151
|
Saharia KK, Petrovas C, Ferrando-Martinez S, Leal M, Luque R, Ive P, Luetkemeyer A, Havlir D, Koup RA. Tuberculosis Therapy Modifies the Cytokine Profile, Maturation State, and Expression of Inhibitory Molecules on Mycobacterium tuberculosis-Specific CD4+ T-Cells. PLoS One 2016; 11:e0158262. [PMID: 27367521 PMCID: PMC4930205 DOI: 10.1371/journal.pone.0158262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/13/2016] [Indexed: 01/02/2023] Open
Abstract
Background Little is known about the expression of inhibitory molecules cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed-death-1 (PD-1) on Mycobacterium tuberculosis (Mtb)-specific CD4 T-cells and how their expression is impacted by TB treatment. Methods Cryopreserved PBMCs from HIV-TB co-infected and TB mono-infected patients with untreated and treated tuberculosis (TB) disease were stimulated for six hours with PPD and stained. Using polychromatic flow cytometry, we characterized the differentiation state, cytokine profile, and inhibitory molecule expression on PPD-specific CD4 T-cells. Results In our HIV-TB co-infected cohort, TB treatment increased the proportion of PPD-specific CD4 T-cells co-producing IFN-γ+IL-2+TNF-α+ and IFN-γ+IL-2+ (p = 0.0004 and p = 0.0002, respectively) while decreasing the proportion of PPD-specific CD4 T-cells co-producing IFN-γ+MIP1-β+TNF-α+ and IFN-γ+MIP1-β+. The proportion of PPD-specific CD4 T-cells expressing an effector memory phenotype decreased (63.6% vs 51.6%, p = 0.0015) while the proportion expressing a central memory phenotype increased (7.8% vs. 21.7%, p = 0.001) following TB treatment. TB treatment reduced the proportion of PPD-specific CD4 T-cells expressing CTLA-4 (72.4% vs. 44.3%, p = 0.0005) and PD-1 (34.5% vs. 29.2%, p = 0.03). Similar trends were noted in our TB mono-infected cohort. Conclusion TB treatment alters the functional profile of Mtb-specific CD4 T-cells reflecting shifts towards a less differentiated maturational profile and decreases PD-1 and CTLA-4 expression. These could serve as markers of reduced mycobacterial burden. Further study is warranted.
Collapse
Affiliation(s)
- Kapil K. Saharia
- Institute of Human Virology and Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Sara Ferrando-Martinez
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- Laboratorio de InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| | - Manuel Leal
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| | - Rafael Luque
- Department of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain
| | - Prudence Ive
- Clinical HIV Research Unit, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne Luetkemeyer
- Division of HIV, Infectious Diseases and Global Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA, United States of America
| | - Diane Havlir
- Division of HIV, Infectious Diseases and Global Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA, United States of America
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
152
|
Griffiths KL, Villarreal DO, Weiner DB, Khader SA. A novel multivalent tuberculosis vaccine confers protection in a mouse model of tuberculosis. Hum Vaccin Immunother 2016; 12:2649-2653. [PMID: 27322875 DOI: 10.1080/21645515.2016.1197454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mycobacterium tuberculosis infects one third of the world's population. Due to variable efficacy of the Bacille Calmette Guerin (BCG) vaccine, development of novel TB vaccines remains a priority. Here, we demonstrate the protective efficacy of a novel multivalent DNA vaccine, which contains 15 synthetic antigens targeting the Mtb ESX secretion system.
Collapse
Affiliation(s)
- Kristin L Griffiths
- a Department of Molecular Microbiology , Washington University in St. Louis , St. Louis , MO , USA
| | - Daniel O Villarreal
- b Department of Pathology and Laboratory Medicine , University of Pennsylvania School of Medicine , Philadelphia , PA , USA
| | - David B Weiner
- b Department of Pathology and Laboratory Medicine , University of Pennsylvania School of Medicine , Philadelphia , PA , USA
| | - Shabaana A Khader
- a Department of Molecular Microbiology , Washington University in St. Louis , St. Louis , MO , USA
| |
Collapse
|
153
|
Nonclassical MHC Ib-restricted CD8+ T Cells Recognize Mycobacterium tuberculosis-Derived Protein Antigens and Contribute to Protection Against Infection. PLoS Pathog 2016; 12:e1005688. [PMID: 27272249 PMCID: PMC4896622 DOI: 10.1371/journal.ppat.1005688] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022] Open
Abstract
MHC Ib-restricted CD8+ T cells have been implicated in host defense against Mycobacterium tuberculosis (Mtb) infection. However, the relative contribution of various MHC Ib-restricted T cell populations to anti-mycobacterial immunity remains elusive. In this study, we used mice that lack MHC Ia (Kb-/-Db-/-), MHC Ia/H2-M3 (Kb-/-Db-/-M3-/-), or β2m (β2m-/-) to study the role of M3-restricted and other MHC Ib-restricted T cells in immunity against Mtb. Unlike their dominant role in Listeria infection, we found that M3-restricted CD8+ T cells only represented a small proportion of the CD8+ T cells responding to Mtb infection. Non-M3, MHC Ib-restricted CD8+ T cells expanded preferentially in the lungs of Mtb-infected Kb-/-Db-/-M3-/- mice, exhibited polyfunctional capacities and conferred protection against Mtb. These MHC Ib-restricted CD8+ T cells recognized several Mtb-derived protein antigens at a higher frequency than MHC Ia-restricted CD8+ T cells. The presentation of Mtb antigens to MHC Ib-restricted CD8+ T cells was mostly β2m-dependent but TAP-independent. Interestingly, a large proportion of Mtb-specific MHC Ib-restricted CD8+ T cells in Kb-/-Db-/-M3-/- mice were Qa-2-restricted while no considerable numbers of MR1 or CD1-restricted Mtb-specific CD8+ T cells were detected. Our findings indicate that nonclassical CD8+ T cells other than the known M3, CD1, and MR1-restricted CD8+ T cells contribute to host immune responses against Mtb infection. Targeting these MHC Ib-restricted CD8+ T cells would facilitate the design of better Mtb vaccines with broader coverage across MHC haplotypes due to the limited polymorphism of MHC class Ib molecules.
Collapse
|
154
|
Lee HJ, Ko HJ, Jung YJ. Insufficient Generation of Mycobactericidal Mediators and Inadequate Level of Phagosomal Maturation Are Related with Susceptibility to Virulent Mycobacterium tuberculosis Infection in Mouse Macrophages. Front Microbiol 2016; 7:541. [PMID: 27148227 PMCID: PMC4834433 DOI: 10.3389/fmicb.2016.00541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis infection, and it remains major life-threatening infectious diseases worldwide. Although, M. tuberculosis has infected one-third of the present human population, only 5–10% of immunocompetent individuals are genetically susceptible to tuberculosis. All inbred strains of mice are susceptible to tuberculosis; however, some mouse strains are much more susceptible than others. In a previous report, we showed that Th1-mediated immunity was not responsible for the differential susceptibility between mouse models. To examine whether these susceptibility differences between inbred mouse strains are due to the insufficient production of effector molecules in the early stage of innate immunity, we investigated mycobacteriostatic function of bone marrow-derived macrophages (BMDMs) in resistant (BALB/c and C57BL/6) and susceptible strains (DBA/2) that were infected with virulent M. tuberculosis (H37Rv) or attenuated M. tuberculosis (H37Ra). The growth rate of virulent M. tuberculosis in infected cells was significantly higher in DBA/2 BMDMs, whereas the growth of the attenuated strain was similar in the three inbred mouse BMDM strains. In addition, the death rate of M. tuberculosis-infected cells increased with the infectious dose when DBA/2 BMDMs were infected with H37Rv. The intracellular reactive oxygen species level was lower in DBA/2 BMDMs that were infected with virulent M. tuberculosis at an early post-infection time point. The expression levels of phagosomal maturation markers, including early endosomal antigen-1 (EEA1) and lysosome-associated membrane protein-1 (LAMP-1), were significantly decreased in DBA/2 BMDM that were infected with virulent M. tuberculosis, whereas IFNγ-treatment restored the phagosomal maturation activity. The nitric oxide (NO) production levels were also significantly lower in DBA/2 BMDMs that were infected with virulent H37Rv at late post-infection points; however, this was not observed with the attenuated H37Ra strain. Furthermore, IFNγ-treatment rescued the low NO production level and insufficient M. tuberculosis growth control of DBA/2 BMDMs to the same level as of both resistant strains. The secreted TNF-α and IL-10 level were not significantly different between strains. Therefore, our findings suggest that DBA/2 BMDMs may have defects in the phagosomal maturation process and in inflammatory mediator production, as they showed innate immune defects when infected with the virulent, but not attenuated M. tuberculosis strain.
Collapse
Affiliation(s)
- Hyo-Ji Lee
- Department of Biological Sciences and BIT Medical Convergence Graduate Program, Kangwon National University Chuncheon, South Korea
| | - Hyun-Jeong Ko
- College of Pharmacy, Kangwon National University Chuncheon, South Korea
| | - Yu-Jin Jung
- Department of Biological Sciences and BIT Medical Convergence Graduate Program, Kangwon National University Chuncheon, South Korea
| |
Collapse
|
155
|
Lienard J, Movert E, Valfridsson C, Sturegård E, Carlsson F. ESX-1 exploits type I IFN-signalling to promote a regulatory macrophage phenotype refractory to IFNγ-mediated autophagy and growth restriction of intracellular mycobacteria. Cell Microbiol 2016; 18:1471-85. [PMID: 27062290 DOI: 10.1111/cmi.12594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
Abstract
The ability of macrophages to eradicate intracellular pathogens is normally greatly enhanced by IFNγ, a cytokine produced mainly after onset of adaptive immunity. However, adaptive immunity is unable to provide sterilizing immunity against mycobacteria, suggesting that mycobacteria have evolved virulence strategies to inhibit the bactericidal effect of IFNγ-signalling in macrophages. Still, the host-pathogen interactions and cellular mechanisms responsible for this feature have remained elusive. We demonstrate that the ESX-1 type VII secretion systems of Mycobacterium tuberculosis and Mycobacterium marinum exploit type I IFN-signalling to promote an IL-12(low) /IL-10(high) regulatory macrophage phenotype characterized by secretion of IL-10, IL-27 and IL-6. This mechanism had no impact on intracellular growth in the absence of IFNγ but suppressed IFNγ-mediated autophagy and growth restriction, indicating that the regulatory phenotype extends to function. The IFNγ-refractory phenotype was partly mediated by IL-27-signalling, establishing functional relevance for this downstream cytokine. These findings identify a novel macrophage-modulating function for the ESX-1 secretion system that may contribute to suppress the efficacy of adaptive immunity and provide mechanistic insight into the antagonistic cross talk between type I IFNs and IFNγ in mycobacterial infection.
Collapse
Affiliation(s)
- Julia Lienard
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 221 84, Lund, Sweden
| | - Elin Movert
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 221 84, Lund, Sweden
| | - Christine Valfridsson
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 221 84, Lund, Sweden
| | - Erik Sturegård
- Section for Medical Microbiology, Department of Laboratory Medicine, Lund University, Jan Waldenströms gata 59, 205 02, Malmö, Sweden
| | - Fredric Carlsson
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 221 84, Lund, Sweden.
| |
Collapse
|
156
|
Satchidanandam V, Kumar N, Biswas S, Jumani RS, Jain C, Rani R, Aggarwal B, Singh J, Kotnur MR, Sridharan A. The Secreted Protein Rv1860 of Mycobacterium tuberculosis Stimulates Human Polyfunctional CD8+ T Cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:282-93. [PMID: 26843486 PMCID: PMC4820513 DOI: 10.1128/cvi.00554-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/22/2016] [Indexed: 12/21/2022]
Abstract
We previously reported that Rv1860 protein from Mycobacterium tuberculosis stimulated CD4(+)and CD8(+)T cells secreting gamma interferon (IFN-γ) in healthy purified protein derivative (PPD)-positive individuals and protected guinea pigs immunized with a DNA vaccine and a recombinant poxvirus expressing Rv1860 from a challenge with virulent M. tuberculosis We now show Rv1860-specific polyfunctional T (PFT) cell responses in the blood of healthy latently M. tuberculosis-infected individuals dominated by CD8(+) T cells, using a panel of 32 overlapping peptides spanning the length of Rv1860. Multiple subsets of CD8(+) PFT cells were significantly more numerous in healthy latently infected volunteers (HV) than in tuberculosis (TB) patients (PAT). The responses of peripheral blood mononuclear cells (PBMC) from PAT to the peptides of Rv1860 were dominated by tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) secretions, the former coming predominantly from non-T cell sources. Notably, the pattern of the T cell response to Rv1860 was distinctly different from those of the widely studied M. tuberculosis antigens ESAT-6, CFP-10, Ag85A, and Ag85B, which elicited CD4(+) T cell-dominated responses as previously reported in other cohorts. We further identified a peptide spanning amino acids 21 to 39 of the Rv1860 protein with the potential to distinguish latent TB infection from disease due to its ability to stimulate differential cytokine signatures in HV and PAT. We suggest that a TB vaccine carrying these and other CD8(+) T-cell-stimulating antigens has the potential to prevent progression of latent M. tuberculosis infection to TB disease.
Collapse
Affiliation(s)
- Vijaya Satchidanandam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Naveen Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sunetra Biswas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rajiv S Jumani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Chandni Jain
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rajni Rani
- Molecular Immunogenetics Group, National Institute of Immunology, New Delhi, India
| | - Bharti Aggarwal
- Molecular Immunogenetics Group, National Institute of Immunology, New Delhi, India
| | - Jaya Singh
- Molecular Immunogenetics Group, National Institute of Immunology, New Delhi, India
| | - Mohan Rao Kotnur
- Department of Chest Medicine, M. S. Ramiah Hospital, Bangalore, Karnataka, India
| | - Anand Sridharan
- National Tuberculosis Institute, Bangalore, Karnataka, India
| |
Collapse
|
157
|
Control of T cell antigen reactivity via programmed TCR downregulation. Nat Immunol 2016; 17:379-86. [PMID: 26901151 PMCID: PMC4803589 DOI: 10.1038/ni.3386] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022]
Abstract
The T cell receptor (TCR) is unique in that its affinity for ligand is unknown prior to encounter and can vary by orders of magnitude. How the immune system regulates individual T cells that display highly different reactivity to antigen remains unclear. Here we identified that activated CD4+ T cells, at the peak of clonal expansion, persistently downregulate TCR expression in proportion to the strength of initial antigen recognition. This programmed response increases the threshold for cytokine production and recall proliferation in a clone-specific manner, ultimately excluding clones with the highest antigen reactivities. Thus, programmed TCR downregulation represents a negative feedback mechanism to constrain T cell effector function with a suitable time delay, thereby allowing pathogen control while avoiding excess inflammatory damage.
Collapse
|
158
|
Hussain Bhat K, Mukhopadhyay S. Macrophage takeover and the host-bacilli interplay during tuberculosis. Future Microbiol 2016; 10:853-72. [PMID: 26000654 DOI: 10.2217/fmb.15.11] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Macrophages are key type of antigen-presenting cells that arbitrate the first line of defense against various intracellular pathogens. Tuberculosis, both pulmonary and extrapulmonary, is an infectious disease of global concern caused by Mycobacterium tuberculosis. The bacillus is a highly successful pathogen and has acquired various strategies to downregulate critical innate-effector immune responses of macrophages, such as phagosome-lysosome fusion, autophagy, induction of cytokines, generation of reactive oxygen and nitrogen species and antigen presentation. In addition, the bacilli also subvert acquired immunity. In this review, we aim to provide an overview of different antimycobacterial immune functions of macrophage and the strategies adopted by the bacilli to manipulate these functions to favor its survival and replication inside the host.
Collapse
|
159
|
Abstract
Through thousands of years of reciprocal coevolution, Mycobacterium tuberculosis has become one of humanity's most successful pathogens, acquiring the ability to establish latent or progressive infection and persist even in the presence of a fully functioning immune system. The ability of M. tuberculosis to avoid immune-mediated clearance is likely to reflect a highly evolved and coordinated program of immune evasion strategies that interfere with both innate and adaptive immunity. These include the manipulation of their phagosomal environment within host macrophages, the selective avoidance or engagement of pattern recognition receptors, modulation of host cytokine production, and the manipulation of antigen presentation to prevent or alter the quality of T-cell responses. In this article we review an extensive array of published studies that have begun to unravel the sophisticated program of specific mechanisms that enable M. tuberculosis and other pathogenic mycobacteria to persist and replicate in the face of considerable immunological pressure from their hosts. Unraveling the mechanisms by which M. tuberculosis evades or modulates host immune function is likely to be of major importance for the development of more effective new vaccines and targeted immunotherapy against tuberculosis.
Collapse
|
160
|
Booty MG, Nunes-Alves C, Carpenter SM, Jayaraman P, Behar SM. Multiple Inflammatory Cytokines Converge To Regulate CD8+ T Cell Expansion and Function during Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2016; 196:1822-31. [PMID: 26755819 DOI: 10.4049/jimmunol.1502206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/10/2015] [Indexed: 11/19/2022]
Abstract
The differentiation of effector CD8(+) T cells is a dynamically regulated process that varies during different infections and is influenced by the inflammatory milieu of the host. In this study, we define three signals regulating CD8(+) T cell responses during tuberculosis by focusing on cytokines known to affect disease outcome: IL-12, type I IFN, and IL-27. Using mixed bone marrow chimeras, we compared wild-type and cytokine receptor knockout CD8(+) T cells within the same mouse following aerosol infection with Mycobacterium tuberculosis. Four weeks postinfection, IL-12, type 1 IFN, and IL-27 were all required for efficient CD8(+) T cell expansion in the lungs. We next determined if these cytokines directly promote CD8(+) T cell priming or are required only for expansion in the lungs. Using retrogenic CD8(+) T cells specific for the M. tuberculosis Ag TB10.4 (EsxH), we observed that IL-12 is the dominant cytokine driving both CD8(+) T cell priming in the lymph node and expansion in the lungs; however, type I IFN and IL-27 have nonredundant roles supporting pulmonary CD8(+) T cell expansion. Thus, IL-12 is a major signal promoting priming in the lymph node, but a multitude of inflammatory signals converge in the lung to promote continued expansion. Furthermore, these cytokines regulate the differentiation and function of CD8(+) T cells during tuberculosis. These data demonstrate distinct and overlapping roles for each of the cytokines examined and underscore the complexity of CD8(+) T cell regulation during tuberculosis.
Collapse
Affiliation(s)
- Matthew G Booty
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; and Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
| | - Cláudio Nunes-Alves
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Stephen M Carpenter
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Pushpa Jayaraman
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|
161
|
Carpenter SM, Nunes-Alves C, Booty MG, Way SS, Behar SM. A Higher Activation Threshold of Memory CD8+ T Cells Has a Fitness Cost That Is Modified by TCR Affinity during Tuberculosis. PLoS Pathog 2016; 12:e1005380. [PMID: 26745507 PMCID: PMC4706326 DOI: 10.1371/journal.ppat.1005380] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/11/2015] [Indexed: 12/17/2022] Open
Abstract
T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection. CD8+ T cells are important for enforcing latency of tuberculosis, and for Mtb control in patients with HIV and low CD4 counts. While vaccines that primarily elicit CD4+ T cell responses have had difficulty preventing active pulmonary TB, a TB vaccine that elicits a potent memory CD8+ T cells is a logical alternative strategy. Memory T cells are thought to respond more rapidly than the primary (naïve) response. However, by directly comparing naïve and memory TCR retrogenic CD8+ T cells specific for the TB10.4 antigen during infection, we observe memory-derived T cells to be less fit than naïve-derived T cells. We relate the reduced fitness of memory CD8+ T cells to their lower sensitivity to antigen and show that fitness can be improved by increasing TCR affinity. Using a novel method for tracking CD8+ T cells elicited by vaccination during the response to Mtb aerosol challenge in intact mice, we observe the robust expansion of a new primary response as well as clonal selection of the secondary response, likely driven by TCR affinity. We propose that generating memory T cells with high affinities should be a goal of vaccination against TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (SMC); (SMB)
| | - Cláudio Nunes-Alves
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Matthew G. Booty
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sing Sing Way
- Division of Infectious Diseases, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States of America
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (SMC); (SMB)
| |
Collapse
|
162
|
Shi L, Salamon H, Eugenin EA, Pine R, Cooper A, Gennaro ML. Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs. Sci Rep 2015; 5:18176. [PMID: 26658723 PMCID: PMC4674750 DOI: 10.1038/srep18176] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023] Open
Abstract
To elucidate the little-known bioenergetic pathways of host immune cells in tuberculosis, a granulomatous disease caused by the intracellular pathogen Mycobacterium tuberculosis, we characterized infected murine lung tissue by transcriptomic profiling and confocal imaging. Transcriptomic analysis revealed changes of host energy metabolism during the course of infection that are characterized by upregulation of key glycolytic enzymes and transporters for glucose uptake, and downregulation of enzymes participating in the tricarboxylic acid cycle and oxidative phosphorylation. Consistent with elevated glycolysis, we also observed upregulation of a transporter for lactate secretion and a V type H(+) -ATPase involved in cytosolic pH homeostasis. Transcription profiling results were corroborated by immunofluorescence microscopy showing increased expression of key glycolytic enzymes in macrophages and T cells in granulomatous lesions. Moreover, we found increased mRNA and protein levels in macrophages and T cells of hypoxia inducible factor 1 alpha (HIF-1α), the regulatory subunit of HIF-1, a master transcriptional regulator. Thus, our findings suggest that immune cells predominantly utilize aerobic glycolysis in response to M. tuberculosis infection. This bioenergetic shift is similar to the Warburg effect, the metabolic signature of cancer cells. Finding immunometabolic changes during M. tuberculosis infection opens the way to new strategies for immunotherapy against tuberculosis.
Collapse
Affiliation(s)
- Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | | | - Eliseo A Eugenin
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Richard Pine
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | | | - Maria L Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
163
|
Jasenosky LD, Scriba TJ, Hanekom WA, Goldfeld AE. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev 2015; 264:74-87. [PMID: 25703553 DOI: 10.1111/imr.12274] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The adaptive immune response mediated by T cells is critical for control of Mycobacterium tuberculosis (M. tuberculosis) infection in humans. However, the M. tuberculosis antigens and host T-cell responses that are required for an effective adaptive immune response to M. tuberculosis infection are yet to be defined. Here, we review recent findings on CD4(+) and CD8(+) T-cell responses to M. tuberculosis infection and examine the roles of distinct M. tuberculosis-specific T-cell subsets in control of de novo and latent M. tuberculosis infection, and in the evolution of T-cell immunity to M. tuberculosis in response to tuberculosis treatment. In addition, we discuss recent studies that elucidate aspects of M. tuberculosis-specific adaptive immunity during human immunodeficiency virus co-infection and summarize recent findings from vaccine trials that provide insight into effective adaptive immune responses to M. tuberculosis infection.
Collapse
Affiliation(s)
- Luke D Jasenosky
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
164
|
Hmama Z, Peña-Díaz S, Joseph S, Av-Gay Y. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev 2015; 264:220-32. [PMID: 25703562 DOI: 10.1111/imr.12268] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
By virtue of their position at the crossroads between the innate and adaptive immune response, macrophages play an essential role in the control of bacterial infections. Paradoxically, macrophages serve as the natural habitat to Mycobacterium tuberculosis (Mtb). Mtb subverts the macrophage's mechanisms of intracellular killing and antigen presentation, leading ultimately to the development of tuberculosis (TB) disease. Here, we describe mechanisms of Mtb uptake by the macrophage and address key macrophage functions that are targeted by Mtb-specific effector molecules enabling this pathogen to circumvent host immune response. The macrophage functions described in this review include fusion between phagosomes and lysosomes, production of reactive oxygen and nitrogen species, antigen presentation and major histocompatibility complex class II expression and trafficking, as well as autophagy and apoptosis. All these are Mtb-targeted key cellular pathways, normally working in concert in the macrophage to recognize, respond, and activate 'proper' immune responses. We further analyze and discuss major molecular interactions between Mtb virulence factors and key macrophage proteins and provide implications for vaccine and drug development.
Collapse
Affiliation(s)
- Zakaria Hmama
- Department of Medicine, Division of Infectious Diseases, Infection and Immunity Research Center, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
165
|
Flynn JL, Gideon HP, Mattila JT, Lin PL. Immunology studies in non-human primate models of tuberculosis. Immunol Rev 2015; 264:60-73. [PMID: 25703552 DOI: 10.1111/imr.12258] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-human primates, primarily macaques, have been used to study tuberculosis for decades. However, in the last 15 years, this model has been refined substantially to allow careful investigations of the immune response and host-pathogen interactions in Mycobacterium tuberculosis infection. Low-dose challenge with fully virulent strains in cynomolgus macaques result in the full clinical spectrum seen in humans, including latent and active infection. Reagents from humans are usually cross-reactive with macaques, further facilitating the use of this model system to study tuberculosis. Finally, macaques develop the spectrum of granuloma types seen in humans, providing a unique opportunity to investigate bacterial and host factors at the local (lung and lymph node) level. Here, we review the past decade of immunology and pathology studies in macaque models of tuberculosis.
Collapse
Affiliation(s)
- JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
166
|
Grace PS, Ernst JD. Suboptimal Antigen Presentation Contributes to Virulence of Mycobacterium tuberculosis In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 196:357-64. [PMID: 26573837 DOI: 10.4049/jimmunol.1501494] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/22/2015] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis commonly causes persistent or chronic infection, despite the development of Ag-specific CD4 T cell responses. We hypothesized that M. tuberculosis evades elimination by CD4 T cell responses by manipulating MHC class II Ag presentation and CD4 T cell activation and tested this hypothesis by comparing activation of Ag85B-specific CD4 T cell responses to M. tuberculosis and M. bovis bacillus Calmette-Guérin (BCG) Pasteur in vivo and in vitro. We found that, although M. tuberculosis persists in lungs of immunocompetent mice, M. bovis BCG is cleared, and clearance is T cell dependent. We further discovered that M. tuberculosis-infected macrophages and dendritic cells activate Ag85B-specific CD4 T cells less efficiently and less effectively than do BCG-infected cells, in vivo and in vitro, despite higher production and secretion of Ag85B by M. tuberculosis. During BCG infection, activation of Ag85B-specific CD4 T cells requires fewer infected dendritic cells and fewer Ag-producing bacteria than during M. tuberculosis infection. When dendritic cells containing equivalent numbers of M. tuberculosis or BCG were transferred to mice, BCG-infected cells activated proliferation of more Ag85B-specific CD4 T cells than did M. tuberculosis-infected cells. Differences in Ag85B-specific CD4 T cell activation were attributable to differential Ag presentation rather than differential expression of costimulatory or inhibitory molecules. These data indicate that suboptimal Ag presentation contributes to persistent infection and that limiting Ag presentation is a virulence property of M. tuberculosis.
Collapse
Affiliation(s)
- Patricia S Grace
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Joel D Ernst
- Department of Pathology, New York University School of Medicine, New York, NY 10016; Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016; and Department of Microbiology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
167
|
Association of Genetic Polymorphisms of IFNGR1 with the Risk of Pulmonary Tuberculosis in Zahedan, Southeast Iran. Tuberc Res Treat 2015; 2015:292505. [PMID: 26649196 PMCID: PMC4663002 DOI: 10.1155/2015/292505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/27/2015] [Indexed: 11/22/2022] Open
Abstract
Aim. The present study was undertaken to find out the possible association between interferon-gamma (IFN-γ) receptor 1 (IFNGR1) gene polymorphisms and risk of pulmonary tuberculosis (PTB) in a sample of Iranian population. Methods. Polymorphisms of IFNGR1 rs1327474 (−611 A/G), rs11914 (+189 T/G), rs7749390 (+95 C/T), and rs137854905 (27-bp ins/del) were determined in 173 PTB patients and 164 healthy subjects. Results. Our findings showed that rs11914 TG genotypes decreased the risk of PTB in comparison with TT (OR = 0.36, 95% CI = 0.21–0.62, and p = 0.0002). The rs11914 G allele decreased the risk of PTB compared with T allele (OR = 0.41, 95% CI = 0.25–0.68, and p = 0.0006). IFNGR1 rs7749390 CT genotype decreased the risk of PTB in comparison with CC genotype (OR = 0.55, 95% CI = 0.32–0.95, and p = 0.038). No significant association was found between IFNGR1 rs1327474 A/G polymorphism and risk/protective of PTB. The rs137854905 (27-bp I/D) variant was not polymorphic in our population. Conclusion. Our findings showed that IFNGR1 rs11914 and rs7749390 variants decreased the risk of PTB susceptibility in our population.
Collapse
|
168
|
Th1 and Th17 Cells in Tuberculosis: Protection, Pathology, and Biomarkers. Mediators Inflamm 2015; 2015:854507. [PMID: 26640327 PMCID: PMC4657112 DOI: 10.1155/2015/854507] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/11/2015] [Indexed: 12/24/2022] Open
Abstract
The outcome of Mycobacterium tuberculosis (Mtb) infection ranges from a complete pathogen clearance through asymptomatic latent infection (LTBI) to active tuberculosis (TB) disease. It is now understood that LTBI and active TB represent a continuous spectrum of states with different degrees of pathogen “activity,” host pathology, and immune reactivity. Therefore, it is important to differentiate LTBI and active TB and identify active TB stages.
CD4+ T cells play critical role during Mtb infection by mediating protection, contributing to inflammation, and regulating immune response. Th1 and Th17 cells are the main effector CD4+ T cells during TB. Th1 cells have been shown to contribute to TB protection by secreting IFN-γ and activating antimycobacterial action in macrophages. Th17 induce neutrophilic inflammation, mediate tissue damage, and thus have been implicated in TB pathology. In recent years new findings have accumulated that alter our view on the role of Th1 and Th17 cells during Mtb infection. This review discusses these new results and how they can be implemented for TB diagnosis and monitoring.
Collapse
|
169
|
Mycobacterium-Infected Dendritic Cells Disseminate Granulomatous Inflammation. Sci Rep 2015; 5:15248. [PMID: 26515292 PMCID: PMC4626772 DOI: 10.1038/srep15248] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022] Open
Abstract
The disappearance and reformation of granulomas during tuberculosis has been described using PET/CT/X-ray in both human clinical settings and animal models, but the mechanisms of granuloma reformation during active disease remains unclear. Granulomas can recruit inflammatory dendritic cells (iDCs) that can regulate local T-cell responses and can carry bacteria into the lymph nodes, which is crucial for generating systemic T-cell responses against mycobacteria. Here, we report that a subset of mycobacterium-infected iDCs are associated with bacteria-specific T-cells in infected tissue, outside the granuloma, and that this results in the formation of new and/or larger multi-focal lesions. Mycobacterium-infected iDCs express less CCR7 and migrate less efficiently compared to the non-infected iDCs, which may support T-cell capture in granulomatous tissue. Capture may reduce antigen availability in the lymph node, thereby decreasing systemic priming, resulting in a possible regulatory loop between systemic T-cell responses and granuloma reformation. T-cell/infected iDCs clusters outside the granuloma can be detected during the acute and chronic phase of BCG and Mtb infection. Our studies suggest a direct role for inflammatory dendritic cells in the dissemination of granulomatous inflammation.
Collapse
|
170
|
Seshadri C, Lin L, Scriba TJ, Peterson G, Freidrich D, Frahm N, DeRosa SC, Moody DB, Prandi J, Gilleron M, Mahomed H, Jiang W, Finak G, Hanekom WA, Gottardo R, McElrath MJ, Hawn TR. T Cell Responses against Mycobacterial Lipids and Proteins Are Poorly Correlated in South African Adolescents. THE JOURNAL OF IMMUNOLOGY 2015; 195:4595-603. [PMID: 26466957 DOI: 10.4049/jimmunol.1501285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022]
Abstract
Human T cells are activated by both peptide and nonpeptide Ags produced by Mycobacterium tuberculosis. T cells recognize cell wall lipids bound to CD1 molecules, but effector functions of CD1-reactive T cells have not been systematically assessed in M. tuberculosis-infected humans. It is also not known how these features correlate with T cell responses to secreted protein Ags. We developed a flow cytometric assay to profile CD1-restricted T cells ex vivo and assessed T cell responses to five cell wall lipid Ags in a cross-sectional study of 19 M. tuberculosis-infected and 22 M. tuberculosis-uninfected South African adolescents. We analyzed six T cell functions using a recently developed computational approach for flow cytometry data in high dimensions. We compared these data with T cell responses to five protein Ags in the same cohort. We show that CD1b-restricted T cells producing antimycobacterial cytokines IFN-γ and TNF-α are detectable ex vivo in CD4(+), CD8(+), and CD4(-)CD8(-) T cell subsets. Glucose monomycolate was immunodominant among lipid Ags tested, and polyfunctional CD4 T cells specific for this lipid simultaneously expressed CD40L, IFN-γ, IL-2, and TNF-α. Lipid-reactive CD4(+) T cells were detectable at frequencies of 0.001-0.01%, and this did not differ by M. tuberculosis infection status. Finally, CD4 T cell responses to lipids were poorly correlated with CD4 T cell responses to proteins (Spearman rank correlation -0.01; p = 0.95). These results highlight the functional diversity of CD1-restricted T cells circulating in peripheral blood as well as the complementary nature of T cell responses to mycobacterial lipids and proteins. Our approach enables further population-based studies of lipid-specific T cell responses during natural infection and vaccination.
Collapse
Affiliation(s)
- Chetan Seshadri
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109;
| | - Lin Lin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Thomas J Scriba
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa; Department of Pediatrics and Child Health, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Glenna Peterson
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109
| | - David Freidrich
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Stephen C DeRosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; Department of Laboratory Medicine, University of Washington, Seattle WA 98109
| | - D Branch Moody
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Jacques Prandi
- Institut de Pharmacologie et Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse 31077, France; and
| | - Martine Gilleron
- Institut de Pharmacologie et Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse 31077, France; and
| | - Hassan Mahomed
- Division of Community Health, Stellenbosch University, Stellanbosch 7602, South Africa
| | - Wenxin Jiang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Willem A Hanekom
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa; Department of Pediatrics and Child Health, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Thomas R Hawn
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109
| |
Collapse
|
171
|
Complexity and Controversies over the Cytokine Profiles of T Helper Cell Subpopulations in Tuberculosis. J Immunol Res 2015; 2015:639107. [PMID: 26495323 PMCID: PMC4606092 DOI: 10.1155/2015/639107] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/03/2015] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis (TB) is a contagious infectious disease caused by the TB-causing bacillus Mycobacterium tuberculosis and is considered a public health problem with enormous social impact. Disease progression is determined mainly by the balance between the microorganism and the host defense systems. Although the immune system controls the infection, this control does not necessarily lead to sterilization. Over recent decades, the patterns of CD4+ T cell responses have been studied with a goal of complete understanding of the immunological mechanisms involved in the maintenance of latent or active tuberculosis infection and of the clinical cure after treatment. Conflicting results have been suggested over the years, particularly in studies comparing experimental models and human disease. In recent years, in addition to Th1, Th2, and Th17 profiles, new standards of cellular immune responses, such as Th9, Th22, and IFN-γ-IL-10 double-producing Th cells, discussed here, have also been described. Additionally, many new roles and cellular sources have been described for IL-10, demonstrating a critical role for this cytokine as regulatory, rather than merely pathogenic cytokine, involved in the establishment of chronic latent infection, in the clinical cure after treatment and in keeping antibacillary effector mechanisms active to prevent immune-mediated damage.
Collapse
|
172
|
Correlates of Vaccine-Induced Protection against Mycobacterium tuberculosis Revealed in Comparative Analyses of Lymphocyte Populations. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1096-108. [PMID: 26269537 DOI: 10.1128/cvi.00301-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/09/2015] [Indexed: 12/16/2022]
Abstract
A critical hindrance to the development of a novel vaccine against Mycobacterium tuberculosis is a lack of understanding of protective correlates of immunity and of host factors involved in a successful adaptive immune response. Studies from our group and others have used a mouse-based in vitro model system to assess correlates of protection. Here, using this coculture system and a panel of whole-cell vaccines with varied efficacy, we developed a comprehensive approach to understand correlates of protection. We compared the gene and protein expression profiles of vaccine-generated immune peripheral blood lymphocytes (PBLs) to the profiles found in immune splenocytes. PBLs not only represent a clinically relevant cell population, but comparing the expression in these populations gave insight into compartmentally specific mechanisms of protection. Additionally, we performed a direct comparison of host responses induced when immune cells were cocultured with either the vaccine strain Mycobacterium bovis BCG or virulent M. tuberculosis. These comparisons revealed host-specific and bacterium-specific factors involved in protection against virulent M. tuberculosis. Most significantly, we identified a set of 13 core molecules induced in the most protective vaccines under all of the conditions tested. Further validation of this panel of mediators as a predictor of vaccine efficacy will facilitate vaccine development, and determining how each promotes adaptive immunity will advance our understanding of antimycobacterial immune responses.
Collapse
|
173
|
Srivastava S, Ernst JD. Cell-to-cell transfer of M. tuberculosis antigens optimizes CD4 T cell priming. Cell Host Microbe 2015; 15:741-52. [PMID: 24922576 DOI: 10.1016/j.chom.2014.05.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/16/2014] [Accepted: 04/11/2014] [Indexed: 11/16/2022]
Abstract
During Mycobacterium tuberculosis and other respiratory infections, optimal T cell activation requires pathogen transport from the lung to a local draining lymph node (LN). However, the infected inflammatory monocyte-derived dendritic cells (DCs) that transport M. tuberculosis to the local lymph node are relatively inefficient at activating CD4 T cells, possibly due to bacterial inhibition of antigen presentation. We found that infected migratory DCs release M. tuberculosis antigens as soluble, unprocessed proteins for uptake and presentation by uninfected resident lymph node DCs. This transfer of bacterial proteins from migratory to local DCs results in optimal priming of antigen-specific CD4 T cells, which are essential in controlling tuberculosis. Additionally, this mechanism does not involve transfer of the whole bacterium and is distinct from apoptosis or exosome shedding. These findings reveal a mechanism that bypasses pathogen inhibition of antigen presentation by infected cells and generates CD4 T cell responses that control the infection.
Collapse
Affiliation(s)
- Smita Srivastava
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Joel D Ernst
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
174
|
Jiang ZM, Luo W, Wen Q, Liu SD, Hao PP, Zhou CY, Zhou MQ, Ma L. Development of genetically engineered iNKT cells expressing TCRs specific for the M. tuberculosis 38-kDa antigen. J Transl Med 2015; 13:141. [PMID: 25943357 PMCID: PMC4428004 DOI: 10.1186/s12967-015-0502-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 04/22/2015] [Indexed: 01/08/2023] Open
Abstract
Introduction The invariant natural killer T (iNKT) cell has been shown to play a central role in early stages immune responses against Mycobacterium tuberculosis (Mtb) infection, which become nonresponsive (anergic) and fails to control the growth of Mtb in patients with active tuberculosis. Enhancement of iNKT cell responses to Mtb antigens can help to resist infection. Study design and methods In the present study, an Mtb 38-kDa antigen-specific T cell receptor (TCR) was isolated from human CD8+ T cells stimulated by 38-kDa antigen in vitro, and then transduced into primary iNKT cells by retrovirus vector. Results The TCR gene-modified iNKT cells are endowed with new features to behave as a conventional MHC class I restricted CD8+ T lymphocyte by displaying specific antigen recognition and anti-Mtb antigen activity in vitro. At the same time, the engineered iNKT cells retaining its original capacity to be stimulated proliferation by non-protein antigens α-Gal-Cer. Conclusions This work is the first attempt to engineer iNKT cells by exogenous TCR genes and demonstrated that iNKT cell, as well as CD4+ and CD8+ T cells, can be genetically engineered to confer them a defined and alternative specificity, which provides new insights into TCR gene therapy for tuberculosis patients, especially those infected with drug-resistant Mtb.
Collapse
Affiliation(s)
- Zhen-Min Jiang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Luo
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Qian Wen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Su-Dong Liu
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Pei-Pei Hao
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Chao-Ying Zhou
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Ming-Qian Zhou
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
175
|
Yaqubi M, Mohammadnia A, Fallahi H. Transcription factor regulatory network for early lung immune response to tuberculosis in mice. Mol Med Rep 2015; 12:2865-71. [PMID: 25955085 DOI: 10.3892/mmr.2015.3721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/23/2015] [Indexed: 11/06/2022] Open
Abstract
Numerous transcription factors (TFs) have been suggested to have a role in Mycobacterium tuberculosis infection; however, the TFs involved in the early immune response of lung cells remains to be fully elucidated. The present study aimed to identify TFs which may have a role in the early immune response to tuberculosis and the gene regulatory networks in which they are involved. Gene expression data obtained from microarray analysis of the early lung immune response to tuberculosis (Gene Expression Omnibus; accession no. GSE23014) was integrated with data for TF binding sites and protein-protein interactions in order to construct a TF regulatory network. The role of TFs in protein complexes, active modules, topology of the network and regulation of immune processes were investigated. The results demonstrated that the constructed gene regulatory network harbored 1,270 differentially expressed (DE) genes with 4,070 regulatory and protein-protein interactions. In addition, it was revealed that 17 DE TFs were involved in the positive regulation of numerous immunological and biological processes, including T cell activation, T cell proliferation and tuberculosis-associated gene expression, in the constructed regulatory network. Signal transducer and activator of transcription 4, interferon regulatory factor 8, spleen focus-forming virus proviral integration 1, enhancer of zeste homolog 2 and kruppel-like factor 4 were predicted to be the primary TFs regulating the DE genes during early lung infection by M. tuberculosis, as determined through various analyses of the gene regulatory network. In conclusion, the present study identified novel TFs involved in the early response to M. tuberculosis infection, which may enhance current understanding of the molecular mechanism underlying tuberculosis infection and introduced potential targets for novel tuberculosis therapies.
Collapse
Affiliation(s)
- Moein Yaqubi
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran 14178-63171, Iran
| | - Abdulshakour Mohammadnia
- Department of Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran 14178-63171, Iran
| | - Hossein Fallahi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 67149‑67346, Iran
| |
Collapse
|
176
|
Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev 2015; 78:343-71. [PMID: 25184558 DOI: 10.1128/mmbr.00010-14] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to present the current state of knowledge on human latent tuberculosis infection (LTBI) based on clinical studies and observations, as well as experimental in vitro and animal models. Several key terms are defined, including "latency," "persistence," "dormancy," and "antibiotic tolerance." Dogmas prevalent in the field are critically examined based on available clinical and experimental data, including the long-held beliefs that infection is either latent or active, that LTBI represents a small population of nonreplicating, "dormant" bacilli, and that caseous granulomas are the haven for LTBI. The role of host factors, such as CD4(+) and CD8(+) T cells, T regulatory cells, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ), in controlling TB infection is discussed. We also highlight microbial regulatory and metabolic pathways implicated in bacillary growth restriction and antibiotic tolerance under various physiologically relevant conditions. Finally, we pose several clinically important questions, which remain unanswered and will serve to stimulate future research on LTBI.
Collapse
|
177
|
Roh EY, Yoon JH, Shin S, Song EY, Park MH. Association of TAP1 and TAP2 genes with susceptibility to pulmonary tuberculosis in Koreans. APMIS 2015; 123:457-64. [DOI: 10.1111/apm.12373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/06/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Eun Youn Roh
- Department of Laboratory Medicine; Seoul National University College of Medicine; Seoul Korea
- Department of Laboratory Medicine; Seoul National University Boramae Medical Center; Seoul Korea
| | - Jong Hyun Yoon
- Department of Laboratory Medicine; Seoul National University College of Medicine; Seoul Korea
- Department of Laboratory Medicine; Seoul National University Boramae Medical Center; Seoul Korea
| | - Sue Shin
- Department of Laboratory Medicine; Seoul National University College of Medicine; Seoul Korea
- Department of Laboratory Medicine; Seoul National University Boramae Medical Center; Seoul Korea
| | - Eun Young Song
- Department of Laboratory Medicine; Seoul National University College of Medicine; Seoul Korea
| | - Myoung Hee Park
- Department of Laboratory Medicine; Seoul National University College of Medicine; Seoul Korea
- Korea Organ Donation Agency Laboratory; Seoul Korea
| |
Collapse
|
178
|
Ancelet L, Kirman J. Shaping the CD4+ memory immune response against tuberculosis: the role of antigen persistence, location and multi-functionality. Biomol Concepts 2014; 3:13-20. [PMID: 25436521 DOI: 10.1515/bmc.2011.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/28/2011] [Indexed: 11/15/2022] Open
Abstract
Abstract Effective vaccination against intracellular pathogens, such as tuberculosis (TB), relies on the generation and maintenance of CD4 memory T cells. An incomplete understanding of the memory immune response has hindered the rational design of a new, more effective TB vaccine. This review discusses how the persistence of antigen, the location of memory cells, and their multifunctional ability shape the CD4 memory T cell response against TB.
Collapse
|
179
|
Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus. Semin Immunol 2014; 26:559-77. [PMID: 25311810 DOI: 10.1016/j.smim.2014.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 12/31/2022]
Abstract
Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease--the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage.
Collapse
|
180
|
Factors affecting susceptibility to Mycobacterium tuberculosis: a close view of immunological defence mechanism. Appl Biochem Biotechnol 2014; 174:2663-73. [PMID: 25296626 DOI: 10.1007/s12010-014-1217-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Tuberculosis is the most deadly infectious disease. In particular, pulmonary tuberculosis, being the predominant one, is highly contagious. In past the 200 years, one billion tuberculosis (TB) deaths had occurred, and it is anticipated that in the next 25 years, more than 40 million people may be killed by TB unless control measures are implemented. There are various causes which increase the susceptibility to Mycobacterium tuberculosis infection; these include weakened immune system which occurs through various diseases and medications like human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS), type II diabetes, end-stage kidney disease, alcoholism and intravenous drug use, certain cancers, cancer treatment such as chemotherapy, malnutrition and very young or advanced age. Some other factors include tobacco use, which increases the risk of getting TB and dying from it. In this manuscript, the authors tried to summarize all the alterations occurring in immune system at cellular and molecular level which occur due to infection, metabolic changes and chemical exposure, which increase susceptibility to mycobacterial infection.
Collapse
|
181
|
Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2014; 14:939-46. [PMID: 25151225 PMCID: PMC4178237 DOI: 10.1016/s1473-3099(14)70845-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background Intradermal MVA85A, a candidate vaccine against tuberculosis, induces high amounts of Ag85A-specific CD4 T cells in adults who have already received the BCG vaccine, but aerosol delivery of this vaccine might offer immunological and logistical advantages. We did a phase 1 double-blind trial to compare the safety and immunogenicity of aerosol-administered and intradermally administered MVA85A Methods In this phase 1, double-blind, proof-of-concept trial, 24 eligible BCG-vaccinated healthy UK adults were randomly allocated (1:1) by sequentially numbered, sealed, opaque envelopes into two groups: aerosol MVA85A and intradermal saline placebo or intradermal MVA85A and aerosol saline placebo. Participants, the bronchoscopist, and immunologists were masked to treatment assignment. The primary outcome was safety, assessed by the frequency and severity of vaccine-related local and systemic adverse events. The secondary outcome was immunogenicity assessed with laboratory markers of cell-mediated immunity in blood and bronchoalveolar lavage samples. Safety and immunogenicity were assessed for 24 weeks after vaccination. Immunogenicity to both insert Ag85A and vector modified vaccinia virus Ankara (MVA) was assessed by ex-vivo interferon-γ ELISpot and serum ELISAs. Since all participants were randomised and vaccinated according to protocol, our analyses were per protocol. This trial is registered with ClinicalTrials.gov, number NCT01497769. Findings Both administration routes were well tolerated and immunogenic. Respiratory adverse events were rare and mild. Intradermal MVA85A was associated with expected mild local injection-site reactions. Systemic adverse events did not differ significantly between the two groups. Three participants in each group had no vaccine-related systemic adverse events; fatigue (11/24 [46%]) and headache (10/24 [42%]) were the most frequently reported symptoms. Ag85A-specific systemic responses were similar across groups. Ag85A-specific CD4 T cells were detected in bronchoalveolar lavage cells from both groups and responses were higher in the aerosol group than in the intradermal group. MVA-specific cellular responses were detected in both groups, whereas serum antibodies to MVA were only detectable after intradermal administration of the vaccine. Interpretation Further clinical trials assessing the aerosol route of vaccine delivery are merited for tuberculosis and other respiratory pathogens. Funding The Wellcome Trust and Oxford Radcliffe Hospitals Biomedical Research Centre.
Collapse
|
182
|
MacMicking JD. Cell-autonomous effector mechanisms against mycobacterium tuberculosis. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a018507. [PMID: 25081628 DOI: 10.1101/cshperspect.a018507] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Few pathogens run the gauntlet of sterilizing immunity like Mycobacterium tuberculosis (Mtb). This organism infects mononuclear phagocytes and is also ingested by neutrophils, both of which possess an arsenal of cell-intrinsic effector mechanisms capable of eliminating it. Here Mtb encounters acid, oxidants, nitrosylating agents, and redox congeners, often exuberantly delivered under low oxygen tension. Further pressure is applied by withholding divalent Fe²⁺, Mn²⁺, Cu²⁺, and Zn²⁺, as well as by metabolic privation in the form of carbon needed for anaplerosis and aromatic amino acids for growth. Finally, host E3 ligases ubiquinate, cationic peptides disrupt, and lysosomal enzymes digest Mtb as part of the autophagic response to this particular pathogen. It is a testament to the evolutionary fitness of Mtb that sterilization is rarely complete, although sufficient to ensure most people infected with this airborne bacterium remain disease-free.
Collapse
Affiliation(s)
- John D MacMicking
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
183
|
Early induction of interleukin-10 limits antigen-specific CD4⁺ T cell expansion, function, and secondary recall responses during persistent phagosomal infection. Infect Immun 2014; 82:4092-103. [PMID: 25024370 DOI: 10.1128/iai.02101-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Diverse pathogens have evolved to survive and replicate in the endosomes or phagosomes of the host cells and establish persistent infection. Ehrlichiae are Gram-negative, intracellular bacteria that are transmitted by ticks. Ehrlichiae reside in the endosomes of the host phagocytic or endothelial cells and establish persistent infection in their vertebrate reservoir hosts. CD4(+) T cells play a critical role in protection against phagosomal infections. In the present study, we investigated the expansion, maintenance, and functional status of antigen-specific CD4(+) T cells during persistent Ehrlichia muris infection in wild-type and interleukin-10 (IL-10)-deficient mice. Our study indicated that early induction of IL-10 led to reduced inflammatory responses and impaired bacterial clearance during persistent Ehrlichia infection. Notably, we demonstrated that the functional production of gamma interferon (IFN-γ) by antigen-specific CD4(+) T cells maintained during a persistent phagosomal infection progressively deteriorates. The functional loss of IFN-γ production by antigen-specific CD4(+) T cells was reversed in the absence of IL-10. Furthermore, we demonstrated that transient blockade of IL-10 receptor during the T cell priming phase early in infection was sufficient to enhance the magnitude and the functional capacity of antigen-specific effector and memory CD4(+) T cells, which translated into an enhanced recall response. Our findings provide new insights into the functional status of antigen-specific CD4(+) T cells maintained during persistent phagosomal infection. The study supports the concept that a better understanding of the factors that influence the priming and differentiation of CD4(+) T cells may provide a basis to induce a protective immune response against persistent infections.
Collapse
|
184
|
Saraav I, Singh S, Sharma S. Outcome of Mycobacterium tuberculosis and Toll-like receptor interaction: immune response or immune evasion? Immunol Cell Biol 2014; 92:741-6. [PMID: 24983458 DOI: 10.1038/icb.2014.52] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 05/22/2014] [Accepted: 05/25/2014] [Indexed: 12/14/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, is an intracellular bacterium capable of surviving and persisting within host mononuclear cells. The host response against tubercle bacilli is dominated by fine-tuned interaction of innate and adaptive immune responses. Toll-like receptors (TLRs) play a critical role in the formation of this immune response by facilitating in elaboration of protective T helper type 1 (Th1) cytokines and microbicidal molecules, but the intracellular persistence of M. tuberculosis in the phagosome and processing and presentation of TLR ligands by host antigen-presenting cell leads to continuous and chronic TLR2 signaling. The prolonged stimulation of TLR ultimately results in elaboration of immunosuppressive cytokines and downregulation of antigen presentation by major histocompatibility complex (MHC) class II and therefore becomes beneficial for M. tuberculosis, resulting in its continued survival inside macrophages. An understanding of the host-pathogen interaction in tuberculosis is important to delineate the mechanisms that can modulate the immune response toward protection. This review focuses on the role of TLRs in immune response and immune evasion and how M. tuberculosis maintains its dominance over the host during infection. A precise understanding of the TLRs and M. tuberculosis interaction will undoubtedly lead to the development of novel therapies to combat tuberculosis.
Collapse
Affiliation(s)
- Iti Saraav
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, University of Delhi, Delhi, India
| | - Swati Singh
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, University of Delhi, Delhi, India
| | - Sadhna Sharma
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, University of Delhi, Delhi, India
| |
Collapse
|
185
|
Adequate Th2-type response associates with restricted bacterial growth in latent mycobacterial infection of zebrafish. PLoS Pathog 2014; 10:e1004190. [PMID: 24968056 PMCID: PMC4072801 DOI: 10.1371/journal.ppat.1004190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 05/02/2014] [Indexed: 12/03/2022] Open
Abstract
Tuberculosis is still a major health problem worldwide. Currently it is not known what kind of immune responses lead to successful control and clearance of Mycobacterium tuberculosis. This gap in knowledge is reflected by the inability to develop sufficient diagnostic and therapeutic tools to fight tuberculosis. We have used the Mycobacterium marinum infection model in the adult zebrafish and taken advantage of heterogeneity of zebrafish population to dissect the characteristics of adaptive immune responses, some of which are associated with well-controlled latency or bacterial clearance while others with progressive infection. Differences in T cell responses between subpopulations were measured at the transcriptional level. It was discovered that a high total T cell level was usually associated with lower bacterial loads alongside with a T helper 2 (Th2)-type gene expression signature. At late time points, spontaneous reactivation with apparent symptoms was characterized by a low Th2/Th1 marker ratio and a substantial induction of foxp3 reflecting the level of regulatory T cells. Characteristic gata3/tbx21 has potential as a biomarker for the status of mycobacterial disease. Tuberculosis is a common and potentially lethal lung disease spread worldwide. One third of the world's population is estimated to be infected with Mycobacterium tuberculosis, yet most individuals develop a latent disease which has the potential to reactivate. Some are thought to be able to clear the infection. The current vaccine does not give adequate protection against the disease, and due to incorrect use of antibiotics, resistance to treatment has substantially increased. There is an urgent need for novel treatment approaches, such as modulation of the host's immune response. However, the ideal immune response against tuberculosis is unknown. In addition, more accurate diagnostic tools are needed for distinguishing the high risk individuals among latent patients so that treatment could be given to those that are most likely to benefit from it. In this study, we used the Mycobacterium marinum-zebrafish model to study the T cell responses in mycobacterial infection. Utilizing the natural heterogeneity of the zebrafish population, we found associations between the disease severity (bacterial load) and the type and magnitude of T cell responses. Our results on typical T cell signatures are useful as diagnostic biomarkers as well as provide new understanding needed for therapeutic approaches based on immunomodulation.
Collapse
|
186
|
Andersen P, Woodworth JS. Tuberculosis vaccines--rethinking the current paradigm. Trends Immunol 2014; 35:387-95. [PMID: 24875637 DOI: 10.1016/j.it.2014.04.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/09/2014] [Accepted: 04/30/2014] [Indexed: 11/16/2022]
Abstract
The vaccine discovery paradigm in tuberculosis (TB) has been to mimic the natural immune response to infection. With an emphasis on interferon (IFN)-γ as the main protective cytokine, researchers have selected dominant antigens and administered them in delivery systems to promote strong T helper (Th)1 responses. However, the Bacillus Calmette-Guérin (BCG) vaccine is a strong inducer of Th1 cells, yet has limited protection in adults, and further boosting by the Modified-Vaccinia-Ankara (MVA)85A vaccine failed to enhance efficacy in a clinical trial. We review the current understanding of host-pathogen interactions in TB infection and propose that rather than boosting Th1 responses, we should focus on understanding protective immune responses that are lacking or insufficiently promoted by BCG that can intervene at critical stages of the TB life cycle.
Collapse
Affiliation(s)
- Peter Andersen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Joshua S Woodworth
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark
| |
Collapse
|
187
|
Day CL, Moshi ND, Abrahams DA, van Rooyen M, O'rie T, de Kock M, Hanekom WA. Patients with tuberculosis disease have Mycobacterium tuberculosis-specific CD8 T cells with a pro-apoptotic phenotype and impaired proliferative capacity, which is not restored following treatment. PLoS One 2014; 9:e94949. [PMID: 24740417 PMCID: PMC3989259 DOI: 10.1371/journal.pone.0094949] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/21/2014] [Indexed: 11/18/2022] Open
Abstract
CD8 T cells play a critical role in control of chronic viral infections; however, the role of these cells in containing persistent bacterial infections, such as those caused by Mycobacterium tuberculosis (Mtb), is less clear. We assessed the phenotype and functional capacity of CD8 T cells specific for the immunodominant Mtb antigens CFP-10 and ESAT-6, in patients with pulmonary tuberculosis (TB) disease, before and after treatment, and in healthy persons with latent Mtb infection (LTBI). In patients with TB disease, CFP-10/ESAT-6-specific IFN-γ+ CD8 T cells had an activated, pro-apoptotic phenotype, with lower Bcl-2 and CD127 expression, and higher Ki67, CD57, and CD95 expression, than in LTBI. When CFP-10/ESAT-6-specific IFN-γ+ CD8 T cells were detectable, expression of distinct combinations of these markers was highly sensitive and specific for differentiating TB disease from LTBI. Successful treatment of disease resulted in changes of these markers, but not in restoration of CFP-10/ESAT-6-specific CD8 or CD4 memory T cell proliferative capacity. These data suggest that high mycobacterial load in active TB disease is associated with activated, short-lived CFP-10/ESAT-6-specific CD8 T cells with impaired functional capacity that is not restored following treatment. By contrast, LTBI is associated with preservation of long-lived CFP-10/ESAT-6-specific memory CD8 T cells that maintain high Bcl-2 expression and which may readily proliferate.
Collapse
Affiliation(s)
- Cheryl L. Day
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Noella D. Moshi
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Deborah A. Abrahams
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Michele van Rooyen
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Terrence O'rie
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Marwou de Kock
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Willem A. Hanekom
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
188
|
Abstract
MTB ranks as the first worldwide pathogen latently infecting one third of the population and the second leading cause of death from a single infectious agent, after the human immunodeficiency virus (HIV). The development of vigorous and apparently appropriate immune response upon infection with M. tuberculosis in humans and experimental animals conflict with failure to eradicate the pathogen itself and with its ability to undergo clinical latency from which it may exit. From a clinical standpoint, our views on MTB infection may take advantage from updating the overall perspective, that has quite changed over the last decade, following remarkable advances in our understanding of the manipulation of the immune system by M. tuberculosis and of the role of innate components of the immune response, including macrophages, neutrophils, dendritic cells and NK cells in the initial spread of MTB and its exit from latency. Scope of this review is to highlight the major mechanisms of MTB escape from immune control and to provide a supplementary translational perspective for the interpretation of innate immune mechanisms with particular impact on clinical aspects.
Collapse
|
189
|
Abstract
CD4(+) T cells are key cells of the adaptive immune system that use T cell antigen receptors to recognize peptides that are generated in endosomes or phagosomes and displayed on the host cell surface bound to major histocompatibility complex molecules. These T cells participate in immune responses that protect hosts from microbes such as Mycobacterium tuberculosis, Cryptococcus neoformans, Leishmania major, and Salmonella enterica, which have evolved to live in the phagosomes of macrophages and dendritic cells. Here, we review studies indicating that CD4(+) T cells control phagosomal infections asymptomatically in most individuals by secreting cytokines that activate the microbicidal activities of infected phagocytes but in a way that inhibits the pathogen but does not eliminate it. Indeed, we make the case that localized, controlled, persistent infection is necessary to maintain large numbers of CD4(+) effector T cells in a state of activation needed to eradicate systemic and more pathogenic forms of the infection. Finally, we posit that current vaccines for phagosomal infections fail because they do not produce this "periodic reminder" form of CD4(+) T cell-mediated immune control.
Collapse
|
190
|
Kaur M, Malik B, Garg T, Rath G, Goyal AK. Development and characterization of guar gum nanoparticles for oral immunization against tuberculosis. Drug Deliv 2014; 22:328-34. [DOI: 10.3109/10717544.2014.894594] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
191
|
Abstract
Clinical trials of vaccines against Mycobacterium tuberculosis are well under way and results are starting to come in. Some of these results are not so encouraging, as exemplified by the latest Aeras-422 and MVA85A trials. Other than empirically determining whether a vaccine reduces the number of cases of active tuberculosis, which is a daunting prospect given the chronic nature of the disease, we have no way of assessing vaccine efficacy. Therefore, investigators seek to identify biomarkers that predict vaccine efficacy. Historically, focus has been on the production of interferon-γ by CD4(+) T cells, but this has not been a useful correlate of vaccine-induced protection. In this Opinion article, we discuss recent advances in our understanding of the immune control of M. tuberculosis and how this knowledge could be used for vaccine design and evaluation.
Collapse
|
192
|
Yao S, Huang D, Chen CY, Halliday L, Wang RC, Chen ZW. CD4+ T cells contain early extrapulmonary tuberculosis (TB) dissemination and rapid TB progression and sustain multieffector functions of CD8+ T and CD3- lymphocytes: mechanisms of CD4+ T cell immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:2120-32. [PMID: 24489088 PMCID: PMC4104690 DOI: 10.4049/jimmunol.1301373] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The possibility that CD4(+) T cells can act as "innate-like" cells to contain very early Mycobacterium tuberculosis dissemination and function as master helpers to sustain multiple effector functions of CD8(+) T cells and CD3(-) lymphocytes during development of adaptive immunity against primary tuberculosis (TB) has not been demonstrated. We showed that pulmonary M. tuberculosis infection of CD4-depleted macaques surprisingly led to very early extrapulmonary M. tuberculosis dissemination, whereas CD4 deficiency clearly resulted in rapid TB progression. CD4 depletion during M. tuberculosis infection revealed the ability of CD8(+) T cells to compensate and rapidly differentiate to Th17-like/Th1-like and cytotoxic-like effectors, but these effector functions were subsequently unsustainable due to CD4 deficiency. Whereas CD3(-) non-T lymphocytes in the presence of CD4(+) T cells developed predominant Th22-like and NK-like (perforin production) responses to M. tuberculosis infection, CD4 depletion abrogated these Th22-/NK-like effector functions and favored IL-17 production by CD3(-) lymphocytes. CD4-depleted macaques exhibited no or few pulmonary T effector cells constitutively producing IFN-γ, TNF-α, IL-17, IL-22, and perforin at the endpoint of more severe TB, but they presented pulmonary IL-4(+) T effectors. TB granulomas in CD4-depleted macaques contained fewer IL-22(+) and perforin(+) cells despite the presence of IL-17(+) and IL-4(+) cells. These results implicate a previously unknown innate-like ability of CD4(+) T cells to contain extrapulmonary M. tuberculosis dissemination at very early stage. Data also suggest that CD4(+) T cells are required to sustain multiple effector functions of CD8(+) T cells and CD3(-) lymphocytes and to prevent rapid TB progression during M. tuberculosis infection of nonhuman primates.
Collapse
Affiliation(s)
- Shuyu Yao
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, U.S.A
| | - Dan Huang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, U.S.A
| | - Crystal Y. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, U.S.A
| | | | - Richard C. Wang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, U.S.A
| | - Zheng W. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, U.S.A
| |
Collapse
|
193
|
Zhang YJ, Reddy MC, Ioerger TR, Rothchild AC, Dartois V, Schuster BM, Trauner A, Wallis D, Galaviz S, Huttenhower C, Sacchettini JC, Behar SM, Rubin EJ. Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 2014; 155:1296-308. [PMID: 24315099 DOI: 10.1016/j.cell.2013.10.045] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/11/2013] [Accepted: 10/18/2013] [Indexed: 11/17/2022]
Abstract
Bacteria that cause disease rely on their ability to counteract and overcome host defenses. Here, we present a genome-scale study of Mycobacterium tuberculosis (Mtb) that uncovers the bacterial determinants of surviving host immunity, sets of genes we term "counteractomes." Through this analysis, we found that CD4 T cells attempt to contain Mtb growth by starving it of tryptophan--a mechanism that successfully limits infections by Chlamydia and Leishmania, natural tryptophan auxotrophs. Mtb, however, can synthesize tryptophan under stress conditions, and thus, starvation fails as an Mtb-killing mechanism. We then identify a small-molecule inhibitor of Mtb tryptophan synthesis, which converts Mtb into a tryptophan auxotroph and restores the efficacy of a failed host defense. Together, our findings demonstrate that the Mtb immune counteractomes serve as probes of host immunity, uncovering immune-mediated stresses that can be leveraged for therapeutic discovery.
Collapse
Affiliation(s)
- Yanjia J Zhang
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Torabi-Parizi P, Vrisekoop N, Kastenmuller W, Gerner MY, Egen JG, Germain RN. Pathogen-related differences in the abundance of presented antigen are reflected in CD4+ T cell dynamic behavior and effector function in the lung. THE JOURNAL OF IMMUNOLOGY 2014; 192:1651-1660. [PMID: 24431231 DOI: 10.4049/jimmunol.1301743] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure to pathogens in the periphery elicits effector T cell differentiation in local lymph nodes followed by migration of activated T cells to and within the infected site. However, the relationships among pathogen abundance, Ag display on MHC molecules, effector T cell dynamics, and functional responses at the infected sites are incompletely characterized. In this study, we compared CD4(+) T cell effector dynamics and responses during pulmonary mycobacterial infection versus acute influenza infection. Two-photon imaging together with in situ as well as ex vivo analysis of cytokine production revealed that the proportion of migration-arrested, cytokine-producing effector T cells was dramatically higher in the influenza-infected lungs due to substantial differences in Ag abundance in the two infectious states. Despite the marked inflammatory conditions associated with influenza infection, histocytometric analysis showed that cytokine production was focal, with a restriction to areas of significant Ag burden. Optimal effector function is thus constrained by the availability of TCR ligands, pointing to the value of increasing Ag stimulation rather than effector numbers in harnessing CD4(+) T cells for therapeutic purposes in such conditions.
Collapse
Affiliation(s)
- Parizad Torabi-Parizi
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nienke Vrisekoop
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wolfgang Kastenmuller
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Y Gerner
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jackson G Egen
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
195
|
Sequence diversity in the pe_pgrs genes of Mycobacterium tuberculosis is independent of human T cell recognition. mBio 2014; 5:e00960-13. [PMID: 24425732 PMCID: PMC3903279 DOI: 10.1128/mbio.00960-13] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The Mycobacterium tuberculosis genome includes the large family of pe_pgrs genes, whose functions are unknown. Because of precedents in other pathogens in which gene families showing high sequence variation are involved in antigenic variation, a similar role has been proposed for the pe_pgrs genes. However, the impact of immune selection on pe_pgrs genes has not been examined. Here, we sequenced 27 pe_pgrs genes in 94 clinical strains from five phylogenetic lineages of the M. tuberculosis complex (MTBC). We found that pe_pgrs genes were overall more diverse than the remainder of the MTBC genome, but individual members of the family varied widely in their nucleotide diversity and insertion/deletion (indel) content: some were more, and others were much less, diverse than the genome average. Individual pe_pgrs genes also differed in the ratio of nonsynonymous to synonymous mutations, suggesting that different selection pressures act on individual pe_pgrs genes. Using bioinformatic methods, we tested whether sequence diversity in pe_pgrs genes might be selected by human T cell recognition, the major mechanism of adaptive immunity to MTBC. We found that the large majority of predicted human T cell epitopes were confined to the conserved PE domain and experimentally confirmed the antigenicity of this domain in tuberculosis patients. In contrast, despite being genetically diverse, the PGRS domains harbored few predicted T cell epitopes. These results indicate that human T cell recognition is not a significant force driving sequence diversity in pe_pgrs genes, which is consistent with the previously reported conservation of human T cell epitopes in the MTBC. IMPORTANCE Recognition of Mycobacterium tuberculosis antigens by T lymphocytes is known to be important for immune protection against tuberculosis, but it is unclear whether human T cell recognition drives antigenic variation in M. tuberculosis. We previously discovered that the known human T cell epitopes in the M. tuberculosis complex are highly conserved, but we hypothesized that undiscovered epitopes with naturally occurring sequence variants might exist. To test this hypothesis, we examined the pe_pgrs genes, a large family of genes that has been proposed to function in immune evasion by M. tuberculosis. We found that the pe_pgrs genes exhibit considerable sequence variation, but the regions containing T cell epitopes and the regions of variation are distinct. These findings confirm that the majority of human T cell epitopes of M. tuberculosis are highly conserved and indicate that selection forces other than T cell recognition drive sequence variation in the pe_pgrs genes.
Collapse
|
196
|
Lee J, Brehm MA, Greiner D, Shultz LD, Kornfeld H. Engrafted human cells generate adaptive immune responses to Mycobacterium bovis BCG infection in humanized mice. BMC Immunol 2013; 14:53. [PMID: 24313934 PMCID: PMC3924189 DOI: 10.1186/1471-2172-14-53] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/02/2013] [Indexed: 12/31/2022] Open
Abstract
Background Currently used mouse models fail to fully reflect human immunity to tuberculosis (TB), which hampers progress in research and vaccine development. Bone marrow-liver-thymus (BLT) mice, generated by engrafting human fetal liver, thymus, and hematopoietic stem cells in severely immunodeficient NOD/SCID/IL-2Rγ-/- (NSG) mice, have shown potential to model human immunity to infection. We engrafted HLA-A2-positive fetal tissues into NSG mice transgenically expressing human leukocyte antigen (HLA)-A2.1 (NSG-A2) to generate NSG-A2-BLT mice and characterized their human immune response to Mycobacterium bovis bacillus Calmette-Guerin (BCG) infection to assess the utility of this model for investigating human TB. Results NSG-A2-BLT mice were infected intravenously with BCG and the immune response of engrafted human immune cells was characterized. After ex vivo antigenic stimulation of splenocytes, interferon (IFN)-γ-producing cells were detected by ELISPOT from infected, but not uninfected NSG-A2-BLT mice. However, the levels of secreted IFN-γ, determined by ELISA, were not significantly elevated by antigenic stimulation. NSG-A2-BLT mice were susceptible to BCG infection as determined by higher lung bacillary load than the non-engrafted control NSG-A2 mice. BCG-infected NSG-A2-BLT mice developed lung lesions composed mostly of human macrophages and few human CD4+ or CD8+ T cells. The lesions did not resemble granulomas typical of human TB. Conclusions Engrafted human immune cells in NSG-A2-BLT mice showed partial function of innate and adaptive immune systems culminating in antigen-specific T cell responses to mycobacterial infection. The lack of protection was associated with low IFN-γ levels and limited numbers of T cells recruited to the lesions. The NSG-A2-BLT mouse is capable of mounting a human immune response to M. tuberculosis in vivo but a quantitatively and possibly qualitatively enhanced effector response will be needed to improve the utility of this model for TB research.
Collapse
Affiliation(s)
- Jinhee Lee
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | | | | | | | | |
Collapse
|
197
|
Saharia KK, Koup RA. T cell susceptibility to HIV influences outcome of opportunistic infections. Cell 2013; 155:505-14. [PMID: 24243010 DOI: 10.1016/j.cell.2013.09.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 12/18/2022]
Abstract
During HIV infection, the timing of opportunistic infections is not always associated with severity of CD4 T cell depletion, and different opportunistic pathogens reactivate at different CD4 T cell thresholds. Here, we examine how differences in the phenotype and function of pathogen-specific CD4 T cells influence susceptibility to HIV infection. By focusing on three common opportunistic infections (Mycobacterium tuberculosis, human papillomavirus, and cytomegalovirus), we investigate how differential depletion of pathogen-specific CD4 T cells impacts the natural history of these pathogens in HIV infection. A broader understanding of this relationship can better inform treatment strategies against copathogens.
Collapse
Affiliation(s)
- Kapil K Saharia
- Institute of Human Virology and Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
198
|
Differentiation of antigen-specific T cells with limited functional capacity during Mycobacterium tuberculosis infection. Infect Immun 2013; 82:132-9. [PMID: 24126533 DOI: 10.1128/iai.00480-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite the generation of Mycobacterium tuberculosis-specific T cell immune responses during the course of infection, only 5 to 10% of exposed individuals develop active disease, while others develop a latent infection. This phenomenon suggests defective M. tuberculosis-specific immunity, which necessitates more careful characterization of M. tuberculosis-specific T cell responses. Here, we longitudinally analyzed the phenotypes and functions of M. tuberculosis-specific T cells. In contrast to the functional exhaustion of T cells observed after chronic infection, M. tuberculosis-specific CD8(+) T cells differentiated into either effector (CD127(lo) CD62L(lo)) or effector memory (CD127(hi) CD62L(lo)) cells, but not central memory cells (CD127(hi) CD62L(hi)), with low programmed death 1 (PD-1) expression, even in the presence of high levels of bacteria. Additionally, M. tuberculosis-specific CD8(+) and CD4(+) T cells produced substantial levels of tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ), but not interleukin 2 (IL-2), upon in vitro restimulation. Among M. tuberculosis-specific CD8(+) T cells, CD127(hi) effector memory cells displayed slower ongoing turnover but greater survival potential. In addition, these cells produced more IFN-γ and TNF-α and displayed lytic activity upon antigen stimulation. However, the effector function of M. tuberculosis-specific CD8(+) CD127(hi) effector memory T cells was inferior to that of canonical CD8(+) CD127(hi) memory T cells generated after acute lymphocytic choriomeningitis virus infection. Collectively, our data demonstrate that M. tuberculosis-specific T cells can differentiate into memory T cells during the course of M. tuberculosis infection independent of the bacterial burden but with limited functionality. These results provide a framework for further understanding the mechanisms of M. tuberculosis infection that can be used to develop more effective vaccines.
Collapse
|
199
|
Chen CY, Yao S, Huang D, Wei H, Sicard H, Zeng G, Jomaa H, Larsen MH, Jacobs WR, Wang R, Letvin N, Shen Y, Qiu L, Shen L, Chen ZW. Phosphoantigen/IL2 expansion and differentiation of Vγ2Vδ2 T cells increase resistance to tuberculosis in nonhuman primates. PLoS Pathog 2013; 9:e1003501. [PMID: 23966854 PMCID: PMC3744401 DOI: 10.1371/journal.ppat.1003501] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 05/31/2013] [Indexed: 01/11/2023] Open
Abstract
Dominant Vγ2Vδ2 T-cell subset exist only in primates, and recognize phosphoantigen from selected pathogens including M. tuberculosis(Mtb). In vivo function of Vγ2Vδ2 T cells in tuberculosis remains unknown. We conducted mechanistic studies to determine whether earlier expansion/differentiation of Vγ2Vδ2 T cells during Mtb infection could increase immune resistance to tuberculosis in macaques. Phosphoantigen/IL-2 administration specifically induced major expansion and pulmonary trafficking/accumulation of phosphoantigen-specific Vγ2Vδ2 T cells, significantly reduced Mtb burdens and attenuated tuberculosis lesions in lung tissues compared to saline/BSA or IL-2 controls. Expanded Vγ2Vδ2 T cells differentiated into multifunctional effector subpopulations capable of producing anti-TB cytokines IFNγ, perforin and granulysin, and co-producing perforin/granulysin in lung tissue. Mechanistically, perforin/granulysin-producing Vγ2Vδ2 T cells limited intracellular Mtb growth, and macaque granulysin had Mtb-bactericidal effect, and inhibited intracellular Mtb in presence of perforin. Furthermore, phosphoantigen/IL2-expanded Vγ2Vδ2 T effector cells produced IL-12, and their expansion/differentiation led to enhanced pulmonary responses of peptide-specific CD4+/CD8+ Th1-like cells. These results provide first in vivo evidence implicating that early expansion/differentiation of Vγ2Vδ2 T effector cells during Mtb infection increases resistance to tuberculosis. Thus, data support a rationale for conducting further studies of the γδ T-cell-targeted treatment of established TB, which might ultimately help explore single or adjunctive phosphoantigen expansion of Vγ2Vδ2 T-cell subset as intervention of MDR-tuberculosis or HIV-related tuberculosis. Tuberculosis(TB), caused by Mycobacterium tuberculosis(Mtb), remains a leading cause of morbidity and mortality worldwide. While CD4+/CD8+ T cells are protective, role of γδ T cells in TB and other infections remains unknown in humans. Vγ2Vδ2 T cells exist only in primates, represent a dominant circulating γδ T-cell subpopulation, and recognize phosphoantigen from Mtb and some selected pathogens. Here, we determined whether earlier expansion/differentiation of Vγ2Vδ2 T cells during Mtb infection increased resistance to TB in macaques. Phosphoantigen plus IL-2 administration induced expansion and pulmonary accumulation of Vγ2Vδ2 T cells, significantly reduced Mtb counts and attenuated TB lesions in lung tissues. Expanded Vγ2Vδ2 T cells produced anti-TB cytokines IFNγ, perforin and granulysin, and co-produced perforin and granulysin in lung tissue. Perforin/granulysin-co-producing Vγ2Vδ2 T cells limited intracellular Mtb growth, and macaque granulysin killed Mtb bacteria, and inhibited intracellular Mtb in presence of perforin. Furthermore, expansion of Vγ2Vδ2 T effectors enhanced pulmonary responses of peptide-specific CD4+/CD8+ T cells, which correlated with the ability of Vγ2Vδ2 T effector cells to produce IL-12. These results provide first evidence implicating a protective role of Vγ2Vδ2 T effector cells in TB, supporting a rationale to explore Vγ2Vδ2 T-cell-targeted treatment of drug-resistant TB or HIV-related TB.
Collapse
Affiliation(s)
- Crystal Y. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Shuyu Yao
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Herman B. Wells Center for Pediatric Research Indiana University, Indianapolis, Indiana, United States of America
| | - Dan Huang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Huiyong Wei
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | | | - Gucheng Zeng
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Hassan Jomaa
- Institut für Klinische Chemie und Pathobiochemie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Michelle H. Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Richard Wang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Norman Letvin
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Yun Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Liyou Qiu
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Ling Shen
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Zheng W. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
200
|
Deffur A, Mulder NJ, Wilkinson RJ. Co-infection with Mycobacterium tuberculosis and human immunodeficiency virus: an overview and motivation for systems approaches. Pathog Dis 2013; 69:101-13. [PMID: 23821533 DOI: 10.1111/2049-632x.12060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis is a devastating disease that accounts for a high proportion of infectious disease morbidity and mortality worldwide. HIV-1 co-infection exacerbates tuberculosis. Enhanced understanding of the host-pathogen relationship in HIV-1 and Mycobacterium tuberculosis co-infection is required. While reductionist approaches have yielded many valuable insights into disease pathogenesis, systems approaches are required that develop data-driven models able to predict emergent properties of this complex co-infection system in order to develop novel therapeutic approaches and to improve diagnostics. Here, we provide a pathogenesis-focused overview of HIV-TB co-infection followed by an introduction to systems approaches and concrete examples of how such approaches are useful.
Collapse
Affiliation(s)
- Armin Deffur
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | | |
Collapse
|