151
|
Monack DM, Detweiler CS, Falkow S. Salmonella pathogenicity island 2-dependent macrophage death is mediated in part by the host cysteine protease caspase-1. Cell Microbiol 2001; 3:825-37. [PMID: 11736994 DOI: 10.1046/j.1462-5822.2001.00162.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Salmonella typhimurium invades host macrophages and can either induce a rapid cell death or establish an intracellular niche within the phagocytic vacuole. Rapid cell death requires the Salmonella pathogenicity island (SPI)1 and the host protein caspase-1, a member of the pro-apoptotic caspase family of proteases. Salmonella that do not cause this rapid cell death and instead reside in the phagocytic vacuole can trigger macrophage death at a later time point. We show here that the human pathogen Salmonella typhi also triggers both rapid, caspase-1-dependent and delayed cell death in human monocytes. The delayed cell death has previously been shown with S. typhimurium to be dependent on SPI2-encoded genes and ompR. Using caspase-1(-/-) bone marrow-derived macrophages and isogenic S. typhimurium mutant strains, we show that a large portion of the delayed, SPI2-dependent death is mediated by caspase-1. The two known substrates of activated caspase-1 are the pro-inflammatory cytokines interleukin-1beta (IL-1beta) and IL-18, which are cleaved to produce bioactive cytokines. We show here that IL-1beta is released during both SPI1- and SPI2-dependent macrophage killing. Using IL-1beta(-/-) bone marrow-derived macrophages and a neutralizing anti-IL-18 antibody, we show that neither IL-1beta nor IL-18 is required for rapid or delayed macrophage death. Thus, both rapid, SPI1-mediated killing and delayed, SPI2-mediated killing require caspase-1 and result in the secretion of IL-1beta, which promotes inflammation and may facilitate the spread of Salmonella beyond the gastrointestinal tract in systemic disease.
Collapse
Affiliation(s)
- D M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
152
|
Bouley DM, Ghori N, Mercer KL, Falkow S, Ramakrishnan L. Dynamic nature of host-pathogen interactions in Mycobacterium marinum granulomas. Infect Immun 2001; 69:7820-31. [PMID: 11705964 PMCID: PMC98878 DOI: 10.1128/iai.69.12.7820-7831.2001] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Accepted: 09/16/2001] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium marinum causes long-term subclinical granulomatous infection in immunocompetent leopard frogs (Rana pipiens). These granulomas, organized collections of activated macrophages, share many morphological features with persistent human tuberculous infection. We examined organs of frogs with chronic M. marinum infection using transmission electron microscopy in conjunction with immunohistochemistry and acid phosphatase cytochemistry to better define the bacterium-host interplay during persistent infection. Bacteria were always found within macrophage phagosomes. These phagosomes were often fused to lysosomes, in sharp contrast to those formed during in vitro infection of J774 macrophage-like cells by M. marinum. The infected macrophages in frog granulomas showed various levels of activation, as evidenced by morphological changes, including epithelioid transformation, recent phagocytic events, phagolysosomal fusion, and disintegration of bacteria. Our results demonstrate that even long-term granulomas are dynamic environments with regard to the level of host cell activation and bacterial turnover and suggest a continuum between constantly replicating bacteria and phagocytic killing that maintains relatively constant bacterial numbers despite an established immune response. Infection with a mutant bacterial strain with a reduced capacity for intracellular replication shifted the balance, leading to a greatly reduced bacterial burden and inflammatory foci that differed from typical granulomas.
Collapse
Affiliation(s)
- D M Bouley
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
153
|
Monack DM, Navarre WW, Falkow S. Salmonella-induced macrophage death: the role of caspase-1 in death and inflammation. Microbes Infect 2001; 3:1201-12. [PMID: 11755408 DOI: 10.1016/s1286-4579(01)01480-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Salmonella typhimurium invades host macrophages and can induce either an almost immediate cell death or establish an intracellular niche within the phagocytic vacuole. Rapid cell death depends on the Salmonella pathogenicity island SPI1 and the host protein caspase-1, a member of the pro-apoptotic caspase family of proteases. Caspase-1-dependent cell death leads to the activation of the potent pro-inflammatory cytokines interleukin (IL)-1beta and IL-18 to produce bioactive cytokines. Animal studies indicate that the activation of these cytokines is necessary for efficient colonization of the mouse gastrointestinal tract. Salmonella that reside in the phagocytic vacuole do not cause this early cell death and can trigger a macrophage death at a much later time point. This late-phase cell death is dependent on SPI2-encoded genes and ompR.
Collapse
Affiliation(s)
- D M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
154
|
Santos RL, Zhang S, Tsolis RM, Kingsley RA, Adams LG, Bäumler AJ. Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect 2001; 3:1335-44. [PMID: 11755423 DOI: 10.1016/s1286-4579(01)01495-2] [Citation(s) in RCA: 330] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The most common disease syndromes caused by Salmonella serotypes in humans, typhoid fever and enteritis, can be modeled using Salmonella enterica serotype Typhimurium infections in mice and calves, respectively. This article reviews murine typhoid and bovine enteritis and discusses strengths, limitations and distinctive features of these animal models.
Collapse
Affiliation(s)
- R L Santos
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4467, USA
| | | | | | | | | | | |
Collapse
|
155
|
Abstract
Salmonella pathogenicity island 1 (SPI1) encodes a type III secretion system that is required for virulence during the intestinal phase of infection. The expression of SPI1 genes is controlled by many global regulatory pathways that affect the expression/activity of transcriptional regulators encoded on SPI1.
Collapse
Affiliation(s)
- C P Lostroh
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
156
|
Abstract
A successful pathogen manipulates its host for its own benefit. One means to establish a successful infection, especially for intracellular pathogens, is to exploit host cell death pathways and alter the viability of host cells. Here we describe the manipulation of apoptosis by Salmonella and discuss the advantages that such actions may confer to the bacteria, and its implications in resistance to disease.
Collapse
Affiliation(s)
- L A Knodler
- Biotechnology Laboratory and Department of Microbiology and Immunology, University of British Columbia, 237-6174 University Blvd, BC, Vancouver V6T 1Z3, Canada
| | | |
Collapse
|
157
|
Abstract
The present article summarizes studies aimed at addressing the role of antigen-presenting cell populations, particularly dendritic cells (DC), in the immune response to Salmonella typhimurium. Data from in vitro studies shed light on presentation of antigens expressed in Salmonella on major histocompatibility complex class I and class II molecules by infected DC and macrophages, and the activation state of DC following infection. Finally, data from in vivo studies addressing the role of DC and defined DC subsets during the host response to Salmonella using a murine infection model are discussed.
Collapse
Affiliation(s)
- U Yrlid
- Department of Cell and Molecular Biology, Section for Immunology, Lund University, BMC I-13, 221 84 Lund, Sweden
| | | | | | | |
Collapse
|
158
|
Ernst RK, Guina T, Miller SI. Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect 2001; 3:1327-34. [PMID: 11755422 DOI: 10.1016/s1286-4579(01)01494-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Resistance to innate immunity is essential for salmonellae pathogenesis. The salmonellae PhoP/PhoQ regulators sense host environments to promote remodeling of the bacterial envelope. This remodeling includes enzymes that modify lipopolysaccharide (LPS). Modified LPS promotes bacterial survival by increasing resistance to cationic antimicrobial peptides and by altered host recognition of LPS.
Collapse
Affiliation(s)
- R K Ernst
- University of Washington, Department of Medicine, HSB K-140, Box 357710, Seattle, WA 98195, USA
| | | | | |
Collapse
|
159
|
Abstract
Salmonella species proliferate within membrane-bound vacuoles of eukaryotic cells. Recent work has shown that macrophages are the main cell type supporting bacterial growth in vivo. In contrast, tissue culture models have traditionally described epithelial cells as the most permissive cells for bacterial growth. Unfortunately, no mechanism used by Salmonella to initiate growth within a vacuole has been characterised. Recently, it has been shown that Salmonella is capable of attenuating intracellular proliferation. This finding suggests that both the host and the pathogen contribute to a fine adjustment of the intracellular growth rate.
Collapse
Affiliation(s)
- F García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049-Madrid, Spain.
| |
Collapse
|
160
|
Abstract
Intestinal M cells, the specialised antigen-sampling cells of the mucosal immune system, are exploited by Salmonella and other pathogens as a route of invasion. Salmonella entry into M cells and colonisation of Peyer's patches involve mechanisms critical for infection of cultured cells as well as factors not accurately modelled in vitro.
Collapse
Affiliation(s)
- M A Jepson
- Cell Imaging Facility and the Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
161
|
Abstract
Typhoid fever is an infectious disease of global distribution. Although there is a wealth of data on Salmonella typhimurium infection in the mouse and the interaction of this serovar with human cell lines in vitro, there is a relatively small amount of data on S. typhi and the pathogenesis of typhoid fever. In this review we focus on three areas: adherence to and invasion of gut epithelial cells, dissemination to systemic sites, and survival and replication within host cells. In addition, we attempt to put current salmonella research into the context of typhoid fever.
Collapse
Affiliation(s)
- D House
- Centre for Molecular Microbiology and Infection, Imperial College of Science Technology and Medicine, London, UK
| | | | | | | | | |
Collapse
|
162
|
Abstract
The multifaceted dialogue between intracellular bacteria and the mammalian host continues to be an exciting issue from both the scientific and public-health viewpoint. The recent year has witnessed some particularly impressive progress in knowledge about the two major culprits affecting the health of mankind, Mycobacterium tuberculosis and Salmonella typhi - the causative agents of tuberculosis and typhoid fever.
Collapse
Affiliation(s)
- B Raupach
- Max-Planck-Institute for Infection Biology, Department of Immunology, Schumannstrasse 21-22, 10117, Berlin, Germany.
| | | |
Collapse
|
163
|
Lostroh CP, Lee CA. The HilA box and sequences outside it determine the magnitude of HilA-dependent activation of P(prgH) from Salmonella pathogenicity island 1. J Bacteriol 2001; 183:4876-85. [PMID: 11466291 PMCID: PMC99542 DOI: 10.1128/jb.183.16.4876-4885.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Salmonella requires genes on the Salmonella pathogenicity island 1 (SPI1) for the intestinal phase of infection in several models of pathogenesis. In Salmonella enterica serovar Typhimurium, most SPI1 genes are arranged in operons that are coordinately regulated by the SPI1-encoded protein HilA. In the past, it has been shown that HilA directly activates two promoters on SPI1, P(invF-1) and P(prgH). P(invF-1) contains a HilA binding site, termed a HilA box, that is necessary and sufficient for activation by HilA. The HilA box is 17 nucleotides long and contains a direct repeat comprised of two hexamers separated by 5 nucleotides, centered at -45 relative to the start site of transcription. P(prgH) also contains a HilA box, and here we investigate its role at P(prgH). We have found that the HilA box is necessary, but not sufficient, for HilA-dependent activation of P(prgH). Instead, half-site-like hexamers outside the HilA box appear to be required for HilA-dependent activation of P(prgH), even though HilA binds to the HilA box in the absence of these hexamers. Thus, although HilA-dependent activation of P(invF-1) and P(prgH) coordinates the expression of the structural genes for a type III secretion apparatus and the effectors secreted by that apparatus, it is also possible that mechanisms not apparent under in vitro inducing conditions could separate the expression of invFGEABC-spaMNOPQRS-sicA-sipBCDA-iacP-sicP-sptP and prgHIJK-orgABC.
Collapse
Affiliation(s)
- C P Lostroh
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
164
|
Santos RL, Tsolis RM, Zhang S, Ficht TA, Bäumler AJ, Adams LG. Salmonella-induced cell death is not required for enteritis in calves. Infect Immun 2001; 69:4610-7. [PMID: 11402005 PMCID: PMC98538 DOI: 10.1128/iai.69.7.4610-4617.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium causes cell death in bovine monocyte-derived and murine macrophages in vitro by a sipB-dependent mechanism. During this process, SipB binds and activates caspase-1, which in turn activates the proinflammatory cytokine interleukin-1beta through cleavage. We used bovine ileal ligated loops to address the role of serovar Typhimurium-induced cell death in induction of fluid accumulation and inflammation in this diarrhea model. Twelve perinatal calves had 6- to 9-cm loops prepared in the terminal ileum. They were divided into three groups: one group received an intralumen injection of Luria-Bertani broth as a control in 12 loops. The other two groups (four calves each) were inoculated with 0.75 x 10(9) CFU of either wild-type serovar Typhimurium (strain IR715) or a sopB mutant per loop in 12 loops. Hematoxylin and eosin-stained sections were scored for inflammation, and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells were detected in situ. Fluid accumulation began at 3 h postinfection (PI). Inflammation was detected in all infected loops at 1 h PI. The area of TUNEL-labeled cells in the wild-type infected loops was significantly higher than that of the controls at 12 h PI, when a severe inflammatory response and tissue damage had already developed. The sopB mutant induced the same amount of TUNEL-positive cells as the wild type, but it was attenuated for induction of fluid secretion and inflammation. Our results indicate that serovar Typhimurium-induced cell death is not required to trigger an early inflammatory response and fluid accumulation in the ileum.
Collapse
Affiliation(s)
- R L Santos
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | |
Collapse
|
165
|
Abstract
Salmonella infection is associated with the increased expression of inducible nitric oxide synthase in macrophages and other cells. This review summarizes current knowledge of the molecular mechanisms involved in the induction process, and discusses the functional significance of nitric oxide production in the context of host defense against Salmonella.
Collapse
Affiliation(s)
- B J Cherayil
- Mucosal Immunology Laboratory, Combined Program in Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | | |
Collapse
|
166
|
Abstract
Since its derivation, much has been learned about the proinflammatory inducing cytokine interleukin-18, and its role in resolving infectious diseases. Studies to date that examined interleukin-18 have shown that endogenously induced interleukin-18 plays an important protective role in some viral and bacterial infections. However, interleukin-18 has a limited role in protective immunity to Salmonella infections, and is secondary to the protective role of interleukin-12. This lack of sensitivity to interleukin-18 may be in part related to the dependence on interleukin-12 for interleukin-18 receptor expression and to the nanomolar concentrations that are required. Nonetheless, an understanding of how some pathogens have evolved to circumvent interleukin-18 and of how interleukin-18 can be effectively induced are essential to our ability to develop better vaccines against enteric pathogens.
Collapse
Affiliation(s)
- D W Pascual
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717-3610, USA.
| |
Collapse
|
167
|
Detweiler CS, Cunanan DB, Falkow S. Host microarray analysis reveals a role for the Salmonella response regulator phoP in human macrophage cell death. Proc Natl Acad Sci U S A 2001; 98:5850-5. [PMID: 11320214 PMCID: PMC33302 DOI: 10.1073/pnas.091110098] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacterial pathogens manipulate host cells to promote pathogen survival and dissemination. We used a 22,571 human cDNA microarray to identify host pathways that are affected by the Salmonella enterica subspecies typhimurium phoP gene, a transcription factor required for virulence, by comparing the expression profiles of human monocytic tissue culture cells infected with either the wild-type bacteria or a phoPTn10 mutant strain. Both wild-type and phoPTn10 bacteria induced a common set of genes, many of which are proinflammatory. Differentially expressed genes included those that affect host cell death, suggesting that the phoP regulatory system controls bacterial genes that alter macrophage survival. Subsequent experiments showed that the phoPTn10 mutant strain is defective for killing both cultured and primary human macrophages but is able to replicate intracellularly. These experiments indicate that phoP plays a role in Salmonella-induced human macrophage cell death.
Collapse
Affiliation(s)
- C S Detweiler
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
168
|
Mirold S, Ehrbar K, Weissmüller A, Prager R, Tschäpe H, Rüssmann H, Hardt WD. Salmonella host cell invasion emerged by acquisition of a mosaic of separate genetic elements, including Salmonella pathogenicity island 1 (SPI1), SPI5, and sopE2. J Bacteriol 2001; 183:2348-58. [PMID: 11244077 PMCID: PMC95144 DOI: 10.1128/jb.183.7.2348-2358.2001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Salmonella spp. possess a conserved type III secretion system encoded within the pathogenicity island 1 (SPI1; centisome 63), which mediates translocation of effector proteins into the host cell cytosol to trigger responses such as bacterial internalization. Several translocated effector proteins are encoded in other regions of the Salmonella chromosome. It remains unclear how this complex chromosomal arrangement of genes for the type III apparatus and the effector proteins emerged and how the different effector proteins cooperate to mediate virulence. By Southern blotting, PCR, and phylogenetic analyses of highly diverse Salmonella spp., we show here that effector protein genes located in the core of SPI1 are present in all Salmonella lineages. Surprisingly, the same holds true for several effector protein genes located in distant regions of the Salmonella chromosome, namely, sopB (SPI5, centisome 20), sopD (centisome 64), and sopE2 (centisomes 40 to 42). Our data demonstrate that sopB, sopD, and sopE2, along with SPI1, were already present in the last common ancestor of all contemporary Salmonella spp. Analysis of Salmonella mutants revealed that host cell invasion is mediated by SopB, SopE2, and, in the case of Salmonella enterica serovar Typhimurium SL1344, by SopE: a sopB sopE sopE2-deficient triple mutant was incapable of inducing membrane ruffling and was >100-fold attenuated in host cell invasion. We conclude that host cell invasion emerged early during evolution by acquisition of a mosaic of genetic elements (SPI1 itself, SPI5 [sopB], and sopE2) and that the last common ancestor of all contemporary Salmonella spp. was probably already invasive.
Collapse
Affiliation(s)
- S Mirold
- Max von Pettenkofer-Institut, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
169
|
Santos RL, Tsolis RM, Bäumler AJ, Smith R, Adams LG. Salmonella enterica serovar typhimurium induces cell death in bovine monocyte-derived macrophages by early sipB-dependent and delayed sipB-independent mechanisms. Infect Immun 2001; 69:2293-301. [PMID: 11254586 PMCID: PMC98158 DOI: 10.1128/iai.69.4.2293-2301.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It was previously demonstrated that Salmonella enterica serovar Typhimurium induces cell death with features of apoptosis in murine macrophages. Mice infected with Salmonella serovar Typhimurium develop systemic disease without diarrhea, whereas the infection in cattle and in humans is localized and characterized by diarrhea. Considering these clinical disease expression differences between mice and cattle, we investigated whether serovar Typhimurium is cytotoxic for bovine macrophages. Macrophages infected with serovar Typhimurium grown in the logarithmic phase quickly underwent cell death. Macrophages infected with stationary-phase cultures or with a mutant lacking sipB underwent no immediate cell death but did develop delayed cytotoxicity, undergoing cell death between 12 and 18 h postinfection. Both pathways were temporarily blocked by the general caspase inhibitor Z-VAD-Fmk and by the caspase 1 inhibitor Z-YVAD-Fmk. Comparisons of macrophages from cattle naturally resistant or susceptible to intracellular pathogens indicated no differences between these two genetic backgrounds in terms of susceptibility to serovar Typhimurium-induced cell death. We conclude that Salmonella serovar Typhimurium induces cell death in bovine macrophages by two distinct mechanisms, early sipB-mediated and delayed sipB-independent mechanisms.
Collapse
Affiliation(s)
- R L Santos
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843-4467, USA
| | | | | | | | | |
Collapse
|
170
|
Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001; 2:361-7. [PMID: 11276208 DOI: 10.1038/86373] [Citation(s) in RCA: 1816] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Penetration of the gut mucosa by pathogens expressing invasion genes is believed to occur mainly through specialized epithelial cells, called M cells, that are located in Peyer's patches. However, Salmonella typhimurium that are deficient in invasion genes encoded by Salmonella pathogenicity island 1 (SPI1) are still able to reach the spleen after oral administration. This suggests the existence of an alternative route for bacterial invasion, one that is independent of M cells. We report here a new mechanism for bacterial uptake in the mucosa tissues that is mediated by dendritic cells (DCs). DCs open the tight junctions between epithelial cells, send dendrites outside the epithelium and directly sample bacteria. In addition, because DCs express tight-junction proteins such as occludin, claudin 1 and zonula occludens 1, the integrity of the epithelial barrier is preserved.
Collapse
Affiliation(s)
- M Rescigno
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Sylte MJ, Corbeil LB, Inzana TJ, Czuprynski CJ. Haemophilus somnus induces apoptosis in bovine endothelial cells in vitro. Infect Immun 2001; 69:1650-60. [PMID: 11179340 PMCID: PMC98069 DOI: 10.1128/iai.69.3.1650-1660.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Haemophilus somnus causes pneumonia, reproductive failure, infectious myocarditis, thrombotic meningoencephalitis, and other diseases in cattle. Although vasculitis is commonly seen as a result of systemic H. somnus infections, the pathogenesis of vascular damage is poorly characterized. In this study, we demonstrated that H. somnus (pathogenic isolates 649, 2336, and 8025 and asymptomatic carrier isolates 127P and 129Pt) induce apoptosis of bovine endothelial cells in a time- and dose-dependent manner, as determined by Hoechst 33342 staining, terminal deoxynucleotidyl transferase-mediated dUTP-FITC nick end labeling, DNA fragmentation, and transmission electron microscopy. H. somnus induced endothelial cell apoptosis in as little as 1 h of incubation and did not require extracellular growth of the bacteria. Viable H. somnus organisms induced greater endothelial cell apoptosis than heat-killed organisms. Since viable H. somnus cells release membrane fibrils and blebs, which contain lipooligosaccharide (LOS) and immunoglobulin binding proteins, we examined culture filtrates for their ability to induce endothelial cell apoptosis. Culture filtrates induced similar levels of endothelial cell apoptosis, as did viable H. somnus organisms. Heat inactivation of H. somnus culture filtrates partially reduced the apoptotic effect on endothelial cells, which suggested the presence of both heat-labile and heat-stable factors. We found that H. somnus LOS, which is heat stable, induced endothelial cell apoptosis in a time- and dose-dependent manner and was inhibited by the addition of polymyxin B. These data demonstrate that H. somnus and its LOS induce endothelial cell apoptosis, which may play a role in producing vasculitis in vivo.
Collapse
Affiliation(s)
- M J Sylte
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 63706, USA
| | | | | | | |
Collapse
|
172
|
|
173
|
Abstract
Over the past several years, it has become apparent that enteropathogens activate cell death programs. For Salmonella and Shigella species, the induction of cell death is required for pathogenesis, and the mechanisms by which these bacteria induce cell death is an area of intense investigation. Although initial studies suggested that Salmonella induce cell death through an apoptotic pathway, recent studies demonstrate that cell death occurs through a unique caspase 1-dependent mechanism.
Collapse
Affiliation(s)
- L H Boise
- Department of Microbiology and Immunology, The University of Miami School of Medicine, PO Box 016960 (R138), Miami, FL 33101, USA.
| | | |
Collapse
|
174
|
Steele-Mortimer O, Knodler LA, Marcus SL, Scheid MP, Goh B, Pfeifer CG, Duronio V, Finlay BB. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J Biol Chem 2000; 275:37718-24. [PMID: 10978351 DOI: 10.1074/jbc.m008187200] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The serine-threonine kinase Akt is a protooncogene involved in the regulation of cell proliferation and survival. Activation of Akt is initiated by binding to the phospholipid products of phosphoinositide 3-kinase at the inner leaflet of the plasma membranes followed by phosphorylation at Ser(473) and Thr(308). We have found that Akt is activated by Salmonella enterica serovar Typhimurium in epithelial cells. A bacterial effector protein, SigD, which is translocated into host cells via the specialized type III secretion system, is essential for Akt activation. In HeLa cells, wild type S. typhimurium induced translocation of Akt to membrane ruffles and phosphorylation at residues Thr(308) and Ser(473) and increased kinase activity. In contrast, infection with a SigD deletion mutant did not induce phosphorylation or activity although Akt was translocated to membrane ruffles. Complementation of the SigD deletion strain with a mutant containing a single Cys to Ser mutation (C462S), did not restore the Akt activation phenotype. This residue has previously been shown to be essential for inositol phosphatase activity of the SigD homologue, SopB. Our data indicate a novel mechanism of Akt activation in which the endogenous cellular pathway does not convert membrane-associated Akt into its active form. SigD is also the first bacterial effector to be identified as an activator of Akt.
Collapse
Affiliation(s)
- O Steele-Mortimer
- Biotechnology Laboratory and Department of Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Abstract
We provide evidence that Salmonella typhimurium kills phagocytes by an unusual proinflammatory mechanism of necrosis that is distinguishable from apoptosis. Infection stimulated a distinctly diffuse pattern of DNA fragmentation in macrophages, which contrasted with the marked nuclear condensation displayed by control cells undergoing chemically induced apoptosis. In apoptotic cells, DNA fragmentation and nuclear condensation result from caspase-3-mediated proteolysis; caspases also subvert necrotic cell death by cleaving and inactivating poly ADP-ribose polymerase (PARP). Caspase-3 was not activated during Salmonella infection, and PARP remained in its active, uncleaved state. Another hallmark of apoptosis is sustained membrane integrity during cell death; yet, infected macrophages rapidly lost membrane integrity, as indicated by simultaneous exposure of phosphatidylserine with the uptake of vital dye and the release of the cytoplasmic enzyme lactate dehydrogenase. During experimentally induced necrosis, lethal ion fluxes through the plasma membrane can be prevented by exogenous glycine; similarly, glycine completely blocked Salmonella-induced cytotoxicity. Finally, inhibition of the interleukin (IL)-1-converting enzyme caspase-1 blocked the death of infected macrophages, but not control cells induced to undergo apoptosis or necrosis. Thus, Salmonella-infected macrophages are killed by an unusual caspase-1-dependent mechanism of necrosis.
Collapse
Affiliation(s)
- M A Brennan
- Departments of Microbiology and Laboratory Medicine, Box 357110, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|