151
|
Laine L, Skön M, Väisänen E, Julkunen I, Österlund P. SARS-CoV-2 variants Alpha, Beta, Delta and Omicron show a slower host cell interferon response compared to an early pandemic variant. Front Immunol 2022; 13:1016108. [PMID: 36248817 PMCID: PMC9561549 DOI: 10.3389/fimmu.2022.1016108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Since the start of the pandemic at the end of 2019, arising mutations in SARS-CoV-2 have improved its transmission and ability to circumvent the immunity induced by vaccination and previous COVID-19 infection. Studies on the effects of SARS-CoV-2 genomic mutations on replication and innate immunity will give us valuable insight into the evolution of the virus which can aid in further development of vaccines and new treatment modalities. Here we systematically analyzed the kinetics of virus replication, innate immune activation, and host cell antiviral response patterns in Alpha, Beta, Delta, Kappa, Omicron and two early pandemic SARS-CoV-2 variant-infected human lung epithelial Calu-3 cells. We observed overall comparable replication patterns for these variants with modest variations. Particularly, the sublineages of Omicron BA.1, BA.2 and a recombinant sublineage, XJ, all showed attenuated replication in Calu-3 cells compared to Alpha and Delta. Furthermore, there was relatively weak activation of primary innate immune signaling pathways, however, all variants produced enough interferons to induce the activation of STAT2 and production of interferon stimulated genes (ISGs). While interferon mRNA expression and STAT2 activation correlated with cellular viral RNA levels, ISG production did not. Although clear cut effects of specific SARS-CoV-2 genomic mutations could not be concluded, the variants of concern, including Omicron, showed a lower replication efficiency and a slower interferon response compared to an early pandemic variant in the study.
Collapse
Affiliation(s)
- Larissa Laine
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
- *Correspondence: Larissa Laine,
| | - Marika Skön
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Elina Väisänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ilkka Julkunen
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pamela Österlund
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
152
|
Kulesza J, Kulesza E, Koziński P, Karpik W, Broncel M, Fol M. BCG and SARS-CoV-2-What Have We Learned? Vaccines (Basel) 2022; 10:1641. [PMID: 36298506 PMCID: PMC9610589 DOI: 10.3390/vaccines10101641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/19/2022] Open
Abstract
Despite controversy over the protective effect of the BCG (Bacille Calmette-Guérin) vaccine in preventing pulmonary tuberculosis (TB) in adults, it has been used worldwide since 1921. Although the first reports in the 1930s had noted a remarkable decrease in child mortality after BCG immunization, this could not be explained solely by a decrease in mortality from TB. These observations gave rise to the suggestion of nonspecific beneficial effects of BCG vaccination, beyond the desired protection against M. tuberculosis. The existence of an innate immunity-training mechanism based on epigenetic changes was demonstrated several years ago. The emergence of the pandemic caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in 2019 revived the debate about whether the BCG vaccine can affect the immune response against the virus or other unrelated pathogens. Due to the mortality of the coronavirus disease (COVID-19), it is important to verify each factor that may have a potential protective value against the severe course of COVID-19, complications, and death. This paper reviews the results of numerous retrospective studies and prospective trials which shed light on the potential of a century-old vaccine to mitigate the pandemic impact of the new virus. It should be noted, however, that although there are numerous studies intending to verify the hypothesis that the BCG vaccine may have a beneficial effect on COVID-19, there is no definitive evidence on the efficacy of the BCG vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Ewelina Kulesza
- Department of Rheumatology and Internal Diseases, Medical University of Lodz, Żeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Koziński
- Tuberculosis and Lung Diseases Outpatient Clinic, Health Facility Unit in Łęczyca, Zachodnia 6, 99-100 Łęczyca, Poland
| | - Wojciech Karpik
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marlena Broncel
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Marek Fol
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
153
|
Iacobucci I, Monaco V, Canè L, Bibbò F, Cioffi V, Cozzolino F, Guarino A, Zollo M, Monti M. Spike S1 domain interactome in non-pulmonary systems: A role beyond the receptor recognition. Front Mol Biosci 2022; 9:975570. [PMID: 36225252 PMCID: PMC9550266 DOI: 10.3389/fmolb.2022.975570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which, since 2019 in China, has rapidly become a worldwide pandemic. The aggressiveness and global spread were enhanced by the many SARS-CoV-2 variants that have been isolated up to now. These mutations affect mostly the viral glycoprotein Spike (S), the capsid protein mainly involved in the early stages of viral entry processes, through the recognition of specific receptors on the host cell surface. In particular, the subunit S1 of the Spike glycoprotein contains the Receptor Binding Domain (RBD) and it is responsible for the interaction with the angiotensin-converting enzyme 2 (ACE2). Although ACE2 is the primary Spike host receptor currently studied, it has been demonstrated that SARS-CoV-2 is also able to infect cells expressing low levels of ACE2, indicating that the virus may have alternative receptors on the host cells. The identification of the alternative receptors can better elucidate the pathogenicity and the tropism of SARS-CoV-2. Therefore, we investigated the Spike S1 interactomes, starting from host membrane proteins of non-pulmonary cell lines, such as human kidney (HK-2), normal colon (NCM460D), and colorectal adenocarcinoma (Caco-2). We employed an affinity purification-mass spectrometry (AP-MS) to pull down, from the membrane protein extracts of all cell lines, the protein partners of the recombinant form of the Spike S1 domain. The purified interactors were identified by a shotgun proteomics approach. The lists of S1 potential interacting proteins were then clusterized according to cellular localization, biological processes, and pathways, highlighting new possible S1 intracellular functions, crucial not only for the entrance mechanisms but also for viral replication and propagation processes.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Luisa Canè
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Francesca Bibbò
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Valentina Cioffi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Massimo Zollo
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| |
Collapse
|
154
|
Parafioriti M, Ni M, Petitou M, Mycroft-West CJ, Rudd TR, Gandhi NS, Ferro V, Turnbull JE, Lima MA, Skidmore MA, Fernig DG, Yates EA, Bisio A, Guerrini M, Elli S. Evidence for Multiple Binding Modes in the Initial Contact Between SARS-CoV-2 Spike S1 Protein and Cell Surface Glycans. Chemistry 2022; 29:e202202599. [PMID: 36134621 PMCID: PMC9537976 DOI: 10.1002/chem.202202599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 01/05/2023]
Abstract
Infection of host cells by SARS-CoV-2 begins with recognition by the virus S (spike) protein of cell surface heparan sulfate (HS), tethering the virus to the extracellular matrix environment, and causing the subunit S1-RBD to undergo a conformational change into the 'open' conformation. These two events promote the binding of S1-RBD to the angiotensin converting enzyme 2 (ACE2) receptor, a preliminary step toward viral-cell membrane fusion. Combining ligand-based NMR spectroscopy with molecular dynamics, oligosaccharide analogues were used to explore the interactions between S1-RBD of SARS CoV-2 and HS, revealing several low-specificity binding modes and previously unidentified potential sites for the binding of extended HS polysaccharide chains. The evidence for multiple binding modes also suggest that highly specific inhibitors will not be optimal against protein S but, rather, diverse HS-based structures, characterized by high affinity and including multi-valent compounds, may be required.
Collapse
Affiliation(s)
- Michela Parafioriti
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni'NMR and carbohydratesvia Giuseppe Colombo 8120133MilanoITALY
| | - Minghong Ni
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni'Organic Chemistryvia Giuseppe Colombo 8120133MilanoITALY
| | - Maurice Petitou
- Istituto di Ricerche Chimiche e Biochimiche 'G Ronzoni'Organic chemistryvia Giuseppe Colombo 8120133MilanoITALY
| | | | - Timothy R. Rudd
- National Institute for Biological Standards and ControlAnalytical and Biological Sciences DivisionPotters Bar, Hertfordshire, United KingdomPotters Bar, HertfordshireUNITED KINGDOM
| | - Neha S. Gandhi
- Queensland University of Technology Institute of Health and Biomedical InnovationSchool of Chemistry and Physics2 George StBrisbaneAUSTRALIA
| | - Vito Ferro
- The University of Queensland School of Chemistry and Molecular BiosciencesSchool of Chemistry and Molecular BiosciencesBrisbaneAUSTRALIA
| | - Jeremy E. Turnbull
- University of Liverpool Institute of Integrative BiologyInstitute of Systems, Molecular and Integrative BiologyCrown StreetL69 7ZBLiverpoolUNITED KINGDOM
| | - Marcelo A. Lima
- Keele University School of Life SciencesCentre for GlycoscienceHuxley Building 203ST5 5BGNewcastle-Under-LymeUNITED KINGDOM
| | - Mark A. Skidmore
- Keele University School of Life SciencesCentre for GlycoscienceHuxley Building 174ST5 5BGNewcastle-Under-LymeUNITED KINGDOM
| | - David G. Fernig
- University of Liverpool Institute of Integrative BiologyInstitute of Systems, Molecular and Integrative BiologyCrown StreetL69 7BELiverpoolUNITED KINGDOM
| | - Edwin A. Yates
- University of Liverpool Institute of Integrative BiologyDepartment of Biochemistry and Systems BiologyCrown StreetL69 7ZBLiverpoolUNITED KINGDOM
| | - Antonella Bisio
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni'Biochemistry and molecular biologyvia Giuseppe Colombo 8120133MilanoITALY
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni'NMR and Carbohydratevia Giuseppe Colombo 8120133MilanoITALY
| | - Stefano Elli
- Istituto di ricerche chimiche e biochimiche G Ronzoni (Milano)NMR and Carbohydratesvia Giuseppe Colombo 8120133MilanoITALY
| |
Collapse
|
155
|
Harte JV, Wakerlin SL, Lindsay AJ, McCarthy JV, Coleman-Vaughan C. Metalloprotease-Dependent S2′-Activation Promotes Cell–Cell Fusion and Syncytiation of SARS-CoV-2. Viruses 2022; 14:v14102094. [PMID: 36298651 PMCID: PMC9608990 DOI: 10.3390/v14102094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 cell–cell fusion and syncytiation is an emerging pathomechanism in COVID-19, but the precise factors contributing to the process remain ill-defined. In this study, we show that metalloproteases promote SARS-CoV-2 spike protein-induced syncytiation in the absence of established serine proteases using in vitro cell–cell fusion assays. We also show that metalloproteases promote S2′-activation of the SARS-CoV-2 spike protein, and that metalloprotease inhibition significantly reduces the syncytiation of SARS-CoV-2 variants of concern. In the presence of serine proteases, however, metalloprotease inhibition does not reduce spike protein-induced syncytiation and a combination of metalloprotease and serine protease inhibition is necessitated. Moreover, we show that the spike protein induces metalloprotease-dependent ectodomain shedding of the ACE2 receptor and that ACE2 shedding contributes to spike protein-induced syncytiation. These observations suggest a benefit to the incorporation of pharmacological inhibitors of metalloproteases into treatment strategies for patients with COVID-19.
Collapse
Affiliation(s)
- James V. Harte
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
| | - Samantha L. Wakerlin
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
| | - Andrew J. Lindsay
- Membrane Trafficking & Disease Laboratory, Biosciences Institute, School of Biochemistry & Cell Biology, University College Cork, T12 YT20 Cork, Ireland
| | - Justin V. McCarthy
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
- Correspondence: (J.V.M.); (C.C.-V.)
| | - Caroline Coleman-Vaughan
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
- Correspondence: (J.V.M.); (C.C.-V.)
| |
Collapse
|
156
|
Li Y, Yang J, Shen S, Wang W, Liu N, Guo H, Wei W. SARS-CoV-2-encoded inhibitors of human LINE-1 retrotransposition. J Med Virol 2022; 95:e28135. [PMID: 36085352 PMCID: PMC9538743 DOI: 10.1002/jmv.28135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023]
Abstract
The ongoing pandemic of severe acute respiratory coronavirus 2 (SARS-CoV-2) is causing a devastating impact on public health worldwide. However, details concerning the profound impact of SARS-CoV-2 on host cells remain elusive. Here, we investigated the effects of SARS-CoV-2-encoded viral proteins on the intracellular activity of long interspersed element 1 (L1) retrotransposons using well-established reporter systems. Several nonstructural or accessory proteins (Nsps) of SARS-CoV-2 (i.e., Nsp1, Nsp3, Nsp5, and Nsp14) significantly suppress human L1 mobility, and these viral L1 inhibitors generate a complex network that modulates L1 transposition. Specifically, Nsp1 and Nsp14 inhibit the intracellular accumulation of L1 open reading frame proteins (ORF1p), whereas Nsp3, Nsp5, and Nsp14 repress the reverse transcriptase activity of L1 ORF2p. Given recent findings concerning the roles of L1 in antiviral immune activation and host genome instability, the anti-L1 activities mediated by SARS-CoV-2-encoded inhibitors suggest that SARS-CoV-2 employs different strategies to optimize the host genetic environment.
Collapse
Affiliation(s)
- Yan Li
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Siyu Shen
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Wei Wang
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Nian Liu
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Haoran Guo
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First HospitalJilin UniversityChangchunJilinChina
| | - Wei Wei
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First HospitalJilin UniversityChangchunJilinChina
| |
Collapse
|
157
|
Dankwa B, Broni E, Enninful KS, Kwofie SK, Wilson MD. Consensus docking and MM-PBSA computations identify putative furin protease inhibitors for developing potential therapeutics against COVID-19. Struct Chem 2022; 33:2221-2241. [PMID: 36118173 PMCID: PMC9470509 DOI: 10.1007/s11224-022-02056-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/05/2022] [Indexed: 12/16/2022]
Abstract
The coronavirus disease 2019 (COVID-19) is a pandemic that has severely posed substantial health challenges and claimed millions of lives. Though vaccines have been produced to stem the spread of this disease, the death rate remains high since drugs used for treatment have therapeutic challenges. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the disease, has a slew of potential therapeutic targets. Among them is the furin protease, which has a cleavage site on the virus’s spike protein. The cleavage site facilitates the entry of the virus into human cells via cell–cell fusion. This critical involvement of furin in the disease pathogenicity has made it a viable therapeutic strategy against the virus. This study employs the consensus docking approach using HYBRID and AutoDock Vina to virtually screen a pre-filtered library of 3942 natural product compounds of African origin against the human furin protease (PDB: 4RYD). Twenty of these compounds were selected as hits after meeting molecular docking cut-off of − 7 kcal.mol−1, pose alignment inspection, and having favorable furin-ligand interactions. An area under the curve (AUC) value of 0.72 was computed from the receiver operator characteristic (ROC) curve, and Boltzmann-enhanced discrimination of the ROC curve (BEDROC) value of 0.65 showed that AutoDock Vina was a reasonable tool for selecting actives for this target. Seven of these hits were proposed as potential leads having had bonding interactions with catalytic triad residues Ser368, His194, and Asp153, and other essential residues in the active site with plausible binding free energies between − 189 and − 95 kJ/mol from the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations as well as favorable ADME/Tox properties. The molecules were also predicted as antiviral, anti-inflammatory, membrane permeability inhibitors, RNA synthesis inhibitors, cytoprotective, and hepatoprotective with probable activity (Pa) above 0.5 and probable inactivity values below 0.1. Some of them also have anti-influenza activity. Influenza virus has many similarities with SARS-CoV-2 in their mode of entry into human cells as both are facilitated by the furin protease. Pinobanksin 3-(E)-caffeate, one of the potential leads is a propolis compound. Propolis compounds have shown inhibitory effects against ACE2, TMPRSS2, and PAK1 signaling pathways of SARS-CoV-2 in previous studies. Likewise, quercitrin is structurally similar to isoquercetin, which is currently in clinical trials as possible medication for COVID-19.
Collapse
Affiliation(s)
- Bismark Dankwa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Computer Science, School of Physical & Mathematical Science, College of Basic & Applied Sciences, University of Ghana, LG 163 Legon, Accra Ghana
| | - Emmanuel Broni
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
| | - Kweku S. Enninful
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
| |
Collapse
|
158
|
Madariaga-Mazón A, Naveja JJ, Becerra A, Alberto Campillo-Balderas J, Hernández-Morales R, Jácome R, Lazcano A, Martinez-Mayorga K. Subtle structural differences of nucleotide analogs may impact SARS-CoV-2 RNA-dependent RNA polymerase and exoribonuclease activity. Comput Struct Biotechnol J 2022; 20:5181-5192. [PMID: 36097553 PMCID: PMC9452397 DOI: 10.1016/j.csbj.2022.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The rapid spread and public health impact of the novel SARS-CoV-2 variants that cause COVID-19 continue to produce major global impacts and social distress. Several vaccines were developed in record time to prevent and limit the spread of the infection, thus playing a pivotal role in controlling the pandemic. Although the repurposing of available drugs attempts to provide therapies of immediate access against COVID-19, there is still a need for developing specific treatments for this disease. Remdesivir, molnupiravir and Paxlovid remain the only evidence-supported antiviral drugs to treat COVID-19 patients, and only in severe cases. To contribute on the search of potential Covid-19 therapeutic agents, we targeted the viral RNA-dependent RNA polymerase (RdRp) and the exoribonuclease (ExoN) following two strategies. First, we modeled and analyzed nucleoside analogs sofosbuvir, remdesivir, favipiravir, ribavirin, and molnupiravir at three key binding sites on the RdRp-ExoN complex. Second, we curated and virtually screened a database containing 517 nucleotide analogs in the same binding sites. Finally, we characterized key interactions and pharmacophoric features presumably involved in viral replication halting at multiple sites. Our results highlight structural modifications that might lead to more potent SARS-CoV-2 inhibitors against an expansive range of variants and provide a collection of nucleotide analogs useful for screening campaigns.
Collapse
Affiliation(s)
- Abraham Madariaga-Mazón
- Instituto de Química Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Ucú, Yucatán, Mexico.,Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Unidad Mérida, Universidad Nacional Autónoma de México, Sierra Papacál Mérida, Yucatán 97302, Mexico
| | - José J Naveja
- Instituto de Química Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Ucú, Yucatán, Mexico.,Institute for Molecular Biology and University Cancer Center (UCT) Mainz, Germany
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.,El Colegio Nacional, Mexico City, Mexico
| | - Karina Martinez-Mayorga
- Instituto de Química Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Ucú, Yucatán, Mexico.,Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Unidad Mérida, Universidad Nacional Autónoma de México, Sierra Papacál Mérida, Yucatán 97302, Mexico
| |
Collapse
|
159
|
da Silva SJR, do Nascimento JCF, Germano Mendes RP, Guarines KM, Targino Alves da Silva C, da Silva PG, de Magalhães JJF, Vigar JRJ, Silva-Júnior A, Kohl A, Pardee K, Pena L. Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infect Dis 2022; 8:1758-1814. [PMID: 35940589 PMCID: PMC9380879 DOI: 10.1021/acsinfecdis.2c00204] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and virulent human-infecting coronavirus that emerged in late December 2019 in Wuhan, China, causing a respiratory disease called coronavirus disease 2019 (COVID-19), which has massively impacted global public health and caused widespread disruption to daily life. The crisis caused by COVID-19 has mobilized scientists and public health authorities across the world to rapidly improve our knowledge about this devastating disease, shedding light on its management and control, and spawned the development of new countermeasures. Here we provide an overview of the state of the art of knowledge gained in the last 2 years about the virus and COVID-19, including its origin and natural reservoir hosts, viral etiology, epidemiology, modes of transmission, clinical manifestations, pathophysiology, diagnosis, treatment, prevention, emerging variants, and vaccines, highlighting important differences from previously known highly pathogenic coronaviruses. We also discuss selected key discoveries from each topic and underline the gaps of knowledge for future investigations.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jessica Catarine Frutuoso do Nascimento
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Renata Pessôa Germano Mendes
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Caroline Targino Alves da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Poliana Gomes da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Virology, Pernambuco State Central Laboratory (LACEN/PE), 52171-011 Recife, Pernambuco, Brazil.,University of Pernambuco (UPE), Serra Talhada Campus, 56909-335 Serra Talhada, Pernambuco, Brazil.,Public Health Laboratory of the XI Regional Health, 56912-160 Serra Talhada, Pernambuco, Brazil
| | - Justin R J Vigar
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Abelardo Silva-Júnior
- Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| |
Collapse
|
160
|
Low ZY, Zabidi NZ, Yip AJW, Puniyamurti A, Chow VTK, Lal SK. SARS-CoV-2 Non-Structural Proteins and Their Roles in Host Immune Evasion. Viruses 2022; 14:v14091991. [PMID: 36146796 PMCID: PMC9506350 DOI: 10.3390/v14091991] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused an unprecedented global crisis and continues to threaten public health. The etiological agent of this devastating pandemic outbreak is the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 is characterized by delayed immune responses, followed by exaggerated inflammatory responses. It is well-established that the interferon (IFN) and JAK/STAT signaling pathways constitute the first line of defense against viral and bacterial infections. To achieve viral replication, numerous viruses are able to antagonize or hijack these signaling pathways to attain productive infection, including SARS-CoV-2. Multiple studies document the roles of several non-structural proteins (NSPs) of SARS-CoV-2 that facilitate the establishment of viral replication in host cells via immune escape. In this review, we summarize and highlight the functions and characteristics of SARS-CoV-2 NSPs that confer host immune evasion. The molecular mechanisms mediating immune evasion and the related potential therapeutic strategies for controlling the COVID-19 pandemic are also discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nur Zawanah Zabidi
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashwini Puniyamurti
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Vincent T. K. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore 117545, Singapore
- Correspondence: (V.T.K.C.); (S.K.L.)
| | - Sunil K. Lal
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Tropical Medicine & Biology Platform, Monash University, Subang Jaya 47500, Malaysia
- Correspondence: (V.T.K.C.); (S.K.L.)
| |
Collapse
|
161
|
Miller AN, Houlihan PR, Matamala E, Cabezas-Bratesco D, Lee GY, Cristofori-Armstrong B, Dilan TL, Sanchez-Martinez S, Matthies D, Yan R, Yu Z, Ren D, Brauchi SE, Clapham DE. The SARS-CoV-2 accessory protein Orf3a is not an ion channel, but does interact with trafficking proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.02.506428. [PMID: 36263072 PMCID: PMC9580380 DOI: 10.1101/2022.09.02.506428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and SARS-CoV-1 accessory protein Orf3a colocalizes with markers of the plasma membrane, endocytic pathway, and Golgi apparatus. Some reports have led to annotation of both Orf3a proteins as a viroporin. Here we show that neither SARS-CoV-2 nor SARS-CoV-1 form functional ion conducting pores and that the conductances measured are common contaminants in overexpression and with high levels of protein in reconstitution studies. Cryo-EM structures of both SARS-CoV-2 and SARS-CoV-1 Orf3a display a narrow constriction and the presence of a basic aqueous vestibule, which would not favor cation permeation. We observe enrichment of the late endosomal marker Rab7 upon SARS-CoV-2 Orf3a overexpression, and co-immunoprecipitation with VPS39. Interestingly, SARS-CoV-1 Orf3a does not cause the same cellular phenotype as SARS-CoV-2 Orf3a and does not interact with VPS39. To explain this difference, we find that a divergent, unstructured loop of SARS-CoV-2 Orf3a facilitates its binding with VPS39, a HOPS complex tethering protein involved in late endosome and autophagosome fusion with lysosomes. We suggest that the added loop enhances SARS-CoV-2 Orf3a ability to co-opt host cellular trafficking mechanisms for viral exit or host immune evasion.
Collapse
|
162
|
Wang M, Zhao Y, Liu J, Li T. SARS-CoV-2 modulation of RIG-I-MAVS signaling: Potential mechanisms of impairment on host antiviral immunity and therapeutic approaches. MEDCOMM - FUTURE MEDICINE 2022; 1:e29. [PMID: 37521851 PMCID: PMC9878249 DOI: 10.1002/mef2.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 05/27/2023]
Abstract
The coronavirus disease 2019 (COVID-19) is a global infectious disease aroused by RNA virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients may suffer from severe respiratory failure or even die, posing a huge challenge to global public health. Retinoic acid-inducible gene I (RIG-I) is one of the major pattern recognition receptors, function to recognize RNA viruses and mediate the innate immune response. RIG-1 and melanoma differentiation-associated gene 5 contain an N-terminal caspase recruitment domain that is activated upon detection of viral RNA in the cytoplasm of virus-infected cells. Activated RIG-I and mitochondrial antiviral signaling (MAVS) protein trigger a series of corresponding immune responses such as the production of type I interferon against viral infection. In this review, we are summarizing the role of the structural, nonstructural, and accessory proteins from SARS-CoV-2 on the RIG-I-MAVS pathway, and exploring the potential mechanism how SARS-CoV-2 could evade the host antiviral response. We then proposed that modulation of the RIG-I-MAVS signaling pathway might be a novel and effective therapeutic strategy to against COVID-19 as well as the constantly mutating coronavirus.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacauChina
| | - Yue Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacauChina
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Department of Clinical Immunology, Institute of Clinical Laboratory MedicineGuangdong Medical UniversityDongguanChina
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacauChina
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacauChina
| |
Collapse
|
163
|
Frazier MN, Riccio AA, Wilson IM, Copeland WC, Stanley RE. Recent insights into the structure and function of coronavirus ribonucleases. FEBS Open Bio 2022; 12:1567-1583. [PMID: 35445579 PMCID: PMC9110870 DOI: 10.1002/2211-5463.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Coronaviruses use approximately two-thirds of their 30-kb genomes to encode nonstructural proteins (nsps) with diverse functions that assist in viral replication and transcription, and evasion of the host immune response. The SARS-CoV-2 pandemic has led to renewed interest in the molecular mechanisms used by coronaviruses to infect cells and replicate. Among the 16 Nsps involved in replication and transcription, coronaviruses encode two ribonucleases that process the viral RNA-an exonuclease (Nsp14) and an endonuclease (Nsp15). In this review, we discuss recent structural and biochemical studies of these nucleases and the implications for drug discovery.
Collapse
Affiliation(s)
- Meredith N. Frazier
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Amanda A. Riccio
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Isha M. Wilson
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - William C. Copeland
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Robin E. Stanley
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| |
Collapse
|
164
|
Hou N, Peng C, Zhang L, Zhu Y, Hu Q. BRET-Based Self-Cleaving Biosensors for SARS-CoV-2 3CLpro Inhibitor Discovery. Microbiol Spectr 2022; 10:e0255921. [PMID: 35758897 PMCID: PMC9430692 DOI: 10.1128/spectrum.02559-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/28/2022] [Indexed: 12/02/2022] Open
Abstract
The 3C-like protease (3CLpro) of SARS-CoV-2 is an attractive drug target for developing antivirals against SARS-CoV-2. A few small molecule inhibitors of 3CLpro are in clinical trials for COVID-19 treatments, and more inhibitors are under development. One limiting factor for 3CLpro inhibitors development is that the cellular activities of such inhibitors should be evaluated in Biosafety Level 3 (BSL-3) laboratories. Here, we design DNA-coded biosensors that can be used in BSL-2 laboratories to set up cell-based assays for 3CLpro inhibitor discovery. The biosensors were constructed by linking a green fluorescent protein (GFP2) to the N-terminus and a Renilla luciferase (RLuc8) to the C-terminus of SARS-CoV-2 3CLpro, with the linkers derived from the cleavage sequences of 3CLpro. After overexpression of the biosensors in human embryonic kidney (HEK) 293T cells, 3CLpro can be released from GFP2 and RLuc by self-cleavage, resulting in a decrease of the bioluminescence resonance energy transfer (BRET) signal. Using one of these biosensors, pBRET-10, we evaluated the cellular activities of several 3CLpro inhibitors. These inhibitors restored the BRET signal by blocking the proteolysis of pBRET-10, and their relative activities measured using pBRET-10 were consistent with their previously reported anti-SARS-CoV-2 activities. We conclude that the biosensor pBRET-10 is a useful tool for SARS-CoV-2 3CLpro inhibitor discovery. IMPORTANCE The virus proteases 3CLpro are validated drug targets for developing antivirals to treat coronavirus diseases, such as COVID-19. However, the development of 3CLpro inhibitors relies heavily on BSL-3 laboratories. Here, we report a series of BRET-based self-cleaving biosensors that can be used to set up cell-based assays to evaluate the cell permeability and cellular activity of SARS-CoV-2 3CLpro inhibitors in BSL-2 laboratories. The cell-based assay is suitable for high-throughput screening for 3CLpro inhibitors because of the simplicity and good reproducibility of our biosensors. The design strategy can also be used to design biosensors for other viral proteases for which the activation processes involve the self-cleavage of polyproteins.
Collapse
Affiliation(s)
- Ningke Hou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine; and Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Chen Peng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine; and Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lijing Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine; and Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yuyao Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine; and Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qi Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine; and Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| |
Collapse
|
165
|
Almagro JC, Mellado-Sánchez G, Pedraza-Escalona M, Pérez-Tapia SM. Evolution of Anti-SARS-CoV-2 Therapeutic Antibodies. Int J Mol Sci 2022; 23:ijms23179763. [PMID: 36077159 PMCID: PMC9456190 DOI: 10.3390/ijms23179763] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 01/17/2023] Open
Abstract
Since the first COVID-19 reports back in December of 2019, this viral infection caused by SARS-CoV-2 has claimed millions of lives. To control the COVID-19 pandemic, the Food and Drug Administration (FDA) and/or European Agency of Medicines (EMA) have granted Emergency Use Authorization (EUA) to nine therapeutic antibodies. Nonetheless, the natural evolution of SARS-CoV-2 has generated numerous variants of concern (VOCs) that have challenged the efficacy of the EUA antibodies. Here, we review the most relevant characteristics of these therapeutic antibodies, including timeline of approval, neutralization profile against the VOCs, selection methods of their variable regions, somatic mutations, HCDR3 and LCDR3 features, isotype, Fc modifications used in the therapeutic format, and epitope recognized on the receptor-binding domain (RBD) of SARS-CoV-2. One of the conclusions of the review is that the EUA therapeutic antibodies that still retain efficacy against new VOCs bind an epitope formed by conserved residues that seem to be evolutionarily conserved as thus, critical for the RBD:hACE-2 interaction. The information reviewed here should help to design new and more efficacious antibodies to prevent and/or treat COVID-19, as well as other infectious diseases.
Collapse
Affiliation(s)
- Juan C. Almagro
- GlobalBio, Inc., 320 Concord Ave, Cambridge, MA 02138, USA
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Correspondence: (J.C.A.); (S.M.P.-T.)
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Martha Pedraza-Escalona
- CONACyT-Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Sonia M. Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Correspondence: (J.C.A.); (S.M.P.-T.)
| |
Collapse
|
166
|
The Key Role of Lysosomal Protease Cathepsins in Viral Infections. Int J Mol Sci 2022; 23:ijms23169089. [PMID: 36012353 PMCID: PMC9409221 DOI: 10.3390/ijms23169089] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins encompass a family of lysosomal proteases that mediate protein degradation and turnover. Although mainly localized in the endolysosomal compartment, cathepsins are also found in the cytoplasm, nucleus, and extracellular space, where they are involved in cell signaling, extracellular matrix assembly/disassembly, and protein processing and trafficking through the plasma and nuclear membrane and between intracellular organelles. Ubiquitously expressed in the body, cathepsins play regulatory roles in a wide range of physiological processes including coagulation, hormone secretion, immune responses, and others. A dysregulation of cathepsin expression and/or activity has been associated with many human diseases, including cancer, diabetes, obesity, cardiovascular and inflammatory diseases, kidney dysfunctions, and neurodegenerative disorders, as well as infectious diseases. In viral infections, cathepsins may promote (1) activation of the viral attachment glycoproteins and entry of the virus into target cells; (2) antigen processing and presentation, enabling the virus to replicate in infected cells; (3) up-regulation and processing of heparanase that facilitates the release of viral progeny and the spread of infection; and (4) activation of cell death that may either favor viral clearance or assist viral propagation. In this review, we report the most relevant findings on the molecular mechanisms underlying cathepsin involvement in viral infection physiopathology, and we discuss the potential of cathepsin inhibitors for therapeutical applications in viral infectious diseases.
Collapse
|
167
|
Rosa L, Cutone A, Conte MP, Campione E, Bianchi L, Valenti P. An overview on in vitro and in vivo antiviral activity of lactoferrin: its efficacy against SARS-CoV-2 infection. Biometals 2022; 36:417-436. [PMID: 35920949 PMCID: PMC9362590 DOI: 10.1007/s10534-022-00427-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022]
Abstract
Beyond the absolute and indisputable relevance and efficacy of anti-SARS-CoV-2 vaccines, the rapid transmission, the severity of infection, the absence of the protection on immunocompromised patients, the propagation of variants, the onset of infection and/or disease in vaccinated subjects and the lack of availability of worldwide vaccination require additional antiviral treatments. Since 1987, lactoferrin (Lf) is well-known to possess an antiviral activity related to its physico-chemical properties and to its ability to bind to both heparan sulfate proteoglycans (HSPGs) of host cells and/or surface components of viral particles. In the present review, we summarize in vitro and in vivo studies concerning the efficacy of Lf against DNA, RNA, enveloped and non-enveloped viruses. Recent studies have revealed that the in vitro antiviral activity of Lf is also extendable to SARS-CoV-2. In vivo, Lf oral administration in early stage of SARS-CoV-2 infection counteracts COVID-19 pathogenesis. In particular, the effect of Lf on SARS-CoV-2 entry, inflammatory homeostasis, iron dysregulation, iron-proteins synthesis, reactive oxygen formation, oxidative stress, gut-lung axis regulation as well as on RNA negativization, and coagulation/fibrinolysis balance will be critically reviewed. Moreover, the molecular mechanisms underneath, including the Lf binding to HSPGs and spike glycoprotein, will be disclosed and discussed. Taken together, present data not only support the application of the oral administration of Lf alone in asymptomatic COVID-19 patients or as adjuvant of standard of care practice in symptomatic ones but also constitute the basis for enriching the limited literature on Lf effectiveness for COVID-19 treatment.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy.
| |
Collapse
|
168
|
Li Y, Zheng P, Liu T, Shi C, Wang B, Xu Y, Jin T. Structural Requirements and Plasticity of Receptor-Binding Domain in Human Coronavirus Spike. Front Mol Biosci 2022; 9:930931. [PMID: 35903152 PMCID: PMC9315343 DOI: 10.3389/fmolb.2022.930931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
The most recent human coronaviruses including severe acute respiratory syndrome coronavirus-2 causing severe respiratory tract infection and high pathogenicity bring significant global public health concerns. Infections are initiated by recognizing host cell receptors by coronavirus spike protein S1 subunit, and then S2 mediates membrane fusion. However, human coronavirus spikes undergo frequent mutation, which may result in diverse pathogenesis and infectivity. In this review, we summarize some of these recent structural and mutational characteristics of RBD of human coronavirus spike protein and their interaction with specific human cell receptors and analyze the structural requirements and plasticity of RBD. Stability of spike protein, affinity toward receptor, virus fitness, and infectivity are the factors controlling the viral tropisms. Thus, understanding the molecular details of RBDs and their mutations is critical in deciphering virus evolution. Structural information of spike and receptors of human coronaviruses not only reveals the molecular mechanism of host–microbe interaction and pathogenesis but also helps develop effective drug to control these infectious pathogens and cope with the future emerging coronavirus outbreaks.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peiyi Zheng
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tingting Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cuixiao Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
169
|
Abdelhamid AG, Faraone JN, Evans JP, Liu SL, Yousef AE. SARS-CoV-2 and Emerging Foodborne Pathogens: Intriguing Commonalities and Obvious Differences. Pathogens 2022; 11:837. [PMID: 36014958 PMCID: PMC9415055 DOI: 10.3390/pathogens11080837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) has resulted in tremendous human and economic losses around the globe. The pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that is closely related to SARS-CoV and other human and animal coronaviruses. Although foodborne diseases are rarely of pandemic proportions, some of the causative agents emerge in a manner remarkably similar to what was observed recently with SARS-CoV-2. For example, Shiga toxin-producing Escherichia coli (STEC), the most common cause of hemolytic uremic syndrome, shares evolution, pathogenesis, and immune evasion similarities with SARS-CoV-2. Both agents evolved over time in animal hosts, and during infection, they bind to specific receptors on the host cell's membrane and develop host adaptation mechanisms. Mechanisms such as point mutations and gene loss/genetic acquisition are the main driving forces for the evolution of SARS-CoV-2 and STEC. Both pathogens affect multiple body organs, and the resulting diseases are not completely cured with non-vaccine therapeutics. However, SARS-CoV-2 and STEC obviously differ in the nature of the infectious agent (i.e., virus vs. bacterium), disease epidemiological details (e.g., transmission vehicle and symptoms onset time), and disease severity. SARS-CoV-2 triggered a global pandemic while STEC led to limited, but sometimes serious, disease outbreaks. The current review compares several key aspects of these two pathogenic agents, including the underlying mechanisms of emergence, the driving forces for evolution, pathogenic mechanisms, and the host immune responses. We ask what can be learned from the emergence of both infectious agents in order to alleviate future outbreaks or pandemics.
Collapse
Affiliation(s)
- Ahmed G. Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA;
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Julia N. Faraone
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA; (J.N.F.); (J.P.E.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John P. Evans
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA; (J.N.F.); (J.P.E.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmed E. Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
170
|
Saville JW, Berezuk AM, Srivastava SS, Subramaniam S. Three-Dimensional Visualization of Viral Structure, Entry, and Replication Underlying the Spread of SARS-CoV-2. Chem Rev 2022; 122:14066-14084. [PMID: 35863749 PMCID: PMC9344915 DOI: 10.1021/acs.chemrev.1c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
![]()
The global spread
of SARS-CoV-2 has proceeded at an unprecedented
rate. Remarkably, characterization of the virus using modern tools
in structural biology has also progressed at exceptional speed. Advances
in electron-based imaging techniques, combined with decades of foundational
studies on related viruses, have enabled the research community to
rapidly investigate structural aspects of the novel coronavirus from
the level of individual viral proteins to imaging the whole virus
in a native context. Here, we provide a detailed review of the structural
biology and pathobiology of SARS-CoV-2 as it relates to all facets
of the viral life cycle, including cell entry, replication, and three-dimensional
(3D) packaging based on insights obtained from X-ray crystallography,
cryo-electron tomography, and single-particle cryo-electron microscopy.
The structural comparison between SARS-CoV-2 and the related earlier
viruses SARS-CoV and MERS-CoV is a common thread throughout this review.
We conclude by highlighting some of the outstanding unanswered structural
questions and underscore areas that are under rapid current development
such as the design of effective therapeutics that block viral infection.
Collapse
Affiliation(s)
- James W Saville
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Alison M Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Shanti S Srivastava
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3.,Gandeeva Therapeutics Inc., Vancouver, British Columbia, Canada, V5C 6N5
| |
Collapse
|
171
|
Roingeard P, Eymieux S, Burlaud-Gaillard J, Hourioux C, Patient R, Blanchard E. The double-membrane vesicle (DMV): a virus-induced organelle dedicated to the replication of SARS-CoV-2 and other positive-sense single-stranded RNA viruses. Cell Mol Life Sci 2022; 79:425. [PMID: 35841484 PMCID: PMC9287701 DOI: 10.1007/s00018-022-04469-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 12/18/2022]
Abstract
Positive single-strand RNA (+ RNA) viruses can remodel host cell membranes to induce a replication organelle (RO) isolating the replication of their genome from innate immunity mechanisms. Some of these viruses, including severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), induce double-membrane vesicles (DMVs) for this purpose. Viral non-structural proteins are essential for DMV biogenesis, but they cannot form without an original membrane from a host cell organelle and a significant supply of lipids. The endoplasmic reticulum (ER) and the initial mechanisms of autophagic processes have been shown to be essential for the biogenesis of SARS-CoV-2 DMVs. However, by analogy with other DMV-inducing viruses, it seems likely that the Golgi apparatus, mitochondria and lipid droplets are also involved. As for hepatitis C virus (HCV), pores crossing both membranes of SARS-CoV-2-induced DMVs have been identified. These pores presumably allow the supply of metabolites essential for viral replication within the DMV, together with the export of the newly synthesized viral RNA to form the genome of future virions. It remains unknown whether, as for HCV, DMVs with open pores can coexist with the fully sealed DMVs required for the storage of large amounts of viral RNA. Interestingly, recent studies have revealed many similarities in the mechanisms of DMV biogenesis and morphology between these two phylogenetically distant viruses. An understanding of the mechanisms of DMV formation and their role in the infectious cycle of SARS-CoV-2 may be essential for the development of new antiviral approaches against this pathogen or other coronaviruses that may emerge in the future.
Collapse
Affiliation(s)
- Philippe Roingeard
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France. .,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France.
| | - Sébastien Eymieux
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Julien Burlaud-Gaillard
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Christophe Hourioux
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Romuald Patient
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Emmanuelle Blanchard
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| |
Collapse
|
172
|
Frazier MN, Wilson IM, Krahn JM, Butay KJ, Dillard LB, Borgnia MJ, Stanley RE. Flipped over U: structural basis for dsRNA cleavage by the SARS-CoV-2 endoribonuclease. Nucleic Acids Res 2022; 50:8290-8301. [PMID: 35801916 DOI: 10.1093/nar/gkac589] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/13/2023] Open
Abstract
Coronaviruses generate double-stranded (ds) RNA intermediates during viral replication that can activate host immune sensors. To evade activation of the host pattern recognition receptor MDA5, coronaviruses employ Nsp15, which is a uridine-specific endoribonuclease. Nsp15 is proposed to associate with the coronavirus replication-transcription complex within double-membrane vesicles to cleave these dsRNA intermediates. How Nsp15 recognizes and processes dsRNA is poorly understood because previous structural studies of Nsp15 have been limited to small single-stranded (ss) RNA substrates. Here we present cryo-EM structures of SARS-CoV-2 Nsp15 bound to a 52nt dsRNA. We observed that the Nsp15 hexamer forms a platform for engaging dsRNA across multiple protomers. The structures, along with site-directed mutagenesis and RNA cleavage assays revealed critical insight into dsRNA recognition and processing. To process dsRNA Nsp15 utilizes a base-flipping mechanism to properly orient the uridine within the active site for cleavage. Our findings show that Nsp15 is a distinctive endoribonuclease that can cleave both ss- and dsRNA effectively.
Collapse
Affiliation(s)
- Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Isha M Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Kevin John Butay
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Lucas B Dillard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
173
|
Weil T, Lawrenz J, Seidel A, Münch J, Müller JA. Immunodetection assays for the quantification of seasonal common cold coronaviruses OC43, NL63, or 229E infection confirm nirmatrelvir as broad coronavirus inhibitor. Antiviral Res 2022; 203:105343. [PMID: 35598779 PMCID: PMC9119192 DOI: 10.1016/j.antiviral.2022.105343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023]
Abstract
Besides pandemic SARS-CoV-2, also endemic seasonal human common cold coronaviruses (hCoVs) have a significant impact on human health and economy. Studies on hCoVs and the identification of antivirals are therefore crucial to improve human well-being. However, hCoVs have long been neglected and the methodology to study virus infection, replication and inhibition warrants being updated. We here evaluated the established plaque-based assays to determine viral titers and cell-to-cell spread and developed protocols for the immunodetection of the viral nucleocapsid protein by flow cytometry and in-cell ELISA to study infection rates at early time points. The developed protocols allow detection of hCoV-229E infection after 2, and hCoV-NL63 and -OC43 infection after 3 days at a single cell level or in a 96 well microtiter format, in large sample numbers without being laborious or expensive. Both assays can be applied to assess the susceptibility of cells to hCoV infection and replication, and to determine the efficacy of antiviral compounds as well as neutralizing antibodies in a sensitive and quantitative manner. Application revealed that clinically applied SARS-CoV-2 targeting monoclonal antibodies are inactive against hCoVs, but that the viral polymerase targeting antivirals remdesivir and molnupiravir are broadly active also against all three hCoVs. Further, the in-cell ELISA provided evidence that nirmatrelvir, previously shown to broadly inhibit coronavirus proteases, also prevents replication of authentic hCoVs. Importantly, the protocols described here can be easily adapted to other coronavirus strains and species as well as viruses of other families within a short time. This will facilitate future research on known and emerging (corona)viruses, support the identification of antivirals and increase the preparedness for future virus outbreaks.
Collapse
Affiliation(s)
- Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jan Lawrenz
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany; Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany; Institute of Virology, Philipps University of Marburg, 35043, Marburg, Germany.
| |
Collapse
|
174
|
Zeng S, Li Y, Zhu W, Luo Z, Wu K, Li X, Fang Y, Qin Y, Chen W, Li Z, Zou L, Liu X, Yi L, Fan S. The Advances of Broad-Spectrum and Hot Anti-Coronavirus Drugs. Microorganisms 2022; 10:microorganisms10071294. [PMID: 35889013 PMCID: PMC9317368 DOI: 10.3390/microorganisms10071294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Coronaviruses, mainly including severe acute respiratory syndrome virus, severe acute respiratory syndrome coronavirus 2, Middle East respiratory syndrome virus, human coronavirus OC43, chicken infectious bronchitis virus, porcine infectious gastroenteritis virus, porcine epidemic diarrhea virus, and murine hepatitis virus, can cause severe diseases in humans and livestock. The severe acute respiratory syndrome coronavirus 2 is infecting millions of human beings with high morbidity and mortality worldwide, and the multiplicity of swine epidemic diarrhea coronavirus in swine suggests that coronaviruses seriously jeopardize the safety of public health and that therapeutic intervention is urgently needed. Currently, the most effective methods of prevention and control for coronaviruses are vaccine immunization and pharmacotherapy. However, the emergence of mutated viruses reduces the effectiveness of vaccines. In addition, vaccine developments often lag behind, making it difficult to put them into use early in the outbreak. Therefore, it is meaningful to screen safe, cheap, and broad-spectrum antiviral agents for coronaviruses. This review systematically summarizes the mechanisms and state of anti-human and porcine coronavirus drugs, in order to provide theoretical support for the development of anti-coronavirus drugs and other antivirals.
Collapse
Affiliation(s)
- Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zipeng Luo
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yiqi Fang
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (S.F.); Fax: +86-20-8528-0245 (S.F.)
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (S.Z.); (Y.L.); (W.Z.); (Z.L.); (K.W.); (X.L.); (Y.F.); (Y.Q.); (W.C.); (Z.L.); (L.Z.); (X.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (S.F.); Fax: +86-20-8528-0245 (S.F.)
| |
Collapse
|
175
|
Calvo-Alvarez E, Dolci M, Perego F, Signorini L, Parapini S, D’Alessandro S, Denti L, Basilico N, Taramelli D, Ferrante P, Delbue S. Antiparasitic Drugs against SARS-CoV-2: A Comprehensive Literature Survey. Microorganisms 2022; 10:1284. [PMID: 35889004 PMCID: PMC9320270 DOI: 10.3390/microorganisms10071284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
More than two years have passed since the viral outbreak that led to the novel infectious respiratory disease COVID-19, caused by the SARS-CoV-2 coronavirus. Since then, the urgency for effective treatments resulted in unprecedented efforts to develop new vaccines and to accelerate the drug discovery pipeline, mainly through the repurposing of well-known compounds with broad antiviral effects. In particular, antiparasitic drugs historically used against human infections due to protozoa or helminth parasites have entered the main stage as a miracle cure in the fight against SARS-CoV-2. Despite having demonstrated promising anti-SARS-CoV-2 activities in vitro, conflicting results have made their translation into clinical practice more difficult than expected. Since many studies involving antiparasitic drugs are currently under investigation, the window of opportunity might be not closed yet. Here, we will review the (controversial) journey of these old antiparasitic drugs to combat the human infection caused by the novel coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Sarah D’Alessandro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Luca Denti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| |
Collapse
|
176
|
de Klerk A, Swanepoel P, Lourens R, Zondo M, Abodunran I, Lytras S, MacLean OA, Robertson D, Kosakovsky Pond SL, Zehr JD, Kumar V, Stanhope MJ, Harkins G, Murrell B, Martin DP. Conserved recombination patterns across coronavirus subgenera. Virus Evol 2022; 8:veac054. [PMID: 35814334 PMCID: PMC9261289 DOI: 10.1093/ve/veac054] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
Recombination contributes to the genetic diversity found in coronaviruses and is known to be a prominent mechanism whereby they evolve. It is apparent, both from controlled experiments and in genome sequences sampled from nature, that patterns of recombination in coronaviruses are non-random and that this is likely attributable to a combination of sequence features that favour the occurrence of recombination break points at specific genomic sites, and selection disfavouring the survival of recombinants within which favourable intra-genome interactions have been disrupted. Here we leverage available whole-genome sequence data for six coronavirus subgenera to identify specific patterns of recombination that are conserved between multiple subgenera and then identify the likely factors that underlie these conserved patterns. Specifically, we confirm the non-randomness of recombination break points across all six tested coronavirus subgenera, locate conserved recombination hot- and cold-spots, and determine that the locations of transcriptional regulatory sequences are likely major determinants of conserved recombination break-point hotspot locations. We find that while the locations of recombination break points are not uniformly associated with degrees of nucleotide sequence conservation, they display significant tendencies in multiple coronavirus subgenera to occur in low guanine-cytosine content genome regions, in non-coding regions, at the edges of genes, and at sites within the Spike gene that are predicted to be minimally disruptive of Spike protein folding. While it is apparent that sequence features such as transcriptional regulatory sequences are likely major determinants of where the template-switching events that yield recombination break points most commonly occur, it is evident that selection against misfolded recombinant proteins also strongly impacts observable recombination break-point distributions in coronavirus genomes sampled from nature.
Collapse
Affiliation(s)
- Arné de Klerk
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Phillip Swanepoel
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Rentia Lourens
- Division of Neurosurgery, Neuroscience Institute, Department of Surgery, University of Cape Town, Cape Town, 7701, South Africa
| | - Mpumelelo Zondo
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Isaac Abodunran
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - David Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Sergei L Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jordan D Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Venkatesh Kumar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 14186, Sweden
| | - Michael J Stanhope
- Department of Population and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gordon Harkins
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, 7535, South Africa
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 14186, Sweden
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, Division Of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7701, South Africa
| |
Collapse
|
177
|
Znaidia M, Demeret C, van der Werf S, Komarova AV. Characterization of SARS-CoV-2 Evasion: Interferon Pathway and Therapeutic Options. Viruses 2022; 14:v14061247. [PMID: 35746718 PMCID: PMC9231409 DOI: 10.3390/v14061247] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. SARS-CoV-2 is characterized by an important capacity to circumvent the innate immune response. The early interferon (IFN) response is necessary to establish a robust antiviral state. However, this response is weak and delayed in COVID-19 patients, along with massive pro-inflammatory cytokine production. This dysregulated innate immune response contributes to pathogenicity and in some individuals leads to a critical state. Characterizing the interplay between viral factors and host innate immunity is crucial to better understand how to manage the disease. Moreover, the constant emergence of new SARS-CoV-2 variants challenges the efficacy of existing vaccines. Thus, to control this virus and readjust the antiviral therapy currently used to treat COVID-19, studies should constantly be re-evaluated to further decipher the mechanisms leading to SARS-CoV-2 pathogenesis. Regarding the role of the IFN response in SARS-CoV-2 infection, in this review we summarize the mechanisms by which SARS-CoV-2 evades innate immune recognition. More specifically, we explain how this virus inhibits IFN signaling pathways (IFN-I/IFN-III) and controls interferon-stimulated gene (ISG) expression. We also discuss the development and use of IFNs and potential drugs controlling the innate immune response to SARS-CoV-2, helping to clear the infection.
Collapse
|
178
|
Troyano-Hernáez P, Reinosa R, Holguín Á. Evolution of SARS-CoV-2 in Spain during the First Two Years of the Pandemic: Circulating Variants, Amino Acid Conservation, and Genetic Variability in Structural, Non-Structural, and Accessory Proteins. Int J Mol Sci 2022; 23:6394. [PMID: 35742840 PMCID: PMC9223475 DOI: 10.3390/ijms23126394] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Monitoring SARS-CoV-2’s genetic diversity and emerging mutations in this ongoing pandemic is crucial to understanding its evolution and ensuring the performance of COVID-19 diagnostic tests, vaccines, and therapies. Spain has been one of the main epicenters of COVID-19, reaching the highest number of cases and deaths per 100,000 population in Europe at the beginning of the pandemic. This study aims to investigate the epidemiology of SARS-CoV-2 in Spain and its 18 Autonomous Communities across the six epidemic waves established from February 2020 to January 2022. We report on the circulating SARS-CoV-2 variants in each epidemic wave and Spanish region and analyze the mutation frequency, amino acid (aa) conservation, and most frequent aa changes across each structural/non-structural/accessory viral protein among the Spanish sequences deposited in the GISAID database during the study period. The overall SARS-CoV-2 mutation frequency was 1.24 × 10−5. The aa conservation was >99% in the three types of protein, being non-structural the most conserved. Accessory proteins had more variable positions, while structural proteins presented more aa changes per sequence. Six main lineages spread successfully in Spain from 2020 to 2022. The presented data provide an insight into the SARS-CoV-2 circulation and genetic variability in Spain during the first two years of the pandemic.
Collapse
Affiliation(s)
| | | | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology Department and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) in Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), 28034 Madrid, Spain; (P.T.-H.); (R.R.)
| |
Collapse
|
179
|
Alhamo MA, Boley PA, Liu M, Niu X, Yadav KK, Lee C, Saif LJ, Wang Q, Kenney SP. Characterization of the Cross-Species Transmission Potential for Porcine Deltacoronaviruses Expressing Sparrow Coronavirus Spike Protein in Commercial Poultry. Viruses 2022; 14:1225. [PMID: 35746696 PMCID: PMC9230012 DOI: 10.3390/v14061225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Avian species often serve as transmission vectors and sources of recombination for viral infections due to their ability to travel vast distances and their gregarious behaviors. Recently a novel deltacoronavirus (DCoV) was identified in sparrows. Sparrow deltacoronavirus (SpDCoV), coupled with close contact between sparrows and swine carrying porcine deltacoronavirus (PDCoV) may facilitate recombination of DCoVs resulting in novel CoV variants. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from sparrow coronaviruses (SpCoVs) may enhance infection in poultry. We used recombinant chimeric viruses, which express S protein or the RBD of SpCoV (icPDCoV-SHKU17, and icPDCoV-RBDISU) on the genomic backbone of an infectious clone of PDCoV (icPDCoV). Chimeric viruses were utilized to infect chicken derived DF-1 cells, turkey poults, and embryonated chicken eggs (ECEs) to examine permissiveness, viral replication kinetics, pathogenesis and pathology. We demonstrated that DF-1 cells in addition to the positive control LLC-PK1 cells are susceptible to SpCoV spike- and RBD- recombinant chimeric virus infections. However, the replication of chimeric viruses in DF-1 cells, but not LLC-PK1 cells, was inefficient. Inoculated 8-day-old turkey poults appeared resistant to icPDCoV-, icPDCoV-SHKU17- and icPDCoV-RBDISU virus infections. In 5-day-old ECEs, significant mortality was observed in PDCoV inoculated eggs with less in the spike chimeras, while in 11-day-old ECEs there was no evidence of viral replication, suggesting that PDCoV is better adapted to cross species infection and differentiated ECE cells are not susceptible to PDCoV infection. Collectively, we demonstrate that the SpCoV chimeric viruses are not more infectious in turkeys, nor ECEs than wild type PDCoV. Therefore, understanding the cell and host factors that contribute to resistance to PDCoV and avian-swine chimeric virus infections may aid in the design of novel antiviral therapies against DCoVs.
Collapse
Affiliation(s)
- Moyasar A. Alhamo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
- UC Davis Institute for Regenerative Cures, Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA 85817, USA
| | - Patricia A. Boley
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Mingde Liu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Xiaoyu Niu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Kush Kumar Yadav
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Carolyn Lee
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Scott P. Kenney
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| |
Collapse
|
180
|
COVID-19: the possibility, ways, mechanisms, and interruptions of mother-to-child transmission. Arch Gynecol Obstet 2022; 307:1687-1696. [PMID: 35665849 PMCID: PMC9166277 DOI: 10.1007/s00404-022-06639-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Background In December 2019, novel coronavirus pneumonia was detected in Wuhan, Hubei Province, China, and as the epidemic spread, such cases emerged worldwide. Recently, the World Health Organization (WHO) named a new mutant Omicron (B.1.1.529), which disrupts the binding of most antibodies to the S protein and has a greater ability to break through the vaccine, posing a serious risk to population safety. Positive pregnant women give birth to positive newborns despite appropriate isolation measures taken by medical staff, suggesting that we may have vertical transmission of the novel coronavirus. This article analyzes and studies the possible vertical transmission path of the new coronavirus in the perinatal period of pregnant women and the antibody-dependent enhancement (ADE), and puts forward effective preventive measures for positive pregnant women to provide further reference for clinical work. Methods We searched multiple databases, including PubMed, CNKI, Google Scholar, WHO COVID-19 database, and CDC database. Search terms included COVID-19, SARS-CoV-2, vertical transmission, Omicron, Vaginal, Breast Feeding, Vaccine, Neonatal, Severe acute respiratory syndrome coronavirus, Pregnancy, and Semen. Selection criteria The following criteria were also met: (1) positive maternal novel coronavirus nucleic acid test; (2) reporting of neonatal outcome; (3) language in Chinese or English; (4) study date or location indicated; (5) no suspected or confirmed duplicated reports. Results There is evidence of vertical transmission, and the risk of possible vertical transmission is 5.7% (75/1314). The article listed four possible vertical transmission routes, namely placental transmission, vaginal upstream transmission, breastfeeding transmission and monocyte, and macrophage transmission route, with placental transmission being the most probable. Meanwhile, SARS-CoV-2 may also enter the placenta to infect the fetus through antibody-dependent enhanced substitution mechanism. We recommend three methods for early surveillance of vertical transmission, namely nucleic acid testing, antibody screening, and antigen testing, and analyze their advantages and disadvantages. Finally, the article provides recommendations in four areas: labor management, neonatal management, nosocomial infection prevention and control, and vaccination. As well as suggesting effective preventive measures for positive pregnant women and analyzing the advantages and disadvantages of vaccination, it is recommended that pregnant women should be vaccinated promptly, but considering that the vaccine may cause fever, it is recommended to consider vaccination cautiously in the first trimester of pregnancy. Conclusion The article concludes that vertical transmission is possible, with placental transmission being the most likely, and that the risk of possible vertical transmission is 5.7% (75/1314). Good personal protection, patient isolation, ward disinfection, and vaccination are the best means of interrupting SARS-CoV-2.
Collapse
|
181
|
Chen H, Zhu Z, Qiu Y, Ge X, Zheng H, Peng Y. Prediction of coronavirus 3C-like protease cleavage sites using machine-learning algorithms. Virol Sin 2022; 37:437-444. [PMID: 35513273 PMCID: PMC9060714 DOI: 10.1016/j.virs.2022.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/02/2022] [Indexed: 12/05/2022] Open
Abstract
The coronavirus 3C-like (3CL) protease, a cysteine protease, plays an important role in viral infection and immune escape. However, there is still a lack of effective tools for determining the cleavage sites of the 3CL protease. This study systematically investigated the diversity of the cleavage sites of the coronavirus 3CL protease on the viral polyprotein, and found that the cleavage motif were highly conserved for viruses in the genera of Alphacoronavirus, Betacoronavirus and Gammacoronavirus. Strong residue preferences were observed at the neighboring positions of the cleavage sites. A random forest (RF) model was built to predict the cleavage sites of the coronavirus 3CL protease based on the representation of residues in cleavage motifs by amino acid indexes, and the model achieved an AUC of 0.96 in cross-validations. The RF model was further tested on an independent test dataset which were composed of cleavage sites on 99 proteins from multiple coronavirus hosts. It achieved an AUC of 0.95 and predicted correctly 80% of the cleavage sites. Then, 1,352 human proteins were predicted to be cleaved by the 3CL protease by the RF model. These proteins were enriched in several GO terms related to the cytoskeleton, such as the microtubule, actin and tubulin. Finally, a webserver named 3CLP was built to predict the cleavage sites of the coronavirus 3CL protease based on the RF model. Overall, the study provides an effective tool for identifying cleavage sites of the 3CL protease and provides insights into the molecular mechanism underlying the pathogenicity of coronaviruses.
Collapse
Affiliation(s)
- Huiting Chen
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082, China
| | - Zhaozhong Zhu
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082, China
| | - Ye Qiu
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082, China
| | - Xingyi Ge
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082, China
| | - Heping Zheng
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082, China
| | - Yousong Peng
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
182
|
Chen D, Zhao YG, Zhang H. Endomembrane remodeling in SARS-CoV-2 infection. CELL INSIGHT 2022; 1:100031. [PMID: 37193051 PMCID: PMC9112566 DOI: 10.1016/j.cellin.2022.100031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/18/2022]
Abstract
During severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the viral proteins intimately interact with host factors to remodel the endomembrane system at various steps of the viral lifecycle. The entry of SARS-CoV-2 can be mediated by endocytosis-mediated internalization. Virus-containing endosomes then fuse with lysosomes, in which the viral S protein is cleaved to trigger membrane fusion. Double-membrane vesicles generated from the ER serve as platforms for viral replication and transcription. Virions are assembled at the ER-Golgi intermediate compartment and released through the secretory pathway and/or lysosome-mediated exocytosis. In this review, we will focus on how SARS-CoV-2 viral proteins collaborate with host factors to remodel the endomembrane system for viral entry, replication, assembly and egress. We will also describe how viral proteins hijack the host cell surveillance system-the autophagic degradation pathway-to evade destruction and benefit virus production. Finally, potential antiviral therapies targeting the host cell endomembrane system will be discussed.
Collapse
Affiliation(s)
- Di Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan G. Zhao
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
183
|
Huang K, Ying T, Wu Y. Single-Domain Antibodies as Therapeutics for Respiratory RNA Virus Infections. Viruses 2022; 14:1162. [PMID: 35746634 PMCID: PMC9230756 DOI: 10.3390/v14061162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Over the years, infectious diseases with high morbidity and mortality disrupted human healthcare systems and devastated economies globally. Respiratory viruses, especially emerging or re-emerging RNA viruses, including influenza and human coronavirus, are the main pathogens of acute respiratory diseases that cause epidemics or even global pandemics. Importantly, due to the rapid mutation of viruses, there are few effective drugs and vaccines for the treatment and prevention of these RNA virus infections. Of note, a class of antibodies derived from camelid and shark, named nanobody or single-domain antibody (sdAb), was characterized by smaller size, lower production costs, more accessible binding epitopes, and inhalable properties, which have advantages in the treatment of respiratory diseases compared to conventional antibodies. Currently, a number of sdAbs have been developed against various respiratory RNA viruses and demonstrated potent therapeutic efficacy in mouse models. Here, we review the current status of the development of antiviral sdAb and discuss their potential as therapeutics for respiratory RNA viral diseases.
Collapse
Affiliation(s)
- Keke Huang
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Tianlei Ying
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| |
Collapse
|
184
|
Tian K, Qi Z, Chi Y, Qiang H, Wang P, Liu Y, Zhou G, Zhu F, Guo Q, Xu S. AntiV-SGN: a universal antiviral strategy to combat both RNA and DNA viruses by destroying their nucleic acids without sequence limitation. Microb Biotechnol 2022; 15:2488-2501. [PMID: 35611874 PMCID: PMC9437879 DOI: 10.1111/1751-7915.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Numerous viral outbreaks have threatened us throughout history. Here, we demonstrated a nucleic acid‐based antiviral strategy named AntiV‐SGN. Unlike those CRISPR‐mediated methods, AntiV‐SGN has advantages of no targets' sequence limitation, such as protospacer adjacent motif (PAM) or protospacer flanking sequence (PFS), being universal for both DNA and RNA viruses. AntiV‐SGN was composed of a FEN1 protein and specific hpDNAs targeting viruses' nucleic acid. Its antiviral ability was tested on SARS‐CoV‐2 and HBV respectively. Reporter assays in human cells first illustrated the feasibility of AntiV‐SGN. Then, it was verified that AntiV‐SGN destroyed about 50% of live RNAs of SARS‐CoV‐2 in Vero cells and 90% cccDNA of HBV in HepG2.2.15 cells. It was also able to remove viral DNA integrated into the host's genome. In the mouse model, AntiV‐SGN can be used to significantly reduce HBV expression at a level of 90%. Actually, in some cases, when viruses mutate to eliminate PAM/PFS or hosts were infected by both DNA and RNA viruses, AntiV‐SGN could be a choice. Collectively, this study provided a proof‐of‐concept antiviral strategy of AntiV‐SGN, which has potential clinical value for targeting a wide variety of human pathogens, both known and newly identified.
Collapse
Affiliation(s)
- Kun Tian
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhen Qi
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210006, China
| | - Ying Chi
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Huanran Qiang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Pei Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yu Liu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guohua Zhou
- Department of Pharmacology, Medical School, Jinling Hospital, Nanjing University, Nanjing, 210000, China
| | - Fengcai Zhu
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Qinglong Guo
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shu Xu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
185
|
Wilson IM, Frazier MN, Li JL, Randall TA, Stanley RE. Biochemical Characterization of Emerging SARS-CoV-2 Nsp15 Endoribonuclease Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.10.491349. [PMID: 35611336 PMCID: PMC9128782 DOI: 10.1101/2022.05.10.491349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Global sequencing efforts from the ongoing COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, continue to provide insight into the evolution of the viral genome. Coronaviruses encode 16 nonstructural proteins, within the first two-thirds of their genome, that facilitate viral replication and transcription as well as evasion of the host immune response. However, many of these viral proteins remain understudied. Nsp15 is a uridine-specific endoribonuclease conserved across all coronaviruses. The nuclease activity of Nsp15 helps the virus evade triggering an innate immune response. Understanding how Nsp15 has changed over the course of the pandemic, and how mutations affect its RNA processing function, will provide insight into the evolution of an oligomerization-dependent endoribonuclease and inform drug design. In combination with previous structural data, bioinformatics analyses of 1.9+ million SARS-CoV-2 sequences revealed mutations across Nsp15’s three structured domains (N-terminal, Middle, EndoU). Selected Nsp15 variants were characterized biochemically and compared to wild type Nsp15. We found that mutations to important catalytic residues decreased cleavage activity but increased the hexamer/monomer ratio of the recombinant protein. Many of the highly prevalent variants we analyzed led to decreased nuclease activity as well as an increase in the inactive, monomeric form. Overall, our work establishes how Nsp15 variants seen in patient samples affect nuclease activity and oligomerization, providing insight into the effect of these variants in vivo .
Collapse
Affiliation(s)
- Isha M Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
186
|
Ricciardi S, Guarino AM, Giaquinto L, Polishchuk EV, Santoro M, Di Tullio G, Wilson C, Panariello F, Soares VC, Dias SSG, Santos JC, Souza TML, Fusco G, Viscardi M, Brandi S, Bozza PT, Polishchuk RS, Venditti R, De Matteis MA. The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle. Nature 2022; 606:761-768. [PMID: 35551511 DOI: 10.1038/s41586-022-04835-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022]
Abstract
SARS-CoV-2, like other coronaviruses, builds a membrane-bound replication organelle (RO) to enable RNA replication1. The SARS-CoV-2 RO is composed of double membrane vesicles (DMVs) tethered to the endoplasmic reticulum (ER) by thin membrane connectors2, but the viral proteins and the host factors involved are currently unknown. Here we identify the viral non-structural proteins (NSPs) that generate the SARS-CoV-2 RO. NSP3 and NSP4 generate the DMVs while NSP6, through oligomerization and an amphipathic helix, zippers ER membranes and establishes the connectors. The NSP6ΔSGF mutant, which arose independently in the α, β, γ, η, ι, and λ variants of SARS-CoV-2, behaves as a gain-of-function mutant with a higher ER-zippering activity. We identified three main roles for NSP6: to act as a filter in RO-ER communication allowing lipid flow but restricting access of ER luminal proteins to the DMVs, to position and organize DMV clusters, and to mediate contact with lipid droplets (LDs) via the LD-tethering complex DFCP1-Rab18. NSP6 thus acts as an organizer of DMV clusters and can provide a selective track to refurbish them with LD-derived lipids. Importantly, both properly formed NSP6 connectors and LDs are required for SARS-CoV-2 replication. Our findings, uncovering the biological activity of NSP6 of SARS-CoV-2 and of other coronaviruses, have the potential to fuel the search for broad antiviral agents.
Collapse
Affiliation(s)
- Simona Ricciardi
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, (Naples), Italy.,Dept. Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Laura Giaquinto
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, (Naples), Italy
| | - Elena V Polishchuk
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, (Naples), Italy
| | - Michele Santoro
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, (Naples), Italy
| | - Giuseppe Di Tullio
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, (Naples), Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, (Naples), Italy
| | | | - Vinicius C Soares
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil.,Programa de Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen S G Dias
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Julia C Santos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Thiago M L Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde (CDTS) and National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), FIOCRUZ, Rio de Janeiro, Brazil
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, (Naples), Italy
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, (Naples), Italy
| | - Sergio Brandi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, (Naples), Italy
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, (Naples), Italy.
| | - Rossella Venditti
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, (Naples), Italy. .,Dept. Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, (Naples), Italy. .,Dept. Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
187
|
Alcendor DJ, Matthews-Juarez P, Smoot D, Hildreth JEK, Lamar K, Tabatabai M, Wilus D, Juarez PD. Breakthrough COVID-19 Infections in the US: Implications for Prolonging the Pandemic. Vaccines (Basel) 2022; 10:755. [PMID: 35632512 PMCID: PMC9146933 DOI: 10.3390/vaccines10050755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
The incidence of COVID-19 breakthrough infections-an infection that occurs after you have been vaccinated-has increased in frequency since the Delta and now Omicron variants of the SARS-CoV-2 coronavirus have become the dominant strains transmitted in the United States (US). Evidence suggests that individuals with breakthrough infections, though rare and expected, may readily transmit COVID-19 to unvaccinated populations, posing a continuing threat to the unvaccinated. Here, we examine factors contributing to breakthrough infections including a poor immune response to the vaccines due to the fact of advanced age and underlying comorbidities, the natural waning of immune protection from the vaccines over time, and viral variants that escape existing immune protection from the vaccines. The rise in breakthrough infections in the US and how they contribute to new infections, specifically among the unvaccinated and individuals with compromised immune systems, will create the need for additional booster vaccinations or development of modified vaccines that directly target current variants circulating among the general population. The need to expedite vaccination among the more than 49.8 million unvaccinated eligible people in the US is critical.
Collapse
Affiliation(s)
- Donald J. Alcendor
- Department of Microbiology, Immunology and Physiology, Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA;
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Hubbard Hospital, 5th Floor, Rm. 5025, Nashville, TN 37208, USA
| | - Patricia Matthews-Juarez
- Department of Family & Community Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA; (P.M.-J.); (P.D.J.)
| | - Duane Smoot
- Department of Internal Medicine, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA;
| | - James E. K. Hildreth
- Department of Microbiology, Immunology and Physiology, Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA;
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Hubbard Hospital, 5th Floor, Rm. 5025, Nashville, TN 37208, USA
- Department of Internal Medicine, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA;
| | - Kimberly Lamar
- Office of Health Disparities Elimination, Tennessee Department of Health, Nashville, TN 37243, USA;
| | - Mohammad Tabatabai
- School of Graduate Studies and Research, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA; (M.T.); (D.W.)
| | - Derek Wilus
- School of Graduate Studies and Research, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA; (M.T.); (D.W.)
| | - Paul D. Juarez
- Department of Family & Community Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Blvd., Nashville, TN 37208, USA; (P.M.-J.); (P.D.J.)
| |
Collapse
|
188
|
Zhang S, Wang L, Cheng G. The battle between host and SARS-CoV-2: Innate immunity and viral evasion strategies. Mol Ther 2022; 30:1869-1884. [PMID: 35176485 PMCID: PMC8842579 DOI: 10.1016/j.ymthe.2022.02.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/21/2022] [Accepted: 02/11/2022] [Indexed: 11/19/2022] Open
Abstract
The SARS-CoV-2 virus, the pathogen causing COVID-19, has caused more than 200 million confirmed cases, resulting in more than 4.5 million deaths worldwide by the end of August, 2021. Upon detection of SARS-CoV-2 infection by pattern recognition receptors (PRRs), multiple signaling cascades are activated, which ultimately leads to innate immune response such as induction of type I and III interferons, as well as other antiviral genes that together restrict viral spread by suppressing different steps of the viral life cycle. Our understanding of the contribution of the innate immune system in recognizing and subsequently initiating a host response to an invasion of SARS-CoV-2 has been rapidly expanding from 2020. Simultaneously, SARS-CoV-2 has evolved multiple immune evasion strategies to escape from host immune surveillance for successful replication. In this review, we will address the current knowledge of innate immunity in the context of SARS-CoV-2 infection and highlight recent advances in the understanding of the mechanisms by which SARS-CoV-2 evades a host's innate defense system.
Collapse
Affiliation(s)
- Shilei Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lulan Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
189
|
Innate and Adaptive Immune Responses in the Upper Respiratory Tract and the Infectivity of SARS-CoV-2. Viruses 2022; 14:v14050933. [PMID: 35632675 PMCID: PMC9143801 DOI: 10.3390/v14050933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence shows the nasal epithelium to be the initial site of SARS-CoV-2 infection, and that early and effective immune responses in the upper respiratory tract (URT) limit and eliminate the infection in the URT, thereby preventing infection of the lower respiratory tract and the development of severe COVID-19. SARS-CoV-2 interferes with innate immunity signaling and evolves mutants that can reduce antibody-mediated immunity in the URT. Recent genetic and immunological advances in understanding innate immunity to SARS-CoV-2 in the URT, and the ability of prior infections as well as currently available injectable and potential intranasal COVID-19 vaccines to generate anamnestic adaptive immunity in the URT, are reviewed. It is suggested that the more detailed investigation of URT immune responses to all types of COVID-19 vaccines, and the development of safe and effective COVID-19 vaccines for intranasal administration, are important needs.
Collapse
|
190
|
Calleja DJ, Lessene G, Komander D. Inhibitors of SARS-CoV-2 PLpro. Front Chem 2022; 10:876212. [PMID: 35559224 PMCID: PMC9086436 DOI: 10.3389/fchem.2022.876212] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of SARS-CoV-2 causing the COVID-19 pandemic, has highlighted how a combination of urgency, collaboration and building on existing research can enable rapid vaccine development to fight disease outbreaks. However, even countries with high vaccination rates still see surges in case numbers and high numbers of hospitalized patients. The development of antiviral treatments hence remains a top priority in preventing hospitalization and death of COVID-19 patients, and eventually bringing an end to the SARS-CoV-2 pandemic. The SARS-CoV-2 proteome contains several essential enzymatic activities embedded within its non-structural proteins (nsps). We here focus on nsp3, that harbours an essential papain-like protease (PLpro) domain responsible for cleaving the viral polyprotein as part of viral processing. Moreover, nsp3/PLpro also cleaves ubiquitin and ISG15 modifications within the host cell, derailing innate immune responses. Small molecule inhibition of the PLpro protease domain significantly reduces viral loads in SARS-CoV-2 infection models, suggesting that PLpro is an excellent drug target for next generation antivirals. In this review we discuss the conserved structure and function of PLpro and the ongoing efforts to design small molecule PLpro inhibitors that exploit this knowledge. We first discuss the many drug repurposing attempts, concluding that it is unlikely that PLpro-targeting drugs already exist. We next discuss the wealth of structural information on SARS-CoV-2 PLpro inhibition, for which there are now ∼30 distinct crystal structures with small molecule inhibitors bound in a surprising number of distinct crystallographic settings. We focus on optimisation of an existing compound class, based on SARS-CoV PLpro inhibitor GRL-0617, and recapitulate how new GRL-0617 derivatives exploit different features of PLpro, to overcome some compound liabilities.
Collapse
Affiliation(s)
- Dale J. Calleja
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - David Komander
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
191
|
Dumache R, Enache A, Macasoi I, Dehelean CA, Dumitrascu V, Mihailescu A, Popescu R, Vlad D, Vlad CS, Muresan C. SARS-CoV-2: An Overview of the Genetic Profile and Vaccine Effectiveness of the Five Variants of Concern. Pathogens 2022; 11:pathogens11050516. [PMID: 35631037 PMCID: PMC9144800 DOI: 10.3390/pathogens11050516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
With the onset of the COVID-19 pandemic, enormous efforts have been made to understand the genus SARS-CoV-2. Due to the high rate of global transmission, mutations in the viral genome were inevitable. A full understanding of the viral genome and its possible changes represents one of the crucial aspects of pandemic management. Structural protein S plays an important role in the pathogenicity of SARS-CoV-2, mutations occurring at this level leading to viral forms with increased affinity for ACE2 receptors, higher transmissibility and infectivity, resistance to neutralizing antibodies and immune escape, increasing the risk of infection and disease severity. Thus, five variants of concern are currently being discussed, Alpha, Beta, Gamma, Delta and Omicron. In the present review, a comprehensive summary of the following critical aspects regarding SARS-CoV-2 has been made: (i) the genomic characteristics of SARS-CoV-2; (ii) the pathological mechanism of transmission, penetration into the cell and action on specific receptors; (iii) mutations in the SARS-CoV-2 genome; and (iv) possible implications of mutations in diagnosis, treatment, and vaccination.
Collapse
Affiliation(s)
- Raluca Dumache
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
| | - Alexandra Enache
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
| | - Ioana Macasoi
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (I.M.); (C.A.D.)
| | - Cristina Adriana Dehelean
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (I.M.); (C.A.D.)
| | - Victor Dumitrascu
- Department of Pharmacology and Biochemistry, Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.D.); (D.V.); (C.S.V.)
| | - Alexandra Mihailescu
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
- Genetics, Genomic Medicine Research Center, Department of Microscopic Morphology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Roxana Popescu
- Department of Microscopic Morphology, Discipline of Molecular and Cell Biology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Daliborca Vlad
- Department of Pharmacology and Biochemistry, Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.D.); (D.V.); (C.S.V.)
| | - Cristian Sebastian Vlad
- Department of Pharmacology and Biochemistry, Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.D.); (D.V.); (C.S.V.)
| | - Camelia Muresan
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
| |
Collapse
|
192
|
Israeli M, Finkel Y, Yahalom-Ronen Y, Paran N, Chitlaru T, Israeli O, Cohen-Gihon I, Aftalion M, Falach R, Rotem S, Elia U, Nemet I, Kliker L, Mandelboim M, Beth-Din A, Israely T, Cohen O, Stern-Ginossar N, Bercovich-Kinori A. Genome-wide CRISPR screens identify GATA6 as a proviral host factor for SARS-CoV-2 via modulation of ACE2. Nat Commun 2022; 13:2237. [PMID: 35469023 PMCID: PMC9039069 DOI: 10.1038/s41467-022-29896-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
The global spread of SARS-CoV-2 led to major economic and health challenges worldwide. Revealing host genes essential for infection by multiple variants of SARS-CoV-2 can provide insights into the virus pathogenesis, and facilitate the development of novel therapeutics. Here, employing a genome-scale CRISPR screen, we provide a comprehensive data-set of cellular factors that are exploited by wild type SARS-CoV-2 as well as two additional recently emerged variants of concerns (VOCs), Alpha and Beta. We identified several host factors critical for SARS-CoV-2 infection, including various components belonging to the Clathrin-dependent transport pathway, ubiquitination, Heparan sulfate biogenesis and host phosphatidylglycerol biosynthesis. Comparative analysis of the different VOCs revealed the host factors KREMEN2 and SETDB1 as potential unique candidates required only to the Alpha variant. Furthermore, the analysis identified GATA6, a zinc finger transcription factor, as an essential proviral gene for all variants inspected. We show that GATA6 directly regulates ACE2 transcription and accordingly, is critical for SARS-CoV-2 cell entry. Analysis of clinical samples collected from SARS-CoV-2 infected individuals shows elevated levels of GATA6, suggesting a role in COVID-19 pathogenesis. Finally, pharmacological inhibition of GATA6 resulted in down-modulation of ACE2 and inhibition of viral infectivity. Overall, we show GATA6 may represent a target for the development of anti-SARS-CoV-2 therapeutic strategies and reaffirm the value of the CRISPR loss-of-function screens in providing a list of potential new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Ma'ayan Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Yaara Finkel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Inbar Cohen-Gihon
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Uri Elia
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ital Nemet
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Limor Kliker
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Adi Beth-Din
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Bercovich-Kinori
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel.
| |
Collapse
|
193
|
Levy G, Guglielmelli P, Langmuir P, Constantinescu S. JAK inhibitors and COVID-19. J Immunother Cancer 2022; 10:jitc-2021-002838. [PMID: 35459733 PMCID: PMC9035837 DOI: 10.1136/jitc-2021-002838] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the—possibly altered—response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19. We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.
Collapse
Affiliation(s)
- Gabriel Levy
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium.,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| | - Paola Guglielmelli
- Department of Clinical and Experimental Medicine, University of Florence, Firenze, Italy.,Center of Research and Innovation for Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Peter Langmuir
- Oncology Targeted Therapeutics, Incyte Corp, Wilmington, Delaware, USA
| | - Stefan Constantinescu
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium .,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,Nuffield Department of Medicine, Oxford University, Ludwig Institute for Cancer Research, Oxford, UK
| |
Collapse
|
194
|
Calleja DJ, Kuchel N, Lu BGC, Birkinshaw RW, Klemm T, Doerflinger M, Cooney JP, Mackiewicz L, Au AE, Yap YQ, Blackmore TR, Katneni K, Crighton E, Newman J, Jarman KE, Call MJ, Lechtenberg BC, Czabotar PE, Pellegrini M, Charman SA, Lowes KN, Mitchell JP, Nachbur U, Lessene G, Komander D. Insights Into Drug Repurposing, as Well as Specificity and Compound Properties of Piperidine-Based SARS-CoV-2 PLpro Inhibitors. Front Chem 2022; 10:861209. [PMID: 35494659 PMCID: PMC9039177 DOI: 10.3389/fchem.2022.861209] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic continues unabated, emphasizing the need for additional antiviral treatment options to prevent hospitalization and death of patients infected with SARS-CoV-2. The papain-like protease (PLpro) domain is part of the SARS-CoV-2 non-structural protein (nsp)-3, and represents an essential protease and validated drug target for preventing viral replication. PLpro moonlights as a deubiquitinating (DUB) and deISGylating enzyme, enabling adaptation of a DUB high throughput (HTS) screen to identify PLpro inhibitors. Drug repurposing has been a major focus through the COVID-19 pandemic as it may provide a fast and efficient route for identifying clinic-ready, safe-in-human antivirals. We here report our effort to identify PLpro inhibitors by screening the ReFRAME library of 11,804 compounds, showing that none inhibit PLpro with any reasonable activity or specificity to justify further progression towards the clinic. We also report our latest efforts to improve piperidine-scaffold inhibitors, 5c and 3k, originally developed for SARS-CoV PLpro. We report molecular details of binding and selectivity, as well as in vitro absorption, distribution, metabolism and excretion (ADME) studies of this scaffold. A co-crystal structure of SARS-CoV-2 PLpro bound to inhibitor 3k guides medicinal chemistry efforts to improve binding and ADME characteristics. We arrive at compounds with improved and favorable solubility and stability characteristics that are tested for inhibiting viral replication. Whilst still requiring significant improvement, our optimized small molecule inhibitors of PLpro display decent antiviral activity in an in vitro SARS-CoV-2 infection model, justifying further optimization.
Collapse
Affiliation(s)
- Dale J. Calleja
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Nathan Kuchel
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Bernadine G. C. Lu
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Richard W. Birkinshaw
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Theresa Klemm
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Marcel Doerflinger
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - James P. Cooney
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Liana Mackiewicz
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Amanda E. Au
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Yu Q. Yap
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Timothy R Blackmore
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Elly Crighton
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Janet Newman
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Biomedical Program, Parkville, VIC, Australia
| | - Kate E. Jarman
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Melissa J. Call
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Bernhard C. Lechtenberg
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Peter E. Czabotar
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Marc Pellegrini
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kym N. Lowes
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Jeffrey P. Mitchell
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Ueli Nachbur
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - David Komander
- Department of Medical Biology, Walter and Eliza Hall Institute, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
195
|
Strobelt R, Adler J, Paran N, Yahalom-Ronen Y, Melamed S, Politi B, Shulman Z, Schmiedel D, Shaul Y. Imatinib inhibits SARS-CoV-2 infection by an off-target-mechanism. Sci Rep 2022; 12:5758. [PMID: 35388061 PMCID: PMC8984672 DOI: 10.1038/s41598-022-09664-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal agent of the COVID-19 pandemic. More than 274 million individuals have suffered from COVID-19 and over five million people have died from this disease so far. Therefore, there is an urgent need for therapeutic drugs. Repurposing FDA approved drugs should be favored since evaluation of safety and efficacy of de-novo drug design are both costly and time consuming. We report that imatinib, an Abl tyrosine kinase inhibitor, robustly decreases SARS-CoV-2 infection and uncover a mechanism of action. We show that imatinib inhibits the infection of SARS-CoV-2 and its surrogate lentivector pseudotype. In latter, imatinib inhibited both routes of viral entry, endocytosis and membrane-fusion. We utilized a system to quantify in real-time cell-cell membrane fusion mediated by the SARS-CoV-2 surface protein, Spike, and its receptor, hACE2, to demonstrate that imatinib inhibits this process in an Abl1 and Abl2 independent manner. Furthermore, cellular thermal shift assay revealed a direct imatinib-Spike interaction that affects Spike susceptibility to trypsin digest. Collectively, our data suggest that imatinib inhibits Spike mediated viral entry by an off-target mechanism. These findings mark imatinib as a promising therapeutic drug in inhibiting the early steps of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Romano Strobelt
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Julia Adler
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Boaz Politi
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Dominik Schmiedel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
196
|
Scott BM, Lacasse V, Blom DG, Tonner PD, Blom NS. Predicted coronavirus Nsp5 protease cleavage sites in the human proteome. BMC Genom Data 2022; 23:25. [PMID: 35379171 PMCID: PMC8977440 DOI: 10.1186/s12863-022-01044-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
The coronavirus nonstructural protein 5 (Nsp5) is a cysteine protease required for processing the viral polyprotein and is therefore crucial for viral replication. Nsp5 from several coronaviruses have also been found to cleave host proteins, disrupting molecular pathways involved in innate immunity. Nsp5 from the recently emerged SARS-CoV-2 virus interacts with and can cleave human proteins, which may be relevant to the pathogenesis of COVID-19. Based on the continuing global pandemic, and emerging understanding of coronavirus Nsp5-human protein interactions, we set out to predict what human proteins are cleaved by the coronavirus Nsp5 protease using a bioinformatics approach.
Results
Using a previously developed neural network trained on coronavirus Nsp5 cleavage sites (NetCorona), we made predictions of Nsp5 cleavage sites in all human proteins. Structures of human proteins in the Protein Data Bank containing a predicted Nsp5 cleavage site were then examined, generating a list of 92 human proteins with a highly predicted and accessible cleavage site. Of those, 48 are expected to be found in the same cellular compartment as Nsp5. Analysis of this targeted list of proteins revealed molecular pathways susceptible to Nsp5 cleavage and therefore relevant to coronavirus infection, including pathways involved in mRNA processing, cytokine response, cytoskeleton organization, and apoptosis.
Conclusions
This study combines predictions of Nsp5 cleavage sites in human proteins with protein structure information and protein network analysis. We predicted cleavage sites in proteins recently shown to be cleaved in vitro by SARS-CoV-2 Nsp5, and we discuss how other potentially cleaved proteins may be relevant to coronavirus mediated immune dysregulation. The data presented here will assist in the design of more targeted experiments, to determine the role of coronavirus Nsp5 cleavage of host proteins, which is relevant to understanding the molecular pathology of coronavirus infection.
Collapse
|
197
|
Skudra A, Revalde G, Zajakina A, Mezule L, Spunde K, Juhna T, Rancane K. UV inactivation of Semliki Forest virus and bacteria by alternative light sources. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022; 10:100120. [PMID: 35437519 PMCID: PMC8994679 DOI: 10.1016/j.jpap.2022.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The quick spreading of the SARS-CoV-2 virus, initiating the global pandemic with a significant impact on economics and health, highlighted an urgent need for effective and sustainable restriction mechanisms of pathogenic microorganisms. UV-C radiation, causing inactivation of many viruses and bacteria, is one of the tools for disinfection of different surfaces, liquids, and air; however, mainly mercury 254 nm line is commonly used for it. In this paper, we report our results of the experiments with newly elaborated special type polychromatic non-mercury UV light sources, having spectral lines in the spectral region from 190 nm to 280 nm. Inactivation tests were performed with both Escherichia coli (E.coli) bacteria and Semliki Forest virus (SFV) as a representative of human enveloped RNA viruses. In addition, the effect of prepared lamps on virus samples in liquid and dry form (dried virus-containing solution) was tested. Reduction of 4 log10 of E.coli was obtained after 10 min of irradiation with both thallium-antimony and arsenic high-frequency electrodeless lamps. High reduction results for the arsenic light source demonstrated sensitivity of E. coli to wavelengths below 230 nm, including spectral lines around 200 nm. For the Semliki Forest virus, the thallium-antimony light source showed virus inactivation efficiency with a high virus reduction rate in the range of 3.10 to > 4.99 log10 within 5 min of exposure. Thus, the new thallium-antimony light source showed the most promising disinfection effect in bacteria and viruses, and arsenic light sources for bacteria inactivation, opening doors for many applications in disinfection systems, including for pathogenic human RNA viruses.
Collapse
|
198
|
Dholariya S, Parchwani DN, Singh R, Radadiya M, Katoch CDS. Utility of P-SEP, sTREM-1 and suPAR as Novel Sepsis Biomarkers in SARS-CoV-2 Infection. Indian J Clin Biochem 2022; 37:131-138. [PMID: 34642555 PMCID: PMC8494168 DOI: 10.1007/s12291-021-01008-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022]
Abstract
The coronavirus disease 2019 is a highly contagious viral infection caused by SARS-CoV-2 virus, member of coronaviridae family. It causes life threatening complications due to complexity and rapid onset course of the disease. Early identification of high-risk patients who require close monitoring and aggressive treatment remains challengeable till date. Novel biomarkers which help to identify high risk patients at the early stage is high priority. Objective of this review to find utility of P-SEP, sTREM-1 and suPAR for diagnosis, risk stratification and prognosis of SARS-CoV-2 infected cases. Soluble receptors like, P-SEP, sTREM-1 and suPAR have been involved in immune regulation in SARS-CoV-2 infection and elevate more in severe cases. A comprehensive research of databases like PubMed, EMBASE, CNKI and Web of Science was performed for relevant studies. A total of nine out of fifteen research literature in initial screening were included for this review. Interestingly all studies have reported high levels of P-SEP, sTREM-1 and suPAR in SARS-CoV-2 infected cases and the biomarkers positively correlated with severity of infection. This implies that P-SEP, sTREM-1 and suPAR can be implemented as surrogate marker in blood profile for early diagnosis, risk stratification and prognosis in SARS-CoV-2 for better management in Indian population at the current situation.
Collapse
Affiliation(s)
- Sagar Dholariya
- All India Institute of Medical Sciences, Rajkot, Gujarat India
| | | | - Ragini Singh
- All India Institute of Medical Sciences, Rajkot, Gujarat India
| | | | - C. D. S. Katoch
- All India Institute of Medical Sciences, Rajkot, Gujarat India
| |
Collapse
|
199
|
Arancibia-Hernández YL, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza-Chaverri J. Antioxidant/anti-inflammatory effect of Mg 2+ in coronavirus disease 2019 (COVID-19). Rev Med Virol 2022; 32:e2348. [PMID: 35357063 PMCID: PMC9111052 DOI: 10.1002/rmv.2348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 12/26/2022]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), characterised by high levels of inflammation and oxidative stress (OS). Oxidative stress induces oxidative damage to lipids, proteins, and DNA, causing tissue damage. Both inflammation and OS contribute to multi-organ failure in severe cases. Magnesium (Mg2+ ) regulates many processes, including antioxidant and anti-inflammatory responses, as well as the proper functioning of other micronutrients such as vitamin D. In addition, Mg2+ participates as a second signalling messenger in the activation of T cells. Therefore, Mg2+ deficiency can cause immunodeficiency, exaggerated acute inflammatory response, decreased antioxidant response, and OS. Supplementation with Mg2+ has an anti-inflammatory response by reducing the levels of nuclear factor kappa B (NF-κB), interleukin (IL) -6, and tumor necrosis factor alpha. Furthermore, Mg2+ supplementation improves mitochondrial function and increases the antioxidant glutathione (GSH) content, reducing OS. Therefore, Mg2+ supplementation is a potential way to reduce inflammation and OS, strengthening the immune system to manage COVID-19. This narrative review will address Mg2+ deficiency associated with a worse disease prognosis, Mg2+ supplementation as a potent antioxidant and anti-inflammatory therapy during and after COVID-19 disease, and suggest that randomised controlled trials are indicated.
Collapse
Affiliation(s)
| | - Ana Karina Aranda-Rivera
- Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Cruz-Gregorio
- Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
200
|
Beyer DK, Forero A. Mechanisms of Antiviral Immune Evasion of SARS-CoV-2. J Mol Biol 2022; 434:167265. [PMID: 34562466 PMCID: PMC8457632 DOI: 10.1016/j.jmb.2021.167265] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022]
Abstract
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is characterized by a delayed interferon (IFN) response and high levels of proinflammatory cytokine expression. Type I and III IFNs serve as a first line of defense during acute viral infections and are readily antagonized by viruses to establish productive infection. A rapidly growing body of work has interrogated the mechanisms by which SARS-CoV-2 antagonizes both IFN induction and IFN signaling to establish productive infection. Here, we summarize these findings and discuss the molecular interactions that prevent viral RNA recognition, inhibit the induction of IFN gene expression, and block the response to IFN treatment. We also describe the mechanisms by which SARS-CoV-2 viral proteins promote host shutoff. A detailed understanding of the host-pathogen interactions that unbalance the IFN response is critical for the design and deployment of host-targeted therapeutics to manage COVID-19.
Collapse
Affiliation(s)
- Daniel K. Beyer
- Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA,Corresponding author
| |
Collapse
|