151
|
Zhu DY, Jiang LF, Deng XZ, Xiao W, Pei JP, Li BJ, Wang CJ, Zhang JH, Zhang Q, Zhou ZX, Ding WL, Xu XD, Yue M. TBX21 polymorphisms are associated with virus persistence in hepatitis C virus infection patients from a high-risk Chinese population. Eur J Clin Microbiol Infect Dis 2015; 34:1309-1318. [PMID: 25759111 DOI: 10.1007/s10096-015-2337-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/22/2015] [Indexed: 01/29/2023]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and the varied outcomes of the infection depend on both viral and host factors. We have demonstrated that the HCV alternate reading frame protein (F protein) is related to Th1/Th2 bias which is involved in virus persistence in chronic hepatitis C (CHC) patients. The purpose of this study was to test the hypothesis that genetic variants of TBX21 (T cell specific T-box transcription factor) were associated with the outcomes of HCV infection and F protein generation. Three single nucleotide polymorphisms (SNPs) (rs17250932, rs2074190, rs4794067) in the TBX21 gene were genotyped in a case-control study in a cohort of a high-risk group, including 354 healthy controls and 747 CHC patients (190 anti-F protein antibody seronegative patients and 557 anti-F protein antibody seropositive patients). Results showed that the rs4794067 C allele in the TBX21 promoter was significantly more common in CHC patients (OR = 1.335, 95% CI = 1.058-1.684, P = 0.015), exceptionally in anti-F protein seropositive patients (OR = 1.547, 95% CI = 1.140-2.101, P = 0.005), compared with healthy controls. And the risk effect was also significantly high in patients with HCV 1b genotype and mild fibrosis (P = 0.021, P = 0.010, respectively). Compared with the most frequent haplotype TAT, haplotype analysis showed that the distribution of TAC was significantly different between the chronic HCV carrier group and the healthy group, and so was the anti-F antibody seronegativity group and the anti-F antibody seronegativity group (all P < 0.001). Our results suggested that TBX21 variants may be involved in the etiology of this disease.
Collapse
Affiliation(s)
- D Y Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanjing Medical University, No. 293, Zhongshan East Road, Nanjing, 210002, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Modeling the effect of HIV coinfection on clearance and sustained virologic response during treatment for hepatitis C virus. Epidemics 2015; 12:1-10. [PMID: 26342237 DOI: 10.1016/j.epidem.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND HIV/hepatitis C (HCV) coinfection is a major concern in global health today. Each pathogen can exacerbate the effects of the other and affect treatment outcomes. Understanding the within-host dynamics of these coinfecting pathogens is crucial, particularly in light of new, direct-acting antiviral agents (DAAs) for HCV treatment that are becoming available. METHODS AND FINDINGS In this study, we construct a within-host mathematical model of HCV/HIV coinfection by adapting a previously published model of HCV monoinfection to include an immune system component in infection clearance. We explore the effect of HIV-coinfection on spontaneous HCV clearance and sustained virologic response (SVR) by building in decreased immune function with increased HIV viral load. Treatment is modeled by modifying HCV burst-size, and we use clinically-relevant parameter estimates. Our model replicates real-world patient outcomes; it outputs infected and uninfected target cell counts, and HCV viral load for varying treatment and coinfection scenarios. Increased HIV viral load and reduced CD4(+) count correlate with decreased spontaneous clearance and SVR chances. Treatment efficacy/duration combinations resulting in SVR are calculated for HIV-positive and negative patients, and crucially, we replicate the new findings that highly efficacious DAAs reduce treatment differences between HIV-positive and negative patients. However, we also find that if drug efficacy decays sufficiently over treatment course, SVR differences between HIV-positive and negative patients reappear. CONCLUSIONS Our model shows theoretical evidence of the differing outcomes of HCV infection in cases where the immune system is compromised by HIV. Understanding what controls these outcomes is especially important with the advent of efficacious but often prohibitively expensive DAAs. Using a model to predict patient response can lend insight into optimal treatment design, both in helping to identify patients who might respond well to treatment and in helping to identify treatment pathways and pitfalls.
Collapse
|
153
|
Plauzolles A, Lucas M, Gaudieri S. Influence of host resistance on viral adaptation: hepatitis C virus as a case study. Infect Drug Resist 2015; 8:63-74. [PMID: 25897250 PMCID: PMC4396509 DOI: 10.2147/idr.s49891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic and cellular studies have shown that the host’s innate and adaptive immune responses are an important correlate of viral infection outcome. The features of the host’s immune response (host resistance) reflect the coevolution between hosts and pathogens that has occurred over millennia, and that has also resulted in a number of strategies developed by viruses to improve fitness and survival within the host (viral adaptation). In this review, we discuss viral adaptation to host immune pressure via protein–protein interactions and sequence-specific mutations. Specifically, we will present the “state of play” on viral escape mutations to host T-cell responses in the context of the hepatitis C virus, and their influence on infection outcome.
Collapse
Affiliation(s)
- Anne Plauzolles
- Centre for Forensic Science, University of Western Australia, Perth, WA, Australia
| | - Michaela Lucas
- School of Medicine and Pharmacology, Harry Perkins Institute, University of Western Australia, Perth, WA, Australia ; School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Silvana Gaudieri
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
154
|
Chen JH, Perry CJ, Tsui YC, Staron MM, Parish IA, Dominguez CX, Rosenberg DW, Kaech SM. Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat Med 2015; 21:327-34. [PMID: 25799228 PMCID: PMC4505619 DOI: 10.1038/nm.3831] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/26/2015] [Indexed: 02/06/2023]
Abstract
More than 10% of the world's population is chronically infected with HIV, hepatitis C virus (HCV) or hepatitis B virus (HBV), all of which can cause severe disease and death. These viruses persist in part because continuous antigenic stimulation causes the deterioration of virus-specific cytotoxic T lymphocyte (CTL) function and survival. Additionally, antiviral CTLs autonomously suppress their responses to limit immunopathology by upregulating inhibitory receptors such as programmed cell death 1 (PD-1). Identification and blockade of the pathways that induce CTL dysfunction may facilitate the clearance of chronic viral infections. We found that the prostaglandin E2 (PGE₂) receptors EP2 and EP4 were upregulated on virus-specific CTLs during chronic lymphocytic choriomeningitis virus (LCMV) infection and suppressed CTL survival and function. We show that the combined blockade of PGE₂ and PD-1 signaling was therapeutic in terms of improving viral control and augmenting the numbers of functional virus-specific CTLs. Thus, PGE₂ inhibition is both an independent candidate therapeutic target and a promising adjunct therapy to PD-1 blockade for the treatment of HIV and other chronic viral infections.
Collapse
Affiliation(s)
- Jonathan H. Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Curtis J. Perry
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yao-Chen Tsui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew M. Staron
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ian A. Parish
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Claudia X. Dominguez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel W. Rosenberg
- Department of Genetics and Molecular Biology, The University of Connecticut Health Center, Farmington, CT, USA
| | - Susan M. Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
155
|
Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol 2015; 36:265-76. [PMID: 25797516 DOI: 10.1016/j.it.2015.02.008] [Citation(s) in RCA: 839] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 12/18/2022]
Abstract
Inhibitors of the Programmed Cell Death 1: Programmed Cell Death 1 ligand 1 (PD-1:PD-L1) pathway, a central regulator of T cell exhaustion, have been recently shown to be effective for treatment of different cancers. However, clinical responses are mixed, highlighting the need to better understand the mechanisms of action of PD-1:PD-L1, the role of this pathway in immunity to different tumors, and the molecular and cellular effects of PD-1 blockade. Here, we review the molecular regulation of T cell exhaustion, placing recent findings on PD-1 blockade therapies in cancer in the context of the broader understanding of the roles of the PD-1:PD-L1 pathway in T cell exhaustion during chronic infection. We discuss the current understanding of the mechanisms involved in reversing T cell exhaustion, and outline critical areas of focus for future research, both basic and clinical.
Collapse
Affiliation(s)
- Kristen E Pauken
- Institute for Immunology and Department of Microbiology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology and Department of Microbiology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
156
|
Transmitted/Founder Viruses Rapidly Escape from CD8+ T Cell Responses in Acute Hepatitis C Virus Infection. J Virol 2015; 89:5478-90. [PMID: 25740982 DOI: 10.1128/jvi.03717-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/25/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The interaction between hepatitis C virus (HCV) and cellular immune responses during very early infection is critical for disease outcome. To date, the impact of antigen-specific cellular immune responses on the evolution of the viral population establishing infection and on potential escape has not been studied. Understanding these early host-virus dynamics is important for the development of a preventative vaccine. Three subjects who were followed longitudinally from the detection of viremia preseroconversion until disease outcome were analyzed. The evolution of transmitted/founder (T/F) viruses was undertaken using deep sequencing. CD8(+) T cell responses were measured via enzyme-linked immunosorbent spot (ELISpot) assay using HLA class I-restricted T/F epitopes. T/F viruses were rapidly extinguished in all subjects associated with either viral clearance (n = 1) or replacement with viral variants leading to establishment of chronic infection (n = 2). CD8(+) T cell responses against 11 T/F epitopes were detectable by 33 to 44 days postinfection, and 5 of these epitopes had not previously been reported. These responses declined rapidly in those who became chronically infected and were maintained in the subject who cleared infection. Higher-magnitude CD8(+) T cell responses were associated with rapid development of immune escape variants at a rate of up to 0.1 per day. Rapid escape from CD8(+) T cell responses has been quantified for the first time in the early phase of primary HCV infection. These rapid escape dynamics were associated with higher-magnitude CD8(+) T cell responses. These findings raise questions regarding optimal selection of immunogens for HCV vaccine development and suggest that detailed analysis of individual epitopes may be required. IMPORTANCE A major limitation in our detailed understanding of the role of immune response in HCV clearance has been the lack of data on very early primary infection when the transmitted viral variants successfully establish the acute infection. This study was made possible through the availability of specimens from a unique cohort of asymptomatic primary infection cases in whom the first available viremic samples were collected approximately 3 weeks postinfection and at regular intervals thereafter. The study included detailed examination of both the evolution of the viral population and the host cellular immune responses against the T/F viruses. The findings here provide the first evidence of host cellular responses targeting T/F variants and imposing a strong selective force toward viral escape. The results of this study provide useful insight on how virus escapes the host response and consequently on future analysis of vaccine-induced immunity.
Collapse
|
157
|
Fuchs YF, Jainta GW, Kühn D, Wilhelm C, Weigelt M, Karasinsky A, Upadhyaya B, Ziegler AG, Bonifacio E. Vagaries of the ELISpot assay: specific detection of antigen responsive cells requires purified CD8(+) T cells and MHC class I expressing antigen presenting cell lines. Clin Immunol 2015; 157:216-25. [PMID: 25728493 DOI: 10.1016/j.clim.2015.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 12/15/2014] [Accepted: 02/17/2015] [Indexed: 01/22/2023]
Abstract
Quantification of antigen-specific CD8(+) T cells is important for monitoring infection, vaccination, and response to therapy in cancer and immune-mediated diseases. Cytokine enzyme-linked-immunospot (ELISpot) assays are often used for this purpose. We found that substantial spot formation in IFNγ ELISpot assays occurred independently of CD8(+) T cells even when classical MHC class I restricted peptides are used for stimulation. Using fractionated cells and intracellular cytokine staining, the non-CD8(+) T cell IFNγ production was attributed to the CD4(+) T cell fraction. We therefore refined a cell line-based ELISpot assay combining HLA-A*0201 expressing K562 cells for antigen presentation with purified CD8(+) T cells and demonstrated that it specifically detected CD8(+) T cell responses with detection limits comparable to traditional ELISpot assays and dextramer-based quantification. The assay was further adapted to whole antigen responses with antigen (pre-proinsulin)-expressing HLA-A*0201K562 cells. Thus, we revealed and corrected a weak spot of the CD8(+) ELISpot assay.
Collapse
Affiliation(s)
- Yannick F Fuchs
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany; Paul Langerhans Institute Dresden, Germany; Forschergruppe Diabetes e.V., Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Gregor W Jainta
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Denise Kühn
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Carmen Wilhelm
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Marc Weigelt
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Anne Karasinsky
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Bhaskar Upadhyaya
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Anette-G Ziegler
- Forschergruppe Diabetes e.V., Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Ezio Bonifacio
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307 Dresden, Germany; Paul Langerhans Institute Dresden, Germany; Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
158
|
Xiong H, Huang J, Rong X, Zhang M, Huang K, Xu R, Wang M, Li C, Liao Q, Xia W, Luo G, Ye X, Lu L, Fu Y, Guo T, Nelson K. HLA-B alleles B*15:01 and B*15:02: opposite association with hepatitis C virus infection in Chinese voluntary blood donors. Intervirology 2015; 58:80-7. [PMID: 25677350 DOI: 10.1159/000369209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/18/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Although human leukocyte antigens (HLA) have been shown in association with the outcomes of hepatitis C virus (HCV) infection among different ethnic groups, such studies remain absent in China, where the HCV prevalence is higher than the global average. METHODS In this study, 426 HCV-infected and 709 uninfected blood donors were analyzed, among whom the HLA alleles were sequenced using a high-resolution genotyping method. RESULTS At the 2-digit level, none of the alleles showed a statistical difference between the HCV-infected and uninfected groups. However, at the 4-digit level, the HLA-B alleles B*15:01 and B*15:02 showed an opposite association with HCV infection, i.e. B*15:01 was significantly higher in the HCV-infected group (odds ratio, OR = 1.561, p = 0.010), while B*15:02 was significantly higher in the uninfected group (OR = 0.778, p = 0.016). We also identified a higher frequency of B*13:02 in the HCV-infected group (OR = 1.515, p = 0.009) and a higher frequency of B*07:05 in the uninfected group (OR = 0.299, p = 0.001). CONCLUSIONS The frequencies of four HLA alleles, B*07:05, B*13:02, B*15:01, and B*15:02, were found to be significantly different between the HCV-infected and uninfected blood donors in China, revealing an inverse relation of B*15:01 and B*15:02 with HCV infection. This finding suggests that the ethnic genetic variations of HLA may greatly affect the host immune responses against HCV.
Collapse
|
159
|
Spaan M, Kreefft K, de Graav GN, Brouwer WP, de Knegt RJ, ten Kate FJW, Baan CC, Vanwolleghem T, Janssen HLA, Boonstra A. CD4+ CXCR5+ T cells in chronic HCV infection produce less IL-21, yet are efficient at supporting B cell responses. J Hepatol 2015; 62:303-10. [PMID: 25281860 DOI: 10.1016/j.jhep.2014.09.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/17/2014] [Accepted: 09/09/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS During chronic HCV infection, T cell dependent virus-specific antibodies are produced. However, the role of B-T cell interaction in chronic HCV is largely unknown. CD4(+)CXCR5(+) T follicular helper (TFH)-cells activate B cells and are important for clearance of various chronic viral infections. We investigated the function of TFH cells and B cells in liver and in peripheral blood of chronic HCV patients. METHODS T cells from chronic HCV patients and healthy individuals were analysed for expression of CXCR5, PD-1, ICOS, and IL-21 and IFN-γ production by flow cytometry. CD19(+) B cell subpopulations were identified on the basis of CD27 and IgD expression. In order to assess the frequency and function of T cells and B cells in liver follicles, immunohistochemistry was performed for CD3, CXCR5, Bcl6, IL-21, CD20, IgD, IgM, and IgG. RESULTS The frequency of IL-21-producing CXCR5(+)CD4(+) T cells in blood was lower in HCV patients compared to healthy individuals (p=0.002), which was reflected by lower serum IL-21 levels (p<0.001). Nonetheless, CXCR5(+)CD4(+) T cells from HCV patients and healthy individuals were equally capable to stimulate CD19(+)CD27(+) memory B cells into IgG and IgM-producing plasmablasts. Importantly, human intrahepatic TFH cells and their related function were identified by immunohistochemistry on liver biopsies for CD3, Bcl6, and CD20 within portal areas and follicles. CONCLUSIONS The specific localization of TFH cells and IgG and IgD/IgM-producing B cells suggests a functional B-T cell environment in liver follicles during HCV infection. The decreased frequency of IL-21-producing CXCR5(+)CD4(+) T cells and lower serum IL-21 levels in chronic HCV patients did not lead to an altered TFH-B cell interaction.
Collapse
Affiliation(s)
- Michelle Spaan
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Kim Kreefft
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Gretchen N de Graav
- Department of Internal Medicine, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Willem P Brouwer
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Fibo J W ten Kate
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Thomas Vanwolleghem
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Harry L A Janssen
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands; Liver Clinic University Health Network, Division of Gastroenterology, University of Toronto, Canada
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, The Netherlands.
| |
Collapse
|
160
|
T cell exhaustion during persistent viral infections. Virology 2015; 479-480:180-93. [PMID: 25620767 DOI: 10.1016/j.virol.2014.12.033] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 02/08/2023]
Abstract
Although robust and highly effective anti-viral T cells contribute to the clearance of many acute infections, viral persistence is associated with the development of functionally inferior, exhausted, T cell responses. Exhaustion develops in a step-wise and progressive manner, ranges in severity, and can culminate in the deletion of the anti-viral T cells. This disarming of the response is consequential as it compromises viral control and potentially serves to dampen immune-mediated damage. Exhausted T cells are unable to elaborate typical anti-viral effector functions. They are characterized by the sustained upregulation of inhibitory receptors and display a gene expression profile that distinguishes them from prototypic effector and memory T cell populations. In this review we discuss the properties of exhausted T cells; the virological and immunological conditions that favor their development; the cellular and molecular signals that sustain the exhausted state; and strategies for preventing and reversing exhaustion to favor viral control.
Collapse
|
161
|
Ma L, Zhou Y, Zhang Y, Li Y, Guo Y, He Y, Wang J, Lian J, Hao C, Moorman JP, Yao ZQ, Zhou Y, Jia Z. Role of A20 in interferon-α-mediated functional restoration of myeloid dendritic cells in patients with chronic hepatitis C. Immunology 2015; 143:670-8. [PMID: 24965710 DOI: 10.1111/imm.12350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 01/01/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a global health problem characterized by a high rate of chronic infection, which may in part be due to a defect in myeloid dendritic cells (mDCs). This defect appears to be remedied by treatment with interferon-α (IFN-α) -based antiviral therapies; however, the molecular mechanisms underlying mDC dysfunction in HCV infection and restoration by IFN-α treatment are unclear. The ubiquitin-editing protein A20 plays a crucial role in controlling the maturation, cytokine production and immunostimulatory function of mDCs. We propose that the expression of A20 correlates with the function of mDCs during HCV infection and IFN-α therapy. In this study, we observed that A20 expression in mDCs isolated from chronically HCV-infected subjects was significantly higher than healthy subjects or subjects achieving sustained virological responses (SVR) following antiviral treatment. Notably, A20 expression in mDCs from HCV patients during IFN-α treatment was significantly lower than for untreated patients, SVR patients, or healthy subjects. Besides, A20 expression in mDCs stimulated by polyI:C differed between HCV patients and healthy subjects, and this difference could be abrogated by the treatment with IFN-α in vitro. Additionally, A20 expression by polyI:C-activated mDCs, with or without IFN-α treatment, negatively correlated with the expression of HLA-DR, CD86 and CCR7, and the secretion of interleukin-12 (IL-12), but positively associated with the production of IL-10. Importantly, silencing A20 expression using small interfering RNAs increased the production of IL-12 in mDCs of chronically HCV-infected individuals. These findings suggest that A20 plays a crucial role in negative regulation of innate immune responses during chronic viral infection.
Collapse
Affiliation(s)
- Li Ma
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Dominguez-Villar M, Gautron AS, de Marcken M, Keller MJ, Hafler DA. TLR7 induces anergy in human CD4(+) T cells. Nat Immunol 2015; 16:118-28. [PMID: 25401424 PMCID: PMC4413902 DOI: 10.1038/ni.3036] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/20/2014] [Indexed: 02/06/2023]
Abstract
The recognition of microbial patterns by Toll-like receptors (TLRs) is critical for activation of the innate immune system. Although TLRs are expressed by human CD4(+) T cells, their function is not well understood. Here we found that engagement of TLR7 in CD4(+) T cells induced intracellular calcium flux with activation of an anergic gene-expression program dependent on the transcription factor NFATc2, as well as unresponsiveness of T cells. As chronic infection with RNA viruses such as human immunodeficiency virus type 1 (HIV-1) induces profound dysfunction of CD4(+) T cells, we investigated the role of TLR7-induced anergy in HIV-1 infection. Silencing of TLR7 markedly decreased the frequency of HIV-1-infected CD4(+) T cells and restored the responsiveness of those HIV-1(+) CD4(+) T cells. Our results elucidate a previously unknown function for microbial pattern-recognition receptors in the downregulation of immune responses.
Collapse
Affiliation(s)
| | - Anne-Sophie Gautron
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Marine de Marcken
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520
| | - Marla J. Keller
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
163
|
Losikoff PT, Mishra S, Terry F, Gutierrez A, Ardito MT, Fast L, Nevola M, Martin WD, Bailey-Kellogg C, De Groot AS, Gregory SH. HCV epitope, homologous to multiple human protein sequences, induces a regulatory T cell response in infected patients. J Hepatol 2015; 62:48-55. [PMID: 25157982 DOI: 10.1016/j.jhep.2014.08.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 07/14/2014] [Accepted: 08/17/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Spontaneous resolution of hepatitis C virus (HCV) infection depends upon a broad T cell response to multiple viral epitopes. However, most patients fail to clear infections spontaneously and develop chronic disease. The elevated number and function of CD3(+)CD4(+)CD25(+)FoxP3(+) regulatory T cells (T(reg)) in HCV-infected patients suggest a role of Treg cells in impaired viral clearance. The factors contributing to increased Treg cell activity in chronic hepatitis C cases remain to be delineated. METHODS Immunoinformatics tools were used to predict promiscuous, highly-conserved HLA-DRB1-restricted immunogenic consensus sequences (ICS), each composed of multiple T cell epitopes. These sequences were synthesized and added to cultures of peripheral blood mononuclear cells (PBMCs), derived from patients who resolved HCV infection spontaneously, patients with persistent infection, and non-infected individuals. The cells were collected and following 5days incubation, quantified and characterized by flow cytometry. RESULTS One immunogenic consensus sequence (ICS), HCV_G1_p7_794, induced a marked increase in Treg cells in PBMC cultures derived from infected patients, but not in patients who spontaneously cleared HCV or in non-infected individuals. An analogous human peptide (p7_794), on the other hand, induced a significant increase in Treg cells among PBMCs derived from both HCV-infected and non-infected individuals. JanusMatrix analyses determined that HCV_G1_p7_794 is comprised of Treg cell epitopes that exhibit extensive cross-reactivity with the human proteome. CONCLUSIONS A virus-encoded peptide (HCV_G1_p7_794) with extensive human homology activates cross-reactive CD3(+)CD4(+)CD25(+)FoxP3(+) natural Treg cells, which potentially contributes to immunosuppression and to the development of chronic hepatitis C.
Collapse
Affiliation(s)
- Phyllis T Losikoff
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sasmita Mishra
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Andres Gutierrez
- Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | | | - Loren Fast
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA; Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Martha Nevola
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | | | - Anne S De Groot
- EpiVax, Inc., Providence, RI, USA; Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Stephen H Gregory
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
164
|
Self-Amplifying mRNA Vaccines. NONVIRAL VECTORS FOR GENE THERAPY - PHYSICAL METHODS AND MEDICAL TRANSLATION 2015; 89:179-233. [DOI: 10.1016/bs.adgen.2014.10.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
165
|
Dienstag JL, Delemos AS. Viral Hepatitis. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015:1439-1468.e7. [DOI: 10.1016/b978-1-4557-4801-3.00119-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
166
|
Aboul-Ata AAE, Vitti A, Nuzzaci M, El-Attar AK, Piazzolla G, Tortorella C, Harandi AM, Olson O, Wright SA, Piazzolla P. Plant-based vaccines: novel and low-cost possible route for Mediterranean innovative vaccination strategies. Adv Virus Res 2014; 89:1-37. [PMID: 24751193 DOI: 10.1016/b978-0-12-800172-1.00001-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A plant bioreactor has enormous capability as a system that supports many biological activities, that is, production of plant bodies, virus-like particles (VLPs), and vaccines. Foreign gene expression is an efficient mechanism for getting protein vaccines against different human viral and nonviral diseases. Plants make it easy to deal with safe, inexpensive, and provide trouble-free storage. The broad spectrum of safe gene promoters is being used to avoid risk assessments. Engineered virus-based vectors have no side effect. The process can be manipulated as follows: (a) retrieve and select gene encoding, use an antigenic protein from GenBank and/or from a viral-genome sequence, (b) design and construct hybrid-virus vectors (viral vector with a gene of interest) eventually flanked by plant-specific genetic regulatory elements for constitutive expression for obtaining chimeric virus, (c) gene transformation and/or transfection, for transient expression, into a plant-host model, that is, tobacco, to get protocols processed positively, and then moving into edible host plants, (d) confirmation of protein expression by bioassay, PCR-associated tests (RT-PCR), Northern and Western blotting analysis, and serological assay (ELISA), (e) expression for adjuvant recombinant protein seeking better antigenicity, (f) extraction and purification of expressed protein for identification and dosing, (g) antigenicity capability evaluated using parental or oral delivery in animal models (mice and/or rabbit immunization), and (h) growing of construct-treated edible crops in protective green houses. Some successful cases of heterologous gene-expressed protein, as edible vaccine, are being discussed, that is, hepatitis C virus (HCV). R9 mimotope, also named hypervariable region 1 (HVR1), was derived from the HVR1 of HCV. It was used as a potential neutralizing epitope of HCV. The mimotope was expressed using cucumber mosaic virus coat protein (CP), alfalfa mosaic virus CP P3/RNA3, and tobacco mosaic virus (TMV) CP-tobacco mild green mosaic virus (TMGMV) CP as expression vectors into tobacco plants. Expressed recombinant protein has not only been confirmed as a therapeutic but also as a diagnostic tool. Herpes simplex virus 2 (HSV-2), HSV-2 gD, and HSV-2 VP16 subunits were transfected into tobacco plants, using TMV CP-TMGMV CP expression vectors.
Collapse
Affiliation(s)
- Aboul-Ata E Aboul-Ata
- Molecular Biology Laboratory II, Plant Virus and Phytoplasma Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt.
| | - Antonella Vitti
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Maria Nuzzaci
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Ahmad K El-Attar
- Molecular Biology Laboratory II, Plant Virus and Phytoplasma Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Giuseppina Piazzolla
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Allergology and Immunology, University of Bari, Bari, Italy
| | - Cosimo Tortorella
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Allergology and Immunology, University of Bari, Bari, Italy
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Olof Olson
- Department of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Sandra A Wright
- Department of Electronics, Mathematics and Natural Sciences, University of Gävle, Gävle, Sweden
| | - Pasquale Piazzolla
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
167
|
Hepatitis C virus resistance to interferon therapy: an alarming situation. Open Life Sci 2014. [DOI: 10.2478/s11535-014-0352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHepatitis C virus is presently a major public health problem across the globe. The main objective in treating hepatitis C virus (HCV) infection is to achieve a sustained virological response (SVR). Interferon-α (IFN-α) and pegylated interferon (PegIFN) in combination with Ribavirin (RBV) are the choice of treatment nowadays against chronic hepatitis C. There are several mechanisms evolved by the hepatitis C virus that facilitate the persistence of virus and further lead the patient’s status as non responder. Various factors involved in patient’s lack ofresponse to the therapy include: (1) viral factors, (2) host factors, (3) molecular mechanisms related to the lack of response and (4) social factors. Herein we have made an attempt to summarize all the related predictors of drug resistance in one article so that the future polices can be planned to overcome this obstacle and potential therapies can be designed by considering these factors.
Collapse
|
168
|
Holz L, Rehermann B. T cell responses in hepatitis C virus infection: historical overview and goals for future research. Antiviral Res 2014; 114:96-105. [PMID: 25433310 DOI: 10.1016/j.antiviral.2014.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/16/2014] [Accepted: 11/18/2014] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV)-specific T cells are key factors in the outcome of acute HCV infection and in protective immunity. This review recapitulates the steps that immunologists have taken in the past 25years to dissect the role of T cell responses in HCV infection. It describes technical as well as disease-specific challenges that were caused by the inapparent onset of acute HCV infection, the difficulty to identify subjects who spontaneously clear HCV infection, the low frequency of HCV-specific T cells in the blood of chronically infected patients, and the lack of small animal models with intact immune systems to study virus-host interaction. The review provides a historical perspective on techniques and key findings, and identifies areas for future research.
Collapse
Affiliation(s)
- Lauren Holz
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
169
|
Gededzha MP, Mphahlele MJ, Selabe SG. Prediction of T-cell epitopes of hepatitis C virus genotype 5a. Virol J 2014; 11:187. [PMID: 25380768 PMCID: PMC4289306 DOI: 10.1186/1743-422x-11-187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 10/14/2014] [Indexed: 12/26/2022] Open
Abstract
Background Hepatitis C virus (HCV) is a public health problem with almost 185 million people estimated to be infected worldwide and is one of the leading causes of hepatocellular carcinoma. Currently, there is no vaccine for HCV infection and the current treatment does not clear the infection in all patients. Because of the high diversity of HCV, protective vaccines will have to overcome significant viral antigenic diversities. The objective of this study was to predict T-cell epitopes from HCV genotype 5a sequences. Methods HCV near full-length protein sequences were analyzed to predict T-cell epitopes that bind human leukocyte antigen (HLA) class I and HLA class II in HCV genotype 5a using Propred I and Propred, respectively. The Antigenicity score of all the predicted epitopes were analysed using VaxiJen v2.0. All antigenic predicted epitopes were analysed for conservation using the IEDB database in comparison with 406, 221, 98, 33, 45, 45 randomly selected sequences from each of the HCV genotypes 1a, 1b, 2, 3, 4 and 6 respectively, downloaded from the GenBank. For epitope prediction binding to common HLA alleles found in South Africa, the IEDB epitope analysis tool was used. Results A total of 24 and 77 antigenic epitopes that bind HLA class I and HLA class II respectively were predicted. The highest number of HLA class I binding epitopes were predicted within the NS3 (63%), followed by NS5B (21%). For the HLA class II, the highest number of epitopes were predicted in the NS3 (30%) followed by the NS4B (23%) proteins. For conservation analysis, 8 and 31 predicted epitopes were conserved in different genotypes for HLA class I and HLA class II alleles respectively. Several epitopes bind with high affinity for both HLA class I alleles and HLA class II common in South Africa. Conclusion The predicted conserved T-cell epitopes analysed in this study will contribute towards the future design of HCV vaccine candidates which will avoid variation in genotypes, which in turn will be capable of inducing broad HCV specific immune responses.
Collapse
Affiliation(s)
| | | | - Selokela G Selabe
- HIV and Hepatitis Research Unit, Department of Virology, University of Limpopo, Medunsa Campus/National Health Laboratory Service, Pretoria, South Africa.
| |
Collapse
|
170
|
Dynamical analysis on a chronic hepatitis C virus infection model with immune response. J Theor Biol 2014; 365:337-46. [PMID: 25451526 DOI: 10.1016/j.jtbi.2014.10.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/23/2014] [Accepted: 10/29/2014] [Indexed: 01/11/2023]
Abstract
A mathematical model for HCV infection is established, in which the effect of dendritic cells (DC) and cytotoxic T lymphocytes (CTL) on HCV infection is considered. The basic reproduction numbers of chronic HCV infection and immune control are found. The obtained results show that the infection dies out finally as the basic reproduction number of HCV infection is less than unity, and the infection becomes chronic as it is greater than unity. In the presence of chronic infection, the existence of immune control equilibrium is discussed completely, which illustrates that the backward bifurcation may occur under certain conditions, and that the two quantities, the sizes of the activated DC and the removed CTL during their average life-terms, play a critical role in controlling chronic HCV infection and immune response. The occurrence of backward bifurcation implies that there may be bistability for the model, i.e., the outcome of infection depends on the initial situation. By choosing the activated rate of non-activated DC or the cross-representation rate of activated DC as bifurcation number, Hopf bifurcation for certain condition shows the existence of periodic solution of the model. Again, numerical simulations suggest the dynamical complexity of the model including the instability of immune control equilibrium and the existence of stable periodic solution.
Collapse
|
171
|
Heim MH, Thimme R. Innate and adaptive immune responses in HCV infections. J Hepatol 2014; 61:S14-25. [PMID: 25443342 DOI: 10.1016/j.jhep.2014.06.035] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus has been identified a quarter of a decade ago as a leading cause of chronic viral hepatitis that can lead to cirrhosis and hepatocellular carcinoma. Only a minority of patients can clear the virus spontaneously during acute infection. Elimination of HCV during acute infection correlates with a rapid induction of innate, especially interferon (IFN) induced genes, and a delayed induction of adaptive immune responses. However, the majority of patients is unable to clear the virus and develops viral persistence in face of an ongoing innate and adaptive immune response. The virus has developed several strategies to escape these immune responses. For example, to escape innate immunity, the HCV NS3/4A protease can efficiently cleave and inactivate two important signalling molecules in the sensory pathways that react to HCV pathogen-associated molecular patterns (PAMPs) to induce IFNs, i.e., the mitochondrial anti-viral signalling protein (MAVS) and the Toll-IL-1 receptor-domain-containing adaptor-inducing IFN-β (TRIF). Despite these escape mechanisms, IFN-stimulated genes (ISGs) are induced in a large proportion of patients with chronic infection. Of note, chronically HCV infected patients with constitutive IFN-stimulated gene (ISG) expression have a poor response to treatment with pegylated IFN-α (PegIFN-α) and ribavirin. The mechanisms that protect HCV from IFN-mediated innate immune reactions are not entirely understood, but might involve blockade of ISG protein translation at the ribosome, localization of viral replication to cell compartments that are not accessible to anti-viral IFN-stimulated effector systems, or direct antagonism of effector systems by viral proteins. Escape from adaptive immune responses can be achieved by emergence of viral escape mutations that avoid recognition by antibodies and T cells. In addition, chronic infection is characterized by the presence of functionally and phenotypically altered NK and T cell responses that are unable to clear the virus but most likely contribute to the ongoing liver disease. In this review, we will summarize current knowledge about the role of innate and adaptive immune responses in determining the outcome of HCV infection.
Collapse
Affiliation(s)
- Markus H Heim
- Division of Gastroenterology and Hepatology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | - Robert Thimme
- Department of Medicine, Clinic for Gastroenterology, Hepatology, Endocrinology, Infectious Diseases, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
172
|
Baumert TF, Fauvelle C, Chen DY, Lauer GM. A prophylactic hepatitis C virus vaccine: a distant peak still worth climbing. J Hepatol 2014; 61:S34-44. [PMID: 25443345 DOI: 10.1016/j.jhep.2014.09.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/04/2014] [Accepted: 09/05/2014] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) infects an estimated more than 150 million people and is a leading cause of liver disease worldwide. The development of direct-acting antivirals (DAAs) will markedly improve the outcome of antiviral treatment with cure of the majority of treated patients. However, several hurdles remain before HCV infection can be considered a menace of the past: High treatment costs will most likely result in absent or limited access in middle and low resource countries and will lead to selective use even in wealthier countries. The limited efficacy of current HCV screening programs leads to a majority of cases being undiagnosed or diagnosed at a late stage and DAAs will not cure virus-induced end-stage liver disease such as hepatocellular carcinoma. Certain patient subgroups may not respond or not be eligible for DAA-based treatment strategies. Finally, reinfection remains possible, making control of HCV infection in people with ongoing infection risk difficult. The unmet medical needs justify continued efforts to develop an effective vaccine, protecting from chronic HCV infection as a mean to impact the epidemic on a global scale. Recent progress in the understanding of virus-host interactions provides new perspectives for vaccine development, but many critical questions remain unanswered. In this review, we focus on what is known about the immune correlates of HCV control, highlight key mechanisms of viral evasion that pose challenges for vaccine development and suggest areas of further investigation that could enable a rational approach to vaccine design. Within this context we also discuss insights from recent HCV vaccination studies and what they suggest about the best way to go forward.
Collapse
Affiliation(s)
- Thomas F Baumert
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, USA; Inserm Unité 1110, France; Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Catherine Fauvelle
- Inserm Unité 1110, France; Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, France
| | - Diana Y Chen
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, USA
| | - Georg M Lauer
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, USA.
| |
Collapse
|
173
|
Tetramer enrichment reveals the presence of phenotypically diverse hepatitis C virus-specific CD8+ T cells in chronic infection. J Virol 2014; 89:25-34. [PMID: 25320295 PMCID: PMC4301109 DOI: 10.1128/jvi.02242-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Virus-specific CD8(+) T cells are rarely detectable ex vivo by conventional methods during chronic hepatitis C virus (HCV) infection. In this study, however, we were able to detect and characterize HCV-specific CD8(+) T cells in all chronically HCV genotype 1a-infected, HLA-A*02:01-positive patients analyzed by performing major histocompatibility complex (MHC) class I tetramer enrichment. Two-thirds of these enriched HCV-specific CD8(+) T-cell populations displayed an effector memory phenotype, whereas, surprisingly, one-third displayed a naive-like phenotype despite ongoing viral replication. CD8(+) T cells with an effector memory phenotype could not expand in vitro, suggesting exhaustion of these cells. Interestingly, some of the naive-like CD8(+) T cells proliferated vigorously upon in vitro priming, whereas others did not. These differences were linked to the corresponding viral sequences in the respective patients. Indeed, naive-like CD8(+) T cells from patients with the consensus sequence in the corresponding T-cell epitope did not expand in vitro. In contrast, in patients displaying sequence variations, we were able to induce HCV-specific CD8(+) T-cell proliferation, which may indicate infection with a variant virus. Collectively, these data reveal the presence of phenotypically and functionally diverse HCV-specific CD8(+) T cells at very low frequencies that are detectable in all chronically infected patients despite viral persistence. IMPORTANCE In this study, we analyzed CD8(+) T-cell responses specific for HLA-A*02:01-restricted epitopes in chronically HCV-infected patients, using MHC class I tetramer enrichment. Importantly, we could detect HCV-specific CD8(+) T-cell populations in all patients. To further characterize these HCV-specific CD8(+) T-cell populations that are not detectable using conventional techniques, we performed phenotypic, functional, and viral sequence analyses. These data revealed different mechanisms for CD8(+) T-cell failure in HCV infection, including T-cell exhaustion, viral escape, and functional impairment of naive-like HCV-specific CD8(+) T cells.
Collapse
|
174
|
Abdel-Hakeem MS, Bédard N, Murphy D, Bruneau J, Shoukry NH. Signatures of protective memory immune responses during hepatitis C virus reinfection. Gastroenterology 2014; 147:870-881.e8. [PMID: 25038432 PMCID: PMC4170061 DOI: 10.1053/j.gastro.2014.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 06/12/2014] [Accepted: 07/07/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Development of a vaccine against hepatitis C virus (HCV) has been hindered by our limited understanding of immune correlates of protection during real-life exposure to the virus. We studied the immune response during HCV reinfection. METHODS We analyzed blood samples from participants in the Montreal Acute Hepatitis C Injection Drug User Cohort Study who were reinfected with HCV from 2009 to 2012. Five patients spontaneously resolved their second infection and 4 developed chronic infections. We monitored the phenotypic and functional dynamics of HCV-specific memory T cell responses in all subjects during natural re-exposure and re-infection. RESULTS Populations of CD4(+) and CD8(+) T cells with HCV-specific polyfunctional memory were expanded in all 5 individuals who resolved 2 successive HCV infections. We detected CD127(hi) HCV-specific memory CD8(+) T cells before reinfection regardless of a subject's ability to clear subsequent infections. Protection against viral persistence was associated with the expansion of a CD127(neg), PD1(lo) effector memory T cells at the peak of the response. We also observed broadening of T-cell response, indicating generation of de novo T-cell responses. The 4 individuals who failed to clear their subsequent infection had limited expansion of HCV-specific CD4(+) and CD8(+) memory T cells and expressed variable levels of the exhaustion marker PD1 on HCV-specific CD8(+) T cells. Dominant epitope regions of HCV strains isolated from patients with persistent reinfection had sequence variations that were not recognized by the pre-existing memory T cells. CONCLUSIONS Protection from persistent HCV reinfection depends on the magnitude, breadth, and quality of the HCV-specific memory T-cell response. Sequence homology among viruses and ability of T cells to recognize multiple strains of HCV are critical determinants of protective memory.
Collapse
Affiliation(s)
- Mohamed S. Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt,Département de microbiologie, infectiologie et immunologie, Montréal, Québec, Canada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Donald Murphy
- Institut National de Santé Publique du Québec, Laboratoire de Santé Publique du Québec (LSPQ), Sainte-Anne-de-Bellevue, Québec, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada,Département de médecine familiale et de médecine d’urgence, Montréal, Québec, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada,Département de médecine, Université de Montréal, Montréal, Québec, Canada,Correspondance: Dr. Naglaa H. Shoukry, Centre de Recherche du CHUM (CRCHUM), Tour Viger, Local R09.414, 900 rue St-Denis, Montréal, QC H2X 0A9, CANADA,
| |
Collapse
|
175
|
Kurktschiev PD, Raziorrouh B, Schraut W, Backmund M, Wächtler M, Wendtner CM, Bengsch B, Thimme R, Denk G, Zachoval R, Dick A, Spannagl M, Haas J, Diepolder HM, Jung MC, Gruener NH. Dysfunctional CD8+ T cells in hepatitis B and C are characterized by a lack of antigen-specific T-bet induction. ACTA ACUST UNITED AC 2014; 211:2047-59. [PMID: 25225458 PMCID: PMC4172217 DOI: 10.1084/jem.20131333] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In humans infected with hepatitis B or C, high expression of a protein called T-bet in virus-fighting immune cells is associated with spontaneous clearance of the virus. Absence of T-bet was more often seen in patients whose infections became chronic. The transcription factor T-bet regulates the production of interferon-γ and cytotoxic molecules in effector CD8 T cells, and its expression correlates with improved control of chronic viral infections. However, the role of T-bet in infections with differential outcome remains poorly defined. Here, we report that high expression of T-bet in virus-specific CD8 T cells during acute hepatitis B virus (HBV) and hepatitis C virus (HCV) infection was associated with spontaneous resolution, whereas T-bet deficiency was more characteristic of chronic evolving infection. T-bet strongly correlated with interferon-γ production and proliferation of virus-specific CD8 T cells, and its induction by antigen and IL-2 stimulation partially restored functionality in previously dysfunctional T-bet–deficient CD8 T cells. However, restoration of a strong interferon-γ response required additional stimulation with IL-12, which selectively induced the phosphorylation of STAT4 in T-bet+ CD8 T cells. The observation that T-bet expression rendered CD8 T cells responsive to IL-12 suggests a stepwise mechanism of T cell activation in which T-bet facilitates the recruitment of additional transcription factors in the presence of key cytokines. These findings support a critical role of T-bet for viral clearance and suggest T-bet deficiency as an important mechanism behind chronic infection.
Collapse
Affiliation(s)
- Peter D Kurktschiev
- Institute for Immunology, Ludwig-Maximilians-University, 80539 Munich, Germany Department of Medicine II, University Hospital Munich, 80539 Munich, Germany
| | - Bijan Raziorrouh
- Institute for Immunology, Ludwig-Maximilians-University, 80539 Munich, Germany Department of Medicine II, University Hospital Munich, 80539 Munich, Germany
| | - Winfried Schraut
- Institute for Immunology, Ludwig-Maximilians-University, 80539 Munich, Germany Department of Medicine II, University Hospital Munich, 80539 Munich, Germany
| | - Markus Backmund
- Department of Medicine II, University Hospital Munich, 80539 Munich, Germany PiT - Praxis im Tal, 80331 Munich, Germany
| | - Martin Wächtler
- Department of Medicine, Klinikum Schwabing, 81925 Munich, Germany
| | | | - Bertram Bengsch
- Department of Medicine II, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Gerald Denk
- Department of Medicine II, University Hospital Munich, 80539 Munich, Germany
| | - Reinhart Zachoval
- Department of Medicine II, University Hospital Munich, 80539 Munich, Germany
| | - Andrea Dick
- Laboratory of Immunogenetics and Molecular Diagnostics, 80539 Munich, Germany
| | - Michael Spannagl
- Laboratory of Immunogenetics and Molecular Diagnostics, 80539 Munich, Germany
| | - Jürgen Haas
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh EH16 4SB, Scotland, UK
| | - Helmut M Diepolder
- Department of Medicine II, University Hospital Munich, 80539 Munich, Germany
| | | | - Norbert H Gruener
- Institute for Immunology, Ludwig-Maximilians-University, 80539 Munich, Germany Department of Medicine II, University Hospital Munich, 80539 Munich, Germany
| |
Collapse
|
176
|
Imran M, Manzoor S, Parvaiz F. Predictive potential of IL-18 -607 and osteopontin -442 polymorphism in interferon-based therapy of HCV infection in the Pakistani population. Viral Immunol 2014; 27:404-11. [PMID: 25198668 DOI: 10.1089/vim.2014.0044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The adaptive immune system plays an important role in response to interferon plus ribavirin treatment of hepatitis C virus (HCV) infection. Cytokines play a significant role in the adaptive immune system. The production of cytokines may be regulated by single nucleotide polymorphisms (SNPs). This study was designed to examine the correlation of some important SNPs of cytokines with interferon plus ribavirin treatment of HCV infection in the Pakistani population. We followed 140 chronic HCV-infected patients in our study. All of these patients had completed their planned course of interferon plus ribavirin treatment. We also considered 120 healthy subjects as controls. The detection of interleukin-18 (IL-18) SNPs was performed by tetra-primers amplification-refectory mutation system polymerase chain reaction, while for genotyping of osteopontin (OPN), transforming growth factor beta (TGFβ), and N-acetylgalactosaminyltransferase 8 (GALNT8) SNPs, allele-specific polymerase chain reaction was performed. The distribution of the IL-18 -607AA genotype varied significantly between healthy control and patient groups. Its distribution was significantly high in healthy subjects than HCV patients (p = 0.031), signifying its potential involvement in the natural clearance of HCV infection. The occurrence of the -607AA genotype of IL-18 was also significantly higher in the sustained virological group (SVR) than in the nonresponder (NR) group (p = 0.046), highlighting its protective involvement in the treatment outcome of chronic HCV infection. The frequency of the OPN -442TT genotype was higher in the SVR group than in the NR group (p = 0.034), indicating a significant possible role of this genotype in therapy for HCV infection. No important association was found between TGFβ and GALNT8 genotypes and the natural clearance and treatment response of HCV infection. IL-18 -607AA and OPN -442TT genotypes can be used as positive predictive markers of interferon plus ribavirin treatment of HCV infection in the Pakistani population.
Collapse
Affiliation(s)
- Muhammad Imran
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST) , Islamabad, Pakistan
| | | | | |
Collapse
|
177
|
Siciliano NA, Hersperger AR, Lacuanan AM, Xu RH, Sidney J, Sette A, Sigal LJ, Eisenlohr LC. Impact of distinct poxvirus infections on the specificities and functionalities of CD4+ T cell responses. J Virol 2014; 88:10078-91. [PMID: 24965457 PMCID: PMC4136331 DOI: 10.1128/jvi.01150-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/13/2014] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The factors that determine CD4+ T cell (TCD4+) specificities, functional capacity, and memory persistence in response to complex pathogens remain unclear. We explored these parameters in the C57BL/6 mouse through comparison of two highly related (>92% homology) poxviruses: ectromelia virus (ECTV), a natural mouse pathogen, and vaccinia virus (VACV), a heterologous virus that nevertheless elicits potent immune responses. In addition to elucidating several previously unidentified major histocompatibility complex class II (MHC-II)-restricted epitopes, we observed many qualitative and quantitative differences between the TCD4+ repertoires, including responses not elicited by VACV despite complete sequence conservation. In addition, we observed functional heterogeneity between ECTV- and VACV-specific TCD4+ at both a global and individual epitope level, particularly greater expression of the cytolytic marker CD107a from TCD4+ following ECTV infection. Most striking were differences during the late memory phase where, in contrast to ECTV, VACV infection failed to elicit measurable epitope-specific TCD4+ as determined by intracellular cytokine staining. These findings illustrate the strong influence of epitope-extrinsic factors on TCD4+ responses and memory. IMPORTANCE Much of our understanding concerning host-pathogen relationships in the context of poxvirus infections stems from studies of VACV in mice. However, VACV is not a natural mouse pathogen, and therefore, the relevance of results obtained using this model may be limited. Here, we explored the MHC class II-restricted TCD4+ repertoire induced by mousepox (ECTV) infection and the functional profile of the responding epitope-specific TCD4+, comparing these results to those induced by VACV infection under matched conditions. Despite a high degree of homology between the two viruses, we observed distinct specificity and functional profiles of TCD4+ responses at both acute and memory time points, with VACV-specific TCD4+ memory being notably compromised. These data offer insight into the impact of epitope-extrinsic factors on the resulting TCD4+ responses.
Collapse
Affiliation(s)
- Nicholas A Siciliano
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam R Hersperger
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Department of Biology, Albright College, Reading, Pennsylvania, USA
| | - Aimee M Lacuanan
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ren-Huan Xu
- Fox Chase Cancer Center, Immune Cell Development and Host Defense Program, Philadelphia, Pennsylvania, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Luis J Sigal
- Fox Chase Cancer Center, Immune Cell Development and Host Defense Program, Philadelphia, Pennsylvania, USA
| | - Laurence C Eisenlohr
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
178
|
Chiu HY, Chen CH, Wu MS, Cheng YP, Tsai TF. The safety profile of ustekinumab in the treatment of patients with psoriasis and concurrent hepatitis B or C. Br J Dermatol 2014; 169:1295-303. [PMID: 23746170 DOI: 10.1111/bjd.12461] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ustekinumab, an interleukin (IL)-12 and IL-23 blocker, has emerged as a new therapeutic option for patients with psoriasis. It is generally well tolerated but safety data on the use of ustekinumab in patients with viral hepatitis are limited. OBJECTIVE To assess the safety profile of ustekinumab in the treatment of patients with psoriasis who have concomitant hepatitis B or hepatitis C. METHODS This study included 18 patients with concurrent psoriasis and hepatitis B virus (HBV) infection (14 patients) or hepatitis C virus (HCV) infection (four patients) who were treated with at least two ustekinumab injections. Viral loads were measured at baseline and each time before the administration of ustekinumab. Relevant clinical data were recorded. RESULTS Among 11 patients positive for hepatitis B surface antigen (HBsAg), two out of the seven (29%) patients who did not receive antiviral prophylaxis exhibited HBV reactivation during ustekinumab treatment. No viral reactivation was observed in the three occult HBV-infected patients (HBsAg-negative/hepatitis B core antibody-positive patients). One patient with HCV, liver cirrhosis and treated hepatocellular carcinoma (HCC) experienced HCV reactivation and recurrent HCC during the ustekinumab treatment. No significant increase in aminotransferase levels was observed in any patient. CONCLUSIONS Antiviral prophylaxis appears to minimize the risk of viral reactivation in patients with concurrent psoriasis and HBV infection. Without effective anti-viral prophylaxis, the risk/benefit of ustekinumab treatment should be carefully assessed in patients with psoriasis and HBV or HCV infection and/or HCC. Close monitoring for HBV and HCV viral load is recommended, particularly for patients with high-risk factors. Serum aminotransferase determination may not be useful for early detection of viral reactivation.
Collapse
Affiliation(s)
- H-Y Chiu
- Departments of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, 7 Chung-Shan South Road, Taipei, 100, Taiwan; Department of Dermatology, Hsin-Chu Branch, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | | | | | | | | |
Collapse
|
179
|
Salem Fourati I, Grenier AJ, Jolette É, Merindol N, Ovetchkine P, Soudeyns H. Development of an IFN-γ ELISpot assay to assess varicella-zoster virus-specific cell-mediated immunity following umbilical cord blood transplantation. J Vis Exp 2014. [PMID: 25046399 DOI: 10.3791/51643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Varicella zoster virus (VZV) is a significant cause of morbidity and mortality following umbilical cord blood transplantation (UCBT). For this reason, antiherpetic prophylaxis is administrated systematically to pediatric UCBT recipients to prevent complications associated with VZV infection, but there is no strong, evidence based consensus that defines its optimal duration. Because T cell mediated immunity is responsible for the control of VZV infection, assessing the reconstitution of VZV specific T cell responses following UCBT could provide indications as to whether prophylaxis should be maintained or can be discontinued. To this end, a VZV specific gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assay was developed to characterize IFN-γ production by T lymphocytes in response to in vitro stimulation with irradiated live attenuated VZV vaccine. This assay provides a rapid, reproducible and sensitive measurement of VZV specific cell mediated immunity suitable for monitoring the reconstitution of VZV specific immunity in a clinical setting and assessing immune responsiveness to VZV antigens.
Collapse
Affiliation(s)
- Insaf Salem Fourati
- Unité d'Immunopathologie Virale, Centre de Recherche du CHU Sainte-Justine, Department of Microbiology, Infectiology & Immunology, Faculty of Medicine, Université de Montréal
| | - Anne-Julie Grenier
- Unité d'Immunopathologie Virale, Centre de Recherche du CHU Sainte-Justine, Department of Microbiology, Infectiology & Immunology, Faculty of Medicine, Université de Montréal
| | - Élyse Jolette
- Unité d'Immunopathologie Virale, Centre de Recherche du CHU Sainte-Justine, Department of Microbiology, Infectiology & Immunology, Faculty of Medicine, Université de Montréal
| | - Natacha Merindol
- Unité d'Immunopathologie Virale, Centre de Recherche du CHU Sainte-Justine, Department of Microbiology, Infectiology & Immunology, Faculty of Medicine, Université de Montréal
| | - Philippe Ovetchkine
- Infectious Diseases Service, CHU Sainte-Justine, Faculty of Medicine, Université de Montréal; Department of Paediatrics, Université de Montréal
| | - Hugo Soudeyns
- Unité d'Immunopathologie Virale, Centre de Recherche du CHU Sainte-Justine, Department of Microbiology, Infectiology & Immunology, Faculty of Medicine, Université de Montréal; Department of Paediatrics, Université de Montréal;
| |
Collapse
|
180
|
Granato M, Lacconi V, Peddis M, Di Renzo L, Valia S, Rivanera D, Antonelli G, Frati L, Faggioni A, Cirone M. Hepatitis C virus present in the sera of infected patients interferes with the autophagic process of monocytes impairing their in-vitro differentiation into dendritic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1348-55. [DOI: 10.1016/j.bbamcr.2014.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 12/31/2022]
|
181
|
Kamal SM. Pharmacogenetics of hepatitis C: transition from interferon-based therapies to direct-acting antiviral agents. Hepat Med 2014; 6:61-77. [PMID: 25114601 PMCID: PMC4075960 DOI: 10.2147/hmer.s41127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) has emerged as a major viral pandemic over the past two decades, infecting 170 million individuals, which equates to approximately 3% of the world’s population. The prevalence of HCV varies according to geographic region, being highest in developing countries such as Egypt. HCV has a high tendency to induce chronic progressive liver damage in the form of hepatic fibrosis, cirrhosis, or liver cancer. To date, there is no vaccine against HCV infection. Combination therapy comprising PEGylated interferon-alpha and ribavirin has been the standard of care for patients with chronic hepatitis C for more than a decade. However, many patients still do not respond to therapy or develop adverse events. Recently, direct antiviral agents such as protease inhibitors, polymerase inhibitors, or NS5A inhibitors have been used to augment PEGylated interferon and ribavirin, resulting in better efficacy, better tolerance, and a shorter treatment duration. However, most clinical trials have focused on assessing the efficacy and safety of direct antiviral agents in patients with genotype 1, and the response of other HCV genotypes has not been elucidated. Moreover, the prohibitive costs of such triple therapies will limit their use in patients in developing countries where most of the HCV infection exists. Understanding the host and viral factors associated with viral clearance is necessary for individualizing therapy to maximize sustained virologic response rates, prevent progression to liver disease, and increase the overall benefits of therapy with respect to its costs. Genome wide studies have shown significant associations between a set of polymorphisms in the region of the interleukin-28B (IL28B) gene and natural clearance of HCV infection or after PEGylated interferon-alpha and ribavirin treatment with and without direct antiviral agents. This paper synthesizes the recent advances in the pharmacogenetics of HCV infection in the era of triple therapies.
Collapse
Affiliation(s)
- Sanaa M Kamal
- Department of Medicine, Division of Hepatology, Gastroenterology and Tropical Medicine, Ain Shams Faculty of Medicine, Cairo, Egypt ; Department of Medicine, Salman Bin Abdul Aziz College of Medicine, Kingdom of Saudi Arabia
| |
Collapse
|
182
|
Abdel-Hakeem MS, Shoukry NH. Protective immunity against hepatitis C: many shades of gray. Front Immunol 2014; 5:274. [PMID: 24982656 PMCID: PMC4058636 DOI: 10.3389/fimmu.2014.00274] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022] Open
Abstract
The majority of individuals who become acutely infected with hepatitis C virus (HCV) develop chronic infection and suffer from progressive liver damage while approximately 25% are able to eliminate the virus spontaneously. Despite the recent introduction of new direct-acting antivirals, there is still no vaccine for HCV. As a result, new infections and reinfections will remain a problem in developing countries and among high risk populations like injection drug users who have limited access to treatment and who continue to be exposed to the virus. The outcome of acute HCV is determined by the interplay between the host genetics, the virus, and the virus-specific immune response. Studies in humans and chimpanzees have demonstrated the essential role of HCV-specific CD4 and CD8 T cell responses in protection against viral persistence. Recent data suggest that antibody responses play a more important role than what was previously thought. Individuals who spontaneously resolve acute HCV infection develop long-lived memory T cells and are less likely to become persistently infected upon reexposure. New studies examining high risk cohorts are identifying correlates of protection during real life exposures and reinfections. In this review, we discuss correlates of protective immunity during acute HCV and upon reexposure. We draw parallels between HCV and the current knowledge about protective memory in other models of chronic viral infections. Finally, we discuss some of the yet unresolved questions about key correlates of protection and their relevance for vaccine development against HCV.
Collapse
Affiliation(s)
- Mohamed S Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montréal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal , Montréal, QC , Canada ; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo , Egypt
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montréal, QC , Canada ; Département de Médecine, Faculté de Médecine, Université de Montréal , Montréal, QC , Canada
| |
Collapse
|
183
|
Sung PS, Racanelli V, Shin EC. CD8(+) T-Cell Responses in Acute Hepatitis C Virus Infection. Front Immunol 2014; 5:266. [PMID: 24936203 PMCID: PMC4047488 DOI: 10.3389/fimmu.2014.00266] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/23/2014] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) infects approximately 170 million people worldwide and is a major cause of life-threatening liver diseases such as liver cirrhosis and hepatocellular carcinoma. Acute HCV infection often progresses to chronic persistent infection, although some patients recover spontaneously. The divergent outcomes of acute HCV infection are known to be determined by differences in virus-specific T-cell responses among patients. Of the two major T-cell subsets, CD8+ T-cells are known to be the key effector cells that control viral infections via cytolytic activity and cytokine secretion. Herein, we review various aspects of HCV-specific CD8+ T-cell responses in acute HCV infection. In particular, we focus on timing of CD8+ T-cell responses, relationship between CD8+ T-cell responses and outcomes of acute HCV infection, receptor expression on CD8+ T-cells, breadth of CD8+ T-cell responses, and viral mutations.
Collapse
Affiliation(s)
- Pil Soo Sung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology , Daejeon , South Korea
| | - Vito Racanelli
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School , Bari , Italy
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology , Daejeon , South Korea
| |
Collapse
|
184
|
Yu W, Grubor-Bauk B, Gargett T, Garrod T, Gowans EJ. A novel challenge model to evaluate the efficacy of hepatitis C virus vaccines in mice. Vaccine 2014; 32:3409-16. [DOI: 10.1016/j.vaccine.2014.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/02/2014] [Indexed: 01/23/2023]
|
185
|
MHC Class I Presented T Cell Epitopes as Potential Antigens for Therapeutic Vaccine against HBV Chronic Infection. HEPATITIS RESEARCH AND TREATMENT 2014; 2014:860562. [PMID: 24971174 PMCID: PMC4058288 DOI: 10.1155/2014/860562] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/09/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022]
Abstract
Approximately 370 million people worldwide are chronically infected with hepatitis B virus (HBV). Despite the success of the prophylactic HBV vaccine, no therapeutic vaccine or other immunotherapy modality is available for treatment of chronically infected individuals. Clearance of HBV depends on robust, sustained CD8(+) T activity; however, the limited numbers of therapeutic vaccines tested have not induced such a response. Most of these vaccines have relied on peptide prediction algorithms to identify MHC-I epitopes or characterization of T cell responses during acute infection. Here, we took an immunoproteomic approach to characterize MHC-I restricted epitopes from cells chronically infected with HBV and therefore more likely to represent the true targets of CD8(+) T cells during chronic infection. In this study, we identified eight novel MHC-I restricted epitopes derived from a broad range of HBV proteins that were capable of activating CD8(+) T cells. Furthermore, five of the eight epitopes were able to bind HLA-A2 and A24 alleles and activated HBV specific T cell responses. These epitopes also have potential as new tools to characterize T cell immunity in chronic HBV infection and may serve as candidate antigens for a therapeutic vaccine against HBV infection.
Collapse
|
186
|
Mastroianni CM, Lichtner M, Mascia C, Zuccalà P, Vullo V. Molecular mechanisms of liver fibrosis in HIV/HCV coinfection. Int J Mol Sci 2014; 15:9184-208. [PMID: 24865485 PMCID: PMC4100089 DOI: 10.3390/ijms15069184] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is an important cause of morbidity and mortality in people coinfected with human immunodeficiency virus (HIV). Several studies have shown that HIV infection promotes accelerated HCV hepatic fibrosis progression, even with HIV replication under full antiretroviral control. The pathogenesis of accelerated hepatic fibrosis among HIV/HCV coinfected individuals is complex and multifactorial. The most relevant mechanisms involved include direct viral effects, immune/cytokine dysregulation, altered levels of matrix metalloproteinases and fibrosis biomarkers, increased oxidative stress and hepatocyte apoptosis, HIV-associated gut depletion of CD4 cells, and microbial translocation. In addition, metabolic alterations, heavy alcohol use, as well drug use, may have a potential role in liver disease progression. Understanding the pathophysiology and regulation of liver fibrosis in HIV/HCV co-infection may lead to the development of therapeutic strategies for the management of all patients with ongoing liver disease. In this review, we therefore discuss the evidence and potential molecular mechanisms involved in the accelerated liver fibrosis seen in patients coinfected with HIV and HCV.
Collapse
Affiliation(s)
- Claudio M Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Miriam Lichtner
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Claudia Mascia
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Paola Zuccalà
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
187
|
Pancreatic ductal adenocarcinoma contains an effector and regulatory immune cell infiltrate that is altered by multimodal neoadjuvant treatment. PLoS One 2014; 9:e96565. [PMID: 24794217 PMCID: PMC4008589 DOI: 10.1371/journal.pone.0096565] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/08/2014] [Indexed: 02/07/2023] Open
Abstract
Objective The immune response to pancreatic ductal adenocarcinoma (PDA) may play a role in defining its uniquely aggressive biology; therefore, we sought to clearly define the adaptive immune infiltrate in PDA. Design We used immunohistochemistry and flow cytometry to characterize the immune infiltrate in human PDA and compared our findings to the patients’ peripheral blood. Results In contrast to the myeloid cell predominant infiltrate seen in murine models, T cells comprised the majority of the hematopoietic cell component of the tumor stroma in human PDA. Most intratumoral CD8+ T cells exhibited an antigen-experienced effector memory cell phenotype and were capable of producing IFN-γ. CD4+ regulatory T cells (Treg) and IL-17 producing T helper cells were significantly more prevalent in tumor than in blood. Consistent with the association with reduced survival in previous studies, we observed higher frequencies of both myeloid cells and Treg in poorly differentiated tumors. The majority of intratumoral T cells expressed the co-inhibitory receptor programmed death-1 (PD-1), suggesting one potential mechanism through which PDA may evade antitumor immunity. Successful multimodal neoadjuvant therapy altered the immunoregulatory balance and was associated with reduced infiltration of both myeloid cells and Treg. Conclusion Our data show that human PDA contains a complex mixture of inflammatory and regulatory immune cells, and that neoadjuvant therapy attenuates the infiltration of intratumoral cells associated with immunosuppression and worsened survival.
Collapse
|
188
|
Allam WR, Barakat A, Zakaria Z, Galal G, Abdel-Ghafar TS, El-Tabbakh M, Mikhail N, Waked I, Abdelwahab SF. Schistosomiasis does not affect the outcome of HCV infection in genotype 4-infected patients. Am J Trop Med Hyg 2014; 90:823-829. [PMID: 24615138 PMCID: PMC4015572 DOI: 10.4269/ajtmh.13-0703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/31/2014] [Indexed: 02/05/2023] Open
Abstract
Although reports suggest that Schistosoma mansoni increases hepatitis C virus (HCV) morbidity and chronicity, its impact on HCV spontaneous resolution is not clear. HCV genotype, viral load, abdominal ultrasonographic findings, and HCV-specific cell-mediated immunity (CMI) were examined among 141 healthcare workers infected with HCV (68 workers with and 73 workers without S. mansoni). HCV genotype 4 was dominate, and viral loads were 2.62 ± 0.69 × 10(6) and 4.24 ± 1.4 × 10(6) IU/mL among patients with and without coinfection, respectively (P = 0.309); 23.5% with and 32.9% without coinfection had spontaneously resolved HCV infection (P = 0.297). Interferon-γ spot-forming cells/10(6) peripheral blood mononuclear cells among responding viremic patients with and without coinfection were 716 ± 194 and 587 ± 162, whereas among aviremic patients, it was 794 ± 272 and 365 ± 36 (P > 0.05), respectively. In conclusion, there was no statistical difference in HCV spontaneous resolution, viral load, liver pathology, or CMI in patients with or without S. mansoni coinfection, suggesting that it did not impact the outcome of HCV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sayed F. Abdelwahab
- Egyptian Company for Blood Transfusion Services (Egyblood), Agouza, Giza, Egypt; Department of Microbiology, Faculty of Science, Ain Shams University, Abbasia, Cairo, Egypt; Department of Hepatology, National Liver Institute, Menoufiya University, Menoufiya, Egypt; South Egypt Cancer Institute, Assuit, Egypt; Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
189
|
Knolle PA, Thimme R. Hepatic immune regulation and its involvement in viral hepatitis infection. Gastroenterology 2014; 146:1193-207. [PMID: 24412289 DOI: 10.1053/j.gastro.2013.12.036] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/22/2013] [Accepted: 12/27/2013] [Indexed: 02/08/2023]
Abstract
The liver has unique immune regulatory functions that promote the induction of tolerance rather than responses to antigens encountered locally. These functions are mediated by local expression of coinhibitory receptors and immunosuppressive mediators that help prevent overwhelming tissue damage. Over the years, we have gained more insight into the local regulatory cues that determine the functional complexity of immune responses regulated locally in the liver. Both the unique hepatic microenvironment and the particular liver sinusoidal cell populations, in addition to hepatocytes, actively modulate immune responses locally in the liver and thereby determine the outcome of hepatic immune responses. This is of high biological and clinical relevance in hepatitis B virus and hepatitis C virus infections, which can cause acute and persistent infections associated with chronic inflammation in humans that eventually progress to cirrhosis and hepatocellular carcinoma. Here, we review current knowledge about the balance between immunity and tolerance in the liver and how this may affect our understanding of the determinants of hepatitis B virus and hepatitis C virus clearance, persistence, and virus-induced liver disease.
Collapse
Affiliation(s)
- Percy A Knolle
- Institute of Molecular Immunology, Technische Universität München and Institutes of Molecular Medicine and Experimental Immunology, Universität Bonn, Bonn.
| | - Robert Thimme
- Department of Medicine, Clinic for Gastroenterology, Hepatology, Endocrinology, Infectious Diseases, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
190
|
Kang W, Sung PS, Park SH, Yoon S, Chang DY, Kim S, Han KH, Kim JK, Rehermann B, Chwae YJ, Shin EC. Hepatitis C virus attenuates interferon-induced major histocompatibility complex class I expression and decreases CD8+ T cell effector functions. Gastroenterology 2014; 146:1351-60.e1-4. [PMID: 24486950 PMCID: PMC4478444 DOI: 10.1053/j.gastro.2014.01.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 01/13/2014] [Accepted: 01/25/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Major histocompatibility complex (MHC) class I-restricted CD8(+) T cells are required for clearance of hepatitis C virus (HCV) infection. MHC class I expression is up-regulated by type I and II interferons (IFNs). However, little is known about the effects of HCV infection on IFN-induced expression of MHC class I. METHODS We used the HCV cell culture system (HCVcc) with the genotype 2a Japanese fulminant hepatitis-1 strain to investigate IFN-induced expression of MHC class I and its regulatory mechanisms. HCVcc-infected Huh-7.5 cells were analyzed by flow cytometry, metabolic labeling, immunoprecipitation, and immunoblotting analyses. Protein kinase R (PKR) was knocked down with lentiviruses that express small hairpin RNAs. The functional effects of MHC class I regulation by HCV were demonstrated in co-culture studies, using HCV-specific CD8(+) T cells. RESULTS Although the baseline level of MHC class I was not affected by HCV infection, IFN-induced expression of MHC class I was notably attenuated in HCV-infected cells. This was associated with replicating HCV RNA, not with viral protein. HCV infection reduced IFN-induced synthesis of MHC class I protein and induced phosphorylation of PKR and eIF2α. IFN-induced MHC class I expression was restored by small hairpin RNA-mediated knockdown of PKR in HCV-infected cells. Co-culture of HCV-specific CD8(+) T cells and HCV-infected cells that expressed HLA-A2 demonstrated that HCV infection reduced the effector functions of HCV-specific CD8(+) T cells; these functions were restored by small hairpin RNA-mediated knockdown of PKR. CONCLUSIONS IFN-induced expression of MHC class I is attenuated in HCV-infected cells by activation of PKR, which reduces the effector functions of HCV-specific CD8(+) T cells. This appears to be an important mechanism by which HCV circumvents antiviral adaptive immune responses.
Collapse
Affiliation(s)
- Wonseok Kang
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Pil Soo Sung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Su-Hyung Park
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Sarah Yoon
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea
| | - Dong-Yeop Chang
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Seungtaek Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Hyub Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ja Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Yong-Joon Chwae
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea.
| |
Collapse
|
191
|
Atanley E, van Drunen Littel-van den Hurk S. Future considerations for dendritic cell immunotherapy against chronic viral infections. Expert Rev Clin Immunol 2014; 10:801-13. [PMID: 24734867 DOI: 10.1586/1744666x.2014.907742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) are multifunctional cells that are pivotal in immune defense. As such they have been explored as vaccine carriers, largely in cancer immunotherapy and against some infectious diseases including HIV and viral hepatitis. However, while the use of DCs as vaccine carrier has shown some promise in cancer immunotherapy, this approach is laborious and is subject to strict quality control, which makes it expensive. Furthermore, in some individuals chronically infected with HIV, HCV and/or HBV the numbers of circulating DCs are reduced and/or their functions impaired. In vivo expansion and mobilization of DCs with Flt3L in combination with antigen and/or adjuvant targeting to critical DC receptors may be a more effective approach to control viral replication in chronically infected HIV, HBV and/or HCV patients than current DC immunotherapy approaches.
Collapse
Affiliation(s)
- Ethel Atanley
- VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | | |
Collapse
|
192
|
Veiga-Parga T, Sehrawat S, Rouse BT. Role of regulatory T cells during virus infection. Immunol Rev 2014; 255:182-96. [PMID: 23947355 DOI: 10.1111/imr.12085] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The host response to viruses includes multiple cell types that have regulatory function. Most information focuses on CD4(+) regulatory T cells that express the transcription factor Foxp3(+) (Tregs), which are the topic of this review. We explain how viruses through specific and non-specific means can trigger the response of thymus-derived natural Tregs as well as induce Tregs. The latter derive under appropriate stimulation conditions either from uncommitted precursors or from differentiated cells that convert to become Tregs. We describe instances where Tregs appear to limit the efficacy of antiviral protective immunity and other, perhaps more common, immune-mediated inflammatory conditions, where the Tregs function to limit the extent of tissue damage that occurs during a virus infection. We discuss the controversial roles that Tregs may play in the pathogenesis of human immunodeficiency and hepatitis C virus infections. The issue of plasticity is discussed, as this may result in Tregs losing their protective function when present in inflammatory environments. Finally, we mention approaches used to manipulate Treg numbers and function and assess their current value and likely future success to manage the outcome of virus infection, especially those that are responsible for chronic tissue damage.
Collapse
Affiliation(s)
- Tamara Veiga-Parga
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
193
|
Mishra S, Losikoff PT, Self AA, Terry F, Ardito MT, Tassone R, Martin WD, De Groot AS, Gregory SH. Peptide-pulsed dendritic cells induce the hepatitis C viral epitope-specific responses of naïve human T cells. Vaccine 2014; 32:3285-92. [PMID: 24721533 DOI: 10.1016/j.vaccine.2014.03.083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/19/2014] [Accepted: 03/26/2014] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease. Spontaneous resolution of infection is associated with broad, MHC class I- (CD8(+)) and class II-restricted (CD4(+)) T cell responses to multiple viral epitopes. Only 20% of patients clear infection spontaneously, however, most develop chronic disease. The response to chemotherapy varies; therapeutic vaccination offers an additional treatment strategy. To date, therapeutic vaccines have demonstrated only limited success in clinical trials. Vector-mediated vaccination with multi-epitope-expressing DNA constructs provides an improved approach. Highly-conserved, HLA-A2-restricted HCV epitopes and HLA-DRB1-restricted immunogenic consensus sequences (ICS, each composed of multiple overlapping and highly conserved epitopes) were predicted using bioinformatics tools and synthesized as peptides. HLA binding activity was determined in competitive binding assays. Immunogenicity and the ability of each peptide to stimulate naïve human T cell recognition and IFN-γ production were assessed in cultures of total PBMCs and in co-cultures composed of peptide-pulsed dendritic cells (DCs) and purified T lymphocytes, cell populations derived from normal blood donors. Essentially all predicted HLA-A2-restricted epitopes and HLA-DRB1-restricted ICS exhibited HLA binding activity and the ability to elicit immune recognition and IFN-γ production by naïve human T cells. The ability of DCs pulsed with these highly-conserved HLA-A2- and -DRB1-restricted peptides to induce naïve human T cell reactivity and IFN-γ production ex vivo demonstrates the potential efficacy of a multi-epitope-based HCV vaccine targeted to dendritic cells.
Collapse
Affiliation(s)
- Sasmita Mishra
- Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 432 Pierre M. Galletti Building, 55 Claverick Street, Providence, RI 02903, United States
| | - Phyllis T Losikoff
- Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 432 Pierre M. Galletti Building, 55 Claverick Street, Providence, RI 02903, United States
| | - Alyssa A Self
- Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 432 Pierre M. Galletti Building, 55 Claverick Street, Providence, RI 02903, United States
| | | | | | | | | | - Anne S De Groot
- EpiVax, Inc., Providence, RI, United States; Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Stephen H Gregory
- Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 432 Pierre M. Galletti Building, 55 Claverick Street, Providence, RI 02903, United States.
| |
Collapse
|
194
|
Larrubia JR, Moreno-Cubero E, Lokhande MU, García-Garzón S, Lázaro A, Miquel J, Perna C, Sanz-de-Villalobos E. Adaptive immune response during hepatitis C virus infection. World J Gastroenterol 2014; 20:3418-3430. [PMID: 24707125 PMCID: PMC3974509 DOI: 10.3748/wjg.v20.i13.3418] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/28/2013] [Accepted: 11/29/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection affects about 170 million people worldwide and it is a major cause of liver cirrhosis and hepatocellular carcinoma. HCV is a hepatotropic non-cytopathic virus able to persist in a great percentage of infected hosts due to its ability to escape from the immune control. Liver damage and disease progression during HCV infection are driven by both viral and host factors. Specifically, adaptive immune response carries out an essential task in controlling non-cytopathic viruses because of its ability to recognize infected cells and to destroy them by cytopathic mechanisms and to eliminate the virus by non-cytolytic machinery. HCV is able to impair this response by several means such as developing escape mutations in neutralizing antibodies and in T cell receptor viral epitope recognition sites and inducing HCV-specific cytotoxic T cell anergy and deletion. To impair HCV-specific T cell reactivity, HCV affects effector T cell regulation by modulating T helper and Treg response and by impairing the balance between positive and negative co-stimulatory molecules and between pro- and anti-apoptotic proteins. In this review, the role of adaptive immune response in controlling HCV infection and the HCV mechanisms to evade this response are reviewed.
Collapse
|
195
|
Park SH, Rehermann B. Immune responses to HCV and other hepatitis viruses. Immunity 2014; 40:13-24. [PMID: 24439265 DOI: 10.1016/j.immuni.2013.12.010] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/30/2013] [Indexed: 02/08/2023]
Abstract
Five human hepatitis viruses cause most of the acute and chronic liver disease worldwide. Over the past 25 years, hepatitis C virus (HCV) in particular has received much interest because of its ability to persist in most immunocompetent adults and because of the lack of a protective vaccine. Here we examine innate and adaptive immune responses to HCV infection. Although HCV activates an innate immune response, it employs an elaborate set of mechanisms to evade interferon (IFN)-based antiviral immunity. By comparing innate and adaptive immune responses to HCV with those to hepatitis A and B viruses, we suggest that prolonged innate immune activation by HCV impairs the development of successful adaptive immune responses. Comparative immunology provides insights into the maintenance of immune protection. We conclude by discussing prospects for an HCV vaccine and future research needs for the hepatitis viruses.
Collapse
Affiliation(s)
- Su-Hyung Park
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
196
|
Larrea E, Riezu-Boj JI, Aldabe R, Guembe L, Echeverria I, Balasiddaiah A, Gastaminza P, Civeira MP, Sarobe P, Prieto J. Dysregulation of interferon regulatory factors impairs the expression of immunostimulatory molecules in hepatitis C virus genotype 1-infected hepatocytes. Gut 2014; 63:665-73. [PMID: 23787026 DOI: 10.1136/gutjnl-2012-304377] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
BACKGROUND IL-7 and IL-15 are produced by hepatocytes and are critical for the expansion and function of CD8 T cells. IL-15 needs to be presented by IL-15Rα for efficient stimulation of CD8 T cells. METHODS We analysed the hepatic levels of IL-7, IL-15, IL-15Rα and interferon regulatory factors (IRF) in patients with chronic hepatitis C (CHC) (78% genotype 1) and the role of IRF1 and IRF2 on IL-7 and IL-15Rα expression in Huh7 cells with or without hepatitis C virus (HCV) replicon. RESULTS Hepatic expression of both IL-7 and IL-15Rα, but not of IL-15, was reduced in CHC. These patients exhibited decreased hepatic IRF2 messenger RNA levels and diminished IRF2 staining in hepatocyte nuclei. We found that IRF2 controls basal expression of both IL-7 and IL-15Rα in Huh7 cells. IRF2, but not IRF1, is downregulated in cells with HCV genotype 1b replicon and this was accompanied by decreased expression of IL-7 and IL-15Rα, a defect reversed by overexpressing IRF2. Treating Huh7 cells with IFNα plus oncostatin M increased IL-7 and IL-15Rα mRNA more intensely than either cytokine alone. This effect was mediated by strong upregulation of IRF1 triggered by the combined treatment. Induction of IRF1, IL-7 and IL-15Rα by IFNα plus oncostatin M was dampened in replicon cells but the combination was more effective than either cytokine alone. CONCLUSIONS HCV genotype 1 infection downregulates IRF2 in hepatocytes attenuating hepatocellular expression of IL-7 and IL-15Rα. Our data reveal a new mechanism by which HCV abrogates specific T-cell responses and point to a novel therapeutic approach to stimulate anti-HCV immunity.
Collapse
Affiliation(s)
- Esther Larrea
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), , Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Zubkova I, Duan H, Wells F, Mostowski H, Chang E, Pirollo K, Krawczynski K, Lanford R, Major M. Hepatitis C virus clearance correlates with HLA-DR expression on proliferating CD8+ T cells in immune-primed chimpanzees. Hepatology 2014; 59:803-13. [PMID: 24123114 PMCID: PMC4079472 DOI: 10.1002/hep.26747] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/11/2013] [Indexed: 12/18/2022]
Abstract
UNLABELLED Vaccination of chimpanzees against hepatitis C virus (HCV) using T-cell-based vaccines targeting nonstructural proteins has not resulted in the same levels of control and clearance as those seen in animals reexposed after HCV clearance. We hypothesized that the outcome of infection depends on the different subtypes of activated T cells. We used multicolor flow cytometry to evaluate activation (CD38+/HLA-DR+) and proliferation (Ki67+/Bcl-2-low) profiles of CD4+ and CD8+ T cells in peripheral blood before and after challenge in chimpanzees vaccinated using DNA/adenovirus, mock-vaccinated, and chimpanzees that had spontaneously cleared infection (rechallenged). The frequencies of activated or proliferating CD8+ T cells peaked at 2 weeks postchallenge in the vaccinated and rechallenged animals, coinciding with reductions in viral titers. However, the magnitude of the responses did not correlate with outcome or sustained control of viral replication. In contrast, proliferation of the CD8+ T cells coexpressing HLA-DR either with or without CD38 expression was significantly higher at challenge in animals that rapidly cleared HCV and remained so throughout the follow-up period. CONCLUSION Our data suggest that the appearance of proliferating HLA-DR+/CD8+ T cells can be used as a predictor of a successfully primed memory immune response against HCV and as a marker of effective vaccination in clinical trials.
Collapse
Affiliation(s)
- Iryna Zubkova
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Hongying Duan
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Frances Wells
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Howard Mostowski
- Office of Cellular and Gene Therapy, Center for Biologics evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Esther Chang
- Office of Cellular and Gene Therapy, Center for Biologics evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Kathleen Pirollo
- Office of Cellular and Gene Therapy, Center for Biologics evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Kris Krawczynski
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Robert Lanford
- Division of Viral Hepatitis, NCHHSTP, Centers for Disease Control and Prevention. Atlanta, GA
| | - Marian Major
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892,Corresponding author. Marian E. Major, Laboratory of Hepatitis Viruses, Division of Viral Products, Bldg 29A/Rm 1D10/HFM 448, 8800 Rockville Pike, Bethesda, MD 20892, Telephone number: 1-301 827 1881, Fax number: 301 402 5585,
| |
Collapse
|
198
|
Kamal SM, Kassim SK, Ahmed AI, Mahmoud S, Bahnasy KA, Hafez TA, Aziz IA, Fathelbab IF, Mansour HM. Host and viral determinants of the outcome of exposure to HCV infection genotype 4: a large longitudinal study. Am J Gastroenterol 2014; 109:199-211. [PMID: 24445571 DOI: 10.1038/ajg.2013.427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The objective of this study was to characterize the factors that influence the outcome of exposure to hepatitis C virus (HCV) genotype 4 (HCV-G4) and the course of recent infection. METHODS In this longitudinal study, we prospectively assessed the clinical, genetic, virological, and immunological parameters and retrospectively determined single-nucleotide polymorphisms at interleukin-28B (IL-28B) rs12979860 in a well-characterized large cohort recently exposed to HCV-G4. RESULTS A total of 136 subjects with acute HCV (new viremia, seroconversion, and HCV-specific T-cell responses) were identified. Forty-eight subjects (35%) had spontaneous viral clearance and 88 subjects developed chronic HCV of which 42 subjects were treated with pegylated interferon monotherapy, with a sustained virologic response (SVR) rate of 88%. Twenty-six subjects developed HCV-specific T-cell immune responses without detectable viremia or seroconversion. IL-28B-CC (odds ratio (OR) 14.22; P<0.0001), multispecific T-cell responses (OR=11.66; P<0.0001), >300 IU/l alanine aminotransferase (ALT) decline within 4 weeks (OR=6.83; P<0.0001), jaundice (OR=3.54; P=0.001), female gender (OR=2.39; P=0.007), and >2.5 log10 HCV-RNA drop within 8 weeks (OR=2.48; P=0.016) were independently associated with spontaneous clearance. ALT normalization and undetectable HCV-RNA predicted SVR. Exposed apparently uninfected participants had a higher frequency of IL-28B-CC than patients with unresolved acute HCV (P<0.001). IL-28B-CC was associated with multispecific T-cell response (r(2)=0.0.835; P<0.001). CONCLUSIONS IL-28B-CC genotype, multispecific HCV T-cell responses, rapid decline in ALT, and viral load predict spontaneous clearance and response to acute HCV-G 4 therapy. IL-28B-CC genotype correlates with developing early multispecific T-cell responses. These findings have important implications for predicting the outcome of HCV exposure and acute infection and identifying patients likely to benefit from therapy.
Collapse
Affiliation(s)
- Sanaa M Kamal
- Department of Infectious Diseases, Gastroenterology and Tropical Medicine, Ain Shams Faculty of Medicine, Cairo, Egypt
| | - Samar K Kassim
- Department of Molecular Biology and Biochemistry, Ain Shams Faculty of Medicine, Cairo, Egypt
| | - Amany I Ahmed
- Department of Infectious Diseases, Gastroenterology and Tropical Medicine, Ain Shams Faculty of Medicine, Cairo, Egypt
| | - Sara Mahmoud
- Department of Infectious Diseases, Gastroenterology and Tropical Medicine, Ain Shams Faculty of Medicine, Cairo, Egypt
| | - Khaled A Bahnasy
- Department of Biostatistics and Bioinformatics, Ain Shams University, Cairo, Egypt
| | - Tamer A Hafez
- Department of Molecular Biology and Genetics, The American University in Cairo, Egypt
| | - Ibrahiem A Aziz
- Department of Tropical Medicine, Al Azhar Faculty of Medicine, Cairo, Egypt
| | | | | |
Collapse
|
199
|
Ma CJ, Ren JP, Li GY, Wu XY, Brockstedt DG, Lauer P, Moorman JP, Yao ZQ. Enhanced virus-specific CD8+ T cell responses by Listeria monocytogenes-infected dendritic cells in the context of Tim-3 blockade. PLoS One 2014; 9:e87821. [PMID: 24498204 PMCID: PMC3909257 DOI: 10.1371/journal.pone.0087821] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/31/2013] [Indexed: 12/15/2022] Open
Abstract
In this study, we engineered Listeria monocytogens (Lm) by deleting the LmΔactA/ΔinlB virulence determinants and inserting HCV-NS5B consensus antigens to develop a therapeutic vaccine against hepatitis C virus (HCV) infection. We tested this recombinant Lm-HCV vaccine in triggering of innate and adaptive immune responses in vitro using immune cells from HCV-infected and uninfected individuals. This live-attenuated Lm-HCV vaccine could naturally infect human dendritic cells (DC), thereby driving DC maturation and antigen presentation, producing Th1 cytokines, and triggering CTL responses in uninfected individuals. However, vaccine responses were diminished when using DC and T cells derived from chronically HCV-infected individuals, who express higher levels of inhibitory molecule Tim-3 on immune cells. Notably, blocking Tim-3 signaling significantly improved the innate and adaptive immune responses in chronically HCV-infected patients, indicating that novel strategies to enhance the potential of antigen presentation and cellular responses are essential for developing an effective therapeutic vaccine against HCV infection.
Collapse
Affiliation(s)
- Cheng J. Ma
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jun P. Ren
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Guang Y. Li
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Xiao Y. Wu
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | | | - Peter Lauer
- Aduro BioTech, Inc. Berkeley, California, United States of America
| | - Jonathan P. Moorman
- Hepatitis (HCV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, Tennessee, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Zhi Q. Yao
- Hepatitis (HCV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, Tennessee, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| |
Collapse
|
200
|
Xue J, Zhu H, Chen Z. Therapeutic vaccines against hepatitis C virus. INFECTION GENETICS AND EVOLUTION 2014; 22:120-9. [PMID: 24462908 DOI: 10.1016/j.meegid.2014.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 12/31/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is a blood-borne pathogen which has chronically infected about 130-210 million people worldwide. Current standard-of-care (SoC) therapy is an inadequate and expensive treatment with more side effects. Two direct-acting antiviral agents (DAAs) (telaprevir and boceprevir) in combination with SoC therapy have been used in patients infected with HCV genotype 1. Although these drugs result in a shortening of therapy, they also have additional side effects and are expensive. In their stead, several second-generation DAAs are being investigated. What important is that all-oral, interferon (IFN)- and ribavirin-free regimens for the treatment of HCV-infected patients are now being investigated, and will be applied in the next year. Preventive measures against HCV, including vaccine development, are also now in progress. However, no therapeutic vaccine against HCV has been produced to date. An effective vaccine should induce robust and broadly cross-reactive CD4(+), CD8(+)T-cell and neutralising antibody (NAb) responses. Current data indicate that vaccines can usually not completely prevent HCV infection but rather prevent the progression of HCV infection to chronic and persistent infection, which may be a realistic goal. This review discusses the important roles of NAbs and CD8(+)T-cells in the development of therapeutic vaccines, and summarizes some important epitopes of HCV recognized by CD8(+)T-cells and some prospective therapeutic vaccine approaches.
Collapse
Affiliation(s)
- Jihua Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|