151
|
Li C, Liu X, Huang Z, Zhai Y, Li H, Wu J. Lactoferrin Alleviates Lipopolysaccharide-Induced Infantile Intestinal Immune Barrier Damage by Regulating an ELAVL1-Related Signaling Pathway. Int J Mol Sci 2022; 23:13719. [PMID: 36430202 PMCID: PMC9696789 DOI: 10.3390/ijms232213719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
As the most important intestinal mucosal barrier of the main body, the innate immune barrier in intestinal tract plays especially pivotal roles in the overall health conditions of infants and young children; therefore, how to strengthen the innate immune barrier is pivotal. A variety of bioactivities of lactoferrin (LF) has been widely proved, including alleviating enteritis and inhibiting colon cancer; however, the effects of LF on intestinal immune barrier in infants and young children are still unclear, and the specific mechanism on how LF inhibits infantile enteritis by regulating immune signaling pathways is unrevealed. In the present study, we firstly performed pharmacokinetic analyses of LF in mice intestinal tissues, stomach tissues and blood, through different administration methods, to confirm the metabolic method of LF in mammals. Then we constructed in Vitro and in Vivo infantile intestinal immune barrier damage models utilizing lipopolysaccharide (LPS), and evaluated the effects of LF in alleviating LPS-induced intestinal immune barrier damage. Next, the related immune molecular mechanism on how LF exerted protective effects was investigated, through RNA-seq analyses of the mouse primary intestinal epithelial cells, and the specific genes were analyzed and screened out. Finally, the genes and their related immune pathway were validated in mRNA and protein levels; the portions of special immune cells (CD4+ T cells and CD8+ T cells) were also detected to further support our experimental results. Pharmacokinetic analyses demonstrated that the integrity of LF could reach mice stomach and intestine after oral gavage within 12 h, and the proper administration of LF should be the oral route. LF was proven to down-regulate the expression levels of inflammatory cytokines in both the primary intestinal epithelial cells and mice blood, especially LF without iron (Apo-LF), indicating LF alleviated infantile intestinal immune barrier damage induced by LPS. And through RNA-seq analyses of the mouse primary intestinal epithelial cells treated with LPS and LF, embryonic lethal abnormal vision Drosophila 1 (ELAVL1) was selected as one of the key genes, then the ELAVL1/PI3K/NF-κB pathway regulated by LF was verified to participate in the protection of infantile intestinal immune barrier damage in our study. Additionally, the ratio of blood CD4+/CD8+ T cells was significantly higher in the LF-treated mice than in the control mice, indicating that LF distinctly reinforced the overall immunity of infantile mice, further validating the strengthening bioactivity of LF on infantile intestinal immune barrier. In summary, LF was proven to alleviate LPS-induced intestinal immune barrier damage in young mice through regulating ELAVL1-related immune signaling pathways, which would expand current knowledge of the functions of bioactive proteins in foods within different research layers, as well as benefit preclinical and clinical researches in a long run.
Collapse
Affiliation(s)
- Chaonan Li
- Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100085, China
| | - Xinkui Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhihong Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yiyan Zhai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huiying Li
- Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100085, China
| | - Jiarui Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
152
|
Avalos-Gómez C, Ramírez-Rico G, Ruiz-Mazón L, Sicairos NL, Serrano-Luna J, de la Garza M. Lactoferrin: An Effective Weapon in the Battle Against Bacterial Infections. Curr Pharm Des 2022; 28:3243-3260. [PMID: 36284379 DOI: 10.2174/1381612829666221025153216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/27/2022] [Indexed: 01/28/2023]
Abstract
The emergence of multidrug-resistant bacterial strains with respect to commercially available antimicrobial drugs has marked a watershed in treatment therapies to fight pathogens and has stimulated research on alternative remedies. Proteins of the innate immune system of mammals have been highlighted as potentially yielding possible treatment options for infections. Lactoferrin (Lf) is one of these proteins; interestingly, no resistance to it has been found. Lf is a conserved cationic nonheme glycoprotein that is abundant in milk and is also present in low quantities in mucosal secretions. Moreover, Lf is produced and secreted by the secondary granules of neutrophils at infection sites. Lf is a molecule of approximately 80 kDa that displays multiple functions, such as antimicrobial, anti-viral, anti-inflammatory, and anticancer actions. Lf can synergize with antibiotics, increasing its potency against bacteria. Lactoferricins (Lfcins) are peptides resulting from the N-terminal end of Lf by proteolytic cleavage with pepsin. They exhibit several anti-bacterial effects similar to those of the parental glycoprotein. Synthetic analog peptides exhibiting potent antimicrobial properties have been designed. The aim of this review is to update understanding of the structure and effects of Lf and Lfcins as anti-bacterial compounds, focusing on the mechanisms of action in bacteria and the use of Lf in treatment of infections in patients, including those studies where no significant differences were found. Lf could be an excellent option for prevention and treatment of bacterial diseases, mainly in combined therapies with antibiotics or other antimicrobials.
Collapse
Affiliation(s)
- Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico.,Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Km 2.5 Carretera Cuautitlán- Teoloyucan, Cuautitlán Izcalli, 54714, Mexico
| | - Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Nidia León Sicairos
- Departamento de Investigación, Hospital Pediátrico de Sinaloa, Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa, Mexico
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| |
Collapse
|
153
|
Zhu K, Zou H, Chen J, Hu J, Xiong S, Fu J, Xiong Y, Huang X. Rapid and sensitive determination of lactoferrin in milk powder by boronate affinity amplified dynamic light scattering immunosensor. Food Chem 2022; 405:134983. [DOI: 10.1016/j.foodchem.2022.134983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
154
|
Inhibited digestion of lactoferrin - lactose complexes: Preparation, structural characterization and digestion behaviors. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
155
|
Vijayaram S, Sun YZ, Zuorro A, Ghafarifarsani H, Van Doan H, Hoseinifar SH. Bioactive immunostimulants as health-promoting feed additives in aquaculture: A review. FISH & SHELLFISH IMMUNOLOGY 2022; 130:294-308. [PMID: 36100067 DOI: 10.1016/j.fsi.2022.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Bioactive immunostimulants could be derived from different sources like plants, animals, microbes, algae, yeast, etc. Bioactive immunostimulants are the most significant role to enhance aquatic production, as well as the cost of this method, which is effective, non-toxic, and environment-friendly. These immunostimulants are supportive to increase the immune system, growth, antioxidant, anti-inflammatory, and disease resistance of aquatic animals' health and also improve aquatic animal feed. Diseases are mainly targeted to the immune system of aquatic organisms in such a way that different processes of bioactive immunostimulants progress are considered imperative techniques for the development of aquaculture production. Communicable infections are the main problem for aquaculture, while the mortality and morbidity connected with some outbreaks significantly limit the productivity of some sectors. Aquaculture is considered the mainly developing food production sector globally. Protein insists is an important issue in human nutrition. Aquaculture has been an exercise for thousands of years, and it has now surpassed capture fisheries as the most vital source of seafood in the world. Limited study reports are available to focal point on bioactive immunostimulants in aquaculture applications. This review report provides information on the nutritional administration of bioactive immunostimulants, their types, functions, and beneficial impacts on aquatic animals' health as well as for the feed quality development in the aquaculture industry. The scope of this review combined to afford various kinds of natural derived bioactive molecules utilization and their beneficial effects in aquaculture applications.
Collapse
Affiliation(s)
- Seerengaraj Vijayaram
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China; Department of Environmental Studies, School of Energy Environment and Natural Resources, Madurai Kamaraj University, Madurai, India
| | - Yun-Zhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China; The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China.
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, 00184, Rome, Italy
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand; Science and Technology Research Institute, Chiang Mai University, Suthep, Muang, Chiang Mai, Thailand.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
156
|
Ahmed Abdelmaksoud A, Nafady A, Ezzeldin Sayed Bazeed S, Khalefa M, Elsamman MK, Abdelrhman Sayed MA, Qubaisy HM, Ghweil AA, Aref ZF. Lactoferrin versus Long-Acting Penicillin in Reducing Elevated Anti-Streptolysin O Titer in Cases of Tonsillopharyngitis. Infect Drug Resist 2022; 15:5257-5263. [PMID: 36097531 PMCID: PMC9464002 DOI: 10.2147/idr.s376401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background Beta-Hemolytic streptococci are the most frequent bacteria causing tonsillitis. Lactoferrin may play a role in the treatment of chronic tonsillitis due to its direct antimicrobial activity. Objective To assess the possible role of lactoferrin in reduction of raised serum Anti-Streptolysin O Titer (ASOT) in cases of chronic tonsillopharyngitis in comparison to long acting penicillin. Methods This study included 117 children with tonsillopharyngitis with high ASOT randomly divided into three groups; group 1 treated with lactoferrin, group 2 treated with long acting penicillin and group 3 treated with both drugs. For all patients ASOT was measured after three and six months of starting treatment. Results This study included 60 males and 57 females with the mean age (8.5 ± 2.4). There is statistically significant reduction in ASOT in all groups after three months of treatment. ASOT after 3 months was significantly lower in group1 (370±440) and group 3 (350±450) in comparison to group 2 (420±560) with p value 0.02, 0.004, respectively, with no significant difference in comparing group 1 to group 3 p value 0.4. Also, ASO titre after 6 months was significantly lower in group1 (350±420) and group 3 (340±440) in comparison to group 2 (420±550) with p value 0.02, 0.007, respectively, with no significant difference in comparing group 1 to group 3 p value 0.5. In comparing ASOT at three months and six months of treatment in the three studied groups; it decreased by 2% in group 1, and 1.6% in group 3 and no change in group 2. Conclusion Lactoferrin alone or in combination with long acting penicillin is safe and more effective than long acting penicillin alone in reducing ASOT. Treatment for six months with lactoferrin alone or in combination with long acting penicillin could offer a better response.
Collapse
Affiliation(s)
| | - Asmaa Nafady
- Clinical and Chemical Pathology, South Valley University, Qena, Egypt
| | | | | | | | | | | | - Ali A Ghweil
- Tropical Medicine and Gastroenterology, South Valley University, Qena, Egypt
| | - Zaki F Aref
- ENT, South Valley University, Qena, Egypt
- Department and Institution, ENT Department, Clinical and Chemical Chemistry Department Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
157
|
Sawale M, Ozadali F, Valentine CJ, Benyathiar P, Drolia R, Mishra DK. Impact of bovine lactoferrin fortification on pathogenic organisms to attenuate the risk of infection for infants. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
158
|
Sun C, Han Y, Zhang R, Liu S, Wang J, Zhang Y, Chen X, Jiang C, Wang J, Fan X, Wang J. Regulated necrosis in COVID-19: A double-edged sword. Front Immunol 2022; 13:917141. [PMID: 36090995 PMCID: PMC9452688 DOI: 10.3389/fimmu.2022.917141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
COVID-19 caused by SARS-CoV-2 can cause various systemic diseases such as acute pneumonia with cytokine storm. Constituted of necroptosis, pyroptosis, and ferroptosis, regulated necrosis constitutes the cell death patterns under the low apoptosis condition commonly observed in COVID-19. Regulated necrosis is involved in the release of cytokines like TNF-α, IL-1 β, and IL-6 and cell contents such as alarmins, PAMPs, and DAMPs, leading to more severe inflammation. Uncontrolled regulated necrosis may explain the poor prognosis and cytokine storm observed in COVID-19. In this review, the pathophysiology and mechanism of regulated necrosis with the double-edged sword effect in COVID-19 are thoroughly discussed in detail. Furthermore, this review also focuses on the biomarkers and potential therapeutic targets of the regulated necrosis pathway in COVID-19, providing practical guidance to judge the severity, prognosis, and clinical treatment of COVID-19 and guiding the development of clinical anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Chen Sun
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunze Han
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruoyu Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Simon Liu
- Medical Genomics Unit, National Human Genome Research Institute, Bethesda, MD, United States
| | - Jing Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chao Jiang
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jian Wang, ; Junmin Wang, ; Xiaochong Fan,
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jian Wang, ; Junmin Wang, ; Xiaochong Fan,
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jian Wang, ; Junmin Wang, ; Xiaochong Fan,
| |
Collapse
|
159
|
Li Y, Dong L, Mu Z, Liu L, Yang J, Wu Z, Pan D, Liu L. Research Advances of Lactoferrin in Electrostatic Spinning, Nano Self-Assembly, and Immune and Gut Microbiota Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10075-10089. [PMID: 35968926 DOI: 10.1021/acs.jafc.2c04241] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lactoferrin (LF) is a naturally present iron-binding globulin with the structural properties of an N-lobe strongly positively charged terminus and a cage-like structure of nano self-assembly encapsulation. These unique structural properties give it potential for development in the fields of electrostatic spinning, targeted delivery systems, and the gut-brain axis. This review will provide an overview of LF's unique structure, encapsulation, and targeted transport capabilities, as well as its applications in immunity and gut microbiota regulation. First, the microstructure of LF is summarized and compared with its homologous ferritin, revealing both structural and functional similarities and differences between them. Second, the electrostatic interactions of LF and its application in electrostatic spinning are summarized. Its positive charge properties can be applied to functional environmental protection packaging materials and to improving drug stability and antiviral effects, while electrostatic spinning can promote bone regeneration and anti-inflammatory effects. Then the nano self-assembly behavior of LF is exploited as a cage-like protein to encapsulate bioactive substances to construct functional targeted delivery systems for applications such as contrast agents, antibacterial dressings, anti-cancer therapy, and gene delivery. In addition, some covalent and noncovalent interactions of LF in the Maillard reaction and protein interactions and other topics are briefly discussed. Finally, LF may affect immunological function via controlling the gut microbiota. In conclusion, this paper reviews the research advances of LF in electrostatic spinning, nano self-assembly, and immune and gut microbiota regulation, aiming to provide a reference for its application in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Zhishen Mu
- Inner Mongolia Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011500, PR China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska─Lincoln, Lincoln, Nebraska 68588-6205, United States
| | - Junsi Yang
- Department of Food Science and Technology, University of Nebraska─Lincoln, Lincoln, Nebraska 68588-6205, United States
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| |
Collapse
|
160
|
Actor JK, Nguyen TKT, Wasik-Smietana A, Kruzel ML. Modulation of TDM-induced granuloma pathology by human lactoferrin: a persistent effect in mice. Biometals 2022; 36:603-615. [PMID: 35976499 DOI: 10.1007/s10534-022-00434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/08/2022] [Indexed: 11/02/2022]
Abstract
Lactoferrin (LTF), an iron binding protein, is known to exhibit immune modulatory effects on pulmonary pathology during insult-induced models of primary Mycobacterium tuberculosis (Mtb) infection. The effects of LTF correlate with modulation of the immune related development of the pathology, and altering of the histological nature of the physically compact and dense lung granuloma in mice. Specifically, a recombinant human version of LTF limits immediate progression of granulomatous severity following administration of the Mtb cell wall mycolic acid, trehalose 6,6'-dimycolate (TDM), in part through reduced pro-inflammatory responses known to control these events. This current study investigates a limited course of LTF to modulate not only initiation, but also maintenance and resolution of pathology post development of the granulomatous response in mice. Comparison is made to a fusion of LTF with the Fc domain of IgG2 (FcLTF), which is known to extend LTF half-life in circulation. TDM induced granulomas were examined at extended times post insult (day 7 and 14). Both LTF and the novel FcLTF exerted sustained effects on lung granuloma pathology. Reduction of pulmonary pro-inflammatory cytokines TNF-α and IL-1β occurred, correlating with reduced pathology. Increase in IL-6, known to regulate granuloma maintenance, was also seen with the LTFs. The FcLTF demonstrated greater impact than the recombinant LTF, and was superior in limiting damage to pulmonary tissues while limiting residual inflammatory cytokine production.
Collapse
Affiliation(s)
- Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, MSB 2.214, 6431 Fannin, Houston, TX, 77030, USA.
| | - Thao K T Nguyen
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | | | | |
Collapse
|
161
|
Xu Y, Wang Y, He J, Zhu W. Antibacterial properties of lactoferrin: A bibliometric analysis from 2000 to early 2022. Front Microbiol 2022; 13:947102. [PMID: 36060777 PMCID: PMC9428516 DOI: 10.3389/fmicb.2022.947102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHere, a bibliometric and knowledge map analysis are used to analyze the research hot spots and development trends regarding the antibacterial effect of lactoferrin (LF). By looking for research hot spots and new topics, we provide new clues and research directions for future research.MethodsArticles and reviews regarding the antibacterial effect of LF were retrieved and from the Web of Science Core Collection (WoSCC) on 25 June 2022. CiteSpace and VOSviewer were used to conduct the bibliometric and knowledge map analysis.ResultsIn total, 8,292 authors at 2,151 institutions from 86 countries published 1,923 articles in 770 academic journals. The United States was the leader regarding research on the antibacterial effects of LF, while the Netherlands was a pioneer in conducting research in this field. The University of California system contributed the most publications. Bolscher JGM published most articles, while Wayne Bellamy had most cocitations. However, there was insufficient cooperation among the various institutions and authors. BioMetals published most LF-antibacterial activity-related articles, whereas Infection and Immunity was most commonly cocited journal. The most influential research hot spots about the antibacterial effect of LF focused on antimicrobial peptides, casein, human milk, expression, and Escherichia coli-related research. The latest hot spots and research frontier included COVID-19, antibiofilm activity, and immune defense.ConclusionsLF is a multifunctional protein with a broad spectrum of antimicrobial activities. The related field of antibacterial properties of LF will remain a research hot spot in future.
Collapse
Affiliation(s)
- Yunling Xu
- Department of Basic Medical, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Yuji Wang
- Department of Basic Medical, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Jiaolong He
- Department of Intensive Care, First Affiliated Hospital of Jishou University, Jishou, China
- *Correspondence: Jiaolong He
| | - Wanping Zhu
- Department of Basic Medical, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
- Wanping Zhu
| |
Collapse
|
162
|
Tomé Constantino AB, Garcia-Rojas EE. Vitamin D3 microcapsules formed by heteroprotein complexes obtained from amaranth protein isolates and lactoferrin: Formation, characterization, and bread fortification. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
163
|
Odor clustering using a gas sensor array system of chicken meat based on temperature variations and storage time. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
164
|
Qin Z, Sun Y, Zhang J, Zhou L, Chen Y, Huang C. Lessons from SARS‑CoV‑2 and its variants (Review). Mol Med Rep 2022; 26:263. [PMID: 35730623 PMCID: PMC9260876 DOI: 10.3892/mmr.2022.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has swept through mainland China by human-to-human transmission. The rapid spread of SARS-CoV-2 and its variants, including the currently prevalent Omicron strain, pose a serious threat worldwide. The present review summarizes epidemiological investigation and etiological analysis of genomic, epidemiological, and pathological characteristics of the original strain and its variants, as well as progress in diagnosis and treatment. Prevention and control measures used during the current Omicron pandemic are discussed to provide further knowledge of SARS-CoV-2.
Collapse
Affiliation(s)
- Ziwen Qin
- Department of Respiratory Diseases, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| | - Yan Sun
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jian Zhang
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ling Zhou
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Yujuan Chen
- Department of Respiratory Diseases, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| | - Chuanjun Huang
- Department of Respiratory Diseases, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
165
|
Lactoferrin network with MC3T3-E1 cell proliferation, auxiliary mineralization, antibacterial functions: A multifunctional coating for biofunctionalization of implant surfaces. Colloids Surf B Biointerfaces 2022; 216:112598. [PMID: 35636326 DOI: 10.1016/j.colsurfb.2022.112598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/27/2022] [Accepted: 05/22/2022] [Indexed: 12/24/2022]
Abstract
Developing biocompatible, low-immunoreactive, and antibacterial implants are challenging yet fundamental to osteosynthesis. In this study, mineralization-stimulative and antibacterial networking nanostructures are assembled via amyloid-like aggregation of lactoferrin (LF) triggered by reducing the intramolecular disulfide bonds. Due to the adhesive property of their rich β-sheet architecture, the LF networks are amenable to the deposition upon the surface of various implant materials, functionalizing the implants with cell-proliferative, mineralization-stimulative, and antibacterial properties. Specifically, the abundant functional groups and amino acids exposed on the surface of LF networks provide abundant functional microdomains for subsequent mineralization of different forms of calcium ions and promote the formation of hydroxyapatite (HAp) crystals in simulated body fluids. We further demonstrate that the LF network inherits the innate antibacterial properties of LF and exerts a synergistic antibacterial ability with surface-enriched positively charged and hydrophobic amino acid residues, disrupting bacterial biofilm formation, enhancing microbial cell wall perturbation, and ultimately leading to microbial death. The results underscore the feasibility of the LF network as a multifunctional coating on bioscaffold surfaces, which may provide insight into its future applications in next-generation artificial bone implants with bacterial/biofilm clearance and bone tissue remodeling capabilities.
Collapse
|
166
|
Li S, Li Y, Yu F, Li N, Liu C, Mao J, Sun H, Hu Y, Zhu Y, Zhou M, Ding L. Human Endometrium-Derived Adventitial Cell Spheroid-Loaded Antimicrobial Microneedles for Uterine Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201225. [PMID: 35798313 DOI: 10.1002/smll.202201225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Asherman's syndrome (AS) occurs as a consequence of severe damage to the endometrial basalis, usually leading to menstrual abnormalities, infertility, and recurrent miscarriage in women. Currently, human endometrium-derived adventitial cells (En-ADVs) are considered ideal seed cells with high pluripotency for regenerative medicine. However, critical issues such as noninvasive repair of tissues, targeting of native stem cells, and continuous action in the injured sites are not well resolved. Herein, En-ADV spheroid-loaded hierarchical microneedles (MN/En-ADV) for in situ intrauterine repair are developed. The flexible microneedles are fabricated with gelatin methacryloyl and lactoferrin, imparting the characteristics of rapid degradation and antimicrobial activity. Benefiting from an array of microwells on microneedles, En-ADVs can rapidly form 3D cell spheroids, which display higher potential for cell proliferation, differentiation, and migration than dissociated cells. With the application of MN/En-ADV, the repaired uteri show well-defined myometrial regeneration, angiogenesis, and an increase of endometrial receptivity in a rat AS model. Notably, embryos are able to implant in the reconstructed sites and remain viable, indicating that this system promotes the restoration of both normal morphology and reproductive function in the injured uterus. It is anticipated that multifunctional MN/En-ADV can be an ideal candidate for versatile in situ tissue regeneration.
Collapse
Affiliation(s)
- Shiyuan Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yifan Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Fei Yu
- Center for Experimental Animal, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Ning Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Jialian Mao
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Yali Hu
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Yujuan Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Min Zhou
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
- Center for Clinical Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
167
|
Li DM, Wu YX, Hu ZQ, Wang TC, Zhang LL, Zhou Y, Tong X, Xu JY, Qin LQ. Lactoferrin Prevents Chronic Alcoholic Injury by Regulating Redox Balance and Lipid Metabolism in Female C57BL/6J Mice. Antioxidants (Basel) 2022; 11:antiox11081508. [PMID: 36009227 PMCID: PMC9405310 DOI: 10.3390/antiox11081508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to investigate the preventive effects of lactoferrin (Lf) on chronic alcoholic liver injury (ALI) in female mice. Female C57BL/6J mice were randomly divided into four groups: control group (CON), ethanol administration group (EtOH), low-dose Lf treatment group (LLf), and high-dose Lf group (HLf). In the last three groups, chronic ALI was induced by administering 20% ethanol ad libitum for 12 weeks. Mice in the CON and EtOH groups were fed with AIN-93G diet. Meanwhile, 0.4% and 4% casein in the AIN-93G diet were replaced by Lf as the diets of LLf and HLf groups, respectively. HLf significantly reduced hepatic triglyceride content and improved pathological morphology. HLf could inhibit cytochrome P450 2E1 overexpression and promote alcohol dehydrogenase-1 expression. HLf activated protein kinase B and AMP-activated protein kinase (AMPK), as well as upregulating nuclear-factor-erythroid-2-related factor-2 expression to elevate hepatic antioxidative enzyme activities. AMPK activation also benefited hepatic lipid metabolism. Meanwhile, HLf had no obvious beneficial effects on gut microbiota. In summary, Lf could alleviate chronic ALI in female mice, which was associated with redox balance and lipid metabolism regulation.
Collapse
Affiliation(s)
- De-Ming Li
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.-M.L.); (Y.-X.W.); (Z.-Q.H.); (T.-C.W.); (L.-L.Z.); (Y.Z.)
| | - Yun-Xuan Wu
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.-M.L.); (Y.-X.W.); (Z.-Q.H.); (T.-C.W.); (L.-L.Z.); (Y.Z.)
| | - Zhi-Qiang Hu
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.-M.L.); (Y.-X.W.); (Z.-Q.H.); (T.-C.W.); (L.-L.Z.); (Y.Z.)
| | - Tian-Ci Wang
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.-M.L.); (Y.-X.W.); (Z.-Q.H.); (T.-C.W.); (L.-L.Z.); (Y.Z.)
| | - Li-Li Zhang
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.-M.L.); (Y.-X.W.); (Z.-Q.H.); (T.-C.W.); (L.-L.Z.); (Y.Z.)
| | - Yan Zhou
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.-M.L.); (Y.-X.W.); (Z.-Q.H.); (T.-C.W.); (L.-L.Z.); (Y.Z.)
| | - Xing Tong
- Laboratory Center, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China;
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
- Correspondence: (J.-Y.X.); (L.-Q.Q.)
| | - Li-Qiang Qin
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China; (D.-M.L.); (Y.-X.W.); (Z.-Q.H.); (T.-C.W.); (L.-L.Z.); (Y.Z.)
- Correspondence: (J.-Y.X.); (L.-Q.Q.)
| |
Collapse
|
168
|
Yang X, Jiang S, Deng X, Luo Z, Chen A, Yu R. Effects of Antioxidants in Human Milk on Bronchopulmonary Dysplasia Prevention and Treatment: A Review. Front Nutr 2022; 9:924036. [PMID: 35923207 PMCID: PMC9340220 DOI: 10.3389/fnut.2022.924036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe chronic lung illness that affects neonates, particularly premature infants. It has far-reaching consequences for infant health and their families due to intractable short- and long-term repercussions. Premature infant survival and long-term quality of life are severely harmed by BPD, which is characterized by alveolarization arrest and hypoplasia of pulmonary microvascular cells. BPD can be caused by various factors, with oxidative stress (OS) being the most common. Premature infants frequently require breathing support, which results in a hyperoxic environment in the developing lung and obstructs lung growth. OS can damage the lungs of infants by inducing cell death, inhibiting alveolarization, inducing inflammation, and impairing pulmonary angiogenesis. Therefore, antioxidant therapy for BPD relieves OS and lung injury in preterm newborns. Many antioxidants have been found in human milk, including superoxide dismutase, glutathione peroxidase, glutathione, vitamins, melatonin, short-chain fatty acids, and phytochemicals. Human milk oligosaccharides, milk fat globule membrane, and lactoferrin, all unique to human milk, also have antioxidant properties. Hence, human milk may help prevent OS injury and improve BPD prognosis in premature infants. In this review, we explored the role of OS in the pathophysiology of BPD and related signaling pathways. Furthermore, we examined antioxidants in human milk and how they could play a role in BPD to understand whether human milk could prevent and treat BPD.
Collapse
Affiliation(s)
- Xianpeng Yang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianhui Deng
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ailing Chen
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
169
|
Wang X, Liu F, An Q, Wang W, Cheng Z, Dai Y, Meng Q, Zhang Y. Lactoferrin Deficiency Impairs Proliferation of Satellite Cells via Downregulating the ERK1/2 Signaling Pathway. Int J Mol Sci 2022; 23:ijms23137478. [PMID: 35806481 PMCID: PMC9267821 DOI: 10.3390/ijms23137478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Lactoferrin (Ltf), a naturally active glycoprotein, possesses anti-inflammatory, anti-microbial, anti-tumor, and immunomodulatory activities. Many published studies have indicated that Ltf modulates the proliferation of stem cells. However, the role of Ltf in the proliferation of satellite cells, an important cell type in muscle regeneration, has not yet been reported. Here, by using Ltf systemic knockout mice, we illustrate the role of Ltf in skeletal muscle. Results shows that Ltf deficiency impaired proliferation of satellite cells (SCs) and the regenerative capability of skeletal muscle. Mechanistic studies showed that ERK1/2 phosphorylation was significantly downregulated after Ltf deletion in SCs. Simultaneously, the cell cycle-related proteins cyclin D and CDK4 were significantly downregulated. Intervention with exogenous recombinant lactoferrin (R-Ltf) at a concentration of 1000 μg/mL promoted proliferation of SCs. In addition, intraperitoneal injection of Ltf effectively ameliorated the skeletal muscle of mice injured by 1.2% BaCl2 solution. Our results suggest a protective effect of Ltf in the repair of skeletal muscle damage. Ltf holds promise as a novel therapeutic agent for skeletal muscle injuries.
Collapse
Affiliation(s)
- Xiong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Fan Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (F.L.); (Y.D.); (Q.M.)
| | - Qin An
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Zhimei Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Yunping Dai
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (F.L.); (Y.D.); (Q.M.)
| | - Qingyong Meng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (F.L.); (Y.D.); (Q.M.)
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
- Correspondence: ; Tel.: +86-010-6273-7465
| |
Collapse
|
170
|
Dao HM, Sahakijpijarn S, Chrostowski RR, Moon C, Mangolini F, Cui Z, Williams RO. Aggregation of Lactoferrin Caused by Droplet Atomization Process via a Two-Fluid Nozzle: The Detrimental Effect of Air-Water Interfaces. Mol Pharm 2022; 19:2662-2675. [PMID: 35639017 DOI: 10.1021/acs.molpharmaceut.2c00358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biological macromolecules, especially therapeutic proteins, are delicate and highly sensitive to denaturation from stresses encountered during the manufacture of dosage forms. Thin-film freeze-drying (TFFD) and spray freeze-drying (SFD) are two processes used to convert liquid forms of protein into dry powders. In the production of inhalable dry powders that contain proteins, these potential stressors fall into three categories based on their occurrence during the primary steps of the process: (1) droplet formation (e.g., the mechanism of droplet formation, including spray atomization), (2) freezing, and (3) frozen water removal (e.g., sublimation). This study compares the droplet formation mechanism used in TFFD and SFD by investigating the effects of spraying on the stability of proteins, using lactoferrin as a model. This study considers various perspectives on the denaturation (e.g., conformation) of lactoferrin after subjecting the protein solution to the atomization process using a pneumatic two-fluid nozzle (employed in SFD) or a low-shear drop application through the nozzle. The surface activity of lactoferrin was examined to explore the interfacial adsorption tendency, diffusion, and denaturation process. Subsequently, this study also investigates the secondary and tertiary structure of lactoferrin and the quantification of monomers, oligomers, and, ultimately, aggregates. The spraying process affected the tertiary structure more negatively than the tightly woven secondary structure, resulting in the peak position corresponding to the tryptophan (Trp) residues red-shifting by 1.5 nm. This conformational change can either (a) be reversed at low concentrations via relaxation or (b) proceed to form irreversible aggregates at higher concentrations. Interestingly, when the sample was allowed to progress into micrometer-sized aggregates, such a dramatic change was not detected using methods such as size-exclusion chromatography, polyacrylamide gel electrophoresis, and dynamic light scattering at 173°. A more complete understanding of the heterogeneous protein sample was achieved only through a combination of 173 and 13° backward and forward scattering, a combination of derived count rate measurements, and microflow imaging (MFI). After studying the impact of droplet formation mechanisms on aggregation tendency of lactoferrin, we further investigated two additional model proteins with different surface activity: bovine IgG (serving as a non surface-active negative reference), and β-galactosidase (another surface-active protein). The results corroborated the lactoferrin findings that spray-atomization-related stress-induced protein aggregation was much more pronounced for proteins that are surface active (lactoferrin and β-galactosidase), but it was minimal for non-surface-active protein (bovine IgG). Finally, compared to the low-shear dripping used in the TFFD process, lactoferrin underwent a relatively fast conformational change upon exposure to the high air-water interface of the two-fluid atomization nozzle used in the SFD process as compared to the low shear dripping used in the TFFD process. The interfacial-induced denaturation that occurred during spraying was governed primarily by the size of the atomized droplets, regardless of the duration of exposure to air. The percentage of denatured protein population and associated activity loss, in the case of β-galactosidase, was determined to range from 2 to 10% depending on the air-flow rate of the spraying process.
Collapse
Affiliation(s)
- Huy M Dao
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | | | - Robert R Chrostowski
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas78712, United States
- Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas78712, United States
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - Filippo Mangolini
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| |
Collapse
|
171
|
Liu C, Peng Q, Wei L, Li Z, Zhang X, Wu Y, Wang J, Zheng X, Wen Y, Zheng R, Yan Q, Ye Q, Ma J. Deficiency of Lactoferrin aggravates lipopolysaccharide-induced acute inflammation via recruitment macrophage in mice. Biometals 2022; 36:549-562. [PMID: 35650365 PMCID: PMC9159647 DOI: 10.1007/s10534-022-00398-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022]
Abstract
Lactoferrin (Lf), a multiple functional natural immune protein, is widely distributed in mammalian milk and glandular secretions (bile, saliva, tears and nasal mucosal secretions, etc.). In the previous study, we found that Lf plays an anti-inflammatory and anti-tumorigenesis role in AOM/DSS (azoxymethane/dextran sulfate sodium) induced mouse colitis-associated colon cancer model.
Although we found that Lf has anti-inflammatory effects in chronic inflammation, its specific role and mechanisms in acute inflammation have not been clarified. Here, we reported that the expression levels of Lf were significantly increased when the organism was infected by Gram-negative bacteria. We then explored the role and potential mechanism of Lf in lipopolysaccharide (LPS)-induced acute inflammation. In the LPS-induced acute abdominal inflammation model, Lf deficiency aggravated inflammatory response and promoted macrophage chemotaxis to the inflammation site. Lf inhibited macrophage chemotaxis by suppressing the expression of macrophage-associated chemokines Ccl2 and Ccl5. Highly activated NF-κB signaling in Lf−/− mice was responsible for the high expression of Ccl2 and Ccl5. Our results suggested that the anti-inflammatory effect of Lf offers a new potential treatment for acute inflammatory diseases.
Collapse
Affiliation(s)
- Can Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Qiu Peng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Lingyu Wei
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Zhengshuo Li
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Xiaoyue Zhang
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Yangge Wu
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Jia Wang
- Department of Immunology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yuqing Wen
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Run Zheng
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Qiurong Ye
- Department of Pathology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China.
| |
Collapse
|
172
|
Effects of heat treatment and simulated digestion on the properties and osteogenic activity of bovine lactoferrin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
173
|
Mitsudome T. Characterization of proton T2 relaxation time of bovine lactoferrin powder before and after high-temperature storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
174
|
Bruno F, Malvaso A, Canterini S, Bruni AC. Antimicrobial Peptides (AMPs) in the Pathogenesis of Alzheimer's Disease: Implications for Diagnosis and Treatment. Antibiotics (Basel) 2022; 11:726. [PMID: 35740133 PMCID: PMC9220182 DOI: 10.3390/antibiotics11060726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. There are two major forms of the disease: sporadic (SAD)-whose causes are not completely understood-and familial (FAD)-with clear autosomal dominant inheritance. The two main hallmarks of AD are extracellular deposits of amyloid-beta (Aβ) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein (P-tau). An ever-growing body of research supports the infectious hypothesis of sporadic forms of AD. Indeed, it has been documented that some pathogens, such as herpesviruses and certain bacterial species, are commonly present in AD patients, prompting recent clinical research to focus on the characterization of antimicrobial peptides (AMPs) in this pathology. The literature also demonstrates that Aβ can be considered itself as an AMP; thus, representing a type of innate immune defense peptide that protects the host against a variety of pathogens. Beyond Aβ, other proteins with antimicrobial activity, such as lactoferrin, defensins, cystatins, thymosin β4, LL37, histatin 1, and statherin have been shown to be involved in AD. Here, we summarized and discussed these findings and explored the diagnostic and therapeutic potential of AMPs in AD.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy;
| | - Antonio Malvaso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, University La Sapienza, 00158 Rome, Italy;
| | | |
Collapse
|
175
|
Hopp TP, Spiewak K, Matthews MAH, Athanasiou Z, Blackmore RS, Gelbfish GA. Characterization of proteolytic degradation products of vaginally administered bovine lactoferrin. PLoS One 2022; 17:e0268537. [PMID: 35587943 PMCID: PMC9119511 DOI: 10.1371/journal.pone.0268537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
When bovine lactoferrin (bLF) contacts human vaginal fluid (VF) it is subjected to proteolytic degradation. This report describes fragmentation patterns of bLF dosed vaginally in clinical trials or incubated ex vivo with VF. A consensus pattern of fragments was observed in samples from different women. The 80 kDa bLF molecule is initially cleaved between its homologous 40 kDa domains, the N-lobe and C-lobe, and then degraded into sub-fragments and mixtures of small peptides. We characterized this fragmentation process by polyacrylamide gel electrophoresis, western blotting, chromatographic separation, and mass spectral sequence analysis. Common to most VF fragmentation patterns were large amounts of an N-lobe 37 kDa fragment and a C-lobe 43 kDa fragment resulting from a single cleavage following tyrosine 324. Both fragments possessed full sets of iron-ligand amino acids and retained iron-binding ability. In some VF samples, alternative forms of large fragments were found, which like the 37+43 kDa pair, totaled 80 kDa. These included 58+22 kDa, 18+62 kDa, and 16+64 kDa forms. In general, the smaller component was from the N-lobe and the larger from the C-lobe. The 18+62 kDa pair was absent in some VF samples but highly abundant in others. This variability suggests multiple endopeptidases are involved, with the 18 kDa fragment’s presence dependent upon the balance of enzymes. Further action of VF endopeptidases produced smaller peptide fragments, and we found evidence that exopeptidases trimmed their N- and C-termini. The 3.1 kDa antimicrobial peptide lactoferricin B was not detected. These studies were facilitated by a novel technique we developed: tricolor western blots, which enabled simultaneous visualization of N- and C-terminal epitopes.
Collapse
Affiliation(s)
- Thomas P. Hopp
- Metrodora Therapeutics LLC, Brooklyn, New York, NY, United States of America
- * E-mail:
| | - Klaudyna Spiewak
- Metrodora Therapeutics LLC, Brooklyn, New York, NY, United States of America
| | | | - Zafeiria Athanasiou
- Metrodora Therapeutics LLC, Brooklyn, New York, NY, United States of America
| | | | - Gary A. Gelbfish
- Metrodora Therapeutics LLC, Brooklyn, New York, NY, United States of America
- Department of Surgery, Mount Sinai School of Medicine, New York, NY, United States of America
| |
Collapse
|
176
|
Bellés A, Aguirre-Ramírez D, Abad I, Parras-Moltó M, Sánchez L, Grasa L. Lactoferrin modulates gut microbiota and Toll-like receptors (TLRs) in mice with dysbiosis induced by antibiotics. Food Funct 2022; 13:5854-5869. [PMID: 35545893 DOI: 10.1039/d2fo00287f] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Antibiotic administration can result in gut microbiota and immune system alterations that impact health. Bovine lactoferrin is a milk protein with anticancer, anti-inflammatory, antimicrobial and immune modulatory activities. The aim was to study the ability of native and iron-saturated lactoferrin to reverse the effects of clindamycin on gut microbiota and intestinal Toll-like receptor (TLR) expression in a murine model. Methods: Male C57BL/6 mice were treated with vehicle, clindamycin (Clin), native bovine lactoferrin (nLf), nLf + clindamycin (nLf_Clin), iron-saturated bovine lactoferrin (sLf) and sLf + clindamycin (sLf_Clin). Fecal samples of each group were collected, and bacterial DNA was extracted. Sequencing of 16s rRNA V4 hypervariable gene regions was conducted to assess the microbial composition. mRNA expression levels of TLRs (1-9) were determined in mouse colon by qPCR. Pearson's correlation test was carried out between bacteria showing differences in abundance among samples and TLR2, TLR8 and TLR9. Results: Beta-diversity analysis showed that the microbial community of the vehicle was different from the communities of Clin, nLf_Clin and sLf_Clin. At the family level, Bacteroidaceae, Prevotellaceae and Rikenellaceae decreased in the Clin group, and treatment with nLf or sLf reverted these effects. Clin reduced the expression of TLR2, TLR8 and TLR9 and sLf reverted the decrease in the expression of these receptors. Finally, TLR8 was positively correlated with Rikenellaceae abundance. Conclusion: In a situation of intestinal dysbiosis induced by clindamycin, lactoferrin restores the normal levels of some anti-inflammatory bacteria and TLRs and, therefore, could be a good ingredient to be added to functional foods.
Collapse
Affiliation(s)
- Andrea Bellés
- Universidad de Zaragoza, Facultad de Veterinaria, Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Zaragoza, Spain. .,Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, Spain
| | - Diego Aguirre-Ramírez
- Universidad de Zaragoza, Facultad de Veterinaria, Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Zaragoza, Spain.
| | - Inés Abad
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, Spain.,Universidad de Zaragoza, Facultad de Veterinaria, Departamento de Producción Animal y Tecnología de los Alimentos, Zaragoza, Spain
| | - Marcos Parras-Moltó
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden.,Igenomix Foundation/INCLIVA Biomedical Research Institute, Spain.,Department of Science, Universidad Internacional de Valencia-VIU, Valencia, Spain
| | - Lourdes Sánchez
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, Spain.,Universidad de Zaragoza, Facultad de Veterinaria, Departamento de Producción Animal y Tecnología de los Alimentos, Zaragoza, Spain
| | - Laura Grasa
- Universidad de Zaragoza, Facultad de Veterinaria, Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Zaragoza, Spain. .,Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| |
Collapse
|
177
|
Hu S, Lin S, He X, Sun N. Iron delivery systems for controlled release of iron and enhancement of iron absorption and bioavailability. Crit Rev Food Sci Nutr 2022; 63:10197-10216. [PMID: 35588258 DOI: 10.1080/10408398.2022.2076652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Iron deficiency is a global nutritional problem, and adding iron salts directly to food will have certain side effects on the human body. Therefore, there is growing interest in food-grade iron delivery systems. This review provides an overview of iron delivery systems, with emphasis on the controlled release of iron during gastrointestinal digestion, as well as the enhancement of iron absorption and bioavailability. Iron-bearing proteins are easily degraded by digestive enzymes and absorbed through receptor-mediated endocytosis. Instead, protein aggregates are slowly degraded in the stomach, which delays iron release and serves as a potential iron supplement. Amino acids, peptides and polysaccharides can bind iron through iron binding sites, but the formed compounds are prone to dissociation in the stomach. Moreover, peptides and polysaccharides can deliver iron by mediating the formation of ferric oxyhydroxide which is absorbed through endocytosis or bivalent transporter 1. In addition, liposomes are unstable during gastric digestion and iron is released in large quantities. Complexes formed by polysaccharides and proteins, and microcapsules formed by polysaccharides can delay the release of iron in the gastric environment and prolong iron release in the intestinal environment. This review is conducive to the development of iron functional ingredients and dietary supplements.
Collapse
Affiliation(s)
- Shengjie Hu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Xueqing He
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
178
|
Lactoferrin as a Human Genome “Guardian”—An Overall Point of View. Int J Mol Sci 2022; 23:ijms23095248. [PMID: 35563638 PMCID: PMC9105968 DOI: 10.3390/ijms23095248] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Structural abnormalities causing DNA modifications of the ethene and propanoadducts can lead to mutations and permanent damage to human genetic material. Such changes may cause premature aging and cell degeneration and death as well as severe impairment of tissue and organ function. This may lead to the development of various diseases, including cancer. In response to a damage, cells have developed defense mechanisms aimed at preventing disease and repairing damaged genetic material or diverting it into apoptosis. All of the mechanisms described above are part of the repertoire of action of Lactoferrin—an endogenous protein that contains iron in its structure, which gives it numerous antibacterial, antiviral, antifungal and anticancer properties. The aim of the article is to synthetically present the new and innovative role of lactoferrin in the protection of human genetic material against internal and external damage, described by the modulation mechanisms of the cell cycle at all its levels and the mechanisms of its repair.
Collapse
|
179
|
Kowalczyk P, Kaczyńska K, Kleczkowska P, Bukowska-Ośko I, Kramkowski K, Sulejczak D. The Lactoferrin Phenomenon-A Miracle Molecule. Molecules 2022; 27:2941. [PMID: 35566292 PMCID: PMC9104648 DOI: 10.3390/molecules27092941] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023] Open
Abstract
Numerous harmful factors that affect the human body from birth to old age cause many disturbances, e.g., in the structure of the genome, inducing cell apoptosis and their degeneration, which leads to the development of many diseases, including cancer. Among the factors leading to pathological processes, microbes, viruses, gene dysregulation and immune system disorders have been described. The function of a protective agent may be played by lactoferrin as a "miracle molecule", an endogenous protein with a number of favorable antimicrobial, antiviral, antioxidant, immunostimulatory and binding DNA properties. The purpose of this article is to present the broad spectrum of properties and the role that lactoferrin plays in protecting human cells at all stages of life.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland;
| | - Patrycja Kleczkowska
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarności 12 St., 03-411 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawinskiego 3c St., 02-106 Warsaw, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 St., 15-089 Bialystok, Poland;
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
180
|
Darmawan KK, Karagiannis TC, Hughes JG, Small DM, Hung A. Molecular modeling of lactoferrin for food and nutraceutical applications: insights from in silico techniques. Crit Rev Food Sci Nutr 2022; 63:9074-9097. [PMID: 35503258 DOI: 10.1080/10408398.2022.2067824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lactoferrin is a protein, primarily found in milk that has attracted the interest of the food industries due to its health properties. Nevertheless, the instability of lactoferrin has limited its commercial application. Recent studies have focused on encapsulation to enhance the stability of lactoferrin. However, the molecular insights underlying the changes of structural properties of lactoferrin and the interaction with protectants remain poorly understood. Computational approaches have proven useful in understanding the structural properties of molecules and the key binding with other constituents. In this review, comprehensive information on the structure and function of lactoferrin and the binding with various molecules for food purposes are reviewed, with a special emphasis on the use of molecular dynamics simulations. The results demonstrate the application of modeling and simulations to determine key residues of lactoferrin responsible for its stability and interactions with other biomolecular components under various conditions, which are also associated with its functional benefits. These have also been extended into the potential creation of enhanced lactoferrin for commercial purposes. This review provides valuable strategies in designing novel nutraceuticals for food science practitioners and those who have interests in acquiring familiarity with the application of computational modeling for food and health purposes.
Collapse
Affiliation(s)
- Kevion K Darmawan
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Jeff G Hughes
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Darryl M Small
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, Australia
| |
Collapse
|
181
|
Alesci A, Aragona M, Cicero N, Lauriano ER. Can nutraceuticals assist treatment and improve covid-19 symptoms? Nat Prod Res 2022; 36:2672-2691. [PMID: 33949266 DOI: 10.1080/14786419.2021.1914032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viral diseases have always played an important role in public and individual health. Since December 2019, the world is facing a pandemic of SARS-CoV-2, a coronavirus that results in a syndrome known as COVID-19. Several studies were conducted to implement antiviral drug therapy, until the arrival of SARS-CoV-2 vaccines. Numerous scientific investigations have considered some nutraceuticals as an additional treatment of COVID-19 patients to improve their clinical picture. In this review, we would like to emphasize the studies conducted to date about this issue and try to understand whether the use of nutraceuticals as a supplementary therapy to COVID-19 may be a valid and viable avenue. Based on the results obtained so far, quercetin, astaxanthin, luteolin, glycyrrhizin, lactoferrin, hesperidin and curcumin have shown encouraging data suggesting their use to prevent and counteract the symptoms of this pandemic infection.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
182
|
Equine lactoferrin: Antioxidant properties related to divalent metal chelation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
183
|
Halabi A, Croguennec T, Ménard O, Briard-Bion V, Jardin J, Le Gouar Y, Hennetier M, Bouhallab S, Dupont D, Deglaire A. Protein structure in model infant milk formulas impacts their kinetics of hydrolysis under in vitro dynamic digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
184
|
Interaction of Pelargonium sidoides Compounds with Lactoferrin and SARS-CoV-2: Insights from Molecular Simulations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095254. [PMID: 35564648 PMCID: PMC9101775 DOI: 10.3390/ijerph19095254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/17/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023]
Abstract
(1) Background: Pelargonium sidoides extracts and lactoferrin are two important natural, anti-inflammatory, and antiviral agents, which can interfere with the early stages of SARS-CoV-2 infection. Molecular docking and molecular dynamics simulation approaches have been applied to check for the occurrence of interactions of the Pelargonium sidoides compounds with lactoferrin and with SARS-CoV-2 components. (2) Methods: Computational methods have been applied to confirm the hypothesis of a direct interaction between PEL compounds and the lactoferrin protein and between Pelargonium sidoides compounds and SARS-CoV-2 Spike, 3CLPro, RdRp proteins, and membrane. Selected high-score complexes were structurally investigated through classical molecular dynamics simulation, while the interaction energies were evaluated using the molecular mechanics energies combined with generalized Born and surface area continuum solvation method. (3) Results: Computational analyses suggested that Pelargonium sidoides extracts can interact with lactoferrin without altering its structural and dynamical properties. Furthermore, Pelargonium sidoides compounds should have the ability to interfere with the Spike glycoprotein, the 3CLPro, and the lipid membrane, probably affecting the functional properties of the proteins inserted in the double layer. (4) Conclusion: Our findings suggest that Pelargonium sidoides may interfere with the mechanism of infection of SARS-CoV-2, especially in the early stages.
Collapse
|
185
|
Bazarnyi VV, Sidenkova AP, Sosnin DY. Lactoferrin of oral fluid is normal and in Alzheimer's disease: laboratory and diagnostic aspects (review of literature). Klin Lab Diagn 2022; 67:207-212. [PMID: 35575393 DOI: 10.51620/0869-2084-2022-67-4-207-212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The article discusses the clinical value of determining the lactoferrin protein in oral fluid - one of the representatives of the saliva proteome. The review is based on the analysis of modern literature, including systematic reviews, the results of multicenter prospective studies, review and original articles by leading experts in this field, presented in the databases PubMed, Scopus, CyberLeninka. The problems of the preanalytical stage, methods for determining lactoferrin are highlighted and information about its content in mixed saliva according to various authors is provided. Special attention is paid to the clinical and diagnostic value of the level of salivary lactoferrin in Alzheimer's disease. According to most authors, the diagnostic sensitivity of this parameter ranges from 87 to 100%. Some mechanisms of the relationship between this protein and the central nervous system (CNS) are shown. In conclusion, it is concluded that salivary lactoferrin can be an "indicator" of the formation of amyloid plaques and can be considered as one of the reliable biomarkers of Alzheimer's disease. This opinion is based both on fundamental ideas about the global relationship between innate immunity and the central nervous system, and on clinical data. The special advantage of this laboratory test is its non-invasiveness, which makes it more preferable in comparison with the determination of amyloid and tau proteins in the cerebrospinal fluid and blood.
Collapse
|
186
|
Xiao Z, Shen D, Lan T, Wei C, Wu W, Sun Q, Luo Z, Chen W, Zhang Y, Hu L, Zhang C, Wang Y, Lu Y, Wang P, Yang F, Li Q. Reduction of lactoferrin aggravates neuronal ferroptosis after intracerebral hemorrhagic stroke in hyperglycemic mice. Redox Biol 2022; 50:102256. [PMID: 35131600 PMCID: PMC8829351 DOI: 10.1016/j.redox.2022.102256] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic hyperglycemia aggravates the prognosis of intracerebral hemorrhagic stroke (ICH) in the clinic. In addition to hematoma expansion and increased inflammation, how diabetic hyperglycemia affects the outcomes of ICH is still unclear. We found that streptozotocin-induced diabetic hyperglycemia not only increased neutrophil infiltration, but also changed the gene expression profile of neutrophils, including lactoferrin (Ltf) encoding gene Ltf. Peroxisome proliferator-activated receptor γ (PPARγ) transcribed Ltf and the lack of neutrophilic Ltf transcription and secretion exacerbated neuronal ferroptosis by accumulating intraneuronal iron. Furthermore, the administration of recombinant Ltf protected against neuronal ferroptosis and improved neurobehavior in hyperglycemic ICH mice, and vice versa. These results indicate that supplementing Ltf or inhibiting neuronal ferroptosis are promising potential strategies to improve the acute outcomes of diabetic ICH in the clinic. Neutrophil infiltration and ICH prognosis are aggravated in hyperglycemic mice. Hyperglycemia impairs PPAR-γ activity and decreases Ltf expression in neutrophils. The lack of neutrophilic Ltf fails to decrease intraneuronal iron and ferroptosis. rLtf eases neuronal ferroptosis and neurologic deficits in hyperglycemic ICH mice.
Collapse
Affiliation(s)
- Zhongnan Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Danmin Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ting Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chao Wei
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Weihua Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qingyu Sun
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhaoli Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wen Chen
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yurui Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Liye Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chenguang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yamei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yabin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
187
|
Lin T, Dadmohammadi Y, Davachi SM, Torabi H, Li P, Pomon B, Meletharayil G, Kapoor R, Abbaspourrad A. Improvement of lactoferrin thermal stability by complex coacervation using soy soluble polysaccharides. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
188
|
Bielecka M, Cichosz G, Czeczot H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates - A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
189
|
Zhang J, Lee NA, Duley JA, Cowley DM, Shaw PN, Bansal N. Comparing the effects of hydrostatic high-pressure processing vs holder pasteurisation on the microbial, biochemical and digestion properties of donor human milk. Food Chem 2022; 373:131545. [PMID: 34839967 DOI: 10.1016/j.foodchem.2021.131545] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/08/2023]
Abstract
In this study, hydrostatic high-pressure processing (HHP), a non-thermal pasteurisation method, was used to achieve the microbiological safety of donor human milk. After HHP, no bacteria were detected in human milk processed at 400 MPa for 5 min. Activities of a selection of bioactive components, including lysozyme, xanthine oxidase, lactoperoxidase, immunoglobulin A, lactoferrin, lipoprotein lipase and bile salt-stimulated lipase, did not decrease significantly. This study further investigated the gastrointestinal digestion kinetics of HoP and HHP milk compared with raw human milk, using an in vitro static infant digestion model. After 60 min of 'gastric digestion', the microstructure and protein profile of HHP milk samples were more similar to raw milk samples than HoP milk samples. Overall, HPP showed a better retention in milk nutrients and closer digestion behavior than that of HoP.
Collapse
Affiliation(s)
- Jie Zhang
- School of Agriculture and Food Science, The University of Queensland, St Lucia 4072, Australia
| | - Nanju Alice Lee
- School of Chemical Engineering, University of New South Wales, Sydney NSW2052, Australia
| | - John A Duley
- School of Pharmacy, The University of Queensland, St Lucia 4072, Australia
| | - David M Cowley
- Mater Research Institute, The University of Queensland, South Brisbane 4101, Australia
| | - Paul N Shaw
- School of Pharmacy, The University of Queensland, St Lucia 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Science, The University of Queensland, St Lucia 4072, Australia; School of Pharmacy, The University of Queensland, St Lucia 4072, Australia.
| |
Collapse
|
190
|
Yuan Y, Ma M, Wang D, Xu Y. A review of factors affecting the stability of zein-based nanoparticles loaded with bioactive compounds: from construction to application. Crit Rev Food Sci Nutr 2022; 63:7529-7545. [PMID: 35253532 DOI: 10.1080/10408398.2022.2047881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zein-based nanoparticles loaded with bioactive compounds have positive prospects in the food industry, but an important limiting factor for development is colloidal instability. Currently, extensive researches are focused on solving the instability of zein nanoparticles, but since the beginning of the studies, there has not been a summary of the factors affecting the stability of zein-based nanoparticles. In the present work, the factors were reviewed comprehensively from the perspective of carrier construction and application evaluation. The former mainly includes type, quantity, and characteristics of biopolymer, the mass ratio of biopolymer/bioactive compound to zein, blending sequence of biopolymer, and location of encapsulated bioactive compounds. The latter mainly includes pH, heating, ionic strength, storage, freeze-drying, and gastrointestinal digestion. The former is the prerequisite for the success of the latter. The challenge is that stability research is limited to the laboratory level, and it is difficult to ensure that the stability results are suitable for commercial food matrices due to their complexity. At the laboratory level, the future trends are the influence of external energy and the cross-complexity and uniformity of stability research. The review is expected to provide systematic understanding and guidance for the development of zein-based nanoparticles stability.
Collapse
Affiliation(s)
- Yongkai Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Mengjie Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
191
|
Current practices with commercial scale bovine lactoferrin production and alternative approaches. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
192
|
|
193
|
Du Y, Li D, Chen J, Li YH, Zhang Z, Hidayat K, Wan Z, Xu JY, Qin LQ. Lactoferrin improves hepatic insulin resistance and pancreatic dysfunctions in high-fat diet and streptozotocin-induced diabetic mice. Nutr Res 2022; 103:47-58. [DOI: 10.1016/j.nutres.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022]
|
194
|
Synthesis and Optimization of Deesterified Acacia-Alginate Nanohydrogel for Amethopterin Delivery. Bioinorg Chem Appl 2022; 2022:7192919. [PMID: 35186053 PMCID: PMC8856825 DOI: 10.1155/2022/7192919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
Naturally obtained materials are preferable for the production of biomedicine in biomedical applications. Acacia gum is has recently become a hopeful one in the biomedicine production due to its excellent properties, namely, emulsifier, stabilizing mediator, suspending agent, etc. In this novel work, we synthesised and characterized the deesterified Acacia gum-alginate nanohydrogel (DEA-AG NPs) as a carrier for amethopterin (ATN) delivery. This combination is used in the drug effectiveness and tissue engineering. In this work, the Taguchi route is implemented for estimating of particle size and zeta potential (mV) through optimization. Following three parameters are considered for this work: DEA solution concentration (0.008, 0.016, 0.024, and 0.032 w/v %), alginate molecular weight (3, 6, 9, and 12 MW), and ATN/DEA ratio (1 : 4, 1 : 8, 1 : 12, and 1 : 16 w/w %). In particle size analysis and zeta potential analysis, the DEA solution concentration is highly influenced. Minimum particle size is found as 148.50 nm. Similarly, maximum zeta potential is identified as 29.5 mV.
Collapse
|
195
|
Abstract
Proteins play a key role in living organisms. The study of proteins and their dynamics provides information about their functionality, catalysis and potential alterations towards pathological diseases. Several techniques are used for studying protein dynamics, e.g., magnetic resonance, fluorescence imaging techniques, mid-infrared spectroscopy and biochemical assays. Spectroscopic analysis, based on the use of terahertz (THz) radiation with frequencies between 0.1 and 15 THz (3–500 cm−1), was underestimated by the biochemical community. In recent years, however, the potential of THz spectroscopy in the analysis of both simple structures, such as polypeptide molecules, and complex structures, such as protein complexes, has been demonstrated. The THz absorption spectrum provides some information on proteins: for small molecules the THz spectrum is dominated by individual modes related to the presence of hydrogen bonds. For peptides, the spectral information concerns their secondary structure, while for complex proteins such as globular proteins and viral glycoproteins, spectra also provide information on collective modes. In this short review, we discuss the results obtained by THz spectroscopy in the protein dynamics investigations. In particular, we will illustrate advantages and applications of THz spectroscopy, pointing out the complementary information it may provide.
Collapse
|
196
|
Mehra R, Garhwal R, Sangwan K, Guiné RPF, Lemos ET, Buttar HS, Visen PKS, Kumar N, Bhardwaj A, Kumar H. Insights into the Research Trends on Bovine Colostrum: Beneficial Health Perspectives with Special Reference to Manufacturing of Functional Foods and Feed Supplements. Nutrients 2022; 14:659. [PMID: 35277018 PMCID: PMC8840100 DOI: 10.3390/nu14030659] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
Bovine colostrum (BC) is the initial mammary secretion after parturition, which is nature's bountiful source consisting of nutritional and bioactive components present in a highly concentrated low-volume format. All mammalian newborns require colostrum to enhance physiological processes such as lifelong immunity, gastrointestinal development, and resistance to microbial infections. The genetic, environmental, and processing methods can all have an impact on the biochemical contents of BC and its supplements. BC and its derivatives have been intensively researched for their potential use in functional foods, medicines, and animal feed. Evidence from clinical studies suggests that BC products are well-tolerated, nontoxic, and safe for human ingestion. Functional foods, feed, and pharmaceutical formulations based on bovine colostrum are playing noteworthy roles in the development of innovative products for promoting health and the prevention of chronic illnesses. This systematic review sheds light on recent research on (a) the effects of processing techniques on BC components, (b) emerging techniques used in the isolation and identification of novel components, (c) BC-based functional foods for human consumption and animal feed supplements, and (d) the role of BC in current drug delivery, as well as future recommendations.
Collapse
Affiliation(s)
- Rahul Mehra
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India; (R.M.); (R.G.); (K.S.); (N.K.)
| | - Renu Garhwal
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India; (R.M.); (R.G.); (K.S.); (N.K.)
| | - Karnam Sangwan
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India; (R.M.); (R.G.); (K.S.); (N.K.)
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal;
| | - Edite Teixeira Lemos
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal;
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | | | - Naveen Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India; (R.M.); (R.G.); (K.S.); (N.K.)
| | | | - Harish Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India; (R.M.); (R.G.); (K.S.); (N.K.)
| |
Collapse
|
197
|
Yan M, Wang Y, Shen X, Dong S, Diao M, Zhao Y, Zhang T. Enhanced foaming properties of lactoferrin by forming functional complexes with ginsenoside Re and Rb1. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
198
|
Chen Y, Gao X, Liu S, Cai Q, Wu L, Sun Y, Xia G, Wang Y. Establishment and Characterization of Stable Zein/Glycosylated Lactoferrin Nanoparticles to Enhance the Storage Stability and in vitro Bioaccessibility of 7,8-Dihydroxyflavone. Front Nutr 2022; 8:806623. [PMID: 35047548 PMCID: PMC8763018 DOI: 10.3389/fnut.2021.806623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
In this work, the lactoferrin (LF) was glycosylated by dextran (molecular weight 10, 40, and 70 kDa, LF 10K, LF 40K, and LF 70K) via Maillard reaction as a stabilizer to establish zein/glycosylated LF nanoparticles and encapsulate 7,8-dihydroxyflavone (7,8-DHF). Three zein/glycosylated LF nanoparticles (79.27–87.24 nm) with low turbidity (<0.220) and polydispersity index (PDI) (<0.230) were successfully established by hydrophobic interactions and hydrogen bonding. Compared with zein/LF nanoparticles, zein/glycosylated LF nanoparticles further increased stability to ionic strength (0–500 mM NaCl) at low pH conditions. Zein/glycosylated LF nanoparticles had nanoscale spherical shape and glycosylated LF changed surface morphology of zein nanoparticles. Besides, encapsulated 7,8-DHF exhibited an amorphous state inside zein/glycosylated LF nanoparticles. Most importantly, zein/glycosylated LF nanoparticles had good water redispersibility, high encapsulation efficiency (above 98.50%), favorable storage stability, and bioaccessibility for 7,8-DHF, particularly LF 40K. Collectively, the above research provides a theoretical reference for the application of zein-based delivery systems.
Collapse
Affiliation(s)
- Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xiaojing Gao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Qiuxing Cai
- College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Lijun Wu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Yi Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Guobin Xia
- Department of Pediatrics Section of Neonatology, Texas Children's Hospital, Houston, TX, United States
| | - Yueqi Wang
- College of Food Engineering, Beibu Gulf University, Qinzhou, China.,Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
199
|
Jiménez-Barrios P, Jaén-Cano CM, Malumbres R, Cilveti-Vidaurreta F, Bellanco-Sevilla A, Miralles B, Recio I, Martínez-Sanz M. Thermal stability of bovine lactoferrin prepared by cation exchange chromatography and its blends with authorized additives for infant formulas. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
200
|
Zhang Z, Fan F, Shi W, Zhang T, Chang S. Terahertz circular polarization sensing for protein denaturation based on a twisted dual-layer metasurface. BIOMEDICAL OPTICS EXPRESS 2022; 13:209-221. [PMID: 35154865 PMCID: PMC8803037 DOI: 10.1364/boe.443473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/17/2021] [Accepted: 10/24/2021] [Indexed: 05/05/2023]
Abstract
Protein denaturation has very important research value in nutrition, biomedicine, and the food industry, which is caused by the changes in the molecular structure of the protein. Since the collective vibrational and torsional modes of protein molecules are within the terahertz (THz) frequency range, THz spectroscopy can characterize the protein denaturation with several advantages of non-contact, label-free, real-time, and non-destructive. Therefore, we proposed a reflective THz time-domain polarization spectroscopy sensing method, and use a flexible twisted dual-layer metasurface film as a sensor to realize the thermal denaturation sensing, concentration sensing, and types identification of protein aqueous solutions. The experiment tested three proteins (bovine serum albumin, whey protein, and ovalbumin), and the results show that: for the thermal denaturation sensing, its detection sensitivity can reach 6.30 dB/% and the detection accuracy is 0.77%; for the concentration sensing, the detection sensitivity and detection accuracy reach 52.9 dB·mL/g and 3.6·10-5 g/mL, respectively; in addition, different protein types can be distinguished by the difference of the circular polarization spectra.
Collapse
Affiliation(s)
- Ziyang Zhang
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Fei Fan
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Weinan Shi
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Tianrui Zhang
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Shengjiang Chang
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| |
Collapse
|