B(wt) and S100B(high) intracranial gliomas exhibited higher infiltration of TAMs, stronger inflammatory cytokine expression, and increased vascularity. To identify the potential mechanisms involved, the expression of the S100B receptor, receptor for advanced glycation end products (RAGE), was evaluated in gliomas. Although S100B expression induced RAGE in vivo, RAGE ablation in mice did not significantly inhibit TAM infiltration into gliomas, suggesting that other pathways were involved in this process. To evaluate other mechanisms responsible for TAM chemoattraction, we then examined chemokine pathways and found that C-C motif ligand 2 (CCL2) was upregulated in S100B(high) tumors. Furthermore, analysis of The Cancer Genome Atlas's glioma data bank showed a positive correlation between S100B and CCL2 expression in human proneural and neural glioma subtypes, supporting our finding. CONCLUSIONS These observations suggest that S100B promotes glioma growth by TAM chemoattraction through upregulation of CCL2 and introduces the potential utility of S100B inhibitors for glioma therapy.
Collapse
Affiliation(s)
- Huaqing Wang
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong Province, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Anderson G, Maes M. Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:5-19. [PMID: 22800757 DOI: 10.1016/j.pnpbp.2012.06.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/06/2012] [Accepted: 06/18/2012] [Indexed: 02/07/2023]
Abstract
In 1995, the macrophage-T lymphocyte theory of schizophrenia (Smith and Maes, 1995) considered that activated immuno-inflammatory pathways may account for the higher neurodevelopmental pathology linked with gestational infections through the detrimental effects of activated microglia, oxidative and nitrosative stress (O&NS), cytokine-induced activation of the tryptophan catabolite (TRYCAT) pathway and consequent modulation of the N-methyl d-aspartate receptor (NMDAr) and glutamate production. The aim of the present paper is to review the current state-of-the art regarding the role of the above pathways in schizophrenia. Accumulating data suggest a powerful role for prenatal infection, both viral and microbial, in driving an early developmental etiology to schizophrenia. Models of prenatal rodent infection show maintained activation of immuno-inflammatory pathways coupled to increased microglia activation. The ensuing activation of immuno-inflammatory pathways in schizophrenia may activate the TRYCAT pathway, including increased kynurenic acid (KA) and neurotoxic TRYCATs. Increased KA, via the inhibition of the α7 nicotinic acetylcholine receptor, lowers gamma-amino-butyric-acid (GABA)ergic post-synaptic current, contributing to dysregulated glutamatergic activity. Hypofunctioning of the NMDAr on GABAergic interneurons will contribute to glutamatergic dysregulation. Many susceptibility genes for schizophrenia are predominantly expressed in early development and will interact with these early developmental driven changes in the immuno-inflammatory and TRYCAT pathways. Maternal infection and subsequent immuno-inflammatory responses are additionally associated with O&NS, including lowered antioxidants such as glutathione. This will contribute to alterations in neurogenesis and myelination. In such a scenario a) a genetic or epigenetic potentiation of immuno-inflammatory pathways may constitute a double hit on their own, stimulating wider immuno-inflammatory responses and thus potentiating the TRYCAT pathway and subsequent NMDAr dysfunction and neuroprogression; and b) antipsychotic-induced changes in immuno-inflammatory, TRYCAT and O&NS pathways would modulate the CNS glia-neuronal interactions that determine synaptic plasticity as well as myelin generation and maintenance.
Collapse
|
170
|
Developmental neuroinflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:20-34. [PMID: 22122877 DOI: 10.1016/j.pnpbp.2011.11.003] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/18/2011] [Accepted: 11/09/2011] [Indexed: 12/27/2022]
Abstract
There is increasing interest in and evidence for altered immune factors in the etiology and pathophysiology of schizophrenia. Stimulated by various epidemiological findings reporting elevated risk of schizophrenia following prenatal exposure to infection, one line of current research aims to explore the potential contribution of immune-mediated disruption of early brain development in the precipitation of long-term psychotic disease. Since the initial formulation of the "prenatal cytokine hypothesis" more than a decade ago, extensive epidemiological research and remarkable advances in modeling prenatal immune activation effects in animal models have provided strong support for this hypothesis by underscoring the critical role of cytokine-associated inflammatory events, together with downstream pathophysiological processes such as oxidative stress, hypoferremia and zinc deficiency, in mediating the short- and long-term neurodevelopmental effects of prenatal infection. Longitudinal studies in animal models further indicate that infection-induced developmental neuroinflammation may be pathologically relevant beyond the antenatal and neonatal periods, and may contribute to disease progression associated with the gradual development of full-blown schizophrenic disease. According to this scenario, exposure to prenatal immune challenge primes early pre- and postnatal alterations in peripheral and central inflammatory response systems, which in turn may disrupt the normal development and maturation of neuronal systems from juvenile to adult stages of life. Such developmental neuroinflammation may adversely affect processes that are pivotal for normal brain maturation, including myelination, synaptic pruning, and neuronal remodeling, all of which occur to a great extent during postnatal brain maturation. Undoubtedly, our understanding of the role of developmental neuroinflammation in progressive brain changes relevant to schizophrenia is still in infancy. Identification of these mechanisms would be highly warranted because they may represent a valuable target to attenuate or even prevent the emergence of full-blown brain and behavioral pathology, especially in individuals with a history of prenatal complications such as in-utero exposure to infection and/or inflammation.
Collapse
|
171
|
Abstract
RAGE is a key molecule in the onset and sustainment of the inflammatory response. New studies indicate that RAGE might represent a new link between the innate and adaptive immune system. RAGE belongs to the superfamily of Ig cell-surface receptors and is expressed on all types of leukocytes promoting activation, migration, or maturation of the different cells. RAGE expression is prominent on the activated endothelium, where it mediates leukocyte adhesion and transmigration. Moreover, proinflammatory molecules released from the inflamed or injured vascular system induce migration and proliferation of SMCs. RAGE binds a large number of different ligands and is therefore considered as a PRR, recognizing a structural motif rather than a specific ligand. In this review, we summarize the current knowledge about the signaling pathways activated in the different cell types and discuss a potential activation mechanism of RAGE, as well as putative options for therapeutic intervention.
Collapse
Affiliation(s)
- Katrin Kierdorf
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
172
|
Sathe K, Maetzler W, Lang JD, Mounsey RB, Fleckenstein C, Martin HL, Schulte C, Mustafa S, Synofzik M, Vukovic Z, Itohara S, Berg D, Teismann P. S100B is increased in Parkinson's disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-α pathway. ACTA ACUST UNITED AC 2013; 135:3336-47. [PMID: 23169921 PMCID: PMC3501971 DOI: 10.1093/brain/aws250] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Parkinson’s disease is a neurodegenerative disorder that can, at least partly, be mimicked by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. S100B is a calcium-binding protein expressed in, and secreted by, astrocytes. There is increasing evidence that S100B acts as a cytokine or damage-associated molecular pattern protein not only in inflammatory but also in neurodegenerative diseases. In this study, we show that S100B protein levels were higher in post-mortem substantia nigra of patients with Parkinson’s disease compared with control tissue, and cerebrospinal fluid S100B levels were higher in a large cohort of patients with Parkinson’s disease compared with controls. Correspondingly, mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine showed upregulated S100B messenger RNA and protein levels. In turn, ablation of S100B resulted in neuroprotection, reduced microgliosis and reduced expression of both the receptor for advanced glycation endproducts and tumour necrosis factor-α. Our results demonstrate a role of S100B in the pathophysiology of Parkinson’s disease. Targeting S100B may emerge as a potential treatment strategy in this disorder.
Collapse
Affiliation(s)
- Kinnari Sathe
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Yelmo-Cruz S, Morera-Fumero AL, Abreu-González P. S100B and schizophrenia. Psychiatry Clin Neurosci 2013; 67:67-75. [PMID: 23438158 DOI: 10.1111/pcn.12024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/10/2012] [Accepted: 01/09/2013] [Indexed: 12/01/2022]
Abstract
The research for peripheral biological markers of schizophrenia, although abundant, has been unfruitful. In the last 2 decades, the S100B protein has made its own room in this area of research. S100B is a calcium-binding protein that has been proposed as a marker of astrocyte activation and brain dysfunction. Research results on S100B concentrations and schizophrenia clinical diagnosis are very consistent; patients with schizophrenia have higher S100B concentrations than healthy controls. The results regarding schizophrenia subtypes and clinical characteristics are not as conclusive. Age of patients, body mass index, illness duration and age at onset have been found to show no correlation, a positive correlation or a negative correlation with S100B levels. With respect to psychopathology, S100B data are inconclusive. Positive, negative and absence of correlation between S100B concentrations and positive and negative psychopathology have been reported. Methodological biases, such as day/night and seasonal variations, the use of anticoagulants to treat biological samples, the type of analytical technique to measure S100B and the different psychopathological scales to measure schizophrenia symptoms, are some of the factors that should be taken into account when researching into this area in order to reduce the variability of the reported results. The clinical implications of S100B changes in schizophrenia remain to be elucidated.
Collapse
Affiliation(s)
- Silvia Yelmo-Cruz
- Department of Psychiatry, University Hospital of the Canary Islands, La Laguna, Spain.
| | | | | |
Collapse
|
174
|
Islam MK, Alim MA, Tsuji N. Longistatin, an EF-hand Ca2+-binding protein from vector tick: identification, purification, and characterization. Methods Mol Biol 2013; 963:127-146. [PMID: 23296609 DOI: 10.1007/978-1-62703-230-8_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
EF-hand Ca(2+)-binding motif, a structural component of the EF-hand protein, functions as a calcium sensor and/or buffer in the cytosol of the cell. However, in a few exceptional cases, the EF-hand proteins are secreted from cells and play crucial roles extracellularly. We have identified longistatin, an EF-hand Ca(2+)-binding protein, from the salivary glands of the tick, Haemaphysalis longicornis. Longistatin possesses an N-terminal sequence of unknown structure and two EF-hand motifs in the C-terminus, which conserve a calmodulin-like canonical structure. Longistatin shows distinct changes in its migration during electrophoresis through SDS-PAGE gel containing calcium or ethylenediaminetetraacetic acid (EDTA). Both recombinant and endogenous forms of longistatin can be stained with rutheninum red, demonstrating that longistatin is a Ca(2+)-binding protein.
Collapse
|
175
|
RAGE in tissue homeostasis, repair and regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:101-9. [PMID: 23103427 DOI: 10.1016/j.bbamcr.2012.10.021] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/19/2012] [Accepted: 10/21/2012] [Indexed: 12/13/2022]
|
176
|
Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R, Voss E, Berger K, Kipp M, Baumgärtner W, Stangel M. Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. ACTA ACUST UNITED AC 2012; 136:147-67. [PMID: 23266461 DOI: 10.1093/brain/aws262] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent evidence suggests that astrocytes play an important role in regulating de- and remyelination in multiple sclerosis. The role of astrocytes is controversial, and both beneficial as well as detrimental effects are being discussed. We performed loss-of-function studies based on astrocyte depletion in a cuprizone-induced rodent model of demyelination. This led to strong astrogliosis accompanied by microgliosis and demyelination in C57BL/6 wild-type mice. Ablation of astrocytes in glial fibrillary acidic protein-thymidine kinase transgenic mice was associated with a failure of damaged myelin removal and a consecutive delay in remyelination. Despite oligodendrocyte death, myelin was still present, but ultrastructual investigations showed that the myelin structure was loosened and this damaged myelin did not protect axons. These alterations were associated with a decrease in microglial activation. Thus, our results show that astrocyte loss does not prevent myelin damage, but clearance of damaged myelin through recruitment of microglia is impaired. Further studies suggest that this process is regulated by the chemokine CXCL10. As a consequence of the delayed removal of myelin debris, remyelination and oligodendrocyte precursor cell proliferation were impaired. Experiments omitting the influence of myelin debris demonstrated an additional beneficial effect of astrocytes on oligodendrocyte regeneration during remyelination. In conclusion, these data demonstrate for the first time in vivo that astrocytes provide the signal environment that forms the basis for the recruitment of microglia to clear myelin debris, a process required for subsequent repair mechanisms. This is of great importance to understanding regenerative processes in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str-1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Affiliation(s)
- Nephi Stella
- Department of Pharmacology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
178
|
Sukkar MB, Ullah MA, Gan WJ, Wark PAB, Chung KF, Hughes JM, Armour CL, Phipps S. RAGE: a new frontier in chronic airways disease. Br J Pharmacol 2012; 167:1161-76. [PMID: 22506507 PMCID: PMC3504985 DOI: 10.1111/j.1476-5381.2012.01984.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/13/2012] [Accepted: 02/22/2012] [Indexed: 12/21/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous inflammatory disorders of the respiratory tract characterized by airflow obstruction. It is now clear that the environmental factors that drive airway pathology in asthma and COPD, including allergens, viruses, ozone and cigarette smoke, activate innate immune receptors known as pattern-recognition receptors, either directly or indirectly by causing the release of endogenous ligands. Thus, there is now intense research activity focused around understanding the mechanisms by which pattern-recognition receptors sustain the airway inflammatory response, and how these mechanisms might be targeted therapeutically. One pattern-recognition receptor that has recently come to attention in chronic airways disease is the receptor for advanced glycation end products (RAGE). RAGE is a member of the immunoglobulin superfamily of cell surface receptors that recognizes pathogen- and host-derived endogenous ligands to initiate the immune response to tissue injury, infection and inflammation. Although the role of RAGE in lung physiology and pathophysiology is not well understood, recent genome-wide association studies have linked RAGE gene polymorphisms with airflow obstruction. In addition, accumulating data from animal and clinical investigations reveal increased expression of RAGE and its ligands, together with reduced expression of soluble RAGE, an endogenous inhibitor of RAGE signalling, in chronic airways disease. In this review, we discuss recent studies of the ligand-RAGE axis in asthma and COPD, highlight important areas for future research and discuss how this axis might potentially be harnessed for therapeutic benefit in these conditions.
Collapse
Affiliation(s)
- Maria B Sukkar
- School of Pharmacy, The University of Technology SydneyNSW, Australia
- Woolcock Institute of Medical Research, Sydney Medical School, The University of SydneyNSW, Australia
| | - Md Ashik Ullah
- Woolcock Institute of Medical Research, Sydney Medical School, The University of SydneyNSW, Australia
- School of Biomedical Sciences and Australian Infectious Diseases Research Centre, The University of QueenslandQld, Australia
| | - Wan Jun Gan
- School of Biomedical Sciences and Australian Infectious Diseases Research Centre, The University of QueenslandQld, Australia
| | - Peter AB Wark
- Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of NewcastleNSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter HospitalNSW, Australia
| | - Kian Fan Chung
- Airways Disease Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
| | | | - Carol L Armour
- Woolcock Institute of Medical Research, Sydney Medical School, The University of SydneyNSW, Australia
| | - Simon Phipps
- School of Biomedical Sciences and Australian Infectious Diseases Research Centre, The University of QueenslandQld, Australia
| |
Collapse
|
179
|
Sagar D, Lamontagne A, Foss CA, Khan ZK, Pomper MG, Jain P. Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood-brain barrier through paracellular transmigration and ERK activation. J Neuroinflammation 2012; 9:245. [PMID: 23102113 PMCID: PMC3533869 DOI: 10.1186/1742-2094-9-245] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transmigration of circulating dendritic cells (DCs) into the central nervous system (CNS) across the blood-brain barrier (BBB) has not thus far been investigated. An increase in immune cell infiltration across the BBB, uncontrolled activation and antigen presentation are influenced by chemokines. Chemokine ligand 2 (CCL2) is a potent chemoattractant known to be secreted by the BBB but has not been implicated in the recruitment of DCs specifically at the BBB. METHODS Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice by injection of MOG35-55 peptide and pertussis toxin intraperitoneally. Animals with increasing degree of EAE score were sacrificed and subjected to near-infrared and fluorescence imaging analysis to detect and localize the accumulation of CD11c+-labeled DCs with respect to CCL2 expression. To further characterize the direct effect of CCL2 in DC trafficking at the BBB, we utilized an in vitro BBB model consisting of human brain microvascular endothelial cells to compare migratory patterns of monocyte-derived dendritic cells, CD4+ and CD8+ T cells. Further, this model was used to image transmigration using fluorescence microcopy and to assess specific molecular signaling pathways involved in transmigration. RESULTS Near-infrared imaging of DC transmigration correlated with the severity of inflammation during EAE. Ex vivo histology confirmed the presence of CCL2 in EAE lesions, with DCs emerging from perivascular spaces. DCs exhibited more efficient transmigration than T cells in BBB model studies. These observations correlated with transwell imaging, which indicated a paracellular versus transcellular pattern of migration by DCs and T cells. Moreover, at the molecular level, CCL2 seems to facilitate DC transmigration in an ERK1/2-dependent manner. CONCLUSION CNS recruitment of DCs correlates with disease severity in EAE via CCL2 chemotaxis and paracellular transmigration across the BBB, which is facilitated by ERK activation. Overall, these comprehensive studies provide a state-of-the-art view of DCs within the CNS, elucidate their path across the BBB, and highlight potential mechanisms involved in CCL2-mediated DC trafficking.
Collapse
Affiliation(s)
- Divya Sagar
- Drexel Institute for Biotechnology and Virology Research and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | |
Collapse
|
180
|
Bellavance MA, Rivest S. The neuroendocrine control of the innate immune system in health and brain diseases. Immunol Rev 2012; 248:36-55. [PMID: 22725953 DOI: 10.1111/j.1600-065x.2012.01129.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The innate immune reaction takes place in the brain during immunogenic challenges, injury, and disease. Such a response is highly regulated by numerous anti-inflammatory mechanisms that may directly affect the ultimate consequences of such a reaction within the cerebral environment. The neuroendocrine control of this innate immune system by glucocorticoids is critical for the delicate balance between cell survival and damage in the presence of inflammatory mediators. Glucocorticoids play key roles in regulating the expression of inflammatory genes, and they also have the ability to modulate numerous functions that may ultimately lead to brain damage or repair after injury. Here we review these mechanisms and discuss data supporting both neuroprotective and detrimental roles of the neuroendocrine control of innate immunity.
Collapse
Affiliation(s)
- Marc-André Bellavance
- Laboratory of Endocrinology and Genomics, CHUQ Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada
| | | |
Collapse
|
181
|
Xu Y, Feng L, Wang S, Zhu Q, Lin J, Lou C, Xiang P, He B, Zheng Z, Tang D, Zuo G. Phytoestrogen calycosin-7-O-β-D-glucopyranoside ameliorates advanced glycation end products-induced HUVEC damage. J Cell Biochem 2012; 112:2953-65. [PMID: 21647942 DOI: 10.1002/jcb.23212] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vasculopathy including endothelial cell (EC) apoptosis and inflammation contributes to the high incidence of stroke and myocardial infarction in diabetic patients. The aim of the present study was to investigate the effect of calycosin-7-O-β-D-glucopyranoside (CG), a phytoestrogen, on advanced glycation end products (AGEs)-induced HUVEC damage. We observed that CG can significantly ameliorate AGEs-induced HUVEC oxidative stress and apoptosis. The ratio of SOD/MDA was significantly increased to the normal level by CG pretreatment. CG preincubation dramatically increased anti-apoptotic Bcl-2 while decreased pro-apoptotic Bax and Bad expressions as detected by immunocytochemistry. Moreover, CG ameliorated macrophage migration and adhesion to HUVEC; the monocyte chemotactic protein-1 and interleukin-6 levels in the culture supernatant were dramatically reduced by CG as determined by ELISA; the expressions of inflammatory proteins including ICAM-1, TGF-β1, and RAGE in both protein and mRNA levels were significantly reduced to the normal level by CG pretreatment as determined by immunocytochemistry and real-time RT-PCR. The intracellular investigation suggests that CG can reverse AGEs-activated ERK1/2 and NF-κB phosphorylation, in which estrogen receptors were involved in. Our results strongly indicate that CG can modulate EC dysfunction by ameliorating AGEs-induced cell apoptosis and inflammation.
Collapse
Affiliation(s)
- Youhua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Emerging role of microglial kinin B1 receptor in diabetic pain neuropathy. Exp Neurol 2012; 234:373-81. [DOI: 10.1016/j.expneurol.2011.11.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/01/2011] [Accepted: 11/22/2011] [Indexed: 12/28/2022]
|
183
|
Ohsawa K, Sanagi T, Nakamura Y, Suzuki E, Inoue K, Kohsaka S. Adenosine A3 receptor is involved in ADP-induced microglial process extension and migration. J Neurochem 2012; 121:217-27. [PMID: 22335470 DOI: 10.1111/j.1471-4159.2012.07693.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extension of microglial processes toward injured sites in the brain is triggered by the stimulation of the purinergic receptor P2Y(12) by extracellular ATP. We recently showed that P2Y(12) stimulation by ATP induces microglial process extension in collagen gels. In the present study, we found that a P2Y(12) agonist, 2-methylthio-ADP (2MeSADP), failed to induce the process extension of microglia in collagen gels and that co-stimulation with adenosine, a phosphohydrolytic derivative of ATP, and 2MeSADP restored the chemotactic process extension. An adenosine A3 receptor (A3R)-selective agonist restored the chemotactic process extension, but other receptor subtype agonists did not. The removal of adenosine by adenosine deaminase and the blocking of A3R by an A3R-selective antagonist inhibited ADP-induced process extension. The A3R antagonist inhibited ADP-induced microglial migration, and an A3R agonist promoted 2MeSADP-stimulated migration. ADP and the A3R agonist activated Jun N-terminal kinase in microglia, and a Jun N-terminal kinase inhibitor inhibited the ADP-induced process extension. An RT-PCR analysis showed that A1R and A3R were expressed by microglia sorted from adult rat brains and that the A2AR expression level was very low. These results suggested that A3R signaling may be involved in the ADP-induced process extension and migration of microglia.
Collapse
Affiliation(s)
- Keiko Ohsawa
- Department of Neurochemistry, National Institute of Neuroscience, 4-1-1 Ogawahigashi Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | |
Collapse
|
184
|
Michetti F, Corvino V, Geloso MC, Lattanzi W, Bernardini C, Serpero L, Gazzolo D. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem 2012; 120:644-659. [PMID: 22145907 DOI: 10.1111/j.1471-4159.2011.07612.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
S100B is a calcium-binding protein concentrated in glial cells, although it has also been detected in definite extra-neural cell types. Its biological role is still debated. When secreted, S100B is believed to have paracrine/autocrine trophic effects at physiological concentrations, but toxic effects at higher concentrations. Elevated S100B levels in biological fluids (CSF, blood, urine, saliva, amniotic fluid) are thus regarded as a biomarker of pathological conditions, including perinatal brain distress, acute brain injury, brain tumors, neuroinflammatory/neurodegenerative disorders, psychiatric disorders. In the majority of these conditions, high S100B levels offer an indicator of cell damage when standard diagnostic procedures are still silent. The key question remains as to whether S100B is merely leaked from injured cells or is released in concomitance with both physiological and pathological conditions, participating at high concentrations in the events leading to cell injury. In this respect, S100B levels in biological fluids have been shown to increase in physiological conditions characterized by stressful physical and mental activity, suggesting that it may be physiologically regulated and raised during conditions of stress, with a putatively active role. This possibility makes this protein a candidate not only for a biomarker but also for a potential therapeutic target.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica Sacro Cuore, Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
185
|
Cheng J, Wang Y, Liang A, Jia L, Du J. FSP-1 Silencing in Bone Marrow Cells Suppresses Neointima Formation in Vein Graft. Circ Res 2012; 110:230-40. [DOI: 10.1161/circresaha.111.246025] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rationale:
Fibroblast-specific protein 1 (FSP-1) plays multiple roles in promoting cell proliferation and motility. Increased FSP-1 expression in smooth muscle cells (SMCs) has been associated with their enhanced proliferation.
Objective:
To study how FSP-1 contributes to neointima formation of vein grafts.
Methods:
Arteriovenous grafts were created in wild-type or FSP-1–GFP mice (green fluorescent protein expression regulated by FSP-1 promoter). The effects of FSP-1 on bone marrow (BM) cell migration and on SMC proliferation were studied in vivo and in vitro.
Results:
On creation of a vein graft, there was rapid deposition of platelets on the denuded surface leading to secretion of the chemokine stromal cell–derived factor-1α (SDF-1α). This was followed by recruitment of BM-derived cells expressing the SDF-1α receptor CXCR4; homing of FSP-1–positive cells was found to be dependent on platelet-derived SDF-1α. FSP-1 was expressed in 8% of the BM cells, and 20% of these express CD45; 85% of FSP-1–positive cells express CD11b. We found that the FSP-1–positive cells migrated into the vein graft in a Rac-1–dependent fashion. FSP-1 expression was also found to stimulate proliferation of SMCs through a MEK5-ERK5 signaling pathway that can be suppressed by a dominant-negative Rac1. Consequently, knocking down FSP-1 expression in BM cells prevented neointimal formation.
Conclusions:
BM-derived FSP-1
+
cells enhance neointima formation through an increase in transendothelial invasion with stimulation of SMC proliferation. The Rac1 and ERK5 signaling cascade mediate FSP-1–induced responses in SMCs and BM cells. This novel pathophysiology suggests a new therapeutic target, FSP-1, for preventing the development of neointima in vein grafts.
Collapse
Affiliation(s)
- Jizhong Cheng
- From the Nephrology Division, Baylor College of Medicine, Houston, TX (J.C., Y.W., A.L.); and Beijing Anzhen Hospital Affiliated to the Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China (L.J., J.D.)
| | - Yun Wang
- From the Nephrology Division, Baylor College of Medicine, Houston, TX (J.C., Y.W., A.L.); and Beijing Anzhen Hospital Affiliated to the Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China (L.J., J.D.)
| | - Anlin Liang
- From the Nephrology Division, Baylor College of Medicine, Houston, TX (J.C., Y.W., A.L.); and Beijing Anzhen Hospital Affiliated to the Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China (L.J., J.D.)
| | - Lixin Jia
- From the Nephrology Division, Baylor College of Medicine, Houston, TX (J.C., Y.W., A.L.); and Beijing Anzhen Hospital Affiliated to the Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China (L.J., J.D.)
| | - Jie Du
- From the Nephrology Division, Baylor College of Medicine, Houston, TX (J.C., Y.W., A.L.); and Beijing Anzhen Hospital Affiliated to the Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China (L.J., J.D.)
| |
Collapse
|
186
|
Riuzzi F, Sorci G, Beccafico S, Donato R. S100B engages RAGE or bFGF/FGFR1 in myoblasts depending on its own concentration and myoblast density. Implications for muscle regeneration. PLoS One 2012; 7:e28700. [PMID: 22276098 PMCID: PMC3262793 DOI: 10.1371/journal.pone.0028700] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/14/2011] [Indexed: 12/27/2022] Open
Abstract
In high-density myoblast cultures S100B enhances basic fibroblast growth factor (bFGF) receptor 1 (FGFR1) signaling via binding to bFGF and blocks its canonical receptor, receptor for advanced glycation end-products (RAGE), thereby stimulating proliferation and inhibiting differentiation. Here we show that upon skeletal muscle injury S100B is released from myofibers with maximum release at day 1 post-injury in coincidence with satellite cell activation and the beginning of the myoblast proliferation phase, and declining release thereafter in coincidence with reduced myoblast proliferation and enhanced differentiation. By contrast, levels of released bFGF are remarkably low at day 1 post-injury, peak around day 5 and decline thereafter. We also show that in low-density myoblast cultures S100B binds RAGE, but not bFGF/FGFR1 thereby simultaneously stimulating proliferation via ERK1/2 and activating the myogenic program via p38 MAPK. Clearance of S100B after a 24-h treatment of low-density myoblasts results in enhanced myotube formation compared with controls as a result of increased cell numbers and activated myogenic program, whereas chronic treatment with S100B results in stimulation of proliferation and inhibition of differentiation due to a switch of the initial low-density culture to a high-density culture. However, at relatively high doses, S100B stimulates the mitogenic bFGF/FGFR1 signaling in low-density myoblasts, provided bFGF is present. We propose that S100B is a danger signal released from injured muscles that participates in skeletal muscle regeneration by activating the promyogenic RAGE or the mitogenic bFGF/FGFR1 depending on its own concentration, the absence or presence of bFGF, and myoblast density.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cattle
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Cell Line
- Cell Proliferation
- Cells, Cultured
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/metabolism
- Immunohistochemistry
- Immunoprecipitation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myoblasts/cytology
- Myoblasts/metabolism
- Protein Binding
- Receptor for Advanced Glycation End Products
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Regeneration/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- S100 Proteins/genetics
- S100 Proteins/metabolism
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences and Istituto Interuniversitario di Miologia, University of Perugia, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine and Biochemical Sciences and Istituto Interuniversitario di Miologia, University of Perugia, Perugia, Italy
| | - Sara Beccafico
- Department of Experimental Medicine and Biochemical Sciences and Istituto Interuniversitario di Miologia, University of Perugia, Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences and Istituto Interuniversitario di Miologia, University of Perugia, Perugia, Italy
- * E-mail:
| |
Collapse
|
187
|
Lin L, Zhong K, Sun Z, Wu G, Ding G. Receptor for advanced glycation end products (RAGE) partially mediates HMGB1-ERKs activation in clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2012; 138:11-22. [PMID: 21947243 DOI: 10.1007/s00432-011-1067-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/06/2011] [Indexed: 11/24/2022]
Abstract
PURPOSE To explore the expression of receptor for advanced glycation end products (RAGE) and high-mobility group box-1 (HMGB1) and their role in clear cell renal cell carcinoma (CCRCC) development and progression. METHODS Expression of RAGE and HMGB1 was examined in RCC using tissue microarrays. In vitro, quiescent or RAGE-reduced RCC cells were subjected to treatment with HMGB1 and harvested for detecting ERK1/2 phosphorylation via Western blot. Further cell proliferation, migration and invasion were evaluated by Ki-67 immunostaining, wound healing and matrigel invasion assay, respectively. RESULTS ①Elevated co-expression of RAGE and HMGB1 in CCRCC was correlated positively with patients' clinical parameters including tumor size, nuclear Fuhrman grade and clinical stage. ②HMGB1 incubation induced ERK1/2 activation in a time- and dose-dependent manner, which could be completely blocked by U0126 (MEK1/2 inhibitor) and partially reversed by RAGE knockdown. ③RAGE knockdown partially reversed the promoted effect of cell proliferation, migration and invasion induced by HMGB1. CONCLUSION HMGB1 promotes the development and progression of CCRCC via ERK1/2 activation, which is partially mediated by RAGE.
Collapse
MESH Headings
- Carcinoma, Renal Cell/enzymology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Cell Movement/physiology
- Enzyme Activation
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Knockdown Techniques
- HMGB1 Protein/biosynthesis
- HMGB1 Protein/genetics
- HMGB1 Protein/metabolism
- HMGB1 Protein/pharmacology
- Humans
- Immunohistochemistry
- Kidney Neoplasms/enzymology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Neoplasm Invasiveness
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
Collapse
Affiliation(s)
- Liguo Lin
- Department of Urinary Surgery, MeiZhou People's Hospital, Meizhou Affiliated Hospital of Sun Yat-sen University, Huangtang Road, Meijiang District, Meizhou, Guangdong Province, 514031, People's Republic of China.
| | | | | | | | | |
Collapse
|
188
|
Xu Y, Feng L, Wang S, Zhu Q, Zheng Z, Xiang P, He B, Tang D. Calycosin protects HUVECs from advanced glycation end products-induced macrophage infiltration. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:359-370. [PMID: 21669275 DOI: 10.1016/j.jep.2011.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 05/18/2011] [Accepted: 05/28/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragali radix is a traditional Chinese medicine that has long been used for treatment of diabetes and diabetes-associated disease, but its active component and mechanism on the disease is not well defined. AIM OF THE STUDY Infiltration of leukocytes within the glomeruli and vasculature is one of the early and characteristic features of diabetic nephropathy. Advanced glycation end products (AGEs) play pivotal role in the progression of diabetic-associated diseases. The present study was designed to explore the therapeutic effect of calycosin, an active component from A. radix, on AGEs-induced macrophages infiltration in HUVECs. MATERIALS AND METHODS Transwell HUVEC-macrophage co-culture system was established to evaluate macrophage migration and adhesion. Immunocytochemistry was applied to examine TGF-beta1, ICAM-1 and RAGE protein expressions; real-time PCR was carried out to determine mRNA expression of TGF-beta1, ICAM-1 and RAGE. Immunofluorescence was carried out to observe estrogen receptor-alpha, ICAM-1, RAGE expression and the phosphorylation status of ERK1/2 and NF-κB. RESULTS Calycosin significantly reduced AGEs-induced macrophage migration and adhesion to HUVEC. Pre-treatment with calycosin strikingly down-regulated HUVEC TGF-beta1, ICAM-1 and RAGE expressions in both protein and mRNA levels. Furthermore, calycosin incubation significantly increased estrogen receptor expression and reversed AGEs-induced ERK1/2 and NF-κB phosphorylation and nuclear translocation in HUVEC, and this effect of calycosin could be inhibited by estrogen receptor inhibitor, ICI182780. CONCLUSIONS These findings suggest that calycosin can reduce AGEs-induced macrophage migration and adhesion to endothelial cells and relieve the local inflammation; furthermore, this effect was via estrogen receptor-ERK1/2-NF-κB pathway.
Collapse
Affiliation(s)
- Youhua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Tsoporis JN, Izhar S, Proteau G, Slaughter G, Parker TG. S100B-RAGE dependent VEGF secretion by cardiac myocytes induces myofibroblast proliferation. J Mol Cell Cardiol 2011; 52:464-73. [PMID: 21889514 DOI: 10.1016/j.yjmcc.2011.08.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/09/2011] [Accepted: 08/16/2011] [Indexed: 12/30/2022]
Abstract
Post-infarct remodeling is associated with the upregulation of the receptor for advanced glycation end products (RAGE), the induction of its ligand the calcium binding protein S100B and the release of the potent endothelial-cell specific mitogen vascular endothelial growth factor (VEGF). To determine a possible functional interaction between S100B, RAGE and VEGF we stimulated rat neonatal cardiac myocyte cultures transfected with either RAGE or a dominant-negative cytoplasmic deletion mutant of RAGE with S100B for 48 h. Under baseline conditions, cardiac myocytes express low levels of RAGE and VEGF and secrete VEGF in the medium as measured by ELISA. In RAGE overexpressing myocytes, S100B (100 nM) resulted in increases in VEGF mRNA, VEGF protein, VEGF secretion, and activation of the transcription factor NF-κB. Pre-treatment of RAGE overexpressing myocytes with the NF-κB inhibitor caffeic acid phenethyl ester inhibited increases in VEGF mRNA, VEGF protein and VEGF in the medium by S100B. In myocytes expressing dominant-negative RAGE, S100B did not induce VEGF mRNA, VEGF protein, VEGF secretion or NF-κB activation. In culture, rat neonatal and adult cardiac fibroblasts undergo phenotypic transition to myofibroblasts. Treatment of neonatal and adult myofibroblasts with VEGF (10 ng/mL) induces VEGFR-2 (flk-1/KDR) tyrosine kinase phosphorylation, ERK1/2 phosphorylation and myofibroblast proliferation. Together these data demonstrate that secreted VEGF by cardiac myocytes in response to S100B via RAGE ligation induces myofibroblast proliferation potentially contributing to scar formation observed in infarcted myocardium. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
Affiliation(s)
- James N Tsoporis
- Division of Cardiology, Department of Medicine, Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
190
|
Abstract
Diabetic retinopathy is a major diabetic complication with a highly complex etiology. Although there are many pathways involved, it has become established that chronic exposure of the retina to hyperglycemia gives rise to accumulation of advanced glycation end products (AGEs) that play an important role in retinopathy. In addition, the receptor for AGEs (RAGE) is ubiquitously expressed in various retinal cells and is upregulated in the retinas of diabetic patients, resulting in activation of pro-oxidant and proinflammatory signaling pathways. This AGE-RAGE axis appears to play a central role in the sustained inflammation, neurodegeneration, and retinal microvascular dysfunction occurring during diabetic retinopathy. The nature of AGE formation and RAGE signaling bring forward possibilities for therapeutic intervention. The multiple components of the AGE-RAGE axis, including signal transduction, formation of ligands, and the end-point effectors, may be promising targets for strategies to treat diabetic retinopathy.
Collapse
Affiliation(s)
- Hongliang Zong
- Centre for Vision and Vascular Science, Queen's University Belfast, Royal Victoria Hospital, Belfast, BT12 6BA, Northern Ireland, UK
| | | | | |
Collapse
|
191
|
Meyer U, Schwarz MJ, Müller N. Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol Ther 2011; 132:96-110. [PMID: 21704074 DOI: 10.1016/j.pharmthera.2011.06.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 12/26/2022]
Abstract
Emerging evidence indicates that schizophrenia is associated with activated peripheral and central inflammatory responses. Such inflammatory processes seem to be influenced by a number of environmental and genetic predisposition factors, and they may critically depend on and contribute to the progressive nature of schizophrenic disease. There is also appreciable evidence to suggest that activated inflammatory responses can undermine disease-relevant affective, emotional, social, and cognitive functions, so that inflammatory processes may be particularly relevant for the precipitation of negative and cognitive symptoms of schizophrenia. Recent clinical trials of anti-inflammatory pharmacotherapy in this disorder provide promising results by showing superior beneficial treatment effects when standard antipsychotic drugs are co-administered with anti-inflammatory compounds, as compared with treatment outcomes using antipsychotic drugs alone. Given the limited efficacy of currently available antipsychotic drugs to ameliorate negative and cognitive symptoms, the further exploration of inflammatory mechanisms and anti-inflammatory strategies may open fruitful new avenues for improved treatment of symptoms undermining affective, emotional, social and cognitive functions pertinent to schizophrenic disease.
Collapse
Affiliation(s)
- Urs Meyer
- Physiology and Behaviour Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | | | | |
Collapse
|