151
|
McCreedy RA, Fleet JC. Forward genetics used to identify new gene Mon1a with critical role in controlling macrophage iron metabolism and iron recycling from erythrocytes. Nutr Rev 2009; 67:607-10. [PMID: 19785692 DOI: 10.1111/j.1753-4887.2009.00233.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A recent study used a forward genetics approach to identify a new gene whose protein product controls erythrocyte iron recycling mediated through macrophages in the spleen. Initially the investigators found a genetic region on chromosome 9 accounting for one third of the variation in spleen iron level in mice. Additional approaches to narrow the genomic region identified the gene Mon1a, which codes for a protein that acts as a novel regulator of spleen iron release. Cell-based studies showed that Mon1a is necessary for vesicular trafficking of proteins, including the iron-export protein ferroportin, to the macrophage cell membrane. The forward genetics approach, which has currently only been used sparingly by the nutrition research community, offers a powerful and unbiased approach to identifying genes important in nutritional metabolism.
Collapse
Affiliation(s)
- Rebecca A McCreedy
- Department of Foods and Nutrition, and Center for Gene Environment Interactions, Purdue University, West Lafayette, Indiana 47906-2059, USA
| | | |
Collapse
|
152
|
Abstract
Important advances in our understanding of iron metabolism have been made during the past 10 years, highlighting the mechanisms by which dysregulated iron homeostasis leads to hematologic, metabolic, and neurodegenerative diseases. In particular, the discovery of hepcidin and its fundamental role as the hormonal peptide regulating iron metabolism has delineated the organization of the complex network of proteins that regulates iron metabolism within the body. Maintenance of iron homeostasis is the consequence of tight coordination between iron absorption from the diet by enterocytes, and iron recycling by macrophages following degradation of senescent erythrocytes. Thus, any perturbation of these processes leads to a wide spectrum of diseases, ranging from iron deficiency anemia to iron overload. This review will focus particularly on the mechanisms involved in iron recycling by macrophages and summarize the pathological conditions perturbing this process.
Collapse
Affiliation(s)
- Carole Beaumont
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Université Paris Diderot Paris, UFR de Médecine site Bichat, Paris, France.
| | | |
Collapse
|
153
|
Moriconi F, Ahmad G, Ramadori P, Malik I, Sheikh N, Merli M, Riggio O, Dudas J, Ramadori G. Phagocytosis of gadolinium chloride or zymosan induces simultaneous upregulation of hepcidin- and downregulation of hemojuvelin- and Fpn-1-gene expression in murine liver. J Transl Med 2009; 89:1252-60. [PMID: 19721414 DOI: 10.1038/labinvest.2009.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The liver and the spleen are the organs in which cellular material and aged erythrocytes are eliminated from the blood. Within the liver, Kupffer cells (KCs) are mainly responsible for this task, as such KCs have a pivotal role in iron metabolism. The aim of this study is to investigate the changes of hepatic gene expression in two models of KC phagocytosis. Gadolinium chloride (GD) or zymosan was injected intraperitoneally into rats and to endotoxin-resistant mice (C3H/HeJ). The animals were killed at different time points and their livers were immediately frozen in liquid nitrogen for RNA isolation and immunohistological studies. RNA was analyzed by real-time PCR and northern blot. Sera were used to measure transaminases, hepcidin and iron levels. The expression of iron metabolism genes, hepcidin, hemojuvelin (Hjv), ferroportin-1 (Fpn-1) and of the inflammatory cytokines IL-6, IL-1beta, TNF-alpha and IFN-gamma was determined. Although phagocytosed material was detected in ED-1- and C1q-positive cells, no inflammatory cells were identified within the liver parenchyma. Serum levels of hepcidin, iron and transaminases did not differ from those of control animals. Both GD and zymosan induced an upregulation of hepcidin-gene expression in rat liver as early as 3 h, reaching a maximum 6 h after treatment. Hjv- and Fpn-1-gene expression was downregulated at the same time. IL-6 was by far the most induced acute-phase-cytokine in GD- and zymosan-treated livers, although IL-1beta and TNF-alpha were also strongly upregulated by zymosan and to a lesser extent by GD. Similar results were obtained in the C3H/HeJ mouse strain excluding the possible role of contaminating endotoxin. This study shows that phagocytosis upregulates hepcidin-gene expression and downregulates Hjv- and Fpn-1-gene expression within the liver. These changes in iron-regulating-gene expression may be mediated by the locally produced acute-phase-cytokines.
Collapse
Affiliation(s)
- Federico Moriconi
- Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Georg August-University, Göttingen 37075, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Affiliation(s)
- Scott Severance
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
155
|
Anderson GJ, Vulpe CD. Mammalian iron transport. Cell Mol Life Sci 2009; 66:3241-61. [PMID: 19484405 PMCID: PMC11115736 DOI: 10.1007/s00018-009-0051-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 04/21/2009] [Accepted: 05/12/2009] [Indexed: 02/07/2023]
Abstract
Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma.
Collapse
Affiliation(s)
- Gregory Jon Anderson
- Iron Metabolism Laboratory, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, QLD, Australia.
| | | |
Collapse
|
156
|
Iron delocalisation in the pathogenesis of malarial anaemia. Trans R Soc Trop Med Hyg 2009; 104:175-84. [PMID: 19783267 DOI: 10.1016/j.trstmh.2009.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 08/19/2009] [Accepted: 08/19/2009] [Indexed: 01/20/2023] Open
Abstract
There is consensus that the pathophysiology of malaria-associated anaemia is multifactorial, but the precise mechanisms behind many of the haematological changes during malaria remain unclear. In this review, we attempt to build a composite picture of the pathophysiology of malarial anaemia using evidence from experimental, human and animal studies. We propose that cytokine- and hepcidin-mediated iron delocalisation, a principal mechanism in the anaemia of inflammation, plays an important role in the aetiology of malarial anaemia, and can explain some of the clinical and laboratory findings. These mechanisms interact with other aetiological determinants, such as dietary iron and micronutrient supply, helminth load, other infections and genetic variation, in determining the severity and associated features of anaemia. We suggest that iron delocalisation as a mechanism for malarial anaemia could be exploited for the development of alternative therapeutic strategies for post-malaria anaemia.
Collapse
|
157
|
Weiss G. Iron metabolism in the anemia of chronic disease. Biochim Biophys Acta Gen Subj 2009; 1790:682-93. [DOI: 10.1016/j.bbagen.2008.08.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/27/2008] [Accepted: 08/14/2008] [Indexed: 02/08/2023]
|
158
|
Nairz M, Fritsche G, Crouch MLV, Barton HC, Fang FC, Weiss G. Slc11a1 limits intracellular growth of Salmonella enterica sv. Typhimurium by promoting macrophage immune effector functions and impairing bacterial iron acquisition. Cell Microbiol 2009; 11:1365-81. [PMID: 19500110 DOI: 10.1111/j.1462-5822.2009.01337.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The natural resistance-associated macrophage protein 1, Slc11a1, is a phagolysosomal transporter for protons and divalent ions including iron that confers host protection against diverse intracellular pathogens including Salmonella. We investigated and compared the regulation of iron homeostasis and immune function in RAW264.7 murine phagocytes stably transfected with non-functional Slc11a1 and functional Slc11a1 controls in response to an infection with Salmonella enterica serovar Typhimurium. We report that macrophages lacking functional Slc11a1 displayed an increased expression of transferrin receptor 1, resulting in enhanced acquisition of transferrin-bound iron. In contrast, cellular iron release mediated via ferroportin 1 was significantly lower in Salmonella-infected Slc11a1-negative macrophages in comparison with phagocytes bearing Slc11a1. Lack of Slc11a1 led to intracellular persistence of S. enterica serovar Typhimurium within macrophages, which was paralleled by a reduced formation of nitric oxide, tumour necrosis factor-alpha and interleukin-6 in Slc11a1-negative macrophages following Salmonella infection, whereas interleukin-10 production was increased. Moreover, Slc11a1-negative phagocytes exhibited higher cellular iron content, resulting in increased iron acquisition by intracellular Salmonella. Our observations indicate a bifunctional role for Slc11a1 within phagocytes. Slc11a restricts iron availability, which first augments pro-inflammatory macrophage effector functions and second concomitantly limits microbial iron access.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine I, Clinical Immunology and Infectious Diseases, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
159
|
Hower V, Mendes P, Torti FM, Laubenbacher R, Akman S, Shulaev V, Torti SV. A general map of iron metabolism and tissue-specific subnetworks. MOLECULAR BIOSYSTEMS 2009; 5:422-43. [PMID: 19381358 PMCID: PMC2680238 DOI: 10.1039/b816714c] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Iron is required for survival of mammalian cells. Recently, understanding of iron metabolism and trafficking has increased dramatically, revealing a complex, interacting network largely unknown just a few years ago. This provides an excellent model for systems biology development and analysis. The first step in such an analysis is the construction of a structural network of iron metabolism, which we present here. This network was created using CellDesigner version 3.5.2 and includes reactions occurring in mammalian cells of numerous tissue types. The iron metabolic network contains 151 chemical species and 107 reactions and transport steps. Starting from this general model, we construct iron networks for specific tissues and cells that are fundamental to maintaining body iron homeostasis. We include subnetworks for cells of the intestine and liver, tissues important in iron uptake and storage, respectively, as well as the reticulocyte and macrophage, key cells in iron utilization and recycling. The addition of kinetic information to our structural network will permit the simulation of iron metabolism in different tissues as well as in health and disease.
Collapse
Affiliation(s)
- Valerie Hower
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
160
|
Walmsley SR, Chilvers ER, Whyte MKB. Hypoxia. Hypoxia, hypoxia inducible factor and myeloid cell function. Arthritis Res Ther 2009; 11:219. [PMID: 19435530 PMCID: PMC2688173 DOI: 10.1186/ar2632] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
With little in the way of effective therapeutic strategies to target the innate immune response, a better understanding of the critical pathways regulating neutrophil and macrophage responses in inflammation is key to the development of novel therapies. Hypoxia inducible factor (HIF) was originally identified as a central transcriptional regulator of cellular responses to oxygen deprivation. However, the HIF signalling pathway now appears, in myeloid cells at least, to be a master regulator of both immune cell function and survival. As such, understanding the biology of HIF and its regulators may provide new approaches to myeloid-specific therapies that are urgently needed.
Collapse
Affiliation(s)
- Sarah R Walmsley
- Academic Unit of Respiratory Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK.
| | | | | |
Collapse
|
161
|
Thomason RW, Almiski MS. Evidence that stainable bone marrow iron following parenteral iron therapy does not correlate with serum iron studies and may not represent readily available storage iron. Am J Clin Pathol 2009; 131:580-5. [PMID: 19289594 DOI: 10.1309/ajcpbay9krzf8nuc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We recently reported that parenteral iron therapy is associated with a characteristic pattern of iron staining on bone marrow aspirate smears. We now present clinical information from 6 patients who received parenteral iron and, at one or more points in follow-up, were found to have low or borderline low serum ferritin levels and/or serum iron levels, even though marrow aspirate smears revealed abundant stainable iron in the pattern characteristic of prior parenteral iron therapy. We conclude that stainable iron seen in this pattern does not correlate with serum iron studies and may not represent functionally available storage iron. This pattern of iron staining should not be used as evidence to withhold further iron therapy in patients who otherwise continue to have features of iron deficiency anemia.
Collapse
|
162
|
Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: diagnostic and therapeutic implications. Blood 2009; 113:5277-86. [PMID: 19293425 DOI: 10.1182/blood-2008-12-195651] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anemia of chronic disease (ACD) is characterized by macrophage iron retention induced by cytokines and the master regulator hepcidin. Hepcidin controls cellular iron efflux on binding to the iron export protein ferroportin. Many patients, however, present with both ACD and iron deficiency anemia (ACD/IDA), the latter resulting from chronic blood loss. We used a rat model of ACD resulting from chronic arthritis and mimicked ACD/IDA by additional phlebotomy to define differing iron-regulatory pathways. Iron retention during inflammation occurs in macrophages and the spleen, but not in the liver. In rats and humans with ACD, serum hepcidin concentrations are elevated, which is paralleled by reduced duodenal and macrophage expression of ferroportin. Individuals with ACD/IDA have significantly lower hepcidin levels than ACD subjects, and ACD/IDA persons, in contrast to ACD subjects, were able to absorb dietary iron from the gut and to mobilize iron from macrophages. Circulating hepcidin levels affect iron traffic in ACD and ACD/IDA and are more responsive to the erythropoietic demands for iron than to inflammation. Hepcidin determination may aid to differentiate between ACD and ACD/IDA and in selecting appropriate therapy for these patients.
Collapse
|
163
|
Harrison-Findik DD. Is the iron regulatory hormone hepcidin a risk factor for alcoholic liver disease? World J Gastroenterol 2009; 15:1186-93. [PMID: 19291818 PMCID: PMC2658862 DOI: 10.3748/wjg.15.1186] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite heavy consumption over a long period of time, only a small number of alcoholics develop alcoholic liver disease. This alludes to the possibility that other factors, besides alcohol, may be involved in the progression of the disease. Over the years, many such factors have indeed been identified, including iron. Despite being crucial for various important biological processes, iron can also be harmful due to its ability to catalyze Fenton chemistry. Alcohol and iron have been shown to interact synergistically to cause liver injury. Iron-mediated cell signaling has been reported to be involved in the pathogenesis of experimental alcoholic liver disease. Hepcidin is an iron-regulatory hormone synthesized by the liver, which plays a pivotal role in iron homeostasis. Both acute and chronic alcohol exposure suppress hepcidin expression in the liver. The sera of patients with alcoholic liver disease, particularly those exhibiting higher serum iron indices, have also been reported to display reduced prohepcidin levels. Alcohol-mediated oxidative stress is involved in the inhibition of hepcidin promoter activity and transcription in the liver. This in turn leads to an increase in intestinal iron transport and liver iron storage. Hepcidin is expressed primarily in hepatocytes. It is noteworthy that both hepatocytes and Kupffer cells are involved in the progression of alcoholic liver disease. However, the activation of Kupffer cells and TNF-α signaling has been reported not to be involved in the down-regulation of hepcidin expression by alcohol in the liver. Alcohol acts within the parenchymal cells of the liver to suppress the synthesis of hepcidin. Due to its crucial role in the regulation of body iron stores, hepcidin may act as a secondary risk factor in the progression of alcoholic liver disease. The clarification of the mechanisms by which alcohol disrupts iron homeostasis will allow for further understanding of the pathogenesis of alcoholic liver disease.
Collapse
|
164
|
Aydemir F, Jenkitkasemwong S, Gulec S, Knutson MD. Iron loading increases ferroportin heterogeneous nuclear RNA and mRNA levels in murine J774 macrophages. J Nutr 2009; 139:434-8. [PMID: 19141705 PMCID: PMC2646225 DOI: 10.3945/jn.108.094052] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transmembrane protein ferroportin is highly expressed in tissue macrophages, where it mediates iron export into the bloodstream. Although ferroportin expression can be controlled post-transcriptionally through a 5' iron-responsive element in its mRNA, various studies have documented increased ferroportin mRNA levels in response to iron, suggesting transcriptional regulation. We studied the effect of iron loading on levels of macrophage ferroportin mRNA, as well as heterogeneous nuclear RNA (hnRNA), the immediate product of ferroportin gene transcription. J774 cells, a mouse macrophage cell line, were incubated for 0, 3, 6, 9, 12, and 24 h in medium supplemented or not with 200 mumol/L iron. Quantitative RT-PCR was used to measure steady-state levels of ferroportin mRNA and hnRNA. Ferroportin mRNA levels increased by 12 h after iron treatment, reaching 6 times the control levels after 24 h. Changes in ferroportin mRNA levels were paralleled by similar changes in the levels of ferroportin hnRNA. Time course studies of ferroportin mRNA and hnRNA abundance after incubating cells with the transcriptional inhibitor actinomycin D revealed that ferroportin mRNA has a half-life of approximately 4 h and that iron loading does not stabilize ferroportin mRNA or hnRNA. Collectively, these data are consistent with the hypothesis that iron increases macrophage ferroportin mRNA levels by inducing transcription of the ferroportin gene.
Collapse
Affiliation(s)
- Fikret Aydemir
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
165
|
Abstract
Accurate assessment of maternal micronutrient status is critical to the prevention of suboptimal micronutrient status and anaemia during pregnancy. Measurement of Fe, folate and vitamin B12 status is complicated by adaptive changes to maternal and placental physiology that markedly affect concentrations of circulating micronutrients and their functional biomarkers. Validation of new assessment methods by comparison with gold standards is often prevented by ethical considerations. Antenatal screening in the UK is predominantly concerned with the detection of anaemia, although estimation of maternal Fe stores by serum ferritin at the start of antenatal care may be a more effective preventive strategy. Functional assessment of maternal anaemia is highly problematic, so instead reference data are used for its definition. The effect of mild-to-moderate anaemia on pregnancy outcome is unclear because of the crude nature of its assessment and the influence of confounding factors. Fe-deficient erythropoiesis may be detected by assessment of erythrocyte Zn protoporphyrin and reticulocyte Hb, although such measures may be unavailable in many clinical laboratories. Serum soluble transferrin receptor is highly responsive to tissue Fe deficiency and is less affected by inflammation than most other indicators. Direct inter-assay comparison of serum and erythrocyte folate values is inadvisable since recovery rates differ greatly between methods. Serum total homocysteine is a useful functional biomarker of both folate and vitamin B12 status but during pregnancy is influenced by other factors that reduce its sensitivity. Isotope-dilution liquid chromatography-tandem MS and serum holo-transcobalamin provide new opportunities to gain detailed data of folate species and vitamin B12 fractions in large samples.
Collapse
|
166
|
Iolascon A, De Falco L, Beaumont C. Molecular basis of inherited microcytic anemia due to defects in iron acquisition or heme synthesis. Haematologica 2009; 94:395-408. [PMID: 19181781 DOI: 10.3324/haematol.13619] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microcytic anemia is the most commonly encountered anemia in general medical practice. Nutritional iron deficiency and beta thalassemia trait are the primary causes in pediatrics, whereas bleeding disorders and anemia of chronic disease are common in adulthood. Microcytic hypochromic anemia can result from a defect in globin genes, in heme synthesis, in iron availability or in iron acquisition by the erythroid precursors. These microcytic anemia can be sideroblastic or not, a trait which reflects the implications of different gene abnormalities. Iron is a trace element that may act as a redox component and therefore is integral to vital biological processes that require the transfer of electrons as in oxygen transport, oxidative phosphorylation, DNA biosynthesis and xenobiotic metabolism. However, it can also be pro-oxidant and to avoid its toxicity, iron metabolism is strictly controlled and failure of these control systems could induce iron overload or iron deficient anemia. During the past few years, several new discoveries mostly arising from human patients or mouse models have highlighted the implication of iron metabolism components in hereditary microcytic anemia, from intestinal absorption to its final inclusion into heme. In this paper we will review the new information available on the iron acquisition pathway by developing erythrocytes and its regulation, and we will consider only inherited microcytosis due to heme synthesis or to iron metabolism defects. This information could be useful in the diagnosis and classification of these microcytic anemias.
Collapse
Affiliation(s)
- Achille Iolascon
- Department of Biochemistry and Medical Biotechnologies, University Federico II, Naples, Italy.
| | | | | |
Collapse
|
167
|
Abstract
CNS injury-induced hemorrhage and tissue damage leads to excess iron, which can cause secondary degeneration. The mechanisms that handle this excess iron are not fully understood. We report that spinal cord contusion injury (SCI) in mice induces an "iron homeostatic response" that partially limits iron-catalyzed oxidative damage. We show that ceruloplasmin (Cp), a ferroxidase that oxidizes toxic ferrous iron, is important for this process. SCI in Cp-deficient mice demonstrates that Cp detoxifies and mobilizes iron and reduces secondary tissue degeneration and functional loss. Our results provide new insights into how astrocytes and macrophages handle iron after SCI. Importantly, we show that iron chelator treatment has a delayed effect in improving locomotor recovery between 3 and 6 weeks after SCI. These data reveal important aspects of the molecular control of CNS iron homeostasis after SCI and suggest that iron chelator therapy may improve functional recovery after CNS trauma and hemorrhagic stroke.
Collapse
|
168
|
Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2:2. [PMID: 19133145 PMCID: PMC2672098 DOI: 10.1186/1755-8794-2-2] [Citation(s) in RCA: 376] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/08/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. REVIEW We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation).The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible.This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles.Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. CONCLUSION Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|
169
|
Muckenthaler MU, Galy B, Hentze MW. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 2008; 28:197-213. [PMID: 18489257 DOI: 10.1146/annurev.nutr.28.061807.155521] [Citation(s) in RCA: 517] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The regulation and maintenance of systemic iron homeostasis is critical to human health. Iron overload and deficiency diseases belong to the most common nutrition-related pathologies across the globe. It is now well appreciated that the hormonal hepcidin/ferroportin system plays an important regulatory role for systemic iron metabolism. We review recent data that uncover the importance of the cellular iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network in systemic iron homeostasis. We also discuss how the IRE/IRP regulatory system communicates with the hepcidin/ferroportin system to connect the control networks for systemic and cellular iron balance.
Collapse
Affiliation(s)
- Martina U Muckenthaler
- Molecular Medicine Partnership Unit, Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
170
|
D'Anna MC, Veuthey TV, Roque ME. Immunolocalization of ferroportin in healthy and anemic mice. J Histochem Cytochem 2008; 57:9-16. [PMID: 18796409 DOI: 10.1369/jhc.2008.951616] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ferroportin (FPN), the only iron exporter identified to date, participates in iron release from enterocytes and macrophages, regulating its absorption and recycling. We used a murine model of experimental hemolytic anemia to study adaptive changes in the localization of FPN in duodenum, liver, and spleen. FPN was assessed by IHC in healthy and anemic mice using rabbit anti-mouse FPN polyclonal antibodies. Goat-labeled polymer-horseradish peroxidase anti-rabbit Envision+System (DAB) was used as secondary antibody. Tissue iron was studied by Prussian blue iron staining. Anemia evolution and erythropoietic recovery was assessed using conventional hematological tests. Healthy mice showed mainly supranuclear expression of FPN in enterocytes and a weak basolateral expression, whereas in anemic mice, the expression was detected mainly at the basolateral membrane (days 4 and 5). Red pulp macrophages of healthy mice showed FPN-hemosiderin colocalization. In the liver of healthy mice, FPN was mainly cytoplasmic, whereas in anemic mice, it was redistributed to the cell membrane. Our findings clearly show that anemia induces adaptive changes in FPN expression, contributing to anemia restoration by increasing available iron. FPN expression in the membrane is the main pathway of iron release. Our data indicate that iron homeostasis in vivo is maintained through the coordinated expression of this iron exporter in both intestinal and phagocytic cells.
Collapse
Affiliation(s)
- María Cecilia D'Anna
- Laboratory of Human Physiology, Department of Biology, Biochemistry, and Pharmacy, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, Argentina.
| | | | | |
Collapse
|
171
|
Soe-Lin S, Sheftel AD, Wasyluk B, Ponka P. Nramp1 equips macrophages for efficient iron recycling. Exp Hematol 2008; 36:929-37. [DOI: 10.1016/j.exphem.2008.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/27/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
|
172
|
Abstract
Fundamental cellular operations, including DNA synthesis and the generation of ATP, require iron. Viruses hijack cells in order to replicate, and efficient replication needs an iron-replete host. Some viruses selectively infect iron-acquiring cells by binding to transferrin receptor 1 during cell entry. Other viruses alter the expression of proteins involved in iron homeostasis, such as HFE and hepcidin. In HIV-1 and hepatitis C virus infections, iron overload is associated with poor prognosis and could be partly caused by the viruses themselves. Understanding how iron metabolism and viral infection interact might suggest new methods to control disease.
Collapse
Affiliation(s)
- Hal Drakesmith
- Molecular Immunology Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital and Oxford University, Oxford OX3 9DS, UK.
| | | |
Collapse
|
173
|
Tacchini L, Gammella E, De Ponti C, Recalcati S, Cairo G. Role of HIF-1 and NF-kappaB transcription factors in the modulation of transferrin receptor by inflammatory and anti-inflammatory signals. J Biol Chem 2008; 283:20674-86. [PMID: 18519569 DOI: 10.1074/jbc.m800365200] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inflammation generates various changes in body iron homeostasis, including iron sequestration in the reticuloendothelial system with ensuing hypoferremia and anemia of chronic disease. Increased iron accumulation is caused by hepcidin-mediated down-regulation of the iron export protein ferroportin and higher iron uptake. However, enhanced iron acquisition by macrophages cannot be accounted for by the previously reported transferrin receptor (TfR1) down-regulation in macrophages exposed to lipopolysaccharide (LPS)/interferon gamma (IFNgamma) because it impairs a major iron uptake mechanism. Because TfR1 is up-regulated by the hypoxia-inducible factor (HIF-1), we investigated the effect of inflammatory and anti-inflammatory signals on HIF-1-mediated TfR1 gene expression. Exposure of mouse macrophages (RAW 264.7 and J774A.1 cells or peritoneal macrophages) to LPS/IFNgamma up-regulated NF-kappaB, which in turn rapidly and transiently activated HIF-1-dependent TfR1 expression and iron uptake. Activation of an anti-inflammatory pathway by pre-exposure to the adenosine A(2A) receptor agonist CGS21680 prevented the inducing effect of LPS/IFNgamma on HIF-1 and TfR1 expression by inhibiting NF-kappaB activity, whereas treatment with CGS21680 alone increased HIF-1-mediated TfR1 expression by means of an NF-kappaB-independent signaling pathway. In conclusion, an interplay of the HIF-1 and NF-kappaB pathways controls TfR1 transcription in inflammation. The consequent changes in TfR1 expression may be involved in modulating iron retention in inflammatory macrophages, thus possibly contributing to the development of hypoferremia in the early phases preceding the down-regulation of macrophage ferroportin by hepcidin.
Collapse
Affiliation(s)
- Lorenza Tacchini
- Institute of General Pathology, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
174
|
Defrere S, Lousse J, Gonzalez-Ramos R, Colette S, Donnez J, Van Langendonckt A. Potential involvement of iron in the pathogenesis of peritoneal endometriosis. Mol Hum Reprod 2008; 14:377-85. [DOI: 10.1093/molehr/gan033] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
175
|
Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: early mRNA induction by haem, followed by iron-dependent protein expression. Biochem J 2008; 411:123-31. [PMID: 18072938 DOI: 10.1042/bj20071474] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissue macrophages play an essential role in iron recycling through the phagocytosis of senescent RBCs (red blood cells). Following haem catabolism by HO1 (haem oxygenase 1), they recycle iron back into the plasma through the iron exporter Fpn (ferroportin). We previously described a cellular model of EP (erythrophagocytosis), based on primary cultures of mouse BMDMs (bone-marrow-derived macrophages) and aged murine RBCs, and showed that EP induces changes in the expression profiles of Fpn and HO1. In the present paper, we demonstrate that haem derived from human or murine RBCs or from an exogenous source of haem led to marked transcriptional activation of the Fpn and HO1 genes. Iron released from haem catabolism subsequently stimulated the Fpn mRNA and protein expression associated with localization of the transporter at the cell surface, which probably promotes the export of iron into the plasma. These findings highlight a dual mechanism of Fpn regulation in BMDMs, characterized by early induction of the gene transcription predominantly mediated by haem, followed by iron-mediated post-transcriptional regulation of the exporter.
Collapse
|
176
|
Min KS, Iwata N, Tetsutikawahara N, Onosaka S, Tanaka K. Effect of hemolytic and iron-deficiency anemia on intestinal absorption and tissue accumulation of cadmium. Toxicol Lett 2008; 179:48-52. [PMID: 18485624 DOI: 10.1016/j.toxlet.2008.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/01/2008] [Accepted: 04/01/2008] [Indexed: 11/28/2022]
Abstract
Abnormal iron (Fe) metabolism induces iron-deficiency anemia (FeDA) and also affects body cadmium (Cd) accumulation. However, whether hemolytic anemia also affects Cd metabolism is not known. We compared the intestinal absorption and tissue accumulation of Cd after oral administration of Cd to mice with hemolytic anemia induced by treatment with phenylhydrazine (PHA mice) to that in mice with FeDA. Although the hematocrit decreased significantly in mice with either type of anemia, the Fe concentration decreased in the livers and kidneys of FeDA mice, but increased in those of PHA mice. After an oral administration with various amounts of Cd, hepatic and renal Cd concentrations significantly increased in both FeDA and PHA mice. An intraduodenal injection of Fe raised the hepatic Fe content in FeDA mice to the control level and raised the hepatic Fe content in PHA mice to 2.4 times that in control mice. Intestinal divalent metal transporter 1 (DMT1) expression increased significantly in mice with both types of anemia. These data indicate that, despite the accumulation of hepatic Fe associated with PHA, PHA also significantly increases hepatic and renal Cd accumulation according to an stimulation of intestinal DMT1 expression, as occurs in FeDA mice. This suggests that anemia may be a risk factor for Cd accumulation.
Collapse
Affiliation(s)
- Kyong-Son Min
- Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan.
| | | | | | | | | |
Collapse
|
177
|
Lousse JC, Defrère S, Van Langendonckt A, Gras J, González-Ramos R, Colette S, Donnez J. Iron storage is significantly increased in peritoneal macrophages of endometriosis patients and correlates with iron overload in peritoneal fluid. Fertil Steril 2008; 91:1668-75. [PMID: 18396284 DOI: 10.1016/j.fertnstert.2008.02.103] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 02/11/2008] [Accepted: 02/11/2008] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To further investigate peritoneal iron disruption in endometriosis by studying iron storage in peritoneal macrophages of patients with endometriosis compared with controls. DESIGN Cross-sectional study. SETTING Academic gynecology research unit in a university hospital. PATIENT(S) Fifty patients undergoing laparoscopy. INTERVENTION(S) Collection of peritoneal fluid samples (N = 50) from patients with (n = 27) and without (n = 23) endometriosis undergoing laparoscopy. MAIN OUTCOME MEASURE(S) Quantification of peritoneal macrophage ferritin by immunocytochemical staining and immunodensitometry and measurement of peritoneal iron, transferrin, ferritin, and prohepcidin concentrations. RESULT(S) The optical density of peritoneal macrophage ferritin staining was statistically significantly higher in endometriosis patients than in controls. Higher iron concentrations, transferrin saturations, and ferritin concentrations were also detected in case of endometriosis. A statistically significant positive correlation was found between the optical density of macrophage ferritin staining and peritoneal iron concentrations in endometriosis and control patients. CONCLUSION(S) Iron storage is statistically significantly increased in peritoneal macrophages of patients with endometriosis and correlates with iron overload in peritoneal fluid. The potential implications of iron accumulation in peritoneal macrophages in case of endometriosis are discussed.
Collapse
|
178
|
Das D, Aradhya R, Ashoka D, Inamdar M. Macromolecular uptake in Drosophila pericardial cells requires rudhira function. Exp Cell Res 2008; 314:1804-10. [PMID: 18355807 DOI: 10.1016/j.yexcr.2008.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/13/2008] [Accepted: 02/19/2008] [Indexed: 01/10/2023]
Abstract
The vertebrate reticuloendothelial system (RES) functions to remove potentially damaging macromolecules, such as excess hormones, immune-peptides and -complexes, bacterial-endotoxins, microorganisms and tumor cells. Insect hemocytes and nephrocytes - which include pericardial cells (PCs) and garland cells - are thought to be functionally equivalent to the RES. Although the ability of both vertebrate scavenger endothelial cells (SECs) and PCs to sequester colloidal and soluble macromolecules has been demonstrated the molecular mechanism of this function remains to be investigated. We report here the functional characterization of Drosophila larval PCs with important insights into their cellular uptake pathways. We demonstrate the nephrocyte function of PCs in live animals. We also develop and use live-cell assays to show that PCs take up soluble macromolecules in a Dynamin-dependent manner and colloids by a Dynamin-independent pathway. We had earlier identified Drosophila rudhira (Drudh) as a specific marker for PCs. Using RNAi mediated knock-down we show that Drudh regulates macropinocytic uptake in PCs. Our study establishes important functions for Drosophila PCs, describes methods to identify and study them, provides a genetic handle for further investigation of their role in maintaining homeostasis and demonstrates that they perform key subsets of the roles played by the vertebrate RES.
Collapse
Affiliation(s)
- Debjani Das
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560064, India
| | | | | | | |
Collapse
|
179
|
Abstract
Erythrocytes require iron to perform their duty as oxygen carriers. Mammals have evolved a mechanism to maintain systemic iron within an optimal range that fosters erythroid development and function while satisfying other body iron needs. This chapter reviews erythroid iron uptake and utilization as well as systemic factors that influence iron availability. One of these factors is hepcidin, a circulating peptide hormone that maintains iron homeostasis. Elevated levels of hepcidin in the bloodstream effectively shut off iron absorption by disabling the iron exporter ferroportin. Conversely, low levels of circulating hepcidin allow ferroportin to export iron into the bloodstream. Aberrations in hepcidin expression or responsiveness to hepcidin result in disorders of iron deficiency and iron overload. It is clear that erythroid precursors communicate their iron needs to the liver to influence the production of hepcidin and thus the amount of iron available for use. However, the mechanism by which erythroid cells accomplish this remains unclear and is an area of active investigation.
Collapse
Affiliation(s)
- Diedra M Wrighting
- Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
180
|
Lim FL, Dooley JS, Roques AW, Grellier L, Dhillon AP, Walker AP. Hepatic iron concentration, fibrosis and response to venesection associated with the A77D and V162del "loss of function" mutations in ferroportin disease. Blood Cells Mol Dis 2007; 40:328-33. [PMID: 18160317 DOI: 10.1016/j.bcmd.2007.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/13/2007] [Accepted: 11/16/2007] [Indexed: 12/13/2022]
Abstract
Ferroportin disease is an autosomal dominant form of hemochromatosis associated with siderosis in cells of the mononuclear phagocyte system and, to varying degrees, in hepatocytes. Ferroportin was investigated as a candidate gene in two pedigrees with hyperferritinaemia and siderosis in mononuclear phagocytes. The entire ferroportin coding region was sequenced and hepatic iron concentration, histology and response to treatment were determined. The results were compared with previously reported cases. The A77D mutation was detected in patient 1, his father (patient 2) and his brother (patient 3), who had portal fibrosis. The V162del mutation was detected in patient 4, who developed anemia after the third weekly venesection. While the disease is rare, A77D and V162del are the most common ferroportin mutations in Caucasians. The spectrum of clinical expression of these two mutations was reviewed in all cases described to date. These mutations were associated with fibrosis in about a third of cases. For A77D and V162del, this analysis confirms that the threshold hepatic iron concentration for development of fibrosis may be higher than for classical hemochromatosis. These two mutations, which both decreased iron export in cell culture studies, give rise to similar patterns of clinical expression and morbidity, although the highest hepatic iron concentrations have been observed with A77D. It is important for clinicians to consider ferroportin disease in cases where there are features of iron overload unrelated to HFE, autosomal dominant inheritance and/or iron deposition in mononuclear phagocytes.
Collapse
Affiliation(s)
- Francesca L Lim
- Centre for Molecular Medicine, Department of Medicine, The Rayne Institute, University College London, 5 University Street, London, WC1E 6JF, UK
| | | | | | | | | | | |
Collapse
|
181
|
Abstract
Hepcidin, a master regulator of iron homeostasis, is produced in small amounts by inflammatory monocytes/macrophages. Chronic immune activation leads to iron retention within monocytes/macrophages and the development of anemia of chronic disease (ACD). We questioned whether monocyte-derived hepcidin exerts autocrine regulation toward cellular iron metabolism. Monocyte hepcidin mRNA expression was significantly induced within 3 hours after stimulation with LPS or IL-6, and hepcidin mRNA expression was significantly higher in monocytes of ACD patients than in controls. In ACD patients, monocyte hepcidin mRNA levels were significantly correlated to serum IL-6 concentrations, and increased monocyte hepcidin mRNA levels were associated with decreased expression of the iron exporter ferroportin and iron retention in these cells. Transient transfection experiments using a ferroportin/EmGFP fusion protein construct demonstrated that LPS inducible hepcidin expression in THP-1 monocytes resulted in internalization and degradation of ferroportin. Transfection of monocytes with siRNA directed against hepcidin almost fully reversed this lipopolysaccharide-mediated effect. Using ferroportin mutation constructs, we found that ferroportin is mainly targeted by hepcidin when expressed on the cell surface. Our results suggest that ferroportin expression in inflammatory monocytes is negatively affected by autocrine formation of hepcidin, thus contributing to iron sequestration within monocytes as found in ACD.
Collapse
|
182
|
Abstract
Normal iron homeostasis is a finely balanced system that reflects iron absorption, loss and utilization. The body has no mechanism for the active excretion of iron, so body iron levels are controlled at the point of absorption in the small intestine. Disturbances in this equilibrium, such as those leading to enhanced absorption, can have significant clinical consequences. Continued excessive iron uptake is followed by iron deposition in various tissues, ultimately leading to tissue damage, and possibly end-organ failure. In this review, current concepts in normal iron homeostasis, and iron loading are explained. The clinical consequences as well as the differences between primary and secondary iron loading are also reviewed, and some future research priorities are discussed.
Collapse
Affiliation(s)
- Gregory J Anderson
- Iron Metabolism Laboratory, Queensland Institute of Medical Research, Brisbane Queensland, Australia. Greg.Anderson#qimr.edu.au
| |
Collapse
|
183
|
|
184
|
Schaer CA, Vallelian F, Imhof A, Schoedon G, Schaer DJ. Heme carrier protein (HCP-1) spatially interacts with the CD163 hemoglobin uptake pathway and is a target of inflammatory macrophage activation. J Leukoc Biol 2007; 83:325-33. [DOI: 10.1189/jlb.0407226] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
185
|
Basaraba RJ, Bielefeldt-Ohmann H, Eschelbach EK, Reisenhauer C, Tolnay AE, Taraba LC, Shanley CA, Smith EA, Bedwell CL, Chlipala EA, Orme IM. Increased expression of host iron-binding proteins precedes iron accumulation and calcification of primary lung lesions in experimental tuberculosis in the guinea pig. Tuberculosis (Edinb) 2007; 88:69-79. [PMID: 17942369 DOI: 10.1016/j.tube.2007.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/26/2007] [Accepted: 09/09/2007] [Indexed: 11/25/2022]
Abstract
The growth and virulence of Mycobacterium tuberculosis depends on its ability to scavenge host iron, an essential and limited micronutrient in vivo. In this study, we show that ferric iron accumulates both intra- and extra-cellularly in the primary lung lesions of guinea pigs aerosol-infected with the H37Rv strain of M. tuberculosis. Iron accumulated within macrophages at the periphery of the primary granulomatous lesions while extra-cellular ferric iron was concentrated in areas of lesion necrosis. Accumulation of iron within primary lesions was preceded by an increase in expression of heavy chain (H) ferritin, lactoferrin and receptors for transferrin, primarily by macrophages and granulocytes. The increased expression of intra-cellular H ferritin and extra-cellular lactoferrin, more so than transferrin receptor, paralleled the development of necrosis within primary lesions. The deposition of extra-cellular ferric iron within necrotic foci coincided with the accumulation of calcium and phosphorus and other cations in the form of dystrophic calcification. Primary lung lesions from guinea pigs vaccinated with Mycobactrium bovis BCG prior to experimental infection, had reduced iron accumulation as well as H ferritin, lactoferrin and transferrin receptor expression. The amelioration of primary lesion necrosis and dystrophic calcification by BCG vaccination was coincident with the lack of extra-cellular ferric iron and lactoferrin accumulation. These data demonstrate that BCG vaccination ameliorates primary lesion necrosis, dystrophic mineralization and iron accumulation, in part by down-regulating the expression of macrophage H ferritin, lactoferrin and transferrin receptors, in vivo.
Collapse
Affiliation(s)
- Randall J Basaraba
- Department of Microbiology, Immunology and Pathology, 1619 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1619, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
Patients with alcoholic liver disease frequently exhibit increased body iron stores, as reflected by elevated serum iron indices (transferrin saturation, ferritin) and hepatic iron concentration. Even mild to moderate alcohol consumption has been shown to increase the prevalence of iron overload. Moreover, increased hepatic iron content is associated with greater mortality from alcoholic cirrhosis, suggesting a pathogenic role for iron in alcoholic liver disease. Alcohol increases the severity of disease in patients with genetic hemochromatosis, an iron overload disorder common in the Caucasian population. Both iron and alcohol individually cause oxidative stress and lipid peroxidation, which culminates in liver injury. Despite these observations, the underlying mechanisms of iron accumulation and the source of the excess iron observed in alcoholic liver disease remain unclear. Over the last decade, several novel iron-regulatory proteins have been identified and these have greatly enhanced our understanding of iron metabolism. For example, hepcidin, a circulatory antimicrobial peptide synthesized by the hepatocytes of the liver is now known to play a central role in the regulation of iron homeostasis. This review attempts to describe the interaction of alcohol and iron-regulatory molecules. Understanding these molecular mechanisms is of considerable clinical importance because both alcoholic liver disease and genetic hemochromatosis are common diseases, in which alcohol and iron appear to act synergistically to cause liver injury.
Collapse
Affiliation(s)
- Duygu Dee Harrison-Findik
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
187
|
Abstract
Progress in the characterization of genes involved in the control of iron homeostasis in humans and in mice has improved the definition of iron overload and of the cells affected by it. The cell involved in iron overload with the greatest effect on immunity is the macrophage. Intriguing evidence has emerged, however, in the last 12 years indicating that parenchymal iron overload is linked to genes classically associated with the immune system. This review offers an update of the genes and proteins relevant to iron metabolism expressed in cells of the innate immune system, and addresses the question of how this system is affected in clinical situations of iron overload. The relationship between iron and the major cells of adaptive immunity, the T lymphocytes, will also be reviewed. Most studies addressing this last question in humans were performed in the clinical model of Hereditary Hemochromatosis. Data will also be reviewed demonstrating how the disruption of molecules essentially involved in adaptive immune responses result in the spontaneous development of iron overload and how they act as modifiers of iron overload.
Collapse
Affiliation(s)
- Graça Porto
- Institute of Molecular and Cellular Biology, Rua do Campo Alegre, Porto 8234150, Portugal.
| | | |
Collapse
|
188
|
Abstract
The liver plays a central role in iron metabolism. It is the major storage site for iron and also expresses a complex range of molecules which are involved in iron transport and regulation of iron homeostasis. An increasing number of genes associated with hepatic iron transport or regulation have been identified. These include transferrin receptors (TFR1 and 2), a ferrireductase (STEAP3), the transporters divalent metal transporter-1 (DMT1) and ferroportin (FPN) as well as the haemochromatosis protein, HFE and haemojuvelin (HJV), which are signalling molecules. Many of these genes also participate in iron regulatory pathways which focus on the hepatic peptide hepcidin. However, we are still only beginning to understand the complex interactions between liver iron transport and iron homeostasis. This review outlines our current knowledge of molecules of iron metabolism and their roles in iron transport and regulation of iron homeostasis.
Collapse
Affiliation(s)
- Ross-M Graham
- School of Medicine and Pharmacology, Fremantle Hospital, University of Western Australia, PO Box 480, Fremantle 6959, Western Australia, Australia
| | | | | | | | | |
Collapse
|
189
|
Abstract
Flatiron mice provide the first genetic model that fully recapitulates the iron-loading disorder ferroportin disease. Unlike the other known genetic causes of hemochromatosis, missense mutations in the ferroportin gene are autosomal dominant. These new findings show that ferroportin disease results from dominant negative effects rather than haplo-insufficiency.
Collapse
Affiliation(s)
- Erin E Johnson
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
190
|
Rokushima M, Omi K, Imura K, Araki A, Furukawa N, Itoh F, Miyazaki M, Yamamoto J, Rokushima M, Okada M, Torii M, Kato I, Ishizaki J. Toxicogenomics of Drug-Induced Hemolytic Anemia by Analyzing Gene Expression Profiles in the Spleen. Toxicol Sci 2007; 100:290-302. [PMID: 17698508 DOI: 10.1093/toxsci/kfm216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hemolytic anemia is a serious adverse effect of therapeutic drugs that is caused by increased destruction of drug-damaged erythrocytes by macrophages in the spleen and liver. We previously applied a toxicogenomic approach to the toxicity by analyzing microarray data of the liver of rats dosed with two hemolytic agents: phenylhydrazine and phenacetin. In the present study, we analyzed gene expression profiles in the spleen, the primary organ for destruction of damaged erythrocytes, of the same models in order to identify splenic gene expression alterations that could be used to predict the hematotoxicity. Microarray analyses revealed hundreds of genes commonly deregulated under all severe hemolytic conditions, which included genes related to splenic events characteristic of the hematotoxicity, such as proteolysis and iron metabolism. Eleven upregulated genes were selected as biomarker candidates, and their expression changes were validated by quantitative real-time PCR. The transcript levels of most of these genes showed strong correlation with the results of classical toxicological assays (e.g., histopathology and hematology). Furthermore, hierarchical clustering analysis suggested that altered expression patterns of the 11 genes sensitively reflected the erythrocyte damage even under a condition that caused no decrease in erythrocyte counts. Among the selected genes, heme oxygenase 1 was one of the most promising biomarker candidates, the upregulation of which on the protein level was confirmed by immunohistochemistry. These results indicate that altered splenic expression of a subset of genes may allow detection of drug-induced hemolytic anemia, with better sensitivity than that of erythrocyte counts in the blood.
Collapse
Affiliation(s)
- Masatomo Rokushima
- Discovery Technologies 1, Discovery Research Laboratories, Shionogi & Co., Ltd, 12-4, Sagisu 5-chome, Fukushima-ku, Osaka 553-0002, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Abstract
Iron is essential for both host and pathogen, and complex systems of acquisition and utilization have evolved in competition. Our increasing knowledge of the basic mechanisms of homeostasis and their adaptation during deficiency, overload, and infection indicate that iron is a key regulator of host pathogen interactions. This review concentrated on the clinical and public health aspects of the interaction between the iron acquisition mechanisms of select pathogens of public health importance with host iron homeostasis. Knowledge of these interactions is essential in assessing likely morbidity responses to supplementation.
Collapse
|
192
|
Abstract
The iron-regulatory hormone hepcidin is a 25-amino acid peptide that is synthesized in hepatocytes. Hepcidin binds to the cellular iron export channel ferroportin and causes its internalization and degradation and thereby decreases iron efflux from iron exporting tissues into plasma. By this mechanism, hepcidin inhibits dietary iron absorption, the efflux of recycled iron from splenic and hepatic macrophages, and the release of iron from storage in hepatocytes. Hepcidin synthesis is stimulated by plasma iron and iron stores and is inhibited by erythropoietic activity, ensuring that extracellular plasma iron concentrations and iron stores remain stable and the erythropoietic demand for iron is met. During inflammation, increased hepcidin concentrations cause iron sequestration in macrophages, resulting in hypoferremia and eventually anemia of inflammation. Hepcidin deficiency plays a central role in most iron overload disorders. The role of hepcidin abnormalities in anemias that are associated with renal disease and in resistance to erythropoietic therapies remains to be elucidated.
Collapse
Affiliation(s)
- Tomas Ganz
- Departments of Medicine and Pathology, David Geffen School of Medicine, 10833 Le Conte Avenue, CHS 37-055, University of California, Los Angeles, CA 90095-1690, USA.
| |
Collapse
|
193
|
Raje CI, Kumar S, Harle A, Nanda JS, Raje M. The macrophage cell surface glyceraldehyde-3-phosphate dehydrogenase is a novel transferrin receptor. J Biol Chem 2006; 282:3252-61. [PMID: 17121833 DOI: 10.1074/jbc.m608328200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The reticuloendothelial system plays a major role in iron metabolism. Despite this, the manner in which macrophages handle iron remains poorly understood. Mammalian cells utilize transferrin-dependent mechanisms to acquire iron via transferrin receptors 1 and 2 (TfR1 and TfR2) by receptor-mediated endocytosis. Here, we show for the first time that the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is localized on human and murine macrophage cell surface. The expression of this surface GAPDH is regulated by the availability of iron in the medium. We further demonstrate that this GAPDH interacts with transferrin and the GAPDH-transferrin complex is subsequently internalized into the early endosomes. Our work sheds new light on the mechanisms involved in regulation of iron, vital for controlling numerous diseases and maintaining normal immune function. Thus, we propose an entirely new avenue for investigation with respect to transferrin uptake and regulation mechanisms in macrophages.
Collapse
|
194
|
Nairz M, Weiss G. Molecular and clinical aspects of iron homeostasis: From anemia to hemochromatosis. Wien Klin Wochenschr 2006; 118:442-62. [PMID: 16957974 DOI: 10.1007/s00508-006-0653-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 06/21/2006] [Indexed: 12/11/2022]
Abstract
The discovery in recent years of a plethora of new genes whose products are implicated in iron homeostasis has led to rapid expansion of our knowledge in the field of iron metabolism and its underlying complex regulation in both health and disease. Abnormalities of iron metabolism are among the most common disorders encountered in practical medicine and may have significant negative impact on physical condition and life expectancy. Basic insights into the principles of iron homeostasis and the pathophysiological and clinical consequences of iron overload, iron deficiency and misdistribution are thus of crucial importance in modern medicine. This review summarizes our current understanding of human iron metabolism and focuses on the clinically relevant features of hereditary and secondary hemochromatosis, iron deficiency anemia, anemia of chronic disease and anemia of critical illness. The interconnections between iron metabolism and immunity are also addressed, in as much as they may affect the risk and course of infections and malignancies.
Collapse
Affiliation(s)
- Manfred Nairz
- Klinische Abteilung für Allgemeine Innere Medizin, Klinische Infektiologie und Immunologie, Medizinische Universität Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
195
|
Seale TW, Morton DJ, Whitby PW, Wolf R, Kosanke SD, VanWagoner TM, Stull TL. Complex role of hemoglobin and hemoglobin-haptoglobin binding proteins in Haemophilus influenzae virulence in the infant rat model of invasive infection. Infect Immun 2006; 74:6213-25. [PMID: 16966415 PMCID: PMC1695506 DOI: 10.1128/iai.00744-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Haemophilus influenzae requires an exogenous heme source for aerobic growth in vitro. Hemoglobin or hemoglobin-haptoglobin satisfies this requirement. Heme acquisition from hemoglobin-haptoglobin is mediated by proteins encoded by hgp genes. Both Hgps and additional proteins, including those encoded by the hxu operon, provide independent pathways for hemoglobin utilization. Recently we showed that deletion of the set of three hgp genes from a nontypeable strain (86-028NP) of H. influenzae attenuated virulence in the chinchilla otitis media model of noninvasive disease. The present study was undertaken to investigate the role of the hgp genes in virulence of the wild-type serotype b clinical isolate HI689 in the infant rat model of hematogenous meningitis, an established model of invasive disease requiring aerobic growth. Bacteremia of high titer and long duration (>14 days) and histopathologically confirmed meningitis occurred in >95% of infant rats challenged at 5 days of age with strain HI689. While mutations disrupting either the Hgp- or Hxu-mediated pathway of heme acquisition had no effect on virulence in infant rats, an isogenic mutant deficient for both pathways was unable to sustain bacteremia or produce meningitis. In contrast, mutations disrupting either pathway decreased the limited ability of H. influenzae to initiate and sustain bacteremia in weanling rats. Biochemical and growth studies also indicated that infant rat plasma contains multiple heme sources that change with age. Taken together, these data indicate that both the hgp genes and the hxuC gene are virulence determinants in the rat model of human invasive disease.
Collapse
Affiliation(s)
- Thomas W Seale
- Department of Pediatrics, CHO 2308, University of Oklahoma Health Sciences Center, 940 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
196
|
Getchell ML, Li H, Vaishnav RA, Borders AS, Witta J, Subhedar N, de Villiers W, Stromberg AJ, Getchell TV. Temporal gene expression profiles of target-ablated olfactory epithelium in mice with disrupted expression of scavenger receptor A: impact on macrophages. Physiol Genomics 2006; 27:245-63. [PMID: 16882882 DOI: 10.1152/physiolgenomics.00261.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Target ablation [removal of the olfactory bulb (OBX)] induces apoptotic death of olfactory sensory neurons (OSNs) and an immune response in which activation and recruitment of macrophages (ms) into the olfactory epithelium (OE) occupy a central role. Ms phagocytose apoptotic neurons and secrete cytokines/growth factors that regulate subsequent progenitor cell proliferation and neurogenesis. Scavenger receptor A (SR-A) is a pattern recognition receptor that mediates binding of ms to apoptotic cells and other relevant immune response functions. The aim of this study was to determine the impact of the absence of SR-A on the immune response to OBX. The immune response to OBX was evaluated in mice in which functional expression of the m scavenger receptor (MSR) was eliminated by gene disruption (MSR-/-) and wild-type (wt) mice of the same genetic background. OBX induced significant apoptotic death of mature OSNs in the two strains. However, subsequent m infiltration and activation and progenitor cell proliferation were significantly reduced in MSR-/- vs. wt mice. Gene expression profiling at short intervals after OBX demonstrated significant differences in temporal patterns of expression of several gene categories, including immune response genes. Many immune response genes that showed different temporal patterns of expression are related to m function, including cytokine and chemokine secretion, phagocytosis, and m maturation and activation. These studies suggest that impairment of the immune response to OBX in the OE of MSR-/- mice most likely resulted from decreased m adhesion and subsequent reduced infiltration and activation, with a resultant decrease in neurogenesis.
Collapse
Affiliation(s)
- M L Getchell
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Wallander ML, Leibold EA, Eisenstein RS. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:668-89. [PMID: 16872694 PMCID: PMC2291536 DOI: 10.1016/j.bbamcr.2006.05.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 02/06/2023]
Abstract
Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs encoding proteins involved in iron homeostasis thereby controlling the uptake, utilization, storage or export of iron. Recent evidence provides insight into how IRPs selectively control the translation or stability of target mRNAs, how IRP RNA binding activity is controlled by iron-dependent and iron-independent effectors, and the pathological consequences of dysregulation of the IRP system.
Collapse
Affiliation(s)
- Michelle L. Wallander
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Elizabeth A. Leibold
- Department of Medicine, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Richard S. Eisenstein
- Department of Nutritional Sciences, University of Wisconsin, 1415 Linden Drive, Madison, WI 53706, USA
- Corresponding author. Tel.: +1 608 262 5830. E-mail address: (R.S. Eisenstein)
| |
Collapse
|
198
|
Bridle K, Cheung TK, Murphy T, Walters M, Anderson G, Crawford DG, Fletcher LM. Hepcidin is down-regulated in alcoholic liver injury: implications for the pathogenesis of alcoholic liver disease. Alcohol Clin Exp Res 2006; 30:106-12. [PMID: 16433737 DOI: 10.1111/j.1530-0277.2006.00002.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alcoholic liver disease is known to be associated with abnormal iron homeostasis, and iron metabolism itself is regulated by the liver-derived peptide hepcidin. Both CCAAT enhancer binding protein alpha (C/EBPalpha) and interleukin 6 (IL-6) have been shown to regulate hepcidin gene transcription. AIM To investigate mechanisms underlying alcohol-induced disturbances in iron homeostasis by measuring the expression of hepcidin and C/EBPalpha mRNA using in vivo and in vitro models of alcoholic liver injury. METHODS Male rats were pair-fed an alcoholic liquid diet for 12 weeks. RT-PCR was performed on liver tissue using specific primers for hepcidin and C/EBPalpha. The effect of alcohol on hepcidin and C/EBPalpha gene expression was also determined in isolated hepatocytes, HuH-7 cells and HepG2 cells treated with 50 mM ethanol, 200 microM acetaldehyde, and/or 20 ng/ml IL-6. RESULTS Hepcidin and C/EBPalpha mRNA expression were significantly decreased in alcohol-fed rats compared with pair-fed controls (6-fold p < 0.001 and 2.2-fold p < 0.0002 reduction, respectively) and hepatic lipid peroxidation was increased by 32.5% (p < 0.05) in alcohol-fed rats compared with controls. Hepcidin gene expression was not altered significantly in cells cultured in the presence of 50 mM ethanol. Following 24 hour stimulation by IL-6, there was a 4-fold increase in hepcidin expression in hepatocytes and a 9-fold increase in HuH-7 cells. Ethanol (50 mM) attenuated the IL-6-induced increase in hepcidin expression in HuH-7 cells (9-fold to a 4-fold increase) but not in hepatocytes. Acetaldehyde had no effect on hepcidin gene expression in cells in culture. CONCLUSION The down-regulation of hepcidin and C/EBPalpha gene expression shown in vivo implies disturbed iron sensing contributing to the hepatosiderosis seen in alcoholic liver disease, possibly by mechanisms involving the IL-6 signaling cascade.
Collapse
Affiliation(s)
- Kimr Bridle
- Southern Medical School, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
199
|
Seril DN, Liao J, West AB, Yang GY. High-iron diet: foe or feat in ulcerative colitis and ulcerative colitis-associated carcinogenesis. J Clin Gastroenterol 2006; 40:391-7. [PMID: 16721219 DOI: 10.1097/00004836-200605000-00006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anemia associated with long-standing chronic inflammation and iron deficiency, and the increased risk for the development of dysplasia and carcinoma, are two of the most common complications in patients with ulcerative colitis (UC). Because of iron and nutrition deficiency, UC patients are encouraged to consume a high-protein and high-iron diet. The crucial clinical question is the effect of a high-iron diet on inflammation activity and inflammation-driven carcinogenesis. Is a high-iron diet a foe or a feat in UC and UC-associated carcinogenesis? This review updates the progress and information on (1) iron nutrition and iron-deficiency anemia in patients with UC, (2) experimental evidence of the exacerbating effect of a high-iron diet on UC and its associated carcinogenesis and the difference between a high-iron diet and parental iron supplementation, (3) the clinical efficacy of, and concerns about, oral and intravenous iron supplements in patients with inflammatory bowel disease and iron deficiency anemia, and (4) the clinical implications of long-term iron supplements and management of UC. These experimental findings from animal models provide evidence to warrant further consideration and clinical studies of iron nutrition, inflammation activity, and cancer development.
Collapse
MESH Headings
- Administration, Oral
- Anemia, Iron-Deficiency/drug therapy
- Anemia, Iron-Deficiency/etiology
- Animals
- Biological Availability
- Cell Transformation, Neoplastic
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/complications
- Colitis, Ulcerative/pathology
- Colorectal Neoplasms/complications
- Colorectal Neoplasms/pathology
- Dietary Supplements/adverse effects
- Disease Models, Animal
- Disease Progression
- Dose-Response Relationship, Drug
- Humans
- Iron, Dietary/adverse effects
- Oxidative Stress
Collapse
Affiliation(s)
- Darren N Seril
- Susan L. Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | | | | | | |
Collapse
|
200
|
Abstract
Hepcidin evolves as a potent hepatocyte-derived regulator of the body's iron distribution piloting the flow of iron via, and directly binding, to the cellular iron exporter ferroportin. The hepcidin-ferroportin axis dominates the iron egress from all cellular compartments that are critical to iron homeostasis, namely placental syncytiotrophoblasts, duodenal enterocytes, hepatocytes and macrophages of the reticuloendothelial system. The gene that encodes hepcidin expression (HAMP) is subject to regulation by proinflammatory cytokines, such as IL-6 and IL-1; excessive hepcidin production explains the relative deficiency of iron during inflammatory states, eventually resulting in the anaemia of inflammation. The haemochromatosis genes HFE, TfR2 and HJV potentially facilitate the transcription of HAMP. Disruption of each of the four genes leads to a diminished hepatic release of hepcidin consistent with both a dominant role of hepcidin in hereditary haemochromatosis and an upstream regulatory role of HFE, TfR2 and HJV on HAMP expression. The engineered generation of hepcidin agonists, mimetics or antagonists could largely broaden current therapeutic strategies to redirect the flow of iron.
Collapse
Affiliation(s)
- R Deicher
- Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|