151
|
Ventura JD. Human Immunodeficiency Virus 1 (HIV-1): Viral Latency, the Reservoir, and the Cure. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:549-560. [PMID: 33005119 PMCID: PMC7513431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An estimated 37 million people globally suffer from Human Immunodeficiency Virus-1 (HIV-1) infection with 1.7 million newly acquired infections occurring on average each year. Although crucial advances in combined antiretroviral therapy (ART) over the last two decades have transformed an HIV-1 diagnosis into a tolerable and controlled condition, enabling over 20 million people living with HIV-1 to enjoy healthy and productive lives, no cure or vaccine yet exists. Developing a successful cure strategy will require a firm understanding of how viral latency is established and how a persistent and long-lived latent is generated. The latent reservoir remains the primary obstacle for cure development and most putative cure strategies proposed fundamentally address its eradication or permanent suppression.
Collapse
Affiliation(s)
- John D. Ventura
- To whom all correspondence should be addressed:
Dr. John D. Ventura, . ORCID iD:
https://orcid.org/0000-0002-4373-3242.
| |
Collapse
|
152
|
Neidleman J, Luo X, Frouard J, Xie G, Hsiao F, Ma T, Morcilla V, Lee A, Telwatte S, Thomas R, Tamaki W, Wheeler B, Hoh R, Somsouk M, Vohra P, Milush J, James KS, Archin NM, Hunt PW, Deeks SG, Yukl SA, Palmer S, Greene WC, Roan NR. Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir. eLife 2020; 9:e60933. [PMID: 32990219 PMCID: PMC7524554 DOI: 10.7554/elife.60933] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
The latent reservoir is a major barrier to HIV cure. As latently infected cells cannot be phenotyped directly, the features of the in vivo reservoir have remained elusive. Here, we describe a method that leverages high-dimensional phenotyping using CyTOF to trace latently infected cells reactivated ex vivo to their original pre-activation states. Our results suggest that, contrary to common assumptions, the reservoir is not randomly distributed among cell subsets, and is remarkably conserved between individuals. However, reservoir composition differs between tissues and blood, as do cells successfully reactivated by different latency reversing agents. By selecting 8-10 of our 39 original CyTOF markers, we were able to isolate highly purified populations of unstimulated in vivo latent cells. These purified populations were highly enriched for replication-competent and intact provirus, transcribed HIV, and displayed clonal expansion. The ability to isolate unstimulated latent cells from infected individuals enables previously impossible studies on HIV persistence.
Collapse
Affiliation(s)
- Jason Neidleman
- Gladstone Institutes, San Francisco, United States
- Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Xiaoyu Luo
- Gladstone Institutes, San Francisco, United States
| | - Julie Frouard
- Gladstone Institutes, San Francisco, United States
- Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Guorui Xie
- Gladstone Institutes, San Francisco, United States
- Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Feng Hsiao
- Gladstone Institutes, San Francisco, United States
- Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Tongcui Ma
- Gladstone Institutes, San Francisco, United States
- Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Vincent Morcilla
- Centre for Virus Research, the Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Ashley Lee
- Centre for Virus Research, the Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Sushama Telwatte
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco, San Francisco, United States
| | | | - Whitney Tamaki
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Benjamin Wheeler
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, San Francisco, United States
| | - Ma Somsouk
- Department of Medicine, Division of Gastroenterology, San Francisco General Hospital and University of California, San Francisco, San Francisco, United States
| | - Poonam Vohra
- Department of Pathology, University of California, San Francisco, San Francisco, United States
| | - Jeffrey Milush
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Katherine Sholtis James
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Nancie M Archin
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Peter W Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, United States
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, San Francisco, United States
| | - Steven A Yukl
- San Francisco Veterans Affairs (VA) Medical Center and University of California, San Francisco, San Francisco, United States
| | - Sarah Palmer
- Centre for Virus Research, the Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Warner C Greene
- Gladstone Institutes, San Francisco, United States
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Nadia R Roan
- Gladstone Institutes, San Francisco, United States
- Department of Urology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
153
|
Ward AR, Mota TM, Jones RB. Immunological approaches to HIV cure. Semin Immunol 2020; 51:101412. [PMID: 32981836 DOI: 10.1016/j.smim.2020.101412] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Combination antiretroviral therapy (ART) to treat human immunodeficiency virus (HIV) infection has proven remarkably successful - for those who can access and afford it - yet HIV infection persists indefinitely in a reservoir of cells, despite effective ART and despite host antiviral immune responses. An HIV cure is therefore the next aspirational goal and challenge, though approaches differ in their objectives - with 'functional cures' aiming for durable viral control in the absence of ART, and 'sterilizing cures' aiming for the more difficult to realize objective of complete viral eradication. Mechanisms of HIV persistence, including viral latency, anatomical sequestration, suboptimal immune functioning, reservoir replenishment, target cell-intrinsic immune resistance, and, potentially, target cell distraction of immune effectors, likely need to be overcome in order to achieve a cure. A small fraction of people living with HIV (PLWH) naturally control infection via immune-mediated mechanisms, however, providing both sound rationale and optimism that an immunological approach to cure is possible. Herein we review up to date knowledge and emerging evidence on: the mechanisms contributing to HIV persistence, as well as potential strategies to overcome these barriers; promising immunological approaches to achieve viral control and elimination of reservoir-harboring cells, including harnessing adaptive immune responses to HIV and engineered therapies, as well as enhancers of their functions and of complementary innate immune functioning; and combination strategies that are most likely to succeed. Ultimately, a cure must be safe, effective, durable, and, eventually, scalable in order to be widely acceptable and available.
Collapse
Affiliation(s)
- Adam R Ward
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; PhD Program in Epidemiology, The George Washington University, Washington, DC, USA
| | - Talia M Mota
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - R Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
154
|
CBF-1 Promotes the Establishment and Maintenance of HIV Latency by Recruiting Polycomb Repressive Complexes, PRC1 and PRC2, at HIV LTR. Viruses 2020; 12:v12091040. [PMID: 32961937 PMCID: PMC7551090 DOI: 10.3390/v12091040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
The C-promoter binding factor-1 (CBF-1) is a potent and specific inhibitor of the human immunodeficiency virus (HIV)-1 LTR promoter. Here, we demonstrate that the knockdown of endogenous CBF-1 in latently infected primary CD4+ T cells, using specific small hairpin RNAs (shRNA), resulted in the reactivation of latent HIV proviruses. Chromatin immunoprecipitation (ChIP) assays using latently infected primary T cells and Jurkat T-cell lines demonstrated that CBF-1 induces the establishment and maintenance of HIV latency by recruiting polycomb group (PcG/PRC) corepressor complexes or polycomb repressive complexes 1 and 2 (PRC1 and PRC2). Knockdown of CBF-1 resulted in the dissociation of PRCs corepressor complexes enhancing the recruitment of RNA polymerase II (RNAP II) at HIV LTR. Knockdown of certain components of PRC1 and PRC2 also led to the reactivation of latent proviruses. Similarly, the treatment of latently infected primary CD4+ T cells with the PRC2/EZH2 inhibitor, 3-deazaneplanocin A (DZNep), led to their reactivation.
Collapse
|
155
|
Abrahams MR, Joseph SB, Garrett N, Tyers L, Moeser M, Archin N, Council OD, Matten D, Zhou S, Doolabh D, Anthony C, Goonetilleke N, Karim SA, Margolis DM, Pond SK, Williamson C, Swanstrom R. The replication-competent HIV-1 latent reservoir is primarily established near the time of therapy initiation. Sci Transl Med 2020; 11:11/513/eaaw5589. [PMID: 31597754 DOI: 10.1126/scitranslmed.aaw5589] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
Although antiretroviral therapy (ART) is highly effective at suppressing HIV-1 replication, the virus persists as a latent reservoir in resting CD4+ T cells during therapy. This reservoir forms even when ART is initiated early after infection, but the dynamics of its formation are largely unknown. The viral reservoirs of individuals who initiate ART during chronic infection are generally larger and genetically more diverse than those of individuals who initiate therapy during acute infection, consistent with the hypothesis that the reservoir is formed continuously throughout untreated infection. To determine when viruses enter the latent reservoir, we compared sequences of replication-competent viruses from resting peripheral CD4+ T cells from nine HIV-positive women on therapy to viral sequences circulating in blood collected longitudinally before therapy. We found that, on average, 71% of the unique viruses induced from the post-therapy latent reservoir were most genetically similar to viruses replicating just before ART initiation. This proportion is far greater than would be expected if the reservoir formed continuously and was always long lived. We conclude that ART alters the host environment in a way that allows the formation or stabilization of most of the long-lived latent HIV-1 reservoir, which points to new strategies targeted at limiting the formation of the reservoir around the time of therapy initiation.
Collapse
Affiliation(s)
- Melissa-Rose Abrahams
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Sarah B Joseph
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu- Natal, Durban 4013, South Africa
| | - Lynn Tyers
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Matthew Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nancie Archin
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olivia D Council
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David Matten
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deelan Doolabh
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Colin Anthony
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu- Natal, Durban 4013, South Africa.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sergei Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa. .,National Health Laboratory Services of South Africa, University of Cape Town, Cape Town 7925, South Africa
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
156
|
Olwenyi OA, Acharya A, Routhu NK, Pierzchalski K, Jones JW, Kane MA, Sidell N, Mohan M, Byrareddy SN. Retinoic Acid Improves the Recovery of Replication-Competent Virus from Latent SIV Infected Cells. Cells 2020; 9:E2076. [PMID: 32932813 PMCID: PMC7565696 DOI: 10.3390/cells9092076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022] Open
Abstract
The accurate estimation and eradication of Human Immunodeficiency Virus (HIV) viral reservoirs is limited by the incomplete reactivation of cells harboring the latent replication-competent virus. We investigated whether the in vitro and in vivo addition of retinoic acid (RA) enhances virus replication and improves the detection of latent virus. Peripheral blood mononuclear cells (PBMCs) from naive and anti-retroviral therapy (ART)-treated SIV-infected rhesus macaques (RMs) were cultured in vitro with anti-CD3/CD28 + IL-2 in the presence/absence of RA. Viral RNA and p27 levels were quantified using RT-qPCR and ELISA, respectively. Viral reservoirs were estimated using the Tat/Rev-Induced Limited Dilution Assay (TILDA) and Quantitative Viral Outgrowth Assay (QVOA). In vitro and in vivo measures revealed that there was also an increase in viral replication in RA-treated versus without RA conditions. In parallel, the addition of RA to either CD3/CD28 or phorbol myristate acetate (PMA)/ionomycin during QVOA and TILDA, respectively, was shown to augment reactivation of the replication-competent viral reservoir in anti-retroviral therapy (ART)-suppressed RMs as shown by a greater than 2.3-fold increase for QVOA and 1 to 2-fold increments for multi-spliced RNA per million CD4+ T cells. The use of RA can be a useful approach to enhance the efficiency of current protocols used for in vitro and potentially in vivo estimates of CD4+ T cell latent reservoirs. In addition, flow cytometry analysis revealed that RA improved estimates of various viral reservoir assays by eliciting broad CD4 T-cell activation as demonstrated by elevated CD25 and CD38 but reduced CD69 and PD-1 expressing cells.
Collapse
Affiliation(s)
- Omalla A. Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
| | - Nanda Kishore Routhu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
| | - Keely Pierzchalski
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.P.); (J.W.J.); (M.A.K.)
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.P.); (J.W.J.); (M.A.K.)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.P.); (J.W.J.); (M.A.K.)
| | - Neil Sidell
- Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Mahesh Mohan
- Texas Biomedical Research Institute, Southwest National Primate Research Institute, San Antonio, TX 78227, USA;
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| |
Collapse
|
157
|
Mann JFS, Pankrac J, Klein K, McKay PF, King DFL, Gibson R, Wijewardhana CN, Pawa R, Meyerowitz J, Gao Y, Canaday DH, Avino M, Poon AFY, Foster C, Fidler S, Shattock RJ, Arts EJ. A targeted reactivation of latent HIV-1 using an activator vector in patient samples from acute infection. EBioMedicine 2020; 59:102853. [PMID: 32654992 PMCID: PMC7502668 DOI: 10.1016/j.ebiom.2020.102853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During combined anti-retroviral treatment, a latent HIV reservoir persists within resting memory CD4 T cells that initiates viral recrudescence upon treatment interruption. Strategies for HIV-1 cure have largely focused on latency reversing agents (LRAs) capable of reactivating and eliminating this viral reservoir. Previously investigated LRAs have largely failed to achieve a robust latency reversal sufficient for reduction of latent HIV pool or the potential of virus-free remission in the absence of treatment. METHODS We utilize a polyvalent virus-like particle (VLP) formulation called Activator Vector (ACT-VEC) to 'shock' provirus into transcriptional activity. Ex vivo co-culture experiments were used to evaluate the efficacy of ACT-VEC in relation to other LRAs in individuals diagnosed and treated during the acute stage of infection. IFN-γ ELISpot, qRT-PCR and Illumina MiSeq were used to evaluate antigenicity, latency reversal, and diversity of induced virus respectively. FINDINGS Using samples from HIV+ patients diagnosed and treated at acute/early infection, we demonstrate that ACT-VEC can reverse latency in HIV infected CD4 T cells to a greater extent than other major recall antigens as stimuli or even mitogens such as PMA/Iono. Furthermore, ACT-VEC activates more latent HIV-1 than clinically tested HDAC inhibitors or protein kinase C agonists. INTERPRETATION Taken together, these results show that ACT-VEC can induce HIV reactivation from latently infected CD4 T cells collected from participants on first line combined antiretroviral therapy for at least two years after being diagnosed and treated at acute/early stage of infection. These findings could provide guidance to possible targeted cure strategies and treatments. FUNDING NIH and CIHR.
Collapse
Affiliation(s)
- Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Joshua Pankrac
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Katja Klein
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Paul F McKay
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London W2 1PG, UK
| | - Deborah F L King
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London W2 1PG, UK
| | - Richard Gibson
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Chanuka N Wijewardhana
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rahul Pawa
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Jodi Meyerowitz
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, John Radcliffe Hospital, Oxford OX1 3SY, UK
| | - Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - David H Canaday
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Mariano Avino
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Art F Y Poon
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Caroline Foster
- The 900 Clinic, Jefferies Wing, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Sarah Fidler
- Department of Medicine, Imperial College London, London, UK
| | - Robin J Shattock
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London W2 1PG, UK
| | - Eric J Arts
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
158
|
Abdel-Mohsen M, Richman D, Siliciano RF, Nussenzweig MC, Howell BJ, Martinez-Picado J, Chomont N, Bar KJ, Yu XG, Lichterfeld M, Alcami J, Hazuda D, Bushman F, Siliciano JD, Betts MR, Spivak AM, Planelles V, Hahn BH, Smith DM, Ho YC, Buzon MJ, Gaebler C, Paiardini M, Li Q, Estes JD, Hope TJ, Kostman J, Mounzer K, Caskey M, Fox L, Frank I, Riley JL, Tebas P, Montaner LJ. Recommendations for measuring HIV reservoir size in cure-directed clinical trials. Nat Med 2020; 26:1339-1350. [PMID: 32895573 PMCID: PMC7703694 DOI: 10.1038/s41591-020-1022-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022]
Abstract
Therapeutic strategies are being clinically tested either to eradicate latent HIV reservoirs or to achieve virologic control in the absence of antiretroviral therapy. Attaining this goal will require a consensus on how best to measure the numbers of persistently infected cells with the potential to cause viral rebound after antiretroviral-therapy cessation in assessing the results of cure-directed strategies in vivo. Current measurements assess various aspects of the HIV provirus and its functionality and produce divergent results. Here, we provide recommendations from the BEAT-HIV Martin Delaney Collaboratory on which viral measurements should be prioritized in HIV-cure-directed clinical trials.
Collapse
Affiliation(s)
| | - Douglas Richman
- VA San Diego Healthcare System and University of California, San Diego, CA, USA
| | | | | | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | | | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid and Infectious Diseases Unit, IBIDAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | - Davey M Smith
- VA San Diego Healthcare System and University of California, San Diego, CA, USA
| | - Ya-Chi Ho
- Yale School of Medicine, New Haven, CT, USA
| | - Maria J Buzon
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid and Infectious Diseases Unit, IBIDAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Qingsheng Li
- School of Biological Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health and Science University (OHSU), Beaverton, OR, USA
| | | | - Jay Kostman
- Jonathan Lax Center, Philadelphia FIGHT, Philadelphia, PA, USA
| | - Karam Mounzer
- Jonathan Lax Center, Philadelphia FIGHT, Philadelphia, PA, USA
| | | | - Lawrence Fox
- Division of AIDS, NIAID, NIH, North Bethesda, MD, USA
| | - Ian Frank
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Pablo Tebas
- University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
159
|
Cells producing residual viremia during antiretroviral treatment appear to contribute to rebound viremia following interruption of treatment. PLoS Pathog 2020; 16:e1008791. [PMID: 32841299 PMCID: PMC7473585 DOI: 10.1371/journal.ppat.1008791] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/04/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
During antiretroviral therapy (ART) that suppresses HIV replication to below the limit-of-quantification, virions produced during ART can be detected at low frequencies in the plasma, termed residual viremia (RV). We hypothesized that a reservoir of HIV-infected cells actively produce and release virions during ART that are potentially infectious, and that following ART-interruption, these virions can complete full-cycles of replication and contribute to rebound viremia. Therefore, we studied the dynamics of RV sequence variants in 3 participants who initiated ART after ~3 years of infection and were ART-suppressed for >6 years prior to self-initiated ART-interruptions. Longitudinal RV C2V5env sequences were compared to sequences from pre-ART plasma, supernatants of quantitative viral outgrowth assays (QVOA) of cells collected during ART, post-ART-interruption plasma, and ART-re-suppression plasma. Identical, “putatively clonal,” RV sequences comprised 8–84% of sequences from each timepoint. The majority of RV sequences were genetically similar to those from plasma collected just prior to ART-initiation, but as the duration of ART-suppression increased, an increasing proportion of RV variants were similar to sequences from earlier in infection. Identical sequences were detected in RV over a median of 3 years (range: 0.3–8.2) of ART-suppression. RV sequences were identical to pre-ART plasma viruses (5%), infectious viruses induced in QVOA (4%) and rebound viruses (5%) (total n = 21/154 (14%) across the 3 participants). RV sequences identical to ART-interruption “rebound” sequences were detected 0.1–7.4 years prior to ART-interruption. RV variant prevalence and persistence were not associated with detection of the variant among rebound sequences. Shortly after ART-re-suppression, variants that had been replicating during ART-interruptions were detected as RV (n = 5). These studies show a dynamic, virion-producing HIV reservoir that contributes to rekindling infection upon ART-interruption. The persistence of identical RV variants over years suggests that a subpopulation of HIV-infected clones frequently or continuously produce virions that may resist immune clearance; this suggests that cure strategies should target this active as well as latent reservoirs. HIV-infected individuals receiving effective antiretroviral treatment (ART) produce virions detected in the blood at very low levels, termed residual viremia (RV). To understand the significance of RV as related to the persistence of HIV infection, we characterized the dynamics of RV sequence variants among plasma viruses over nearly a decade of ART and assessed whether RV contributed to rekindling viremia upon ART-interruption. The HIV reservoir producing RV appeared to be “seeded” at various times before ART-initiation. Identical RV sequences likely produced by a clonal cell population, varied over time, with unique sequence variants persisting over a median of 3 years. A subset of RV variants (14%) were identical to viruses found in pre-ART plasma, infectious viruses induced from cultured CD4+ T blood lymphocytes collected during ART, or in rebound plasma during ART-interruption. The persistence of unique RV variants over years, infers that the clones of HIV-infected cells producing these virions resist immune clearance or a subset of these clones are activated on a rolling basis, and that novel treatment strategies are needed to target this active reservoir that contributes to viral rebound.
Collapse
|
160
|
Vigón L, Rodríguez-Mora S, Luna A, Sandonís V, Mateos E, Bautista G, Steegmann JL, Climent N, Plana M, Pérez-Romero P, de Ory F, Alcamí J, García-Gutierrez V, Planelles V, López-Huertas MR, Coiras M. Cytotoxic cell populations developed during treatment with tyrosine kinase inhibitors protect autologous CD4+ T cells from HIV-1 infection. Biochem Pharmacol 2020; 182:114203. [PMID: 32828803 DOI: 10.1016/j.bcp.2020.114203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are successfully used in clinic to treat chronic myeloid leukemia (CML). Our group previously described that CD4+ T cells from patients with CML on treatment with TKIs such as dasatinib were resistant to HIV-1 infection ex vivo. The main mechanism for this antiviral activity was primarily based on the inhibition of SAMHD1 phosphorylation, which preserves the activity against HIV-1 of this innate immune factor. Approximately 50% CML patients who achieved a deep molecular response (DMR) may safely withdraw TKI treatment without molecular recurrence. Therefore, it has been speculated that TKIs may induce a potent antileukemic response that is maintained in most patients even one year after treatment interruption (TI). Subsequent to in vitro T-cell activation, we observed that SAMHD1 was phosphorylated in CD4+ T cells from CML patients who withdrew TKI treatment more than one year earlier, which indicated that these cells were now susceptible to HIV-1 infection. Importantly, these patients were seronegative for HIV-1 and seropositive for cytomegalovirus (CMV), but without CMV viremia. Although activated CD4+ T cells from CML patients on TI were apparently permissive to HIV-1 infection ex vivo, the frequency of proviral integration was reduced more than 12-fold on average when these cells were infected ex vivo in comparison with cells isolated from untreated, healthy donors. This reduced susceptibility to infection could be related to an enhanced NK-dependent cytotoxic activity, which was increased 8-fold on average when CD4+ T cells were infected ex vivo with HIV-1 in the presence of autologous NK cells. Enhanced cytotoxic activity was also observed in CD8 + T cells from these patients, which showed 8-fold increased expression of TCRγδ and more than 18-fold increased production of IFNγ upon activation with CMV peptides. In conclusion, treatment with TKIs induced a potent antileukemic response that may also have antiviral effects against HIV-1 and CMV, suggesting that transient use of TKIs in HIV-infected patients could develop a sustained antiviral response that would potentially interfere with HIV-1 reservoir dynamics.
Collapse
Affiliation(s)
- Lorena Vigón
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sara Rodríguez-Mora
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alejandro Luna
- Clinical Hematology Service, Hospital Universitario Ramón y Cajal, YRICIS, Madrid, Spain
| | - Virginia Sandonís
- Viral Isolation and Detection, CIBER Epidemiology and Public Health (CNM, ISCIII), Madrid, Spain
| | - Elena Mateos
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Guiomar Bautista
- Clinical Hematology Service, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Juan Luis Steegmann
- Hematology and Hemotherapy Service, Hospital Universitario de La Princesa, Madrid, Spain
| | - Nuria Climent
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Montserrat Plana
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Pilar Pérez-Romero
- Viral Isolation and Detection, CIBER Epidemiology and Public Health (CNM, ISCIII), Madrid, Spain
| | - Fernando de Ory
- Serology Service, CIBER Epidemiology and Public Health (CNM, ISCIII), Madrid, Spain
| | - José Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Vicente Planelles
- Microbiology and Immunology Lab, University of Utah, Salt Lake City, USA
| | - María Rosa López-Huertas
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Mayte Coiras
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
161
|
Gantner P, Pagliuzza A, Pardons M, Ramgopal M, Routy JP, Fromentin R, Chomont N. Single-cell TCR sequencing reveals phenotypically diverse clonally expanded cells harboring inducible HIV proviruses during ART. Nat Commun 2020; 11:4089. [PMID: 32796830 PMCID: PMC7427996 DOI: 10.1038/s41467-020-17898-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022] Open
Abstract
Clonal expansions occur in the persistent HIV reservoir as shown by the duplication of proviral integration sites. However, the source of the proliferation of HIV-infected cells remains unclear. Here, we analyze the TCR repertoire of single HIV-infected cells harboring translation-competent proviruses in longitudinal samples from eight individuals on antiretroviral therapy (ART). When compared to uninfected cells, the TCR repertoire of reservoir cells is heavily biased: expanded clonotypes are present in all individuals, account for the majority of reservoir cells and are often maintained over time on ART. Infected T cell clones are detected at low frequencies in the long-lived central memory compartment and overrepresented in the most differentiated memory subsets. Our results indicate that clonal expansions highly contribute to the persistence of the HIV reservoir and suggest that reservoir cells displaying a differentiated phenotype are the progeny of infected central memory cells undergoing antigen-driven clonal expansion during ART. The cause of clonal expansions in the HIV reservoir remains unclear. Here, Gantner et al. perform single-cell TCR sequencing on longitudinal samples from eight individuals on antiretroviral therapy and find that antigens inducing clonal expansions of memory cells are major contributors to the HIV reservoir.
Collapse
Affiliation(s)
- Pierre Gantner
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Amélie Pagliuzza
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Marion Pardons
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Moti Ramgopal
- Midway Immunology & Research Center, Fort Pierce, FL, USA
| | - Jean-Pierre Routy
- Division of Hematology & Chronic Viral Illness Service, McGill University Heath Centre, Montreal, QC, Canada
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada. .,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
162
|
Stuelke EL, James KS, Kirchherr JL, Allard B, Baker C, Kuruc JD, Gay CL, Margolis DM, Archin NM. Measuring the Inducible, Replication-Competent HIV Reservoir Using an Ultra-Sensitive p24 Readout, the Digital ELISA Viral Outgrowth Assay. Front Immunol 2020; 11:1971. [PMID: 32849659 PMCID: PMC7423995 DOI: 10.3389/fimmu.2020.01971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Quantifying the inducible HIV reservoir provides an estimate of the frequency of quiescent HIV-infected cells in humans as well as in animal models, and can help ascertain the efficacy of latency reversing agents (LRAs). The quantitative viral outgrowth assay (QVOA) is used to measure inducible, replication competent HIV and generate estimations of reservoir size. However, traditional QVOA is time and labor intensive and requires large amounts of lymphocytes. Given the importance of reproducible and accurate assessment of both reservoir size and LRA activity in cure strategies, efforts to streamline the QVOA are of high priority. We developed a modified QVOA, the Digital ELISA Viral Outgrowth or DEVO assay, with ultra-sensitive p24 readout, capable of femtogram detection of HIV p24 protein in contrast to the picogram limitations of traditional ELISA. For each DEVO assay, 8–12 × 106 resting CD4 + T cells from aviremic, ART-treated HIV + participants are plated in limiting dilution and maximally stimulated with PHA, IL-2 and uninfected allogeneic irradiated PBMC. CD8-depleted PHA blasts from an uninfected donor or HIV-permissive cells (e.g., Molt4/CCR5) are added to the cultures and virus allowed to amplify for 8–12 days. HIV p24 from culture supernatant is measured at day 8 by Simoa (single molecule array, ultra-sensitive p24 assay) confirmed at day 12, and infectious units per million CD4 + T cells (IUPM) are calculated using the maximum likelihood method. In all DEVO assays performed, HIV p24 was detected in the supernatant of cultures as early as 8 days post stimulation. Importantly, DEVO IUPM values at day 8 were comparable or higher than traditional QVOA IUPM values obtained at day 15. Interestingly, DEVO IUPM values were similar with or without the addition of allogeneic CD8-depleted target PHA blasts or HIV permissive cells traditionally used to expand virus. The DEVO assay uses fewer resting CD4 + T cells and provides an assessment of reservoir size in less time than standard QVOA. This assay offers a new platform to quantify replication competent HIV during limited cell availability. Other potential applications include evaluating LRA activity, and measuring clearance of infected cells during latency clearance assays.
Collapse
Affiliation(s)
- Erin L Stuelke
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States
| | - Katherine S James
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States
| | - Jennifer L Kirchherr
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States
| | - Brigitte Allard
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States
| | - Caroline Baker
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States
| | - Joann D Kuruc
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States.,Department of Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Cindy L Gay
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States.,Department of Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - David M Margolis
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States.,Department of Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States.,Department of Epidemiology, UNC Chapel Hill School of Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nancie M Archin
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States.,Department of Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
163
|
Simonetti FR, White JA, Tumiotto C, Ritter KD, Cai M, Gandhi RT, Deeks SG, Howell BJ, Montaner LJ, Blankson JN, Martin A, Laird GM, Siliciano RF, Mellors JW, Siliciano JD. Intact proviral DNA assay analysis of large cohorts of people with HIV provides a benchmark for the frequency and composition of persistent proviral DNA. Proc Natl Acad Sci U S A 2020; 117:18692-18700. [PMID: 32690683 PMCID: PMC7414172 DOI: 10.1073/pnas.2006816117] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A scalable approach for quantifying intact HIV-1 proviruses is critical for basic research and clinical trials directed at HIV-1 cure. The intact proviral DNA assay (IPDA) is a novel approach to characterizing the HIV-1 reservoir, focusing on the genetic integrity of individual proviruses independent of transcriptional status. It uses multiplex digital droplet PCR to distinguish and separately quantify intact proviruses, defined by a lack of overt fatal defects such as large deletions and APOBEC3G-mediated hypermutation, from the majority of proviruses that have such defects. This distinction is important because only intact proviruses cause viral rebound on ART interruption. To evaluate IPDA performance and provide benchmark data to support its implementation, we analyzed peripheral blood samples from 400 HIV-1+ adults on ART from several diverse cohorts, representing a robust sample of treated HIV-1 infection in the United States. We provide direct quantitative evidence that defective proviruses greatly outnumber intact proviruses (by >12.5 fold). However, intact proviruses are present at substantially higher frequencies (median, 54/106 CD4+ T cells) than proviruses detected by the quantitative viral outgrowth assay, which requires induction and in vitro growth (∼1/106 CD4+ T cells). IPDA amplicon signal issues resulting from sequence polymorphisms were observed in only 6.3% of individuals and were readily apparent and easily distinguished from low proviral frequency, an advantage of the IPDA over standard PCR assays which generate false-negative results in such situations. The large IPDA dataset provided here gives the clearest quantitative picture to date of HIV-1 proviral persistence on ART.
Collapse
Affiliation(s)
- Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jennifer A White
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Camille Tumiotto
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Mian Cai
- AccelevirDx, Baltimore, MD 21205
| | - Rajesh T Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA 94118
| | | | | | - Joel N Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- HHMI, Baltimore, MD 21205
| | - John W Mellors
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA 15260
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
164
|
Chung CH, Allen AG, Atkins AJ, Sullivan NT, Homan G, Costello R, Madrid R, Nonnemacher MR, Dampier W, Wigdahl B. Safe CRISPR-Cas9 Inhibition of HIV-1 with High Specificity and Broad-Spectrum Activity by Targeting LTR NF-κB Binding Sites. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:965-982. [PMID: 32818921 PMCID: PMC7452136 DOI: 10.1016/j.omtn.2020.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022]
Abstract
Viral latency of human immunodeficiency virus type 1 (HIV-1) has become a major hurdle to a cure in the highly effective antiretroviral therapy (ART) era. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has successfully been demonstrated to excise or inactivate integrated HIV-1 provirus from infected cells by targeting the long terminal repeat (LTR) region. However, the guide RNAs (gRNAs) have classically avoided transcription factor binding sites (TFBSs) that are readily observed and known to be important in human promoters. Although conventionally thought unfavorable due to potential impact on human promoters, our computational pipeline identified gRNA sequences that were predicted to inactivate HIV-1 transcription by targeting the nuclear factor κB (NF-κB) binding sites (gNFKB0, gNFKB1) with a high safety profile (lack of predicted or observed human edits) and broad-spectrum activity (predicted coverage of known viral sequences). Genome-wide, unbiased identification of double strand breaks (DSBs) enabled by sequencing (GUIDE-seq) showed that the gRNAs targeting NF-κB binding sites had no detectable CRISPR-induced off-target edits in HeLa cells. 5′ LTR-driven HIV-1 transcription was significantly reduced in three HIV-1 reporter cell lines. These results demonstrate a working model to specifically target well-known TFBSs in the HIV-1 LTR that are readily observed in human promoters to reduce HIV-1 transcription with a high-level safety profile and broad-spectrum activity.
Collapse
Affiliation(s)
- Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Alexander G Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Andrew J Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Neil T Sullivan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Greg Homan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Robert Costello
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Rebekah Madrid
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
165
|
Abstract
Although antiretroviral therapies (ARTs) potently inhibit HIV replication, they do not eradicate the virus. HIV persists in cellular and anatomical reservoirs that show minimal decay during ART. A large number of studies conducted during the past 20 years have shown that HIV persists in a small pool of cells harboring integrated and replication-competent viral genomes. The majority of these cells do not produce viral particles and constitute what is referred to as the latent reservoir of HIV infection. Therefore, although HIV is not considered as a typical latent virus, it can establish a state of nonproductive infection under rare circumstances, particularly in memory CD4+ T cells, which represent the main barrier to HIV eradication. While it was originally thought that the pool of latently infected cells was largely composed of cells harboring transcriptionally silent genomes, recent evidence indicates that several blocks contribute to the nonproductive state of these cells. Here, we describe the virological and immunological factors that play a role in the establishment and persistence of the pool of latently infected cells and review the current approaches aimed at eliminating the latent HIV reservoir.
Collapse
Affiliation(s)
| | - Pierre Gantner
- Department of Microbiology, Infectiology and Immunology and
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology and
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
166
|
Antar AA, Jenike KM, Jang S, Rigau DN, Reeves DB, Hoh R, Krone MR, Keruly JC, Moore RD, Schiffer JT, Nonyane BA, Hecht FM, Deeks SG, Siliciano JD, Ho YC, Siliciano RF. Longitudinal study reveals HIV-1-infected CD4+ T cell dynamics during long-term antiretroviral therapy. J Clin Invest 2020; 130:3543-3559. [PMID: 32191639 PMCID: PMC7324206 DOI: 10.1172/jci135953] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
Proliferation of CD4+ T cells harboring HIV-1 proviruses is a major contributor to viral persistence in people on antiretroviral therapy (ART). To determine whether differential rates of clonal proliferation or HIV-1-specific cytotoxic T lymphocyte (CTL) pressure shape the provirus landscape, we performed an intact proviral DNA assay (IPDA) and obtained 661 near-full-length provirus sequences from 8 individuals with suppressed viral loads on ART at time points 7 years apart. We observed slow decay of intact proviruses but no changes in the proportions of various types of defective proviruses. The proportion of intact proviruses in expanded clones was similar to that of defective proviruses in clones. Intact proviruses observed in clones did not have more escaped CTL epitopes than intact proviruses observed as singlets. Concordantly, total proviruses at later time points or observed in clones were not enriched in escaped or unrecognized epitopes. Three individuals with natural control of HIV-1 infection (controllers) on ART, included because controllers have strong HIV-1-specific CTL responses, had a smaller proportion of intact proviruses but a distribution of defective provirus types and escaped or unrecognized epitopes similar to that of the other individuals. This work suggests that CTL selection does not significantly check clonal proliferation of infected cells or greatly alter the provirus landscape in people on ART.
Collapse
Affiliation(s)
- Annukka A.R. Antar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katharine M. Jenike
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sunyoung Jang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Danielle N. Rigau
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel B. Reeves
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Melissa R. Krone
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Jeanne C. Keruly
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard D. Moore
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Bareng A.S. Nonyane
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ya-Chi Ho
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Baltimore, Maryland, USA
| |
Collapse
|
167
|
Grossman Z, Singh NJ, Simonetti FR, Lederman MM, Douek DC, Deeks SG. 'Rinse and Replace': Boosting T Cell Turnover To Reduce HIV-1 Reservoirs. Trends Immunol 2020; 41:466-480. [PMID: 32414695 DOI: 10.1016/j.it.2020.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
Latent HIV-1 persists indefinitely during antiretroviral therapy (ART) as an integrated silent genome in long-lived memory CD4+ T cells. In untreated infections, immune activation increases the turnover of intrinsically long-lived provirus-containing CD4+ T cells. Those are 'washed out' as a result of their activation, which when coupled to viral protein expression can facilitate local inflammation and recruitment of uninfected cells to activation sites, causing latently infected cells to compete for survival. De novo infection can counter this washout. During ART, inflammation and CD4+ T cell activation wane, resulting in reduced cell turnover and a persistent reservoir. We propose accelerating reservoir washout during ART by triggering sequential waves of polyclonal CD4+ T cell activation while simultaneously enhancing virus protein expression. Reservoir reduction as an adjunct to other therapies might achieve lifelong viral control.
Collapse
Affiliation(s)
- Zvi Grossman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- 'L. Sacco' Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
168
|
Kariuki SM, Selhorst P, Anthony C, Matten D, Abrahams MR, Martin DP, Ariën KK, Rebe K, Williamson C, Dorfman JR. Compartmentalization and Clonal Amplification of HIV-1 in the Male Genital Tract Characterized Using Next-Generation Sequencing. J Virol 2020; 94:e00229-20. [PMID: 32269124 PMCID: PMC7307092 DOI: 10.1128/jvi.00229-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Compartmentalization of HIV-1 between the systemic circulation and the male genital tract may have a substantial impact on which viruses are available for sexual transmission to new hosts. We studied compartmentalization and clonal amplification of HIV-1 populations between the blood and the genital tract from 10 antiretroviral-naive men using Illumina MiSeq with a PrimerID approach. We found evidence of some degree of compartmentalization in every study participant, unlike previous studies, which collectively showed that only ∼50% of analyzed individuals exhibited compartmentalization of HIV-1 lineages between the male genital tract (MGT) and blood. Using down-sampling simulations, we determined that this disparity can be explained by differences in sampling depth in that had we sequenced to a lower depth, we would also have found compartmentalization in only ∼50% of the study participants. For most study participants, phylogenetic trees were rooted in blood, suggesting that the male genital tract reservoir is seeded by incoming variants from the blood. Clonal amplification was observed in all study participants and was a characteristic of both blood and semen viral populations. We also show evidence for independent viral replication in the genital tract in the individual with the most severely compartmentalized HIV-1 populations. The degree of clonal amplification was not obviously associated with the extent of compartmentalization. We were also unable to detect any association between history of sexually transmitted infections and level of HIV-1 compartmentalization. Overall, our findings contribute to a better understanding of the dynamics that affect the composition of virus populations that are available for transmission.IMPORTANCE Within an individual living with HIV-1, factors that restrict the movement of HIV-1 between different compartments-such as between the blood and the male genital tract-could strongly influence which viruses reach sites in the body from which they can be transmitted. Using deep sequencing, we found strong evidence of restricted HIV-1 movements between the blood and genital tract in all 10 men that we studied. We additionally found that neither the degree to which particular genetic variants of HIV-1 proliferate (in blood or genital tract) nor an individual's history of sexually transmitted infections detectably influenced the degree to which virus movements were restricted between the blood and genital tract. Last, we show evidence that viral replication gave rise to a large clonal amplification in semen in a donor with highly compartmentalized HIV-1 populations, raising the possibility that differential selection of HIV-1 variants in the genital tract may occur.
Collapse
Affiliation(s)
- Samuel Mundia Kariuki
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Department of Biological Sciences, School of Science, University of Eldoret, Eldoret, Kenya
| | - Philippe Selhorst
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Colin Anthony
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - David Matten
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Insitute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kevin Rebe
- Anova Health Institute, Cape Town, South Africa
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Carolyn Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Insitute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
169
|
van der Sluis RM, Egedal JH, Jakobsen MR. Plasmacytoid Dendritic Cells as Cell-Based Therapeutics: A Novel Immunotherapy to Treat Human Immunodeficiency Virus Infection? Front Cell Infect Microbiol 2020; 10:249. [PMID: 32528903 PMCID: PMC7264089 DOI: 10.3389/fcimb.2020.00249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) play a critical role in mediating innate and adaptive immune responses. Since their discovery in the late 1970's, DCs have been recognized as the most potent antigen-presenting cells (APCs). DCs have a superior capacity for acquiring, processing, and presenting antigens to T cells and they express costimulatory or coinhibitory molecules that determine immune activation or anergy. For these reasons, cell-based therapeutic approaches using DCs have been explored in cancer and infectious diseases but with limited success. In humans, DCs are divided into heterogeneous subsets with distinct characteristics. Two major subsets are CD11c+ myeloid (m)DCs and CD11c− plasmacytoid (p)DCs. pDCs are different from mDCs and play an essential role in the innate immune system via the production of type I interferons (IFN). However, pDCs are also able to take-up antigens and effectively cross present them. Given the rarity of pDCs in blood and technical difficulties in obtaining them from human blood samples, the understanding of human pDC biology and their potential in immunotherapeutic approaches (e.g. cell-based vaccines) is limited. However, due to the recent advancements in cell culturing systems that allow for the generation of functional pDCs from CD34+ hematopoietic stem and progenitor cells (HSPC), studying pDCs has become easier. In this mini-review, we hypothesize about the use of pDCs as a cell-based therapy to treat HIV by enhancing anti-HIV-immune responses of the adaptive immune system and enhancing the anti-viral responses of the innate immune system. Additionally, we discuss obstacles to overcome before this approach becomes clinically applicable.
Collapse
Affiliation(s)
- Renée M van der Sluis
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
170
|
Shukla A, Ramirez NGP, D’Orso I. HIV-1 Proviral Transcription and Latency in the New Era. Viruses 2020; 12:v12050555. [PMID: 32443452 PMCID: PMC7291205 DOI: 10.3390/v12050555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”.
Collapse
|
171
|
Zhang Y, Planas D, Raymond Marchand L, Massanella M, Chen H, Wacleche VS, Gosselin A, Goulet JP, Filion M, Routy JP, Chomont N, Ancuta P. Improving HIV Outgrowth by Optimizing Cell-Culture Conditions and Supplementing With all-trans Retinoic Acid. Front Microbiol 2020; 11:902. [PMID: 32499767 PMCID: PMC7243435 DOI: 10.3389/fmicb.2020.00902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/16/2020] [Indexed: 01/25/2023] Open
Abstract
The persistence of replication-competent HIV reservoirs in people living with HIV (PLWH) receiving antiretroviral therapy (ART) is a barrier to cure. Therefore, their accurate quantification is essential for evaluating the efficacy of new therapeutic interventions and orienting the decision to interrupt ART. Quantitative viral outgrowth assays (QVOAs) represent the "gold standard" for measuring the size of replication-competent HIV reservoirs. However, they require large numbers of cells and are technically challenging. This justifies the need for the development of novel simplified methods adapted for small biological samples. Herein, we sought to simplify the viral outgrowth procedure (VOP) by (i) using memory CD4+ T-cells, documented to be enriched in HIV reservoirs (ii) optimizing cell-culture conditions, and (iii) supplementing with all-trans retinoic acid (ATRA), a positive regulator of HIV replication. Memory CD4+ T-cells were sorted from the peripheral blood of ART-treated (HIV+ART; n = 14) and untreated (HIV+; n = 5) PLWH. The VOP was first performed with one original replicate of 1 × 106 cells/well in 48-well plates. Cells were stimulated via CD3/CD28 for 3 days, washed to remove residual CD3/CD28 Abs, split every 3 days for optimal cell density, and cultured in the presence or the absence of ATRA for 12 days. Soluble and intracellular HIV-p24 levels were quantified by ELISA and flow cytometry, respectively. Optimal cell-culture density achieved by splitting improved HIV outgrowth detection. ATRA promoted superior/accelerated detection of replication-competent HIV in all HIV+ART individuals tested, including those with low/undetectable viral outgrowth in the absence of ATRA. Finally, this VOP was used to design a simplified ATRA-based QVOA by including 4 and 6 original replicates of 1 × 106 cells/well in 48-well plates and 2 × 105 cells/well in 96-well plates, respectively. Consistently, the number of infectious units per million cells (IUPM) was significantly increased in the presence of ATRA. In conclusion, we demonstrate that memory CD4+ T-cell splitting for optimal density in culture and ATRA supplementation significantly improved the efficacy of HIV outgrowth in a simplified ATRA-based QVOA performed in the absence of feeder/target cells or indicator cell lines.
Collapse
Affiliation(s)
- Yuwei Zhang
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.,Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| | - Delphine Planas
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.,Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| | | | - Marta Massanella
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.,Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| | - Huicheng Chen
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.,Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| | - Vanessa Sue Wacleche
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.,Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| | - Annie Gosselin
- Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| | | | | | | | - Nicolas Chomont
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.,Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| | - Petronela Ancuta
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada.,Centre hospitalier de l'Université de Montréal (CHUM)-Research Centre, Montreal, QC, Canada
| |
Collapse
|
172
|
Di Sante L, Costantini A, Caucci S, Corsi A, Brescini L, Menzo S, Bagnarelli P. Quantification of the HIV-1 total reservoir in the peripheral blood of naïve and treated patients by a standardised method derived from a commercial HIV-1 RNA quantification assay. Clin Chem Lab Med 2020; 59:609-617. [PMID: 33326413 DOI: 10.1515/cclm-2020-0142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/05/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES HIV-1 DNA can persist in host cells, establishing a latent reservoir. This study was aimed to develop an extraction and amplification protocol for HIV-1 DNA quantification by modifying a quantitative commercial assay. METHODS HIV-1 DNA was extracted on an Abbott m2000sp instrument, using an open-mode protocol. Two calibrators, spiked with a plasmid containing HIV-1 genome (103 and 105 cps/mL), were extracted and amplified to generate a master calibration curve. Precision, accuracy, linear dynamic range, limit of quantification (LOQ) and limit of detection (LOD) were determined. A cohort of patients, naïve or chronically infected, was analysed. RESULTS Calibration curve was obtained from 42 replicates of standards (stds); precision was calculated (coefficients of variability [CVs] below 10%); accuracy was higher than 90%. Linearity covered the entire range tested (10-104 copies per reaction), and LOD (95%) was 12 copies per reaction. HIV-1 DNA was significantly higher (p < 0.0001) in drug-naïve (62) than in chronically treated patients (50), and proviral loads correlated with lymphocytes (p = 0.0002) and CD4+ (p < 0.0001) counts only in naïve patients. Both groups displayed a significant inverse correlation between CD4+ nadir and proviral loads. A significant correlation (p < 0.0001) between viraemia and HIV-1 reservoir was disclosed. No significant difference was obtained from the comparison between proviral loads on whole blood and peripheral blood mononuclear cells (PBMCs) from the same patient. CONCLUSIONS The novelty of our approach relies on the selection of appropriate reference standard extracted and amplified as clinical specimens avoiding any underestimation of the reservoir. Results confirm HIV-1 DNA as a marker of disease progression, supporting the relationship between the width of latent reservoir and the immunological status of the patient.
Collapse
Affiliation(s)
- Laura Di Sante
- Department of Molecular and Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Costantini
- Department of Molecular and Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Sara Caucci
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Alice Corsi
- Department of Molecular and Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lucia Brescini
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Stefano Menzo
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Patrizia Bagnarelli
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
173
|
Abstract
PURPOSE OF REVIEW HIV-1 infection is incurable due to the existence of latent reservoirs that persist in the face of cART. In this review, we describe the existence of multiple HIV-1 reservoirs, the mechanisms that support their persistence, and the potential use of tyrosine kinase inhibitors (TKIs) to block several pathogenic processes secondary to HIV-1 infection. RECENT FINDINGS Dasatinib interferes in vitro with HIV-1 persistence by two independent mechanisms. First, dasatinib blocks infection and potential expansion of the latent reservoir by interfering with the inactivating phosphorylation of SAMHD1. Secondly, dasatinib inhibits the homeostatic proliferation induced by γc-cytokines. Since homeostatic proliferation is thought to be the main mechanism behind the maintenance of the latent reservoir, we propose that blocking this process will gradually reduce the size of the reservoir. TKIs together with cART will interfere with HIV-1 latent reservoir persistence, favoring the prospect for viral eradication.
Collapse
|
174
|
Mota TM, McCann CD, Danesh A, Huang SH, Magat DB, Ren Y, Leyre L, Bui TD, Rohwetter TM, Kovacs CM, Benko E, MacLaren L, Wimpelberg A, Cannon CM, Hardy WD, Safrit JT, Jones RB. Integrated Assessment of Viral Transcription, Antigen Presentation, and CD8 + T Cell Function Reveals Multiple Limitations of Class I-Selective Histone Deacetylase Inhibitors during HIV-1 Latency Reversal. J Virol 2020; 94:e01845-19. [PMID: 32051267 PMCID: PMC7163115 DOI: 10.1128/jvi.01845-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Clinical trials investigating histone deacetylase inhibitors (HDACi) to reverse HIV-1 latency aim to expose reservoirs in antiretroviral (ARV)-treated individuals to clearance by immune effectors, yet have not driven measurable reductions in the frequencies of infected cells. We therefore investigated the effects of the class I-selective HDACi nanatinostat and romidepsin on various blocks to latency reversal and elimination, including viral splicing, antigen presentation, and CD8+ T cell function. In ex vivo CD4+ T cells from ARV-suppressed individuals, both HDACi significantly induced viral transcription, but not splicing nor supernatant HIV-1 RNA. In an HIV-1 latency model using autologous CD8+ T cell clones as biosensors of antigen presentation, neither HDACi-treated CD4+ T cell condition induced clone degranulation. Both HDACi also impaired the function of primary CD8+ T cells in viral inhibition assays, with nanatinostat causing less impairment. These findings suggest that spliced or cell-free HIV-1 RNAs are more indicative of antigen expression than unspliced HIV-RNAs and may help to explain the limited abilities of HDACi to generate CD8+ T cell targets in vivoIMPORTANCE Antiretroviral (ARV) drug regimens suppress HIV-1 replication but are unable to cure infection. This leaves people living with HIV-1 burdened by a lifelong commitment to expensive daily medication. Furthermore, it has become clear that ARV therapy does not fully restore health, leaving individuals at elevated risk for cardiovascular disease, certain types of cancers, and neurocognitive disorders, as well as leaving them exposed to stigma. Efforts are therefore under way to develop therapies capable of curing infection. A key focus of these efforts has been on a class of drugs called histone deacetylase inhibitors (HDACi), which have the potential of exposing hidden reservoirs of HIV-1 to elimination by the immune system. Unfortunately, clinical trial results with HDACi have thus far been disappointing. In the current study, we integrate a number of experimental approaches to build a model that provides insights into the limited activity of HDACi in clinical trials and offers direction for future approaches.
Collapse
Affiliation(s)
- Talia M Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Chase D McCann
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Ali Danesh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Szu-Han Huang
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Dean B Magat
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Yanqin Ren
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Louise Leyre
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Tracy D Bui
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Thomas M Rohwetter
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | | | | | - Lynsay MacLaren
- Research Department, Whitman-Walker Health, Washington, DC, USA
| | | | | | - W David Hardy
- Division of Infectious Disease, Johns Hopkins University School of Medicine, Washington, DC, USA
| | | | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| |
Collapse
|
175
|
Mechanisms of Endogenous HIV-1 Reactivation by Endocervical Epithelial Cells. J Virol 2020; 94:JVI.01904-19. [PMID: 32051273 DOI: 10.1128/jvi.01904-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/01/2020] [Indexed: 12/23/2022] Open
Abstract
Pharmacological HIV-1 reactivation to reverse latent infection has been extensively studied. However, HIV-1 reactivation also occurs naturally, as evidenced by occasional low-level viremia ("viral blips") during antiretroviral treatment (ART). Clarifying where blips originate from and how they happen could provide clues to stimulate latency reversal more effectively and safely or to prevent viral rebound following ART cessation. We studied HIV-1 reactivation in the female genital tract, a dynamic anatomical target for HIV-1 infection throughout all disease stages. We found that primary endocervical epithelial cells from several women reactivated HIV-1 from latently infected T cells. The endocervical cells' HIV-1 reactivation capacity further increased upon Toll-like receptor 3 stimulation with poly(I·C) double-stranded RNA or infection with herpes simplex virus 2 (HSV-2). Notably, acyclovir did not eliminate HSV-2-induced HIV-1 reactivation. While endocervical epithelial cells secreted large amounts of several cytokines and chemokines, especially tumor necrosis factor alpha (TNF-α), CCL3, CCL4, and CCL20, their HIV-1 reactivation capacity was almost completely blocked by TNF-α neutralization alone. Thus, immunosurveillance activities by columnar epithelial cells in the endocervix can cause endogenous HIV-1 reactivation, which may contribute to viral blips during ART or rebound following ART interruption.IMPORTANCE A reason that there is no universal cure for HIV-1 is that the virus can hide in the genome of infected cells in the form of latent proviral DNA. This hidden provirus is protected from antiviral drugs until it eventually reactivates to produce new virions. It is not well understood where in the body or how this reactivation occurs. We studied HIV-1 reactivation in the female genital tract, which is often the portal of HIV-1 entry and which remains a site of infection throughout the disease. We found that the columnar epithelial cells lining the endocervix, the lower part of the uterus, are particularly effective in reactivating HIV-1 from infected T cells. This activity was enhanced by certain microbial stimuli, including herpes simplex virus 2, and blocked by antibodies against the inflammatory cytokine TNF-α. Avoiding HIV-1 reactivation could be important for maintaining a functional HIV-1 cure when antiviral therapy is stopped.
Collapse
|
176
|
Abstract
PURPOSE OF REVIEW Studies of HIV-1 genetic diversity can provide clues on the effect of antiretroviral therapy (ART) on viral replication, the mechanisms for viral persistence, and the efficacy of new interventions. This article reviews methods for interrogating intrahost HIV-1 diversity, addresses the ongoing debate regarding HIV-1 compartmentalization and replication during ART, and summarizes recent findings on the effects of curative strategies on HIV-1 populations. RECENT FINDINGS HIV-1 replication in the blood is virtually halted upon the initiation of ART. However, proliferation of cells infected prior to ART provides a self-renewing reservoir for infection during ART. Current evidence supports that proliferation of infected cells is a mechanism for HIV-1 persistence in both the blood and the tissues. However, more studies are required to determine if tissue sanctuaries exist that may also allow viral replication during ART. Recent studies investigating potential curative interventions show little effect on the genetic landscape of HIV-1 infection and highlight the need to develop strategies targeting the proliferation of infected cells. SUMMARY Using phylogeny to characterize HIV-1 genetic diversity and evolution during ART has demonstrated a lack of viral replication, the proliferation of infected cells, and provides one metric to measure the effect of new interventions aimed at achieving a functional cure for HIV-1.
Collapse
|
177
|
Thomas J, Ruggiero A, Paxton WA, Pollakis G. Measuring the Success of HIV-1 Cure Strategies. Front Cell Infect Microbiol 2020; 10:134. [PMID: 32318356 PMCID: PMC7154081 DOI: 10.3389/fcimb.2020.00134] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
HIV-1 eradication strategies aim to achieve viral remission in the absence of antiretroviral therapy (ART). The development of an HIV-1 cure remains challenging due to the latent reservoir (LR): long-lived CD4 T cells that harbor transcriptionally silent HIV-1 provirus. The LR is stable despite years of suppressive ART and is the source of rebound viremia following therapy interruption. Cure strategies such as "shock and kill" aim to eliminate or reduce the LR by reversing latency, exposing the infected cells to clearance via the immune response or the viral cytopathic effect. Alternative strategies include therapeutic vaccination, which aims to prime the immune response to facilitate control of the virus in the absence of ART. Despite promising advances, these strategies have been unable to significantly reduce the LR or increase the time to viral rebound but have provided invaluable insight in the field of HIV-1 eradication. The development and assessment of an HIV-1 cure requires robust assays that can measure the LR with sufficient sensitivity to detect changes that may occur following treatment. The viral outgrowth assay (VOA) is considered the gold standard method for LR quantification due to its ability to distinguish intact and defective provirus. However, the VOA is time consuming and resource intensive, therefore several alternative assays have been developed to bridge the gap between practicality and accuracy. Whilst a cure for HIV-1 infection remains elusive, recent advances in our understanding of the LR and methods for its eradication have offered renewed hope regarding achieving ART free viral remission.
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Immune and Infectious Disease Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Rome, Italy
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
178
|
Margolis DM, Archin NM, Cohen MS, Eron JJ, Ferrari G, Garcia JV, Gay CL, Goonetilleke N, Joseph SB, Swanstrom R, Turner AMW, Wahl A. Curing HIV: Seeking to Target and Clear Persistent Infection. Cell 2020; 181:189-206. [PMID: 32220311 PMCID: PMC7896558 DOI: 10.1016/j.cell.2020.03.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection persists despite years of antiretroviral therapy (ART). To remove the stigma and burden of chronic infection, approaches to eradicate or cure HIV infection are desired. Attempts to augment ART with therapies that reverse viral latency, paired with immunotherapies to clear infection, have advanced into the clinic, but the field is still in its infancy. We review foundational studies and highlight new insights in HIV cure research. Together with advances in ART delivery and HIV prevention strategies, future therapies that clear HIV infection may relieve society of the affliction of the HIV pandemic.
Collapse
Affiliation(s)
- David M Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Epidemiology, University of North Carolina at Chapel Hill School of Public Health, Chapel Hill, NC 27599, USA.
| | - Nancie M Archin
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Myron S Cohen
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph J Eron
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Guido Ferrari
- Department of Surgery and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - J Victor Garcia
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Cynthia L Gay
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Nilu Goonetilleke
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Sarah B Joseph
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ronald Swanstrom
- Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Anne-Marie W Turner
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Angela Wahl
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
179
|
Chaillon A, Gianella S, Dellicour S, Rawlings SA, Schlub TE, De Oliveira MF, Ignacio C, Porrachia M, Vrancken B, Smith DM. HIV persists throughout deep tissues with repopulation from multiple anatomical sources. J Clin Invest 2020; 130:1699-1712. [PMID: 31910162 PMCID: PMC7108926 DOI: 10.1172/jci134815] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUNDUnderstanding HIV dynamics across the human body is important for cure efforts. This goal has been hampered by technical difficulties and the challenge of obtaining fresh tissues.METHODSThis observational study evaluated 6 individuals with HIV (n = 4 with viral suppression using antiretroviral [ART] therapy; n = 2 with rebound viremia after stopping ART), who provided serial blood samples before death and their bodies for rapid autopsy. HIV reservoirs were characterized by digital droplet PCR, single-genome amplification, and sequencing of full-length (FL) envelope HIV. Phylogeographic methods were used to reconstruct HIV spread, and generalized linear models were tested for viral factors associated with dispersal.RESULTSAcross participants, HIV DNA levels varied from approximately 0 to 659 copies/106 cells (IQR: 22.9-126.5). A total of 605 intact FL env sequences were recovered in antemortem blood cells and across 28 tissues (IQR: 5-9). Sequence analysis showed (a) the emergence of large, identical, intact HIV RNA populations in blood after cessation of therapy, which repopulated tissues throughout the body; (b) that multiple sites acted as hubs for HIV dissemination but that blood and lymphoid tissues were the main source; (c) that viral exchanges occurred within brain areas and across the blood-brain barrier; and (d) that migration was associated with low HIV divergence between sites and greater diversity at the recipient site.CONCLUSIONHIV reservoirs persisted in all deep tissues, and blood was the main source of dispersal. This may explain why eliminating HIV susceptibility in circulating T cells via bone marrow transplants allowed some individuals with HIV to experience therapy-free remission, even though deeper tissue reservoirs were not targeted.TRIAL REGISTRATIONNot applicable.FUNDINGNIH grants P01 AI31385, P30 AI036214, AI131971-01, AI120009AI036214, HD094646, AI027763, AI134295, and AI68636.
Collapse
Affiliation(s)
| | - Sara Gianella
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Laboratory of Computational and Evolutionary Virology, Leuven, Belgium
| | | | - Timothy E. Schlub
- University of Sydney, Faculty of Medicine and Health, Sydney School of Public Health, Sydney, Australia
| | | | | | | | - Bram Vrancken
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Laboratory of Computational and Evolutionary Virology, Leuven, Belgium
| | | |
Collapse
|
180
|
Abstract
PURPOSE OF REVIEW To provide a summary of the recent data examining infected CD4+ T cell dynamics during ART and implications for cure strategies. RECENT FINDINGS HIV-1 cure is a worldwide unmet medical need. Although combination antiretroviral therapies effectively suppress HIV-1 replication in vivo, viral rebound occurs shortly after therapy cessation. The major barrier to HIV-1 cure is a pool of latently infected CD4+ T cells, called the latent reservoir, which is established early during infection, has a long half-life in vivo, and is not eliminated by treatment. It was thought that the stability of the reservoir came from long-lived latently infected CD4+ T cells, but more recent data suggests that the reservoir is dynamic, such that there is an equilibrium in which proliferation of HIV-1-infected cells is offset by an equivalent loss of cells harboring HIV-1 DNA. SUMMARY We review the evidence to support this dynamic model of persistence, mechanisms by which infected cells expand and are eliminated, and discuss the impact of a dynamic reservoir on the future of HIV-1 cure studies.
Collapse
|
181
|
Abstract
PURPOSE OF REVIEW The utilization of genetically modified T cells to therapeutically target to various previously incurable diseases such, as cancer, has expanded exponentially in recent years. This success now provides the motivating force in applying the same technology for incurable infectious diseases including HIV. The common bottleneck in gene therapy continues to be at the level of gene delivery. Although present approaches adapt the cell to the delivery technology, emerging techniques now focus on leaving cells in their phenotypically resting state. In doing so, engraftment and proliferation potential are retained and in turn increase the efficacy of this approach at a lowered cost. This review will outline the main efforts of gene delivery using viral vectors or nonviral vectors and challenges moving forward not only in resting T cells, but also in other resting immune cells including hematopoietic stem cells. RECENT FINDINGS In focusing on HIV cure efforts using gene therapy, progress on solving the challenges of gene delivery will be described for both viral and nonviral vectors. Advances in the basic virology of lentiviruses have led to the proposal of many next generation lentiviral vector platforms for resting immune cells. Moreover, we will also highlight the progress made in nonviral approaches using nanotechnology as alternatives and/or synergistic technologies to be used alongside lentiviral platforms. SUMMARY The innovative approaches described in these recent studies, particularly those using the natural mechanisms employed by HIV to enhance for example virus entry or virus latency, will enable future optimization of gene delivery platforms and therapeutics, which will importantly, provide a pathway toward translation into clinical practice.
Collapse
|
182
|
Boucau J, Das J, Joshi N, Le Gall S. Latency reversal agents modulate HIV antigen processing and presentation to CD8 T cells. PLoS Pathog 2020; 16:e1008442. [PMID: 32196533 PMCID: PMC7112239 DOI: 10.1371/journal.ppat.1008442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/01/2020] [Accepted: 02/28/2020] [Indexed: 01/03/2023] Open
Abstract
Latency reversal agents (LRA) variably induce HIV re-expression in CD4 T cells but reservoirs are not cleared. Whether HIV epitope presentation is similar between latency reversal and initial infection of CD4 T cells is unknown yet crucial to define immune responses able to detect HIV-infected CD4 T cells after latency reversal. HIV peptides displayed by MHC comes from the intracellular degradation of proteins by proteasomes and post-proteasomal peptidases but the impact of LRAs on antigen processing is not known. Here we show that HDAC inhibitors (HDCAi) reduced cytosolic proteolytic activities while PKC agonists (PKCa) increased them to a lesser extent than that induced by TCR activation. During the cytosolic degradation of long HIV peptides in LRA-treated CD4 T cells extracts, HDACi and PKCa modulated degradation patterns of peptides and altered the production of HIV epitopes in often opposite ways. Beyond known HIV epitopes, HDACi narrowed the coverage of HIV antigenic fragments by 8-11aa degradation peptides while PKCa broadened it. LRAs altered HIV infection kinetics and modulated CD8 T cell activation in an epitope- and time-dependent manner. Interestingly the efficiency of endogenous epitope processing and presentation to CD8 T cells was increased by PKCa Ingenol at early time points despite low levels of antigens. LRA-induced modulations of antigen processing should be considered and exploited to enhance and broaden HIV peptide presentation by CD4 T cells and to improve immune recognition after latency reversal. This property of LRAs, if confirmed with other antigens, might be exploited to improve immune detection of diseased cells beyond HIV. Latently HIV-infected CD4 T cells persist and remain invisible to the immune system. Strategies to flush out HIV reservoirs propose to re-express HIV with latency reversal agents (LRAs), leading to CD4 T cell death or clearance by HIV-specific immune responses. LRAs tested so far variably induced HIV re-expression but did not eliminate reservoirs. The activation of HIV-specific immune responses is triggered by HIV peptides displayed by infected cells after HIV intracellular degradation. Whether HIV antigens are similarly degraded and displayed by CD4 T cells after latency reversal or during initial infection is unknown. We showed that LRAs altered the activities of the degradation machinery and changed the degradation patterns of HIV into peptides. LRA-treated HIV-infected CD4 T cells were variably recognized by immune cells in a time- and peptide-dependent manner. Some LRAs increased the efficiency of HIV peptide presentation despite low levels of HIV antigens inside CD4 T cells. The modulation of HIV peptide presentation by current or future LRAs should be accounted for and exploited to improve HIV peptide presentation and enhance immune detection of HIV-infected CD4 T cells after latency reversal.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Neelambari Joshi
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
183
|
Qi J, Ding C, Jiang X, Gao Y. Advances in Developing CAR T-Cell Therapy for HIV Cure. Front Immunol 2020; 11:361. [PMID: 32210965 PMCID: PMC7076163 DOI: 10.3389/fimmu.2020.00361] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 02/05/2023] Open
Abstract
Acquired immune deficiency syndrome (AIDS), which is caused by HIV infection, is an epidemic disease that has killed millions of people in the last several decades. Although combination antiretroviral therapy (cART) has enabled tremendous progress in suppressing HIV replication, it fails to eliminate HIV latently infected cells, and infected individuals remain HIV positive for life. Lifelong antiretroviral therapy is required to maintain control of virus replication, which may result in significant problems, including long-term toxicity, high cost, and stigma. Therefore, novel therapeutic strategies are urgently needed to eliminate the viral reservoir in the host for HIV cure. In this review, we compare several potential strategies regarding HIV cure and focus on how we might utilize chimeric antigen receptor-modified T cells (CAR T) as a therapy to cure HIV infection.
Collapse
Affiliation(s)
- Jinxin Qi
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Chengchao Ding
- The First Affiliated Hospital, Department of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Gao
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
- The First Affiliated Hospital, Department of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
184
|
Virnik K, Rosati M, Medvedev A, Scanlan A, Walsh G, Dayton F, Broderick KE, Lewis M, Bryson Y, Lifson JD, Ruprecht RM, Felber BK, Berkower I. Immunotherapy with DNA vaccine and live attenuated rubella/SIV gag vectors plus early ART can prevent SIVmac251 viral rebound in acutely infected rhesus macaques. PLoS One 2020; 15:e0228163. [PMID: 32130229 PMCID: PMC7055890 DOI: 10.1371/journal.pone.0228163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 01/29/2023] Open
Abstract
Anti-retroviral therapy (ART) has been highly successful in controlling HIV replication, reducing viral burden, and preventing both progression to AIDS and viral transmission. Yet, ART alone cannot cure the infection. Even after years of successful therapy, ART withdrawal leads inevitably to viral rebound within a few weeks or months. Our hypothesis: effective therapy must control both the replicating virus pool and the reactivatable latent viral reservoir. To do this, we have combined ART and immunotherapy to attack both viral pools simultaneously. The vaccine regimen consisted of DNA vaccine expressing SIV Gag, followed by a boost with live attenuated rubella/gag vectors. The vectors grow well in rhesus macaques, and they are potent immunogens when used in a prime and boost strategy. We infected rhesus macaques by high dose mucosal challenge with virulent SIVmac251 and waited three days to allow viral dissemination and establishment of a reactivatable viral reservoir before starting ART. While on ART, the control group received control DNA and empty rubella vaccine, while the immunotherapy group received DNA/gag prime, followed by boosts with rubella vectors expressing SIV gag over 27 weeks. Both groups had a vaccine "take" to rubella, and the vaccine group developed antibodies and T cells specific for Gag. Five weeks after the last immunization, we stopped ART and monitored virus rebound. All four control animals eventually had a viral rebound, and two were euthanized for AIDS. One control macaque did not rebound until 2 years after ART release. In contrast, there was only one viral rebound in the vaccine group. Three out of four vaccinees had no viral rebound, even after CD8 depletion, and they remain in drug-free viral remission more than 2.5 years later. The strategy of early ART combined with immunotherapy can produce a sustained SIV remission in macaques and may be relevant for immunotherapy of HIV in humans.
Collapse
Affiliation(s)
- Konstantin Virnik
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Alexei Medvedev
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Aaron Scanlan
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Gabrielle Walsh
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Frances Dayton
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Kate E. Broderick
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, Pennsylvania, United States of America
| | - Mark Lewis
- BioQual, Inc., Rockville, Maryland, United States of America
| | - Yvonne Bryson
- Department of Pediatrics, Division of Infectious Disease, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ruth M. Ruprecht
- University of Louisiana at Lafayette, New Iberia Research Center, New Iberia, Louisiana, United States of America
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Ira Berkower
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
185
|
Garliss CC, Kwaa AK, Blankson JN. A Comparison of Different Immune Activation Strategies to Reverse HIV-1 Latency. Open Forum Infect Dis 2020; 7:ofaa082. [PMID: 32284948 PMCID: PMC7139987 DOI: 10.1093/ofid/ofaa082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/27/2020] [Indexed: 11/24/2022] Open
Abstract
Resting CD4+ T cells are the best characterized component of the latent reservoir. Activation of these CD4+ T cells is needed to optimize transcription and viral replication, and this strategy has been used to measure the inducible reservoir. There are several methods that can be used to activate CD4+ T cells, and in this study, we compared 3 different strategies: the combination of the lectin phytohaemagglutinin (PHA) and irradiated allogeneic feeders, a combination of PHA and a superagonistic anti-CD28 antibody, and the combination of the protein kinase C agonist phorbol 12-myristate 13-acetate and the calcium ionophore ionomycin. We show that each strategy induces a different pattern of expression of activation markers on CD4+ T cells. However, the different activation strategies induced similar frequencies of latently infected CD4+ T cells from people living with HIV on suppressive antiretroviral therapy regimens to produce replication-competent virus. Furthermore, the frequency of infectious units per million induced by each regimen was positively correlated with the copies of intact proviral DNA per million CD4+ T cells. Our results suggest that no single pattern of activation marker expression is most associated with latency reversal and demonstrate that different immune activation strategies reverse latency in a low frequency of CD4+ T cells that harbor intact proviral DNA.
Collapse
Affiliation(s)
- Caroline C Garliss
- Center for AIDS Research, Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Abena K Kwaa
- Center for AIDS Research, Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Joel N Blankson
- Center for AIDS Research, Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| |
Collapse
|
186
|
Dash PK, Kevadiya BD, Su H, Banoub MG, Gendelman HE. Pathways towards human immunodeficiency virus elimination. EBioMedicine 2020; 53:102667. [PMID: 32114397 PMCID: PMC7047153 DOI: 10.1016/j.ebiom.2020.102667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Antiretroviral therapy (ART) suppresses human immunodeficiency virus (HIV) infection. Research seeking to transform viral suppression into elimination has generated novel immune, chemical and molecular antiviral agents. However, none, to date, have excised latent integrated proviral DNA or removed infected cells from infected persons. These efforts included, but are not limited to, broadly neutralizing antibodies, "shock" and "kill" latency-reversing agents, innate immune regulators, and sequential long-acting antiretroviral nanoformulated prodrugs and CRISPR-Cas9 gene editing. While, the latter, enabled the complete excision of latent HIV-1 from the host genome success was so far limited. We contend that improvements in antiretroviral delivery, potency, agent specificity, or combinatorial therapies can provide a pathway towards complete HIV elimination.
Collapse
Affiliation(s)
- Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Hang Su
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Mary G Banoub
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
187
|
CXCR4-Using HIV Strains Predominate in Naive and Central Memory CD4 + T Cells in People Living with HIV on Antiretroviral Therapy: Implications for How Latency Is Established and Maintained. J Virol 2020; 94:JVI.01736-19. [PMID: 31852784 DOI: 10.1128/jvi.01736-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022] Open
Abstract
HIV can persist in people living with HIV (PLWH) on antiretroviral therapy (ART) in multiple CD4+ T cell subsets, including naive cells, central memory (CM) cells, transitional (TM) cells, and effector memory (EM) cells. Since these cells express different levels of the viral coreceptors CXCR4 and CCR5 on their surface, we sought to determine whether the HIV envelope protein (Env) was genotypically and phenotypically different between CD4+ T cell subsets isolated from PLWH on suppressive ART (n = 8). Single genome amplification for the HIV env gene was performed on genomic DNA extracts from different CD4+ T cell subsets. We detected CXCR4-using (X4) strains in five of the eight participants studied, and in these participants, the prevalence of X4 strains was higher in naive CD4+ T cells than in the memory subsets. Conversely, R5 strains were mostly found in the TM and EM populations. Identical sets of env sequences, consistent with clonal expansion of some infected cells, were more frequent in EM cells. These expanded identical sequences could also be detected in multiple CD4+ T cell subsets, suggesting that infected cells can undergo T cell differentiation. These identical sequences largely encoded intact and functional Env proteins. Our results are consistent with a model in which X4 HIV strains infect and potentially establish latency in naive and CM CD4+ T cells through direct infection, in addition to maintenance of the reservoir through differentiation and proliferation of infected cells.IMPORTANCE In people living with HIV (PLWH) on suppressive ART, latent HIV can be found in a diverse range of CD4+ T cells, including quiescent naive and central memory cells that are typically difficult to infect in vitro It is currently unclear how latency is established in these cells in vivo We show that in CD4+ T cells from PLWH on suppressive ART, the use of the coreceptor CXCR4 was prevalent among viruses amplified from naive and central memory CD4+ T cells. Furthermore, we found that expanded numbers of identical viral sequences were most common in the effector memory population, and these identical sequences were also found in multiple different CD4+ T cell subsets. Our results help to shed light on how a range of CD4+ T cell subsets come to harbor HIV DNA, which is one of the major barriers to eradicating the virus from PLWH.
Collapse
|
188
|
Van der Sluis RM, Zerbato JM, Rhodes JW, Pascoe RD, Solomon A, Kumar NA, Dantanarayana AI, Tennakoon S, Dufloo J, McMahon J, Chang JJ, Evans VA, Hertzog PJ, Jakobsen MR, Harman AN, Lewin SR, Cameron PU. Diverse effects of interferon alpha on the establishment and reversal of HIV latency. PLoS Pathog 2020; 16:e1008151. [PMID: 32109259 PMCID: PMC7065813 DOI: 10.1371/journal.ppat.1008151] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 03/11/2020] [Accepted: 10/21/2019] [Indexed: 12/28/2022] Open
Abstract
HIV latency is the major barrier to a cure for people living with HIV (PLWH) on antiretroviral therapy (ART) because the virus persists in long-lived non-proliferating and proliferating latently infected CD4+ T cells. Latently infected CD4+ T cells do not express viral proteins and are therefore not visible to immune mediated clearance. Therefore, identifying interventions that can reverse latency and also enhance immune mediated clearance is of high interest. Interferons (IFNs) have multiple immune enhancing effects and can inhibit HIV replication in activated CD4+ T cells. However, the effects of IFNs on the establishment and reversal of HIV latency is not understood. Using an in vitro model of latency, we demonstrated that plasmacytoid dendritic cells (pDC) inhibit the establishment of HIV latency through secretion of type I IFNα, IFNβ and IFNω but not IFNε or type III IFNλ1 and IFNλ3. However, once latency was established, IFNα but no other IFNs were able to efficiently reverse latency in both an in vitro model of latency and CD4+ T cells collected from PLWH on suppressive ART. Binding of IFNα to its receptor expressed on primary CD4+ T cells did not induce activation of the canonical or non-canonical NFκB pathway but did induce phosphorylation of STAT1, 3 and 5 proteins. STAT5 has been previously demonstrated to bind to the HIV long terminal repeat and activate HIV transcription. We demonstrate diverse effects of interferons on HIV latency with type I IFNα; inhibiting the establishment of latency but also reversing HIV latency once latency is established. Antiretroviral therapy (ART) cannot cure HIV or eliminate infection from long-lived and proliferating latently infected CD4+ T cells. Plasmacytoid dendritic cells (pDC) are major producers of interferons (IFNs), which have multiple effects on viral replication and immunity including suppression of viral expression that could favor HIV latency. Van Der Sluis et al. show that type I IFNs inhibit the establishment of HIV latency, however, once established, latency can be reversed by IFNα but not by other type I or type III IFNs. These observations demonstrate that pDC through type I IFNs are important in HIV latency and can potentially be manipulated to eliminate latent infection.
Collapse
Affiliation(s)
- Renée M. Van der Sluis
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Jennifer M. Zerbato
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jake W. Rhodes
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Rachel D. Pascoe
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Ajantha Solomon
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Nitasha A. Kumar
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Ashanti I. Dantanarayana
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Surekha Tennakoon
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jérémy Dufloo
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - James McMahon
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC, Australia
| | - Judy J. Chang
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Vanessa A. Evans
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Paul J. Hertzog
- Centre for Innate Immunity and infectious Disease, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Dept Molecular & Translational Sciences, Monash University, Clayton, VIC, Australia
| | | | - Andrew N. Harman
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Sharon R. Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC, Australia
- * E-mail: (SRL); (PUC)
| | - Paul U. Cameron
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC, Australia
- * E-mail: (SRL); (PUC)
| |
Collapse
|
189
|
Dhummakupt A, Rubens JH, Anderson T, Powell L, Nonyane BA, Siems LV, Collinson-Streng A, Nilles T, Jones RB, Tepper V, Agwu A, Persaud D. Differences in inducibility of the latent HIV reservoir in perinatal and adult infection. JCI Insight 2020; 5:134105. [PMID: 31999647 DOI: 10.1172/jci.insight.134105] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
The HIV latent reservoir in resting memory CD4+ T cells precludes cure. Therapeutics to reactivate and eliminate this reservoir are in clinical trials in adults, but not yet in pediatric populations. We determined, ex vivo, the inducibility of the latent reservoir in perinatal infection as compared with adult infections using the Tat/rev induced limiting dilution assay (TILDA), in which a single round (12 hours) of CD4+ T cell stimulation with PMA/ionomycin maximally activates T cells and leads to proviral expression with multiply spliced HIV RNA production. Markers of immune activation and exhaustion were measured to assess interactions with inducibility. Although rates of T cell activation with PMA/ionomycin were similar, the latent reservoir in perinatal infection was slower to reactivate and of lower magnitude compared with adult infection, independent of proviral load. An enhanced TILDA with the addition of phytohemagglutin and a duration of 18 hours augmented proviral expression in perinatal but not adult infection. The baseline HLA-DR+CD4+ T cell level was significantly lower in perinatal compared with adult infections, but not correlated with induced reservoir size. These data support the hypothesis that there are differences in kinetics of latency reversal and baseline immune activation in perinatal compared with adult infections, with implications for latency reversal strategies toward reservoir clearance and remission.
Collapse
Affiliation(s)
- Adit Dhummakupt
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | - Jessica H Rubens
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | - Thuy Anderson
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | - Laura Powell
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | - Bareng As Nonyane
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lilly V Siems
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | | | - Tricia Nilles
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Vicki Tepper
- Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Allison Agwu
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | - Deborah Persaud
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| |
Collapse
|
190
|
Peluso MJ, Bacchetti P, Ritter KD, Beg S, Lai J, Martin JN, Hunt PW, Henrich TJ, Siliciano JD, Siliciano RF, Laird GM, Deeks SG. Differential decay of intact and defective proviral DNA in HIV-1-infected individuals on suppressive antiretroviral therapy. JCI Insight 2020; 5:132997. [PMID: 32045386 PMCID: PMC7101154 DOI: 10.1172/jci.insight.132997] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/29/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUNDThe relative stabilities of the intact and defective HIV genomes over time during effective antiretroviral therapy (ART) have not been fully characterized.METHODSWe used the intact proviral DNA assay (IPDA) to estimate the rate of change of intact and defective proviruses in HIV-infected adults on ART. We used linear spline models with a knot at seven years and a random intercept and slope up to the knot. We estimated the influence of covariates on rates of change.RESULTSWe studied 81 individuals for a median of 7.3 (IQR 5.9-9.6) years. Intact genomes declined more rapidly from initial suppression through seven years (15.7% per year decline; 95% CI -22.8%, -8.0%) and more slowly after seven years (3.6% per year; 95% CI -8.1%, +1.1%). The estimated half-life of the reservoir was 4.0 years (95% CI 2.7-8.3) until year seven and 18.7 years (95% CI 8.2-infinite) thereafter. There was substantial variability between individuals in the rate of decline until year seven. Intact provirus declined more rapidly than defective provirus (P < 0.001) and showed a faster decline in individuals with higher CD4+ T cell nadirs.CONCLUSIONThe biology of the replication-competent (intact) reservoir differs from that of the replication-incompetent (non-intact) pool of proviruses. The IPDA will likely be informative when investigating the impact of interventions targeting the reservoir.FUNDINGDelaney AIDS Research Enterprise, UCSF/Gladstone Institute of Virology & Immunology CFAR, CFAR Network of Integrated Systems, amfAR Institute for HIV Cure Research, I4C and Beat-HIV Collaboratories, Howard Hughes Medical Institute, Gilead Sciences, Bill and Melinda Gates Foundation.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, and
| | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | | | - Subul Beg
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Lai
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Peter W. Hunt
- Division of Experimental Medicine, Department of Medicine, UCSF, San Francisco, California, USA
| | - Timothy J. Henrich
- Division of Experimental Medicine, Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Robert F. Siliciano
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, and
| |
Collapse
|
191
|
Su H, Sravanam S, Gorantla S, Kaminski R, Khalili K, Poluektova L, Gendelman HE, Dash PK. Amplification of Replication Competent HIV-1 by Adoptive Transfer of Human Cells From Infected Humanized Mice. Front Cell Infect Microbiol 2020; 10:38. [PMID: 32117811 PMCID: PMC7026001 DOI: 10.3389/fcimb.2020.00038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Detection of latent human immunodeficiency virus type 1 (HIV-1) in "putative" infectious reservoirs is required for determining treatment efficiency and for viral elimination strategies. Such tests require induction of replication competent provirus and quantitative testing of viral load for validation. Recently, humanized mice were employed in the development of such tests by employing a murine viral outgrowth assay (mVOA). Here blood cells were recovered from virus infected antiretroviral therapy suppressed patients. These cells were adoptively transferred to uninfected humanized mice where replication competent virus was recovered. Prior reports supported the notion that an mVOA assay provides greater sensitivity than cell culture-based quantitative VOA tests for detection of latent virus. In the current study, the mVOA assays was adapted using donor human hematopoietic stem cells-reconstituted mice to affirm research into HIV-1 elimination. We simulated an antiretroviral therapy (ART)-treated virus-infected human by maintaining the infected humanized mice under suppressive treatment. This was operative prior to human cell adoptive transfers. Replication-competent HIV-1 was easily detected in recipient animals from donors with undetectable virus in plasma. Moreover, when the assay was used to investigate viral presence in tissue reservoirs, quantitative endpoints were determined in "putative" viral reservoirs not possible in human sample analyses. We conclude that adoptive transfer of cells between humanized mice is a sensitive and specific assay system for detection of replication competent latent HIV-1.
Collapse
Affiliation(s)
- Hang Su
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sruthi Sravanam
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Rafal Kaminski
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Kamel Khalili
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Larisa Poluektova
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmaceutical Sciences, Center for Neurovirology, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Prasanta K. Dash
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
192
|
Kwon KJ, Timmons AE, Sengupta S, Simonetti FR, Zhang H, Hoh R, Deeks SG, Siliciano JD, Siliciano RF. Different human resting memory CD4 + T cell subsets show similar low inducibility of latent HIV-1 proviruses. Sci Transl Med 2020; 12:eaax6795. [PMID: 31996465 PMCID: PMC7875249 DOI: 10.1126/scitranslmed.aax6795] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
The latent reservoir of HIV-1 in resting CD4+ T cells is a major barrier to cure. It is unclear whether the latent reservoir resides principally in particular subsets of CD4+ T cells, a finding that would have implications for understanding its stability and developing curative therapies. Recent work has shown that proliferation of HIV-1-infected CD4+ T cells is a major factor in the generation and persistence of the latent reservoir and that latently infected T cells that have clonally expanded in vivo can proliferate in vitro without producing virions. In certain CD4+ memory T cell subsets, the provirus may be in a deeper state of latency, allowing the cell to proliferate without producing viral proteins, thus permitting escape from immune clearance. To evaluate this possibility, we used a multiple stimulation viral outgrowth assay to culture resting naïve, central memory (TCM), transitional memory (TTM), and effector memory (TEM) CD4+ T cells from 10 HIV-1-infected individuals on antiretroviral therapy. On average, only 1.7% of intact proviruses across all T cell subsets were induced to transcribe viral genes and release replication-competent virus after stimulation of the cells. We found no consistent enrichment of intact or inducible proviruses in any T cell subset. Furthermore, we observed notable plasticity among the canonical memory T cell subsets after activation in vitro and saw substantial person-to-person variability in the inducibility of infectious virus release. This finding complicates the vision for a targeted approach for HIV-1 cure based on T cell memory subsets.
Collapse
Affiliation(s)
- Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Zhang
- Flow Cytometry and Immunology Core, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca Hoh
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
193
|
Van der Sluis RM, Kumar NA, Pascoe RD, Zerbato JM, Evans VA, Dantanarayana AI, Anderson JL, Sékaly RP, Fromentin R, Chomont N, Cameron PU, Lewin SR. Combination Immune Checkpoint Blockade to Reverse HIV Latency. THE JOURNAL OF IMMUNOLOGY 2020; 204:1242-1254. [PMID: 31988180 DOI: 10.4049/jimmunol.1901191] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
In people living with HIV on antiretroviral therapy, HIV latency is the major barrier to a cure. HIV persists preferentially in CD4+ T cells expressing multiple immune checkpoint (IC) molecules, including programmed death (PD)-1, T cell Ig and mucin domain-containing protein 3 (TIM-3), lymphocyte associated gene 3 (LAG-3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT). We aimed to determine whether these and other IC molecules have a functional role in maintaining HIV latency and whether blocking IC molecules with Abs reverses HIV latency. Using an in vitro model that establishes latency in both nonproliferating and proliferating human CD4+ T cells, we show that proliferating cells express multiple IC molecules at high levels. Latent infection was enriched in proliferating cells expressing PD-1. In contrast, nonproliferating cells expressed IC molecules at significantly lower levels, but latent infection was enriched in cells expressing PD-1, TIM-3, CTL-associated protein 4 (CTLA-4), or B and T lymphocyte attenuator (BTLA). In the presence of an additional T cell-activating stimulus, staphylococcal enterotoxin B, Abs to CTLA-4 and PD-1 reversed HIV latency in proliferating and nonproliferating CD4+ T cells, respectively. In the absence of staphylococcal enterotoxin B, only the combination of Abs to PD-1, CTLA-4, TIM-3, and TIGIT reversed latency. The potency of latency reversal was significantly higher following combination IC blockade compared with other latency-reversing agents, including vorinostat and bryostatin. Combination IC blockade should be further explored as a strategy to reverse HIV latency.
Collapse
Affiliation(s)
- Renée M Van der Sluis
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Nitasha A Kumar
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Rachel D Pascoe
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Jennifer M Zerbato
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Vanessa A Evans
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Ashanti I Dantanarayana
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | - Jenny L Anderson
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
| | | | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 3E4, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 3E4, Canada.,Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada; and
| | - Paul U Cameron
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia.,Department of Infectious Diseases, Monash University and the Alfred Hospital, Melbourne, Victoria 3000, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia; .,Department of Infectious Diseases, Monash University and the Alfred Hospital, Melbourne, Victoria 3000, Australia
| |
Collapse
|
194
|
Virgilio MC, Collins KL. The Impact of Cellular Proliferation on the HIV-1 Reservoir. Viruses 2020; 12:E127. [PMID: 31973022 PMCID: PMC7077244 DOI: 10.3390/v12020127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/25/2022] Open
Abstract
Human immunodeficiency virus (HIV) is a chronic infection that destroys the immune system in infected individuals. Although antiretroviral therapy is effective at preventing infection of new cells, it is not curative. The inability to clear infection is due to the presence of a rare, but long-lasting latent cellular reservoir. These cells harboring silent integrated proviral genomes have the potential to become activated at any moment, making therapy necessary for life. Latently-infected cells can also proliferate and expand the viral reservoir through several methods including homeostatic proliferation and differentiation. The chromosomal location of HIV proviruses within cells influences the survival and proliferative potential of host cells. Proliferating, latently-infected cells can harbor proviruses that are both replication-competent and defective. Replication-competent proviral genomes contribute to viral rebound in an infected individual. The majority of available techniques can only assess the integration site or the proviral genome, but not both, preventing reliable evaluation of HIV reservoirs.
Collapse
Affiliation(s)
- Maria C. Virgilio
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathleen L. Collins
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
195
|
Liu R, Simonetti FR, Ho YC. The forces driving clonal expansion of the HIV-1 latent reservoir. Virol J 2020; 17:4. [PMID: 31910871 PMCID: PMC6947923 DOI: 10.1186/s12985-019-1276-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Despite antiretroviral therapy (ART) which halts HIV-1 replication and reduces plasma viral load to clinically undetectable levels, viral rebound inevitably occurs once ART is interrupted. HIV-1-infected cells can undergo clonal expansion, and these clonally expanded cells increase over time. Over 50% of latent reservoirs are maintained through clonal expansion. The clonally expanding HIV-1-infected cells, both in the blood and in the lymphoid tissues, contribute to viral rebound. The major drivers of clonal expansion of HIV-1-infected cells include antigen-driven proliferation, homeostatic proliferation and HIV-1 integration site-dependent proliferation. Here, we reviewed how viral, immunologic and genomic factors contribute to clonal expansion of HIV-1-infected cells, and how clonal expansion shapes the HIV-1 latent reservoir. Antigen-specific CD4+ T cells specific for different pathogens have different clonal expansion dynamics, depending on antigen exposure, cytokine profiles and exhaustion phenotypes. Homeostatic proliferation replenishes the HIV-1 latent reservoir without inducing viral expression and immune clearance. Integration site-dependent proliferation, a mechanism also deployed by other retroviruses, leads to slow but steady increase of HIV-1-infected cells harboring HIV-1 proviruses integrated in the same orientation at specific sites of certain cancer-related genes. Targeting clonally expanding HIV-1 latent reservoir without disrupting CD4+ T cell function is a top priority for HIV-1 eradication.
Collapse
Affiliation(s)
- Runxia Liu
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, 06519, USA
| | | | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, 06519, USA.
| |
Collapse
|
196
|
Despite early antiretroviral therapy effector memory and follicular helper CD4 T cells are major reservoirs in visceral lymphoid tissues of SIV-infected macaques. Mucosal Immunol 2020; 13:149-160. [PMID: 31723251 PMCID: PMC6914669 DOI: 10.1038/s41385-019-0221-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023]
Abstract
Whereas antiretroviral therapy (ART) suppresses viral replication, ART discontinuation results in viral rebound, indicating the presence of viral reservoirs (VRs) established within lymphoid tissues. Herein, by sorting CD4 T-cell subsets from the spleen, mesenteric and peripheral lymph nodes (LNs) of SIVmac251-infected rhesus macaques (RMs), we demonstrate that effector memory (TEM) and follicular helper (TFH) CD4+ T cells harbor the highest frequency of viral DNA and RNA, as well of early R-U5 transcripts in ART-naïve RMs. Furthermore, our results highlight that these two CD4 T cells subsets harbor viral DNA and early R-U5 transcripts in the spleen and mesenteric LNs (but not in peripheral LN) of RMs treated with ART at day 4 post infection suggesting that these two anatomical sites are important for viral persistence. Finally, after ART interruption, we demonstrate the rapid and, compared to peripheral LNs, earlier seeding of SIV in spleen and mesenteric LNs, thereby emphasizing the importance of these two anatomical sites for viral replication dynamics. Altogether our results advance understanding of early viral seeding in which visceral lymphoid tissues are crucial in maintaining TEM and TFH VRs.
Collapse
|
197
|
Role of Dendritic Cells in Exposing Latent HIV-1 for the Kill. Viruses 2019; 12:v12010037. [PMID: 31905690 PMCID: PMC7019604 DOI: 10.3390/v12010037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
The development of effective yet nontoxic strategies to target the latent human immunodeficiency virus-1 (HIV-1) reservoir in antiretroviral therapy (ART)-suppressed individuals poses a critical barrier to a functional cure. The ‘kick and kill’ approach to HIV eradication entails proviral reactivation during ART, coupled with generation of cytotoxic T lymphocytes (CTLs) or other immune effectors equipped to eliminate exposed infected cells. Pharmacological latency reversal agents (LRAs) that have produced modest reductions in the latent reservoir ex vivo have not impacted levels of proviral DNA in HIV-infected individuals. An optimal cure strategy incorporates methods that facilitate sufficient antigen exposure on reactivated cells following the induction of proviral gene expression, as well as the elimination of infected targets by either polyfunctional HIV-specific CTLs or other immune-based strategies. Although conventional dendritic cells (DCs) have been used extensively for the purpose of inducing antigen-specific CTL responses in HIV-1 clinical trials, their immunotherapeutic potential as cellular LRAs has been largely ignored. In this review, we discuss the challenges associated with current HIV-1 eradication strategies, as well as the unharnessed potential of ex vivo-programmed DCs for both the ‘kick and kill’ of latent HIV-1.
Collapse
|
198
|
Why and where an HIV cure is needed and how it might be achieved. Nature 2019; 576:397-405. [PMID: 31853080 DOI: 10.1038/s41586-019-1841-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
Abstract
Despite considerable global investment, only 60% of people who live with HIV currently receive antiretroviral therapy. The sustainability of current programmes remains unknown and key incidence rates are declining only modestly. Given the complexities and expenses associated with lifelong medication, developing an effective curative intervention is now a global priority. Here we review why and where a cure is needed, and how it might be achieved. We argue for expanding these efforts from resource-rich regions to sub-Saharan Africa and elsewhere: for any intervention to have an effect, region-specific biological, therapeutic and implementation issues must be addressed.
Collapse
|
199
|
Falcinelli SD, Ceriani C, Margolis DM, Archin NM. New Frontiers in Measuring and Characterizing the HIV Reservoir. Front Microbiol 2019; 10:2878. [PMID: 31921056 PMCID: PMC6930150 DOI: 10.3389/fmicb.2019.02878] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
A cure for HIV infection remains elusive due to the persistence of replication-competent HIV proviral DNA during suppressive antiretroviral therapy (ART). With the exception of rare elite or post-treatment controllers of viremia, withdrawal of ART invariably results in the rebound of viremia and progression of HIV disease. A thorough understanding of the reservoir is necessary to develop new strategies in order to reduce or eliminate the reservoir. However, there is significant heterogeneity in the sequence composition, genomic location, stability, and expression of the HIV reservoir both within and across individuals, and a majority of proviral sequences are replication-defective. These factors, and the low frequency of persistently infected cells in individuals on suppressive ART, make understanding the reservoir and its response to experimental reservoir reduction interventions challenging. Here, we review the characteristics of the HIV reservoir, state-of-the-art assays to measure and characterize the reservoir, and how these assays can be applied to accurately detect reductions in reservoir during efforts to develop a cure for HIV infection. In particular, we highlight recent advances in the development of direct measures of provirus, including intact proviral DNA assays and full-length HIV DNA sequencing with integration site analysis. We also focus on novel techniques to quantitate persistent and inducible HIV, including RNA sequencing and RNA/gag protein staining techniques, as well as modified viral outgrowth methods that seek to improve upon throughput, sensitivity and dynamic range.
Collapse
Affiliation(s)
- Shane D Falcinelli
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cristina Ceriani
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David M Margolis
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nancie M Archin
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
200
|
Patro SC, Brandt LD, Bale MJ, Halvas EK, Joseph KW, Shao W, Wu X, Guo S, Murrell B, Wiegand A, Spindler J, Raley C, Hautman C, Sobolewski M, Fennessey CM, Hu WS, Luke B, Hasson JM, Niyongabo A, Capoferri AA, Keele BF, Milush J, Hoh R, Deeks SG, Maldarelli F, Hughes SH, Coffin JM, Rausch JW, Mellors JW, Kearney MF. Combined HIV-1 sequence and integration site analysis informs viral dynamics and allows reconstruction of replicating viral ancestors. Proc Natl Acad Sci U S A 2019; 116:25891-25899. [PMID: 31776247 PMCID: PMC6925994 DOI: 10.1073/pnas.1910334116] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding HIV-1 persistence despite antiretroviral therapy (ART) is of paramount importance. Both single-genome sequencing (SGS) and integration site analysis (ISA) provide useful information regarding the structure of persistent HIV DNA populations; however, until recently, there was no way to link integration sites to their cognate proviral sequences. Here, we used multiple-displacement amplification (MDA) of cellular DNA diluted to a proviral endpoint to obtain full-length proviral sequences and their corresponding sites of integration. We applied this method to lymph node and peripheral blood mononuclear cells from 5 ART-treated donors to determine whether groups of identical subgenomic sequences in the 2 compartments are the result of clonal expansion of infected cells or a viral genetic bottleneck. We found that identical proviral sequences can result from both cellular expansion and viral genetic bottlenecks occurring prior to ART initiation and following ART failure. We identified an expanded T cell clone carrying an intact provirus that matched a variant previously detected by viral outgrowth assays and expanded clones with wild-type and drug-resistant defective proviruses. We also found 2 clones from 1 donor that carried identical proviruses except for nonoverlapping deletions, from which we could infer the sequence of the intact parental virus. Thus, MDA-SGS can be used for "viral reconstruction" to better understand intrapatient HIV-1 evolution and to determine the clonality and structure of proviruses within expanded clones, including those with drug-resistant mutations. Importantly, we demonstrate that identical sequences observed by standard SGS are not always sufficient to establish proviral clonality.
Collapse
Affiliation(s)
- Sean C Patro
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702;
| | - Leah D Brandt
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Michael J Bale
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - Elias K Halvas
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Kevin W Joseph
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Wei Shao
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Xiaolin Wu
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Shuang Guo
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Ann Wiegand
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - Jonathan Spindler
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - Castle Raley
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Christopher Hautman
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | | | - Christine M Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Wei-Shau Hu
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - Brian Luke
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jenna M Hasson
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - Aurelie Niyongabo
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - Adam A Capoferri
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jeff Milush
- Department of Medicine, University of California, San Francisco, CA 94143
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, CA 94143
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, CA 94143
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111;
| | - Jason W Rausch
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - John W Mellors
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Mary F Kearney
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702
| |
Collapse
|