151
|
Dohlman HG, Thorner JW. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 2002; 70:703-54. [PMID: 11395421 DOI: 10.1146/annurev.biochem.70.1.703] [Citation(s) in RCA: 334] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All cells have the capacity to evoke appropriate and measured responses to signal molecules (such as peptide hormones), environmental changes, and other external stimuli. Tremendous progress has been made in identifying the proteins that mediate cellular response to such signals and in elucidating how events at the cell surface are linked to subsequent biochemical changes in the cytoplasm and nucleus. An emerging area of investigation concerns how signaling components are assembled and regulated (both spatially and temporally), so as to control properly the specificity and intensity of a given signaling pathway. A related question under intensive study is how the action of an individual signaling pathway is integrated with (or insulated from) other pathways to constitute larger networks that control overall cell behavior appropriately. This review describes the signal transduction pathway used by budding yeast (Saccharomyces cerevisiae) to respond to its peptide mating pheromones. This pathway is comprised by receptors, a heterotrimeric G protein, and a protein kinase cascade all remarkably similar to counterparts in multicellular organisms. The primary focus of this review, however, is recent advances that have been made, using primarily genetic methods, in identifying molecules responsible for regulation of the action of the components of this signaling pathway. Just as many of the constituent proteins of this pathway and their interrelationships were first identified in yeast, the functions of some of these regulators have clearly been conserved in metazoans, and others will likely serve as additional models for molecules that carry out analogous roles in higher organisms.
Collapse
Affiliation(s)
- H G Dohlman
- Department of Pharmacology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA.
| | | |
Collapse
|
152
|
Mochida J, Yamamoto T, Fujimura-Kamada K, Tanaka K. The novel adaptor protein, Mti1p, and Vrp1p, a homolog of Wiskott-Aldrich syndrome protein-interacting protein (WIP), may antagonistically regulate type I myosins in Saccharomyces cerevisiae. Genetics 2002; 160:923-34. [PMID: 11901111 PMCID: PMC1462009 DOI: 10.1093/genetics/160.3.923] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type I myosins in yeast, Myo3p and Myo5p (Myo3/5p), are involved in the reorganization of the actin cytoskeleton. The SH3 domain of Myo5p regulates the polymerization of actin through interactions with both Las17p, a homolog of mammalian Wiskott-Aldrich syndrome protein (WASP), and Vrp1p, a homolog of WASP-interacting protein (WIP). Vrp1p is required for both the localization of Myo5p to cortical patch-like structures and the ATP-independent interaction between the Myo5p tail region and actin filaments. We have identified and characterized a new adaptor protein, Mti1p (Myosin tail region-interacting protein), which interacts with the SH3 domains of Myo3/5p. Mti1p co-immunoprecipitated with Myo5p and Mti1p-GFP co-localized with cortical actin patches. A null mutation of MTI1 exhibited synthetic lethal phenotypes with mutations in SAC6 and SLA2, which encode actin-bundling and cortical actin-binding proteins, respectively. Although the mti1 null mutation alone did not display any obvious phenotype, it suppressed vrp1 mutation phenotypes, including temperature-sensitive growth, abnormally large cell morphology, defects in endocytosis and salt-sensitive growth. These results suggest that Mti1p and Vrp1p antagonistically regulate type I myosin functions.
Collapse
Affiliation(s)
- Junko Mochida
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-0815, Japan
| | | | | | | |
Collapse
|
153
|
Abstract
Lamellipodia, filopodia and membrane ruffles are essential for cell motility, the organization of membrane domains, phagocytosis and the development of substrate adhesions. Their formation relies on the regulated recruitment of molecular scaffolds to their tips (to harness and localize actin polymerization), coupled to the coordinated organization of actin filaments into lamella networks and bundled arrays. Their turnover requires further molecular complexes for the disassembly and recycling of lamellipodium components. Here, we give a spatial inventory of the many molecular players in this dynamic domain of the actin cytoskeleton in order to highlight the open questions and the challenges ahead.
Collapse
Affiliation(s)
- J Victor Small
- Dept of Cell Biology, Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, 5020 Salzburg, Austria.
| | | | | | | |
Collapse
|
154
|
Seeley ES, Kato M, Margolis N, Wickner W, Eitzen G. Genomic analysis of homotypic vacuole fusion. Mol Biol Cell 2002; 13:782-94. [PMID: 11907261 PMCID: PMC99598 DOI: 10.1091/mbc.01-10-0512] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Yeast vacuoles undergo fission and homotypic fusion, yielding one to three vacuoles per cell at steady state. Defects in vacuole fusion result in vacuole fragmentation. We have screened 4828 yeast strains, each with a deletion of a nonessential gene, for vacuole morphology defects. Fragmented vacuoles were found in strains deleted for genes encoding known fusion catalysts as well as 19 enzymes of lipid metabolism, 4 SNAREs, 12 GTPases and GTPase effectors, 9 additional known vacuole protein-sorting genes, 16 protein kinases, 2 phosphatases, 11 cytoskeletal proteins, and 28 genes of unknown function. Vacuole fusion and vacuole protein sorting are catalyzed by distinct, but overlapping, sets of proteins. Novel pathways of vacuole priming and docking emerged from this deletion screen. These include ergosterol biosynthesis, phosphatidylinositol (4,5)-bisphosphate turnover, and signaling from Rho GTPases to actin remodeling. These pathways are supported by the sensitivity of the late stages of vacuole fusion to inhibitors of phospholipase C, calcium channels, and actin remodeling. Using databases of yeast protein interactions, we found that many nonessential genes identified in our deletion screen interact with essential genes that are directly involved in vacuole fusion. Our screen reveals regulatory pathways of vacuole docking and provides a genomic basis for studies of this reaction.
Collapse
Affiliation(s)
- E Scott Seeley
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844, USA
| | | | | | | | | |
Collapse
|
155
|
Fazi B, Cope MJTV, Douangamath A, Ferracuti S, Schirwitz K, Zucconi A, Drubin DG, Wilmanns M, Cesareni G, Castagnoli L. Unusual binding properties of the SH3 domain of the yeast actin-binding protein Abp1: structural and functional analysis. J Biol Chem 2002; 277:5290-8. [PMID: 11668184 DOI: 10.1074/jbc.m109848200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abp1p is an actin-binding protein that plays a central role in the organization of Saccharomyces cerevisiae actin cytoskeleton. By a combination of two-hybrid and phage-display approaches, we have identified six new ligands of the Abp1-SH3 domain. None of these SH3-mediated novel interactions was detected in recent all genome high throughput protein interaction projects. Here we show that the SH3-mediated association of Abp1p with the Ser/Thr kinases Prk1p and Ark1p is essential for their localization to actin cortical patches. The Abp1-SH3 domain has a rather unusual binding specificity, because its target peptides contain the tetrapentapeptide +XXXPXXPX+PXXL with positive charges flanking the polyproline core on both sides. Here we present the structure of the Abp1-SH3 domain solved at 1.3-A resolution. The peptide-binding pockets in the SH3 domain are flanked by two acidic residues that are uncommon at those positions in the SH3 domain family. We have shown by site-directed mutagenesis that one of these negatively charged side chains may be the key determinant for the preference for non-classical ligands.
Collapse
Affiliation(s)
- Barbara Fazi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Win TZ, Mulvihill DP, Hyams JS. Take five: a myosin class act in fission yeast. CELL MOTILITY AND THE CYTOSKELETON 2002; 51:53-6. [PMID: 11921163 DOI: 10.1002/cm.10021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thein Z Win
- Department of Biology, University College London, London, United Kingdom
| | | | | |
Collapse
|
157
|
Tong AHY, Drees B, Nardelli G, Bader GD, Brannetti B, Castagnoli L, Evangelista M, Ferracuti S, Nelson B, Paoluzi S, Quondam M, Zucconi A, Hogue CWV, Fields S, Boone C, Cesareni G. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 2002; 295:321-4. [PMID: 11743162 DOI: 10.1126/science.1064987] [Citation(s) in RCA: 472] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Peptide recognition modules mediate many protein-protein interactions critical for the assembly of macromolecular complexes. Complete genome sequences have revealed thousands of these domains, requiring improved methods for identifying their physiologically relevant binding partners. We have developed a strategy combining computational prediction of interactions from phage-display ligand consensus sequences with large-scale two-hybrid physical interaction tests. Application to yeast SH3 domains generated a phage-display network containing 394 interactions among 206 proteins and a two-hybrid network containing 233 interactions among 145 proteins. Graph theoretic analysis identified 59 highly likely interactions common to both networks. Las17 (Bee1), a member of the Wiskott-Aldrich Syndrome protein (WASP) family of actin-assembly proteins, showed multiple SH3 interactions, many of which were confirmed in vivo by coimmunoprecipitation.
Collapse
Affiliation(s)
- Amy Hin Yan Tong
- Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Evangelista M, Pruyne D, Amberg DC, Boone C, Bretscher A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol 2002; 4:32-41. [PMID: 11740490 DOI: 10.1038/ncb718] [Citation(s) in RCA: 347] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Formins have been implicated in the regulation of cytoskeletal structure in animals and fungi. Here we show that the formins Bni1 and Bnr1 of budding yeast stimulate the assembly of actin filaments that function as precursors to tropomyosin-stabilized cables that direct polarized cell growth. With loss of formin function, cables disassemble, whereas increased formin activity causes the hyperaccumulation of cable-like filaments. Unlike the assembly of cortical actin patches, cable assembly requires profilin but not the Arp2/3 complex. Thus formins control a distinct pathway for assembling actin filaments that organize the overall polarity of the cell.
Collapse
Affiliation(s)
- Marie Evangelista
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
159
|
Thanabalu T, Munn AL. Functions of Vrp1p in cytokinesis and actin patches are distinct and neither requires a WH2/V domain. EMBO J 2001; 20:6979-89. [PMID: 11742975 PMCID: PMC125783 DOI: 10.1093/emboj/20.24.6979] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vrp1 (verprolin, End5) is a Saccharomyces cerevisiae actin-associated protein and is related to mammalian Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP). Vrp1-deficient (vrp1 Delta) cells are inviable at high temperature, have partially depolarized cortical actin patches and have defects in both actomyosin ring-dependent and Hof1 (Cyk2)-dependent pathways of cytokinesis. We demonstrate here that N-Vrp1(1-364) and C-Vrp1(364-817) are each sufficient to restore viability, actomyosin ring constriction and Hof1 localization at 37 degrees C to vrp1 Delta. C-Vrp1, like Vrp1, partially co-localizes with cortical actin patches and restores actin patch polarization to vrp1 Delta. Cortical localization of C-Vrp1, but not Vrp1, requires Las17. N-Vrp1 exhibits diffuse cytoplasmic localization and functions in cytokinesis without efficiently restoring polarization of cortical actin patches. N-Vrp1 function is not abolished by mutations affecting the WASP homology 2 (WH2) [verprolin homology (V)] actin-binding domain. N-Vrp1 may function through the type I myosins and actin, while C-Vrp1 may function through both Las17 (Bee1) and type I myosins. The functions of Vrp1 in viability at 37 degrees C and cytokinesis do not require efficient localization to, and function in, the cortical actin cytoskeleton.
Collapse
Affiliation(s)
- Thirumaran Thanabalu
- Institute of Molecular Agrobiology, 1 Research Link, The National University of Singapore, Singapore 117604 and Department of Biochemistry, The National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore Present address: School of Biological Sciences, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616,Republic of Singapore Corresponding author e-mail:
| | - Alan L. Munn
- Institute of Molecular Agrobiology, 1 Research Link, The National University of Singapore, Singapore 117604 and Department of Biochemistry, The National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore Present address: School of Biological Sciences, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616,Republic of Singapore Corresponding author e-mail:
| |
Collapse
|
160
|
Cordonnier MN, Dauzonne D, Louvard D, Coudrier E. Actin filaments and myosin I alpha cooperate with microtubules for the movement of lysosomes. Mol Biol Cell 2001; 12:4013-29. [PMID: 11739797 PMCID: PMC60772 DOI: 10.1091/mbc.12.12.4013] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An earlier report suggested that actin and myosin I alpha (MMIalpha), a myosin associated with endosomes and lysosomes, were involved in the delivery of internalized molecules to lysosomes. To determine whether actin and MMIalpha were involved in the movement of lysosomes, we analyzed by time-lapse video microscopy the dynamic of lysosomes in living mouse hepatoma cells (BWTG3 cells), producing green fluorescent protein actin or a nonfunctional domain of MMIalpha. In GFP-actin cells, lysosomes displayed a combination of rapid long-range directional movements dependent on microtubules, short random movements, and pauses, sometimes on actin filaments. We showed that the inhibition of the dynamics of actin filaments by cytochalasin D increased pauses of lysosomes on actin structures, while depolymerization of actin filaments using latrunculin A increased the mobility of lysosomes but impaired the directionality of their long-range movements. The production of a nonfunctional domain of MMIalpha impaired the intracellular distribution of lysosomes and the directionality of their long-range movements. Altogether, our observations indicate for the first time that both actin filaments and MMIalpha contribute to the movement of lysosomes in cooperation with microtubules and their associated molecular motors.
Collapse
Affiliation(s)
- M N Cordonnier
- Morphogenèse et Signalisation Cellulaires, Unité Mixte de Recherche 144, Institut Curie, France
| | | | | | | |
Collapse
|
161
|
Tanaka K, Matsui Y. Functions of unconventional myosins in the yeast Saccharomyces cerevisiae. Cell Struct Funct 2001; 26:671-5. [PMID: 11942625 DOI: 10.1247/csf.26.671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Unconventional myosins in the budding yeast play essential roles in diverse cellular functions, including endocytosis, actin organization, and polarized distribution of organelles. Several lines of evidence suggest that novel proteins, interacting with the unconventional myosins, regulate their functions. In this review, we focus on the functions of unconventional myosins from the point of view of myosin-interacting proteins.
Collapse
Affiliation(s)
- K Tanaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | |
Collapse
|
162
|
Shaw JD, Cummings KB, Huyer G, Michaelis S, Wendland B. Yeast as a model system for studying endocytosis. Exp Cell Res 2001; 271:1-9. [PMID: 11697876 DOI: 10.1006/excr.2001.5373] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endocytosis is the membrane trafficking process by which plasma membrane components and extracellular material are internalized into cytoplasmic vesicles and delivered to early and late endosomes, eventually either recycling back to the plasma membrane or arriving at the lysosome/vacuole. The budding yeast Saccharomyces cerevisiae has proven to be an invaluable system for identifying proteins involved in endocytosis and elucidating the mechanisms underlying internalization and postinternalization events. Through genetic studies in yeast and biochemical studies in mammalian cells, it has become apparent that multiple cellular processes are linked to endocytosis, including actin cytoskeletal dynamics, ubiquitylation, lipid modification, and signal transduction. In this review, we will highlight the most exciting recent findings in the field of yeast endocytosis. Specifically, we will address the involvement of the actin cytoskeleton in internalization, the role of ubiquitylation as a regulator of multiple steps of endocytosis in yeast, and the sorting of endocytosed proteins into the recycling and vacuolar pathways.
Collapse
Affiliation(s)
- J D Shaw
- Department of Biology, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
163
|
Lechler T, Jonsdottir GA, Klee SK, Pellman D, Li R. A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. J Cell Biol 2001; 155:261-70. [PMID: 11604421 PMCID: PMC2198833 DOI: 10.1083/jcb.200104094] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The establishment of cell polarity in budding yeast involves assembly of actin filaments at specified cortical domains. Elucidation of the underlying mechanism requires an understanding of the machinery that controls actin polymerization and how this machinery is in turn controlled by signaling proteins that respond to polarity cues. We showed previously that the yeast orthologue of the Wiskott-Aldrich Syndrome protein, Bee1/Las17p, and the type I myosins are key regulators of cortical actin polymerization. Here, we demonstrate further that these proteins together with Vrp1p form a multivalent Arp2/3-activating complex. During cell polarization, a bifurcated signaling pathway downstream of the Rho-type GTPase Cdc42p recruits and activates this complex, leading to local assembly of actin filaments. One branch, which requires formin homologues, mediates the recruitment of the Bee1p complex to the cortical site where the activated Cdc42p resides. The other is mediated by the p21-activated kinases, which activate the motor activity of myosin-I through phosphorylation. Together, these findings provide insights into the essential processes leading to polarization of the actin cytoskeleton.
Collapse
Affiliation(s)
- T Lechler
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
164
|
Abstract
Many important biological processes, including chemotaxis (directional cell movement up a chemoattractant gradient), require a clearly established cell polarity and the ability of the cell to respond to a directional signal. Recent advances using Dictyostelium cells and mammalian leukocytes have provided insights into the biochemical and molecular pathways that control chemotaxis. Phosphoinositide 3-kinase plays a central and possibly pivotal role in establishing and maintaining cell polarity by regulating the subcellular localization and activation of downstream effectors that are essential for regulating cell polarity and proper chemotaxis. This review outlines our present understanding of these pathways.
Collapse
Affiliation(s)
- C Y Chung
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | | | | |
Collapse
|
165
|
Abstract
Recently, two new ligands of the Arp2/3 complex have been described that may shed light on the way cells organize complex networks of actin in response to signals. Abp1p, a yeast protein involved in endocytosis, and cortactin, a mammalian src substrate, both enhance the ability of the Arp2/3 complex to assemble branched actin filament networks.
Collapse
Affiliation(s)
- I M Olazabal
- School of Biosciences, Division of Molecular Cell Biology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | |
Collapse
|
166
|
Drees BL, Sundin B, Brazeau E, Caviston JP, Chen GC, Guo W, Kozminski KG, Lau MW, Moskow JJ, Tong A, Schenkman LR, McKenzie A, Brennwald P, Longtine M, Bi E, Chan C, Novick P, Boone C, Pringle JR, Davis TN, Fields S, Drubin DG. A protein interaction map for cell polarity development. J Cell Biol 2001; 154:549-71. [PMID: 11489916 PMCID: PMC2196425 DOI: 10.1083/jcb.200104057] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein-protein interactions that mediate cell polarity development, and to uncover novel mechanisms that coordinate the numerous events involved, we carried out a large-scale two-hybrid experiment. 68 Gal4 DNA binding domain fusions of yeast proteins associated with the actin cytoskeleton, septins, the secretory apparatus, and Rho-type GTPases were used to screen an array of yeast transformants that express approximately 90% of the predicted Saccharomyces cerevisiae open reading frames as Gal4 activation domain fusions. 191 protein-protein interactions were detected, of which 128 had not been described previously. 44 interactions implicated 20 previously uncharacterized proteins in cell polarity development. Further insights into possible roles of 13 of these proteins were revealed by their multiple two-hybrid interactions and by subcellular localization. Included in the interaction network were associations of Cdc42 and Rho1 pathways with proteins involved in exocytosis, septin organization, actin assembly, microtubule organization, autophagy, cytokinesis, and cell wall synthesis. Other interactions suggested direct connections between Rho1- and Cdc42-regulated pathways; the secretory apparatus and regulators of polarity establishment; actin assembly and the morphogenesis checkpoint; and the exocytic and endocytic machinery. In total, a network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed.
Collapse
Affiliation(s)
- B L Drees
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Liu X, Osherov N, Yamashita R, Brzeska H, Korn ED, May GS. Myosin I mutants with only 1% of wild-type actin-activated MgATPase activity retain essential in vivo function(s). Proc Natl Acad Sci U S A 2001; 98:9122-7. [PMID: 11459943 PMCID: PMC55383 DOI: 10.1073/pnas.161285698] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2001] [Indexed: 11/18/2022] Open
Abstract
The single class I myosin (MYOA) of Aspergillus nidulans is essential for hyphal growth. It is generally assumed that the functions of all myosins depend on their actin-activated MgATPase activity. Here we show that MYOA mutants with no more than 1% of the actin-activated MgATPase activity of wild-type MYOA in vitro and no detectable in vitro motility activity can support fungal cell growth, albeit with a delay in germination time and a reduction in hyphal elongation. From these and other data, we conclude that the essential role(s) of myosin I in A. nidulans is probably structural, requiring little, if any, actin-activated MgATPase or motor activity, which have long been considered the defining characteristics of the myosin family.
Collapse
Affiliation(s)
- X Liu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 50, Room 2517, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
168
|
Abstract
Myosin-I is the single-headed, membrane binding member of the myosin superfamily that plays a role in membrane dynamics and transport [1-6]. Its molecular functions and its mechanism of regulation are not known. In mammalian cells, myosin-I is excluded from specific microfilament populations, indicating that its localization is tightly regulated. Identifying the mechanism of this localization, and the specific actin populations with which myosin-I interacts, is crucial to understanding the molecular functions of this motor. eGFP chimeras of myo1b [7] were imaged in live and fixed NRK cells. Ratio-imaging microscopy shows that myo1b-eGFP concentrates within dynamic areas of the actin cytoskeleton, most notably in membrane ruffles. Myo1b-eGFP does not associate with stable actin bundles or stress fibers. Truncation mutants consisting of the motor or tail domains show a partially overlapping cytoplasmic localization with full-length myo1b, but do not concentrate in membrane ruffles. A chimera consisting of the light chain and tail domains of myo1b and the motor domain from nonmuscle myosin-IIb (nmMIIb) concentrates on actin filaments in ruffles as well as to stress fibers. In vitro motility assays show that the exclusion of myo1b from certain actin filament populations is due to the regulation of the actomyosin interaction by tropomyosin. Therefore, we conclude that tropomyosin and spatially regulated actin polymerization play important roles in regulating the function and localization of myo1b.
Collapse
Affiliation(s)
- N Tang
- Department of Physiology and The Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, B400 Richards, Philadelphia, PA 19104, USA
| | | |
Collapse
|
169
|
Duncan MC, Cope MJ, Goode BL, Wendland B, Drubin DG. Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex. Nat Cell Biol 2001; 3:687-90. [PMID: 11433303 DOI: 10.1038/35083087] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Longstanding evidence supports a role for actin in endocytosis; an intact actin cytoskeleton is required for endocytosis in yeast, and drugs that inhibit actin polymerization inhibit endocytosis in both yeast and mammalian cells. The yeast Arp2/3 complex is required for the internalization step of endocytosis. In addition, some early endocytic events in mammalian cells are associated with the formation of actin tails similar to those generated by activated Arp2/3 complex. However, until now no Arp2/3 complex activator has been identified among proteins known to mediate early steps in endocytosis. Here we show that the yeast endocytic protein Pan1p binds to and activates the Arp2/3 complex. Genetic interactions between PAN1 and mutants of Arp2/3 subunits, or of the Arp2/3 activator LAS17, provide evidence for this activity in vivo. We suggest that Pan1p forms the core of an endocytic complex and physically couples actin polymerization nucleated by the Arp2/3 complex to the endocytic machinery, thus providing the forces necessary for endocytosis.
Collapse
Affiliation(s)
- M C Duncan
- Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, California 94720-3202, USA
| | | | | | | | | |
Collapse
|
170
|
Jung G, Remmert K, Wu X, Volosky JM, III JAH. The Dictyostelium CARMIL protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains. J Cell Biol 2001; 153:1479-97. [PMID: 11425877 PMCID: PMC2150732 DOI: 10.1083/jcb.153.7.1479] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2001] [Accepted: 05/11/2001] [Indexed: 11/22/2022] Open
Abstract
Fusion proteins containing the Src homology (SH)3 domains of Dictyostelium myosin IB (myoB) and IC (myoC) bind a 116-kD protein (p116), plus nine other proteins identified as the seven member Arp2/3 complex, and the alpha and beta subunits of capping protein. Immunoprecipitation reactions indicate that myoB and myoC form a complex with p116, Arp2/3, and capping protein in vivo, that the myosins bind to p116 through their SH3 domains, and that capping protein and the Arp2/3 complex in turn bind to p116. Cloning of p116 reveals a protein dominated by leucine-rich repeats and proline-rich sequences, and indicates that it is a homologue of Acan 125. Studies using p116 fusion proteins confirm the location of the myosin I SH3 domain binding site, implicate NH(2)-terminal sequences in binding capping protein, and show that a region containing a short sequence found in several G-actin binding proteins, as well as an acidic stretch, can activate Arp2/3-dependent actin nucleation. p116 localizes along with the Arp2/3 complex, myoB, and myoC in dynamic actin-rich cellular extensions, including the leading edge of cells undergoing chemotactic migration, and dorsal, cup-like, macropinocytic extensions. Cells lacking p116 exhibit a striking defect in the formation of these macropinocytic structures, a concomitant reduction in the rate of fluid phase pinocytosis, a significant decrease in the efficiency of chemotactic aggregation, and a decrease in cellular F-actin content. These results identify a complex that links key players in the nucleation and termination of actin filament assembly with a ubiquitous barbed end-directed motor, indicate that the protein responsible for the formation of this complex is physiologically important, and suggest that previously reported myosin I mutant phenotypes in Dictyostelium may be due, at least in part, to defects in the assembly state of actin. We propose that p116 and Acan 125, along with homologues identified in Caenorhabditis elegans, Drosophila, mouse, and man, be named CARMIL proteins, for capping protein, Arp2/3, and myosin I linker.
Collapse
Affiliation(s)
- Goeh Jung
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Kirsten Remmert
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Xufeng Wu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Joanne M. Volosky
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - John A. Hammer III
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
171
|
Martinez-Quiles N, Rohatgi R, Antón IM, Medina M, Saville SP, Miki H, Yamaguchi H, Takenawa T, Hartwig JH, Geha RS, Ramesh N. WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Nat Cell Biol 2001; 3:484-91. [PMID: 11331876 DOI: 10.1038/35074551] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Induction of filopodia is dependent on activation of the small GTPase Cdc42 and on neural Wiskott-Aldrich-syndrome protein (N-WASP). Here we show that WASP-interacting protein (WIP) interacts directly with N-WASP and actin. WIP retards N-WASP/Cdc42-activated actin polymerization mediated by the Arp2/3 complex, and stabilizes actin filaments. Microinjection of WIP into NIH 3T3 fibroblasts induces filopodia; this is inhibited by microinjection of anti-N-WASP antibody. Microinjection of anti-WIP antibody inhibits induction of filopodia by bradykinin, by an active Cdc42 mutant (Cdc42(V12)) and by N-WASP. Our results indicate that WIP and N-WASP may act as a functional unit in filopodium formation, which is consistent with their role in actin-tail formation in cells infected with vaccinia virus or Shigella.
Collapse
Affiliation(s)
- N Martinez-Quiles
- Department of Pediatrics, Division of Immunology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Goode BL, Rodal AA, Barnes G, Drubin DG. Activation of the Arp2/3 complex by the actin filament binding protein Abp1p. J Cell Biol 2001; 153:627-34. [PMID: 11331312 PMCID: PMC2190564 DOI: 10.1083/jcb.153.3.627] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2001] [Accepted: 03/26/2001] [Indexed: 12/02/2022] Open
Abstract
The actin-related protein (Arp) 2/3 complex plays a central role in assembly of actin networks. Because distinct actin-based structures mediate diverse processes, many proteins are likely to make spatially and temporally regulated interactions with the Arp2/3 complex. We have isolated a new activator, Abp1p, which associates tightly with the yeast Arp2/3 complex. Abp1p contains two acidic sequences (DDW) similar to those found in SCAR/WASp proteins. We demonstrate that mutation of these sequences abolishes Arp2/3 complex activation in vitro. Genetic studies indicate that this activity is important for Abp1p functions in vivo. In contrast to SCAR/WASp proteins, Abp1p binds specifically to actin filaments, not monomers. Actin filament binding is mediated by the ADF/cofilin homology (ADF-H) domain of Abp1p and is required for Arp2/3 complex activation in vitro. We demonstrate that Abp1p recruits Arp2/3 complex to the sides of filaments, suggesting a novel mechanism of activation. Studies in yeast and mammalian cells indicate that Abp1p is involved functionally in endocytosis. Based on these results, we speculate that Abp1p may link Arp2/3-mediated actin assembly to a specific step in endocytosis.
Collapse
Affiliation(s)
- Bruce L. Goode
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720-3202
| | - Avital A. Rodal
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720-3202
| | - Georjana Barnes
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720-3202
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720-3202
| |
Collapse
|
173
|
Abstract
Actin patches are core components of the yeast actin cytoskeleton that undergo redistribution during establishment of cell polarity. Using 4D imaging, we observe the life cycle of actin patches in living yeast for the first time. We observe assembly of actin patches at sites of polarized growth, and disassembly of actin patches concomitant with movement away from those sites. The total lifetime of an actin patch is 10.9+/-4.2 seconds. These findings indicate that actin patches are labile structures, and that the localization of actin patches during establishment of cell polarity occurs by assembly of these structures at sites of polarized cell surface growth. These findings were confirmed and extended by analysis of myosin I proteins and their receptor, verprolin, proteins implicated in actin assembly in yeast. Deletion of type I myosins or their receptor has no effect on the velocity of actin patch movement. However, these mutants show a 65% reduction in number of patch movements and a three-fold increase in patch lifetime. Finally, the actin patch resident proteins Abp1p, fimbrin, and Arp2p show normal association with actin patches in myosin I and verprolin mutants. However, cofilin accumulates in abnormal ‘bars’ of G-actin in myo3(Δ),myo5(Δ) and vrp1(Δ) strains, and Las17p/Bee1p is not associated with actin patches in vrp1(Δ) strains. These findings imply a multi-step process for actin patch assembly. Early events in this process, including assembly of Abp1p, fimbrin and Arp2p with F-actin, can occur throughout the cell and do not require myosin I proteins or their receptor. Later events in this process are myosin I-dependent, and are required for assembly of actin patches at sites of polarized cell surface growth. http://www.biologists.com/JCS/movies/jcs1990.html
Collapse
Affiliation(s)
- M G Smith
- Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
174
|
Abstract
The SH3 domain is perhaps the best-characterized member of the growing family of protein-interaction modules. By binding with moderate affinity and selectivity to proline-rich ligands, these domains play critical roles in a wide variety of biological processes ranging from regulation of enzymes by intramolecular interactions, increasing the local concentration or altering the subcellular localization of components of signaling pathways, and mediating the assembly of large multiprotein complexes. SH3 domains and their binding sites have cropped up in many hundreds of proteins in species from yeast to man, which suggests that they provide the cell with an especially handy and adaptable means of bringing proteins together. The wealth of genetic, biochemical and structural information available provides an intimate and detailed portrait of the domain, serving as a framework for understanding other modular protein-interaction domains. Processes regulated by SH3 domains also raise important questions about the nature of specificity and the overall logic governing networks of protein interactions.
Collapse
Affiliation(s)
- B J Mayer
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA.
| |
Collapse
|
175
|
Abstract
Cellular actin assembly is tightly regulated. The study of pathogen motility has led to the identification of several cellular factors that are critical for controlling this process. Pathogens such as Listeria require Ena/VASP and Arp2/3 proteins to translate actin polymerization into movement. Recent work has extended these observations and uncovered some similarities and surprising differences in the way cells and pathogens utilize the actin cytoskeleton.
Collapse
Affiliation(s)
- J E Bear
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
176
|
Abstract
The past decade has seen a remarkable explosion in our knowledge of the size and diversity of the myosin superfamily. Since these actin-based motors are candidates to provide the molecular basis for many cellular movements, it is essential that motility researchers be aware of the complete set of myosins in a given organism. The availability of cDNA and/or draft genomic sequences from humans, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Dictyostelium discoideum has allowed us to tentatively define and compare the sets of myosin genes in these organisms. This analysis has also led to the identification of several putative myosin genes that may be of general interest. In humans, for example, we find a total of 40 known or predicted myosin genes including two new myosins-I, three new class II (conventional) myosins, a second member of the class III/ninaC myosins, a gene similar to the class XV deafness myosin, and a novel myosin sharing at most 33% identity with other members of the superfamily. These myosins are in addition to the recently discovered class XVI myosin with N-terminal ankyrin repeats and two human genes with similarity to the class XVIII PDZ-myosin from mouse. We briefly describe these newly recognized myosins and extend our previous phylogenetic analysis of the myosin superfamily to include a comparison of the complete or nearly complete inventories of myosin genes from several experimentally important organisms.
Collapse
Affiliation(s)
- J S Berg
- Department of Cell and Molecular Physiology, CB#7545, University of North Carolina at Chapel Hill, 27599, USA
| | | | | |
Collapse
|
177
|
Munn AL. Molecular requirements for the internalisation step of endocytosis: insights from yeast. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1535:236-57. [PMID: 11278164 DOI: 10.1016/s0925-4439(01)00028-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular genetic studies of endocytosis using the unicellular eukaryote Saccharomyces cerevisiae (budding yeast) have led to the identification of many cellular components, both proteins and lipids, required for this process. While initially, many of these requirements (e.g. for actin, various actin-associated proteins, the ubiquitin conjugation system, and for ergosterol and sphingolipids) appeared to differ from known requirements for endocytosis in higher eukaryotes (e.g. clathrin, AP-2, dynamin), it now seems that endocytosis in higher and lower eukaryotes share many requirements. Often, what were initially identified as actin cytoskeleton-associated proteins in S. cerevisiae, are now revealing themselves as clathrin-coated pit- and vesicle-associated proteins in higher eukaryotes. So rather than delineating two endocytic pathways, one actin-based and one clathrin-based, the combined studies on higher and lower eukaryotes are revealing interesting interplay in both systems between the actin cytoskeleton, clathrin coats, and lipids in the formation of endocytic vesicles at the plasma membrane. Recent results from the yeast system show that the Arp2/3p complex, Wiskott-Aldrich syndrome protein (WASP), and WASP-interacting protein (WIP), proteins involved in the nucleation step of actin filament assembly, play a major role in the formation of endocytic vesicles. This discovery suggests models whereby endocytic vesicles may be actively pushed from the plasma membrane and into the cell by newly forming and rapidly extending actin filaments.
Collapse
Affiliation(s)
- A L Munn
- Laboratory of Yeast Cell Biology, Institute of Molecular Agrobiology, 1 Research Link, National University of Singapore, 117604, Singapore.
| |
Collapse
|
178
|
de la Roche MA, Côté GP. Regulation of Dictyostelium myosin I and II. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1525:245-61. [PMID: 11257438 DOI: 10.1016/s0304-4165(01)00110-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dictyostelium expresses 12 different myosins, including seven single-headed myosins I and one conventional two-headed myosin II. In this review we focus on the signaling pathways that regulate Dictyostelium myosin I and myosin II. Activation of myosin I is catalyzed by a Cdc42/Rac-stimulated myosin I heavy chain kinase that is a member of the p21-activated kinase (PAK) family. Evidence that myosin I is linked to the Arp2/3 complex suggests that pathways that regulate myosin I may also influence actin filament assembly. Myosin II activity is stimulated by a cGMP-activated myosin light chain kinase and inhibited by myosin heavy chain kinases (MHCKs) that block bipolar filament assembly. Known MHCKs include MHCK A and MHCK B, which have a novel type of kinase catalytic domain joined to a WD repeat domain, and MHC-protein kinase C (PKC), which contains both diacylglycerol kinase and PKC-related protein kinase catalytic domains. A Dictyostelium PAK (PAKa) acts indirectly to promote myosin II filament formation, suggesting that the MHCKs may be indirectly regulated by Rac GTPases.
Collapse
Affiliation(s)
- M A de la Roche
- Department of Biochemistry, Queen's University, K7L 3N6, Kingston, Ont., Canada
| | | |
Collapse
|
179
|
Abstract
The process of engulfing a foreign particle - phagocytosis - is of fundamental importance for a wide diversity of organisms. From simple unicellular organisms that use phagocytosis to obtain their next meal, to complex metazoans in which phagocytic cells represent an essential branch of the immune system, evolution has armed cells with a fantastic repertoire of molecules that serve to bring about this complex event. Regardless of the organism or specific molecules concerned, however, all phagocytic processes are driven by a finely controlled rearrangement of the actin cytoskeleton. A variety of signals can converge to locally reorganise the actin cytoskeleton at a phagosome, and there are significant similarities and differences between different organisms and between different engulfment processes within the same organism. Recent advances have demonstrated the complexity of phagocytic signalling, such as the involvement of phosphoinostide lipids and multicomponent signalling complexes in transducing signals from phagocytic receptors to the cytoskeleton. Similarly, a wide diversity of ‘effector molecules’ are now implicated in actin-remodelling downstream of these receptors.
Collapse
Affiliation(s)
- R C May
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
180
|
Abstract
Genetic and biochemical studies in yeast and animal cells have led to the identification of many components required for endocytosis. In this review, we summarize our understanding of the endocytic machinery with an emphasis on the proteins regulating the internalization step of endocytosis and endosome fusion. Even though the overall endocytic machinery appears to be conserved between yeast and animals, clear differences exist. We also discuss the roles of phosphoinositides, sterols, and sphingolipid precursors in endocytosis, because in addition to proteins, these lipids have emerged as important determinants in the spatial and most likely temporal specificity of endocytic membrane trafficking events.
Collapse
Affiliation(s)
- K D'Hondt
- Biozentrum-University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
181
|
Naqvi SN, Feng Q, Boulton VJ, Zahn R, Munn AL. Vrp1p functions in both actomyosin ring-dependent and Hof1p-dependent pathways of cytokinesis. Traffic 2001; 2:189-201. [PMID: 11260524 DOI: 10.1034/j.1600-0854.2001.020305.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vrp1p/verprolin/End5p is a Saccharomyces cerevisiae proline-rich protein, structurally and functionally related to human Wiskott-Aldrich syndrome protein-interacting protein. Vrp1p is required for viability at 37 degrees C, but not 24 degrees C. Here, we show that loss of Vrp1p (vrp1Delta) leads to a 3-4-fold delay in cytokinesis, wide bud necks, abnormal actomyosin rings, and aberrant septa even at 24 degrees C. Like other mutations affecting the actomyosin ring, vrp1Delta is synthetic lethal with deletion of HOF1 (or CYK2), which encodes a protein related to mammalian proline serine threonine phosphatase-interacting protein and Schizosaccharomyces pombe Cdc15p required for an actomyosin ring-independent pathway of cytokinesis in S. cerevisiae. At 37 degrees C, vrp1Delta cells rapidly cease dividing and exhibit a novel terminal phenotype: a single large bud, two well-separated nuclei, and an interphase microtubule array. The arrested cells have a persistent ring containing both actin and myosin at the bud neck. Many also exhibit some polarisation of cortical actin patches to the bud neck. Vrp1p binds an SH3-domain-containing fragment of Hof1p in vitro. Vrp1p is required in vivo for Hof1p relocalisation to a single ring at the bud neck prior to cytokinesis at 37 degrees C, but not at 24 degrees C. Vrp1p thus acts in both actomyosin ring formation and function, as well as in Hof1p localisation during cytokinesis.
Collapse
Affiliation(s)
- S N Naqvi
- Laboratory of Yeast Cell Biology, Institute of Molecular Agrobiology, 1 Research Link, The National University of Singapore, Singapore 117604, Republic of Singapore.
| | | | | | | | | |
Collapse
|
182
|
Toya M, Motegi F, Nakano K, Mabuchi I, Yamamoto M. Identification and functional analysis of the gene for type I myosin in fission yeast. Genes Cells 2001; 6:187-99. [PMID: 11260263 DOI: 10.1046/j.1365-2443.2001.00414.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Type I myosin is highly conserved among eukaryotes, and apparently plays important roles in a number of cellular processes. In the budding yeast, two myosin I species have been identified and their role in F-actin assembly has been inferred. RESULTS We cloned the fission yeast myo1 gene, which apparently encoded a myosin I protein. Disruption of myo1 was not lethal, but it caused growth retardation at high and low temperatures, sensitivity to a high concentration of KCl, and aberrance in cell morphology associated with an abnormal distribution of F-actin patches. An abnormal deposition of cell wall materials was also seen. Homothallic myo1Delta cells could mate, but heterothallic myo1Delta cells were poor in conjugation. Myo1p was necessary for the encapsulation of spores. The tail domain of Myo1p was pivotal for its function. Calmodulin could bind to Myo1p through the IQ domain at the neck. CONCLUSIONS Myo1p appears to control the redistribution of F-actin patches during the cell cycle. Loss of Myo1p function is likely to slow down the actin assembly/disassembly process, which results in a failure of the actin cycle to catch up with other events in both the mitotic and meiotic cell cycles, including extension of the conjugation tubes.
Collapse
Affiliation(s)
- M Toya
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
183
|
Zalevsky J, Grigorova I, Mullins RD. Activation of the Arp2/3 complex by the Listeria acta protein. Acta binds two actin monomers and three subunits of the Arp2/3 complex. J Biol Chem 2001; 276:3468-75. [PMID: 11029465 DOI: 10.1074/jbc.m006407200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ActA is a bacterially encoded protein that enables Listeria monocytogenes to hijack the host cell actin cytoskeleton. It promotes Arp2/3-dependent actin nucleation, but its interactions with cellular components of the nucleation machinery are not well understood. Here we show that two domains of ActA (residues 85-104 and 121-138) with sequence similarity to WASP homology 2 domains bind two actin monomers with submicromolar affinity. ActA binds Arp2/3 with a K(d) of 0.6 microm and competes for binding with the WASP family proteins N-WASP and Scar1. By chemical cross-linking, ActA, N-WASP, and Scar1 contact the same three subunits of the Arp2/3 complex, p40, Arp2, and Arp3. Interestingly, profilin competes with ActA for binding of Arp2/3, but actophorin (cofilin) does not. The minimal Arp2/3-binding site of ActA (residues 144-170) is C-terminal to both actin-binding sites and shares sequence homology with Arp2/3-binding regions of WASP family proteins. The maximal activity at saturating concentrations of ActA is identical to the most active domains of the WASP family proteins. We propose that ActA and endogenous WASP family proteins promote Arp2/3-dependent nucleation by similar mechanisms and require simultaneous binding of Arp2 and Arp3.
Collapse
Affiliation(s)
- J Zalevsky
- Department of Cellular and Molecular Pharmacology, University of California School of Medicine, San Francisco, California 94129, USA
| | | | | |
Collapse
|
184
|
Abstract
Intracellular pathogens such as Listeria monocytogenes and vaccinia virus propel themselves through the cytoplasm of mammalian cells by nucleating actin filaments. Recently, actin assembly has also been shown to power the movement of intracellular vesicles, and this may be a mechanism underlying endomembrane movement in a variety of physiological contexts. Surprisingly, class I myosins have been found to play important roles in both actin nucleation and endomembrane trafficking.
Collapse
Affiliation(s)
- J Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, USA.
| |
Collapse
|
185
|
Mizoguchi H, Hara S. Effect of overexpression of LAS17 on stress tolerance and the stability of extrachromosomal DNA in Saccharomyces cerevisiae. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80107-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
186
|
Abstract
Progress has been made recently in visualizing the structures and organelles responsible for endocytic membrane traffic from the cell surface to the lysosome-like vacuole in Saccharomyces cerevisiae. This, together with the recent discovery of several new membrane trafficking pathways connecting these organelles, has led to a quantum leap in our understanding of the S. cerevisiae endocytic pathway. We now know that although the cortical actin cytoskeleton is required for the internalization step of endocytosis, the internalization event occurs at furrow-like invaginations of the plasma membrane, which are distinct from cortical actin patches. Internalized material is taken into the cell in the form of small (30-50 nm diameter) vesicles and delivered to tubulo-vesicular early endosomes at the cell periphery. Subsequently, the internalized material arrives in multivesicular late endosomes adjacent to the vacuole. Recent microscopy evidence suggests that transfer from late endosomes to the vacuole may involve direct fusion of late endosomes with the vacuole. The visualization of the S. cerevisiae endocytic pathway has revealed similarities to endocytic pathways visualized in higher eukaryotes.
Collapse
Affiliation(s)
- A L Munn
- Laboratory of Yeast Cell Biology, Institute of Molecular Agrobiology, National University of Singapore, Singapore, 117604, Republic of Singapore.
| |
Collapse
|
187
|
Abstract
Saccharomyces cerevisiae responds to mating pheromones by activating a receptor-G-protein-coupled mitogen-activated protein kinase (MAPK) cascade that is also used by other signaling pathways. The activation of the MAPK cascade may involve conformational changes through prebound receptor and heterotrimeric G-protein. G beta may then recruit Cdc42-bound MAPKKKK Ste20 to MAPKKK Ste11 through direct interactions with Ste20 and the Ste5 scaffold. Ste20 activates Ste11 by derepressing an autoinhibitory domain. An underlying nuclear shuttling machinery may be required for proper recruitment of Ste5 to G beta. Subsequent polarized growth is mediated by a similar mechanism involving Far1, which binds G beta in addition to Cdc24 and Bem1. Far1 and Cdc24 also undergo nuclear shuttling and the nuclear pool of Far1 may temporally regulate access of Cdc24 to the cell cortex.
Collapse
Affiliation(s)
- E A Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
188
|
Lee WL, Bezanilla M, Pollard TD. Fission yeast myosin-I, Myo1p, stimulates actin assembly by Arp2/3 complex and shares functions with WASp. J Cell Biol 2000; 151:789-800. [PMID: 11076964 PMCID: PMC2169449 DOI: 10.1083/jcb.151.4.789] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2000] [Accepted: 09/13/2000] [Indexed: 11/22/2022] Open
Abstract
Fission yeast myo1(+) encodes a myosin-I with all three tail homology domains (TH1, 2, 3) found in typical long-tailed myosin-Is. Myo1p tail also contains a COOH-terminal acidic region similar to the A-domain of WASp/Scar proteins and other fungal myosin-Is. Our analysis shows that Myo1p and Wsp1p, the fission yeast WASp-like protein, share functions and cooperate in controlling actin assembly. First, Myo1p localizes to cortical patches enriched at tips of growing cells and at sites of cell division. Myo1p patches partially colocalize with actin patches and are dependent on an intact actin cytoskeleton. Second, although deletion of myo1(+) is not lethal, Deltamyo1 cells have actin cytoskeletal defects, including loss of polarized cell growth, delocalized actin patches, and mating defects. Third, additional disruption of wsp1(+) is synthetically lethal, suggesting that these genes may share functions. In mapping the domains of Myo1p tail that share function with Wsp1p, we discovered that a Myo1p construct with just the head and TH1 domains is sufficient for cortical localization and to rescue all Deltamyo1 defects. However, it fails to rescue the Deltamyo1 Deltawsp1 lethality. Additional tail domains, TH2 and TH3, are required to complement the double mutant. Fourth, we show that a recombinant Myo1p tail binds to Arp2/3 complex and activates its actin nucleation activity.
Collapse
Affiliation(s)
- W L Lee
- Graduate Program in Biochemistry, Cellular and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
189
|
Affiliation(s)
- N Osherov
- Division of Pathology and Laboratory Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
190
|
Weed SA, Karginov AV, Schafer DA, Weaver AM, Kinley AW, Cooper JA, Parsons JT. Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J Cell Biol 2000; 151:29-40. [PMID: 11018051 PMCID: PMC2189811 DOI: 10.1083/jcb.151.1.29] [Citation(s) in RCA: 342] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2000] [Accepted: 08/23/2000] [Indexed: 11/22/2022] Open
Abstract
Cortactin is an actin-binding protein that is enriched within the lamellipodia of motile cells and in neuronal growth cones. Here, we report that cortactin is localized with the actin-related protein (Arp) 2/3 complex at sites of actin polymerization within the lamellipodia. Two distinct sequence motifs of cortactin contribute to its interaction with the cortical actin network: the fourth of six tandem repeats and the amino-terminal acidic region (NTA). Cortactin variants lacking either the fourth tandem repeat or the NTA failed to localize at the cell periphery. Tandem repeat four was necessary for cortactin to stably bind F-actin in vitro. The NTA region interacts directly with the Arp2/3 complex based on affinity chromatography, immunoprecipitation assays, and binding assays using purified components. Cortactin variants containing the NTA region were inefficient at promoting Arp2/3 actin nucleation activity. These data provide strong evidence that cortactin is specifically localized to sites of dynamic cortical actin assembly via simultaneous interaction with F-actin and the Arp2/3 complex. Cortactin interacts via its Src homology 3 (SH3) domain with ZO-1 and the SHANK family of postsynaptic density 95/dlg/ZO-1 homology (PDZ) domain-containing proteins, suggesting that cortactin contributes to the spatial organization of sites of actin polymerization coupled to selected cell surface transmembrane receptor complexes.
Collapse
Affiliation(s)
- S A Weed
- Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
191
|
Berg JS, Derfler BH, Pennisi CM, Corey DP, Cheney RE. Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J Cell Sci 2000; 113 Pt 19:3439-51. [PMID: 10984435 DOI: 10.1242/jcs.113.19.3439] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myosin-X is the founding member of a novel class of unconventional myosins characterized by a tail domain containing multiple pleckstrin homology domains. We report here the full-length cDNA sequences of human and bovine myosin-X as well as the first characterization of this protein's distribution and biochemical properties. The 235 kDa myosin-X contains a head domain with <45% protein sequence identity to other myosins, three IQ motifs, and a predicted stalk of coiled coil. Like several other unconventional myosins and a plant kinesin, myosin-X contains both a myosin tail homology 4 (MyTH4) domain and a FERM (band 4.1/ezrin/radixin/moesin) domain. The unique tail domain also includes three pleckstrin homology domains, which have been implicated in phosphatidylinositol phospholipid signaling, and three PEST sites, which may allow cleavage of the myosin tail. Most intriguingly, myosin-X in cultured cells is present at the edges of lamellipodia, membrane ruffles, and the tips of filopodial actin bundles. The tail domain structure, biochemical features, and localization of myosin-X suggest that this novel unconventional myosin plays a role in regions of dynamic actin.
Collapse
Affiliation(s)
- J S Berg
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
192
|
Geli MI, Lombardi R, Schmelzl B, Riezman H. An intact SH3 domain is required for myosin I-induced actin polymerization. EMBO J 2000; 19:4281-91. [PMID: 10944111 PMCID: PMC302045 DOI: 10.1093/emboj/19.16.4281] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The yeast type I myosins (MYO3 and MYO5) are involved in endocytosis and in the polarization of the actin cytoskeleton. The tail of these proteins contains a Tail Homology 2 (TH2) domain that constitutes a putative actin-binding site. Because of the important mechanistic implications of a second ATP-independent actin-binding site, we analyzed its functional relevance in vivo. Even though the myosin tail interacts with actin, and this interaction seems functionally important, deletion of a major portion of the TH2 domain did not abolish interaction. In contrast, we found that the SH3 domain of Myo5p significantly contributes to this interaction, implicating other proteins. We found that Vrp1p, the yeast homolog of WIP [Wiskott-Aldrich syndrome protein (WASP)-interacting protein], seems necessary to sustain the Myo5p tail-F-actin interaction. Consistent with recent results implicating the yeast type I myosins in regulating actin polymerization in vivo, we demonstrate that the C-terminal domain of Myo5p is able to induce cytosol-dependent actin polymerization in vitro, and that this activity requires both an intact Myo5p SH3 domain and Vrp1p.
Collapse
Affiliation(s)
- M I Geli
- Biochemie Zentrum, University of Heidelberg, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
193
|
Liu X, Brzeska H, Korn ED. Functional analysis of tail domains of Acanthamoeba myosin IC by characterization of truncation and deletion mutants. J Biol Chem 2000; 275:24886-92. [PMID: 10840041 DOI: 10.1074/jbc.m004287200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acanthamoeba myosin IC has a single 129-kDa heavy chain and a single 17-kDa light chain. The heavy chain comprises a 75-kDa catalytic head domain with an ATP-sensitive F-actin-binding site, a 3-kDa neck domain, which binds a single 17-kDa light chain, and a 50-kDa tail domain, which binds F-actin in the presence or absence of ATP. The actin-activated MgATPase activity of myosin IC exhibits triphasic actin dependence, apparently as a consequence of the two actin-binding sites, and is regulated by phosphorylation of Ser-329 in the head. The 50-kDa tail consists of a basic domain, a glycine/proline/alanine-rich (GPA) domain, and a Src homology 3 (SH3) domain, often referred to as tail homology (TH)-1, -2, and -3 domains, respectively. The SH3 domain divides the TH-3 domain into GPA-1 and GPA-2. To define the functions of the tail domains more precisely, we determined the properties of expressed wild type and six mutant myosins, an SH3 deletion mutant and five mutants truncated at the C terminus of the SH3, GPA-2, TH-1, neck and head domains, respectively. We found that both the TH-1 and GPA-2 domains bind F-actin in the presence of ATP. Only the mutants that retained an actin-binding site in the tail exhibited triphasic actin-dependent MgATPase activity, in agreement with the F-actin-cross-linking model, but truncation reduced the MgATPase activity at both low and high actin concentrations. Deletion of the SH3 domain had no effect. Also, none of the tail domains, including the SH3 domain, affected either the K(m) or V(max) for the phosphorylation of Ser-329 by myosin I heavy chain kinase.
Collapse
Affiliation(s)
- X Liu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
194
|
Moreau V, Frischknecht F, Reckmann I, Vincentelli R, Rabut G, Stewart D, Way M. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol 2000; 2:441-8. [PMID: 10878810 DOI: 10.1038/35017080] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wiskott-Aldrich syndrome protein (WASP) and N-WASP have emerged as key proteins connecting signalling cascades to actin polymerization. Here we show that the amino-terminal WH1 domain, and not the polyproline-rich region, of N-WASP is responsible for its recruitment to sites of actin polymerization during Cdc42-independent, actin-based motility of vaccinia virus. Recruitment of N-WASP to vaccinia is mediated by WASP-interacting protein (WIP), whereas in Shigella WIP is recruited by N-WASP. Our observations show that vaccinia and Shigella activate the Arp2/3 complex to achieve actin-based motility, by mimicking either the SH2/SH3-containing adaptor or Cdc42 signalling pathways to recruit the N-WASP-WIP complex. We propose that the N-WASP-WIP complex has a pivotal function in integrating signalling cascades that lead to actin polymerization.
Collapse
Affiliation(s)
- V Moreau
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
195
|
Barral Y, Mermall V, Mooseker MS, Snyder M. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol Cell 2000; 5:841-51. [PMID: 10882120 DOI: 10.1016/s1097-2765(00)80324-x] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Formation and maintenance of specialized plasma membrane domains are crucial for many biological processes, such as cell polarization and signaling. During isotropic bud growth, the yeast cell periphery is divided into two domains: the bud surface, an active site of exocytosis and growth, and the relatively quiescent surface of the mother cell. We found that cells lacking septins at the bud neck failed to maintain the exocytosis and morphogenesis factors Spa2, Sec3, Sec5, and Myo2 in the bud during isotropic growth. Furthermore, we found that septins were required for proper regulation of actin patch stability; septin-defective cells permitted to enter isotropic growth lost actin and growth polarity. We propose that septins maintain cell polarity by specifying a boundary between cortical domains.
Collapse
Affiliation(s)
- Y Barral
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
196
|
May RC, Caron E, Hall A, Machesky LM. Involvement of the Arp2/3 complex in phagocytosis mediated by FcgammaR or CR3. Nat Cell Biol 2000; 2:246-8. [PMID: 10783245 DOI: 10.1038/35008673] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- R C May
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
197
|
Affiliation(s)
- L M Machesky
- School of Biosciences, Division of Molecular and Cell Biology, University of Birmingham, Birmingham B15 2TT United Kingdom.
| |
Collapse
|