151
|
Leon E, Ranganathan R, Savoldo B. Adoptive T cell therapy: Boosting the immune system to fight cancer. Semin Immunol 2020; 49:101437. [PMID: 33262066 DOI: 10.1016/j.smim.2020.101437] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/06/2023]
Abstract
Cellular therapies have shown increasing promise as a cancer treatment. Encouraging results against hematologic malignancies are paving the way to move into solid tumors. In this review, we will focus on T-cell therapies starting from tumor infiltrating lymphocytes (TILs) to optimized T-cell receptor-modified (TCR) cells and chimeric antigen receptor-modified T cells (CAR-Ts). We will discuss the positive preclinical and clinical findings of these approaches, along with some of the persisting barriers that need to be overcome to improve outcomes.
Collapse
Affiliation(s)
- Ernesto Leon
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Raghuveer Ranganathan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Immunology and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
152
|
Freeman ZT, Nirschl TR, Hovelson DH, Johnston RJ, Engelhardt JJ, Selby MJ, Kochel CM, Lan RY, Zhai J, Ghasemzadeh A, Gupta A, Skaist AM, Wheelan SJ, Jiang H, Pearson AT, Snyder LA, Korman AJ, Tomlins SA, Yegnasubramanian S, Drake CG. A conserved intratumoral regulatory T cell signature identifies 4-1BB as a pan-cancer target. J Clin Invest 2020; 130:1405-1416. [PMID: 32015231 DOI: 10.1172/jci128672] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
Despite advancements in targeting the immune checkpoints program cell death protein 1 (PD-1), programmed death ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) for cancer immunotherapy, a large number of patients and cancer types remain unresponsive. Current immunotherapies focus on modulating an antitumor immune response by directly or indirectly expanding antitumor CD8 T cells. A complementary strategy might involve inhibition of Tregs that otherwise suppress antitumor immune responses. Here, we sought to identify functional immune molecules preferentially expressed on tumor-infiltrating Tregs. Using genome-wide RNA-Seq analysis of purified Tregs sorted from multiple human cancer types, we identified a conserved Treg immune checkpoint signature. Using immunocompetent murine tumor models, we found that antibody-mediated depletion of 4-1BB-expressing cells (4-1BB is also known as TNFRSF9 or CD137) decreased tumor growth without negatively affecting CD8 T cell function. Furthermore, we found that the immune checkpoint 4-1BB had a high selectivity for human tumor Tregs and was associated with worse survival outcomes in patients with multiple tumor types. Thus, antibody-mediated depletion of 4-1BB-expressing Tregs represents a strategy with potential activity across cancer types.
Collapse
Affiliation(s)
- Zachary T Freeman
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Unit for Laboratory Animal Medicine, Medical School.,Rogel Cancer Center, and
| | - Thomas R Nirschl
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel H Hovelson
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Mark J Selby
- Bristol-Myers Squibb, Redwood City, California, USA
| | - Christina M Kochel
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ruth Y Lan
- Bristol-Myers Squibb, Redwood City, California, USA
| | - Jingyi Zhai
- Department of Biostatistics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ali Ghasemzadeh
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Anuj Gupta
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alyza M Skaist
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah J Wheelan
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hui Jiang
- Rogel Cancer Center, and.,Department of Biostatistics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander T Pearson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Linda A Snyder
- Oncology Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | | | - Scott A Tomlins
- Rogel Cancer Center, and.,Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Michigan Center for Translational Pathology, Department of Pathology, and.,Department of Urology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Charles G Drake
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
153
|
Flümann R, Rehkämper T, Nieper P, Pfeiffer P, Holzem A, Klein S, Bhatia S, Kochanek M, Kisis I, Pelzer BW, Ahlert H, Hauer J, da Palma Guerreiro A, Ryan JA, Reimann M, Riabinska A, Wiederstein J, Krüger M, Deckert M, Altmüller J, Klatt AR, Frenzel LP, Pasqualucci L, Béguelin W, Melnick AM, Sander S, Montesinos-Rongen M, Brunn A, Lohneis P, Büttner R, Kashkar H, Borkhardt A, Letai A, Persigehl T, Peifer M, Schmitt CA, Reinhardt HC, Knittel G. An Autochthonous Mouse Model of Myd88- and BCL2-Driven Diffuse Large B-cell Lymphoma Reveals Actionable Molecular Vulnerabilities. Blood Cancer Discov 2020; 2:70-91. [PMID: 33447829 DOI: 10.1158/2643-3230.bcd-19-0059] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Based on gene expression profiles, diffuse large B cell lymphoma (DLBCL) is sub-divided into germinal center B cell-like (GCB) and activated B cell-like (ABC) DLBCL. Two of the most common genomic aberrations in ABC-DLBCL are mutations in MYD88, as well as BCL2 copy number gains. Here, we employ immune phenotyping, RNA-Seq and whole exome sequencing to characterize a Myd88 and Bcl2-driven mouse model of ABC-DLBCL. We show that this model resembles features of human ABC-DLBCL. We further demonstrate an actionable dependence of our murine ABC-DLBCL model on BCL2. This BCL2 dependence was also detectable in human ABC-DLBCL cell lines. Moreover, human ABC-DLBCLs displayed increased PD-L1 expression, compared to GCB-DLBCL. In vivo experiments in our ABC-DLBCL model showed that combined venetoclax and RMP1-14 significantly increased the overall survival of lymphoma bearing animals, indicating that this combination may be a viable option for selected human ABC-DLBCL cases harboring MYD88 and BCL2 aberrations.
Collapse
Affiliation(s)
- Ruth Flümann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tim Rehkämper
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Pascal Nieper
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Pauline Pfeiffer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alessandra Holzem
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sebastian Klein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
| | - Sanil Bhatia
- Heinrich Heine University Düsseldorf, Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, Düsseldorf, Germany
| | - Moritz Kochanek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ilmars Kisis
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Benedikt W Pelzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Heinz Ahlert
- Heinrich Heine University Düsseldorf, Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, Düsseldorf, Germany
| | - Julia Hauer
- Department of Pediatrics, Pediatric Hematology and Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Alexandra da Palma Guerreiro
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jeremy A Ryan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Maurice Reimann
- Charité Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Virchow Campus, Berlin, Germany
| | - Arina Riabinska
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Janica Wiederstein
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Martina Deckert
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Neuropathology, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Andreas R Klatt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Clinical Chemistry, Cologne, Germany
| | - Lukas P Frenzel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Laura Pasqualucci
- Department of Pathology and Cell Biology, Institute for Cancer Genetics and the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, USA
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, USA
| | - Sandrine Sander
- Adaptive Immunity and Lymphoma Group, German Cancer Research Center/National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Manuel Montesinos-Rongen
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Neuropathology, Cologne, Germany
| | - Anna Brunn
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Neuropathology, Cologne, Germany
| | - Philipp Lohneis
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
| | - Reinhard Büttner
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
| | - Hamid Kashkar
- Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Arndt Borkhardt
- Heinrich Heine University Düsseldorf, Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, Düsseldorf, Germany
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Thorsten Persigehl
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Radiology and Interventional Radiology, Cologne, Germany
| | - Martin Peifer
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,University of Cologne, Department of Translational Genomics, Cologne, Germany
| | - Clemens A Schmitt
- Charité Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Virchow Campus, Berlin, Germany.,Kepler Universitätsklinikum, Medical Department of Hematology and Oncology, Johannes Kepler University, Linz, Austria
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK partner site Essen), Essen, Germany
| | - Gero Knittel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
154
|
Peña-Asensio J, Sanz-de-Villalobos E, Miquel J, Larrubia JR. Tumor necrosis family receptor superfamily member 9/tumor necrosis factor receptor-associated factor 1 pathway on hepatitis C viral persistence and natural history. World J Hepatol 2020; 12:754-765. [PMID: 33200014 PMCID: PMC7643212 DOI: 10.4254/wjh.v12.i10.754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is an excellent immunological model for understanding the mechanisms developed by non-cytopathic viruses and tumors to evade the adaptative immune response. The antigen-specific cytotoxic T cell response is essential for keeping HCV under control, but during persistent infection, these cells become exhausted or even deleted. The exhaustion process is progressive and depends on the infection duration and level of antigenemia. During high antigenic load and long duration of infection, T cells become extremely exhausted and ultimately disappear due to apoptosis. The development of exhaustion involves the impairment of positive co-stimulation induced by regulatory cytokines, such as transforming growth factor beta 1. This cytokine downregulates tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1), the signal transducer of the T cell co-stimulatory molecule TNFR superfamily member 9 (known as 4-1BB). This impairment correlates with the low reactivity of T cells and an exhaustion phenotype. Treatment with interleukin-7 in vitro restores TRAF1 expression and rescues T cell effector function. The process of TRAF1 loss and its in vitro recovery is hierarchical, and more affected by severe disease progression. In conclusion, TRAF1 dynamics on T cells define a new pathogenic model that describes some aspects of the natural history of HCV, and sheds light on novel immunotherapy strategies for chronic viral infections and cancer.
Collapse
Affiliation(s)
- Julia Peña-Asensio
- Department of Systems Biology, Guadalajara University Hospital. University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| | - Eduardo Sanz-de-Villalobos
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| | - Joaquín Miquel
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| | - Juan Ramón Larrubia
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| |
Collapse
|
155
|
Terrén I, Orrantia A, Vitallé J, Astarloa-Pando G, Zenarruzabeitia O, Borrego F. Modulating NK cell metabolism for cancer immunotherapy. Semin Hematol 2020; 57:213-224. [PMID: 33256914 DOI: 10.1053/j.seminhematol.2020.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/18/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Natural killer (NK) cells are lymphocytes with potent antitumor functions and, therefore, multiple NK cell-based cancer immunotherapies have been developed and are currently being tested. However, there is a necessity to find new means to improve these therapies, and immunometabolism represents an attractive target. NK cell effector functions are intricately linked to their metabolism, and modulating the latter could be the key to release their full potential. In this review, we have summarized how NK cell metabolism is regulated during some processes, such as maturation, viral infection, and cytokine stimulation. Additionally, we provide an overview of how NK cell metabolism is affected by current therapeutic approaches aimed to promote NK cell expansion and/or to increase their effector functions. We have also recapitulated several strategies that could help alleviating the metabolic impairment that characterizes tumor-infiltrating NK cells, and thus increase or restore their effector functions. Furthermore, we have reviewed several therapeutic approaches targeting cancer metabolism that could synergize with NK cell-based cancer immunotherapies, and thus enhance their efficacy.
Collapse
Affiliation(s)
- Iñigo Terrén
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain
| | - Ane Orrantia
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain
| | - Joana Vitallé
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain
| | | | - Olatz Zenarruzabeitia
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain.
| | - Francisco Borrego
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
156
|
Klein K, He K, Younes AI, Barsoumian HB, Chen D, Ozgen T, Mosaffa S, Patel RR, Gu M, Novaes J, Narayanan A, Cortez MA, Welsh JW. Role of Mitochondria in Cancer Immune Evasion and Potential Therapeutic Approaches. Front Immunol 2020; 11:573326. [PMID: 33178201 PMCID: PMC7596324 DOI: 10.3389/fimmu.2020.573326] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/18/2020] [Indexed: 11/13/2022] Open
Abstract
The role of mitochondria in cancer formation and progression has been studied extensively, but much remains to be understood about this complex relationship. Mitochondria regulate many processes that are known to be altered in cancer cells, from metabolism to oxidative stress to apoptosis. Here, we review the evolving understanding of the role of mitochondria in cancer cells, and highlight key evidence supporting the role of mitochondria in cancer immune evasion and the effects of mitochondria-targeted antitumor therapy. Also considered is how knowledge of the role of mitochondria in cancer can be used to design and improve cancer therapies, particularly immunotherapy and radiation therapy. We further offer critical insights into the mechanisms by which mitochondria influence tumor immune responses, not only in cancer cells but also in immune cells. Given the central role of mitochondria in the complex interactions between cancer and the immune system, high priority should be placed on developing rational strategies to address mitochondria as potential targets in future preclinical and clinical studies. We believe that targeting mitochondria may provide additional opportunities in the development of novel antitumor therapeutics.
Collapse
Affiliation(s)
- Katherine Klein
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,McGovern Medical School at UTHealth, Houston, TX, United States
| | - Kewen He
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Ahmed I Younes
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dawei Chen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Tugce Ozgen
- Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sara Mosaffa
- Department of Molecular Biosciences, The University of Texas at Austin, Houston, TX, United States
| | - Roshal R Patel
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Meidi Gu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jose Novaes
- Department of Internal Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Aarthi Narayanan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
157
|
Fu X, Xu M, Zhang H, Li Y, Li Y, Zhang C. Staphylococcal Enterotoxin C2 Mutant-Directed Fatty Acid and Mitochondrial Energy Metabolic Programs Regulate CD8 + T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2020; 205:2066-2076. [PMID: 32938730 DOI: 10.4049/jimmunol.2000538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022]
Abstract
CD8+ T cells can switch between fatty acid catabolism and mitochondrial energy metabolism to sustain expansion and their cytotoxic functions. ST-4 is a TCR-enhanced mutant derived from superantigen staphylococcal enterotoxin C2 (SEC2), which can hyperactivate CD4+ T cells without MHC class II molecules. However, whether ST-4/SEC2 can enhance metabolic reprogramming in CD8+ T cells remains poorly understood. In this study, we found that ST-4, but not SEC2, could induce proliferation of purified CD8+ T cell from BALB/c mice in Vβ8.2- and -8.3-specific manners. Results of gas chromatography-mass spectroscopy analysis showed that fatty acid contents in CD8+ T cells were increased after ST-4 stimulation. Flow cytometry and Seahorse analyses showed that ST-4 significantly promoted mitochondrial energy metabolism in CD8+ T cells. We also observed significantly upregulated levels of gene transcripts for fatty acid uptake and synthesis, and significantly increased protein expression levels of fatty acid and mitochondrial metabolic markers of mTOR/PPARγ/SREBP1 and p38-MAPK signaling pathways in ST-4-activated CD8+ T cells. However, blocking mTOR, PPARγ, SREBP1, or p38-MAPK signals with specific inhibitors could significantly relieve the enhanced fatty acid catabolism and mitochondrial capacity induced by ST-4. In addition, blocking these signals inhibited ST-4-stimulated CD8+ T cell proliferation and effector functions. Taken together, our findings demonstrate that ST-4 enhanced fatty acid and mitochondria metabolic reprogramming through mTOR/PPARγ/SREBP and p38-MAPK signaling pathways, which may be important regulatory mechanisms of CD8+ T cell activation. Understanding the effects of ST-4-induced regulatory metabolic networks on CD8+ T cells provide important mechanistic insights to superantigen-based tumor therapy.
Collapse
Affiliation(s)
- Xuanhe Fu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; and
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; and
| | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; and
| | - Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; and.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yansheng Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; and.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; and
| |
Collapse
|
158
|
Franco F, Jaccard A, Romero P, Yu YR, Ho PC. Metabolic and epigenetic regulation of T-cell exhaustion. Nat Metab 2020; 2:1001-1012. [PMID: 32958939 DOI: 10.1038/s42255-020-00280-9] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
Current immunotherapies yield remarkable clinical outcomes by boosting the power of host immunity in cancer cell elimination and viral clearance. However, after prolonged antigen exposure, CD8+ T cells differentiate into a special differentiation state known as T-cell exhaustion, which poses one of the major hurdles to antiviral and antitumor immunity during chronic viral infection and tumour development. Growing evidence indicates that exhausted T cells undergo metabolic insufficiency with altered signalling cascades and epigenetic landscapes, which dampen effector immunity and cause poor responsiveness to immune-checkpoint-blockade therapies. How metabolic stress affects T-cell exhaustion remains unclear; therefore, in this Review, we summarize current knowledge of how T-cell exhaustion occurs, and discuss how metabolic insufficiency and prolonged stress responses may affect signalling cascades and epigenetic reprogramming, thus locking T cells into an exhausted state via specialized differentiation programming.
Collapse
Affiliation(s)
- Fabien Franco
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Alison Jaccard
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Pedro Romero
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Yi-Ru Yu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
159
|
Chakravarty D, Huang L, Kahn M, Tewari AK. Immunotherapy for Metastatic Prostate Cancer: Current and Emerging Treatment Options. Urol Clin North Am 2020; 47:487-510. [PMID: 33008499 DOI: 10.1016/j.ucl.2020.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of immunotherapy has revolutionized cancer treatment. Prostate cancer has an immunosuppressive microenvironment and a low tumor mutation burden, resulting in low neoantigen expression. The consensus was that immunotherapy would be less effective in prostate cancer. However, recent studies have reported that prostate cancer does have a high number of DNA damage and repair gene defects. Immunotherapies that have been tested in prostate cancer so far have been mainly vaccines and checkpoint inhibitors. A combination of genomically targeted therapies, with approaches to alleviate immune response and thereby make the tumor microenvironment immunologically hot, is promising.
Collapse
Affiliation(s)
- Dimple Chakravarty
- Department of Urology and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Li Huang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Matthew Kahn
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ashutosh K Tewari
- Department of Urology and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
160
|
Gerbec ZJ, Hashemi E, Nanbakhsh A, Holzhauer S, Yang C, Mei A, Tsaih SW, Lemke A, Flister MJ, Riese MJ, Thakar MS, Malarkannan S. Conditional Deletion of PGC-1α Results in Energetic and Functional Defects in NK Cells. iScience 2020; 23:101454. [PMID: 32858341 PMCID: PMC7474003 DOI: 10.1016/j.isci.2020.101454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/30/2019] [Accepted: 08/10/2020] [Indexed: 01/07/2023] Open
Abstract
During an immune response, natural killer (NK) cells activate specific metabolic pathways to meet the increased energetic and biosynthetic demands associated with effector functions. Here, we found in vivo activation of NK cells during Listeria monocytogenes infection-augmented transcription of genes encoding mitochondria-associated proteins in a manner dependent on the transcriptional coactivator PGC-1α. Using an Ncr1Cre-based conditional knockout mouse, we found that PGC-1α was crucial for optimal NK cell effector functions and bioenergetics, as the deletion of PGC-1α was associated with decreased cytotoxic potential and cytokine production along with altered ADP/ATP ratios. Lack of PGC-1α also significantly impaired the ability of NK cells to control B16F10 tumor growth in vivo, and subsequent gene expression analysis showed that PGC-1α mediates transcription required to maintain mitochondrial activity within the tumor microenvironment. Together, these data suggest that PGC-1α-dependent transcription of specific target genes is required for optimal NK cell function during the response to infection or tumor growth.
Collapse
Affiliation(s)
- Zachary J. Gerbec
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arash Nanbakhsh
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Sandra Holzhauer
- Laboratory of Lymphocyte Signaling, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
| | - Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ao Mei
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shirng-Wern Tsaih
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela Lemke
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael J. Flister
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J. Riese
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Laboratory of Lymphocyte Signaling, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monica S. Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
161
|
Teijeira A, Garasa S, Etxeberria I, Gato-Cañas M, Melero I, Delgoffe GM. Metabolic Consequences of T-cell Costimulation in Anticancer Immunity. Cancer Immunol Res 2020; 7:1564-1569. [PMID: 31575551 DOI: 10.1158/2326-6066.cir-19-0115] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
T-cell functional behavior and performance are closely regulated by nutrient availability and the control of metabolism within the T cell. T cells have distinct energetic and anabolic needs when nascently activated, actively proliferating, in naïveté, or in a resting, memory state. As a consequence, bioenergetics are key for T cells to mount adequate immune responses in health and disease. Solid tumors are particularly hostile metabolic environments, characterized by low glucose concentration, hypoxia, and low pH. These metabolic conditions in the tumor are known to hinder antitumor immune responses of T cells by limiting nutrient availability and energetic efficiency. In such immunosuppressive environments, artificial modulation of glycolysis, mitochondrial respiratory capabilities, and fatty acid β-oxidation are known to enhance antitumor performance. Reportedly, costimulatory molecules, such as CD28 and CD137, are important regulators of metabolic routes in T cells. In this sense, different costimulatory signals and cytokines induce diverse metabolic changes that critically involve mitochondrial mass and function. For instance, the efficacy of chimeric antigen receptors (CAR) encompassing costimulatory domains, agonist antibodies to costimulatory receptors, and checkpoint inhibitors depends on the associated metabolic events in immune cells. Here, we review the metabolic changes that costimulatory receptors can promote in T cells and the potential consequences for cancer immunotherapy. Our focus is mostly on discoveries regarding the physiology and pharmacology of IL15, CD28, PD-1, and CD137 (4-1BB).
Collapse
Affiliation(s)
- Alvaro Teijeira
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain. .,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Inaki Etxeberria
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria Gato-Cañas
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Greg M Delgoffe
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
162
|
Abstract
Through the successes of checkpoint blockade and adoptive cellular therapy, immunotherapy has become an established treatment modality for cancer. Cellular metabolism has emerged as a critical determinant of the viability and function of both cancer cells and immune cells. In order to sustain prodigious anabolic needs, tumours employ a specialized metabolism that differs from untransformed somatic cells. This metabolism leads to a tumour microenvironment that is commonly acidic, hypoxic and/or depleted of critical nutrients required by immune cells. In this context, tumour metabolism itself is a checkpoint that can limit immune-mediated tumour destruction. Because our understanding of immune cell metabolism and cancer metabolism has grown significantly in the past decade, we are on the cusp of being able to unravel the interaction of cancer cell metabolism and immune metabolism in therapeutically meaningful ways. Although there are metabolic processes that are seemingly fundamental to both cancer and responding immune cells, metabolic heterogeneity and plasticity may serve to distinguish the two. As such, understanding the differential metabolic requirements of the diverse cells that comprise an immune response to cancer offers an opportunity to selectively regulate immune cell function. Such a nuanced evaluation of cancer and immune metabolism can uncover metabolic vulnerabilities and therapeutic windows upon which to intervene for enhanced immunotherapy.
Collapse
Affiliation(s)
- Robert D Leone
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan D Powell
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
163
|
Li W, Zhang L. Rewiring Mitochondrial Metabolism for CD8 + T Cell Memory Formation and Effective Cancer Immunotherapy. Front Immunol 2020; 11:1834. [PMID: 32983095 PMCID: PMC7481383 DOI: 10.3389/fimmu.2020.01834] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
Memory T cells persist for long term to mediate robust recall response upon rechallenging with previous encountered pathogens. The memory T cell pool is highly heterogeneous based on distinct phenotypic, functional, and locational properties, and contains discrete subsets, which contribute to diverse immune responses. In this mini-review, we will briefly discuss the distinct subsets of memory T cells and then focus on mitochondria-related metabolic and epigenetic regulations of CD8+ T cell memory formation. In particular, we discuss many aspects of mitochondrial quality control systems (biogenesis, dynamics, etc.) in regulating CD8+ T cell fate decision and antitumor immunity. Importantly, targeting mitochondrial metabolism to boost T cell memory formation and metabolic fitness might represent an attractive strategy to improve cancer immunotherapy including CAR-T therapy.
Collapse
Affiliation(s)
- Wenhui Li
- Suzhou Institute of Systems Medicine, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianjun Zhang
- Suzhou Institute of Systems Medicine, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
164
|
Beckermann KE, Hongo R, Ye X, Young K, Carbonell K, Healey DCC, Siska PJ, Barone S, Roe CE, Smith CC, Vincent BG, Mason FM, Irish JM, Rathmell WK, Rathmell JC. CD28 costimulation drives tumor-infiltrating T cell glycolysis to promote inflammation. JCI Insight 2020; 5:138729. [PMID: 32814710 PMCID: PMC7455120 DOI: 10.1172/jci.insight.138729] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming dictates the fate and function of stimulated T cells, yet these pathways can be suppressed in T cells in tumor microenvironments. We previously showed that glycolytic and mitochondrial adaptations directly contribute to reducing the effector function of renal cell carcinoma (RCC) CD8+ tumor-infiltrating lymphocytes (TILs). Here we define the role of these metabolic pathways in the activation and effector functions of CD8+ RCC TILs. CD28 costimulation plays a key role in augmenting T cell activation and metabolism, and is antagonized by the inhibitory and checkpoint immunotherapy receptors CTLA4 and PD-1. While RCC CD8+ TILs were activated at a low level when stimulated through the T cell receptor alone, addition of CD28 costimulation greatly enhanced activation, function, and proliferation. CD28 costimulation reprogrammed RCC CD8+ TIL metabolism with increased glycolysis and mitochondrial oxidative metabolism, possibly through upregulation of GLUT3. Mitochondria also fused to a greater degree, with higher membrane potential and overall mass. These phenotypes were dependent on glucose metabolism, as the glycolytic inhibitor 2-deoxyglucose both prevented changes to mitochondria and suppressed RCC CD8+ TIL activation and function. These data show that CD28 costimulation can restore RCC CD8+ TIL metabolism and function through rescue of T cell glycolysis that supports mitochondrial mass and activity.
Collapse
Affiliation(s)
| | - Rachel Hongo
- Department of Medicine, Division of Hematology and Oncology, and
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kirsten Young
- Department of Medicine, Division of Hematology and Oncology, and
| | - Katie Carbonell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Diana C. Contreras Healey
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter J. Siska
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sierra Barone
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Caroline E. Roe
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Christof C. Smith
- Lineberger Comprehensive Cancer Center; Department of Medicine Division of Hematology and Oncology, Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Computational Medicine Program, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer Center; Department of Medicine Division of Hematology and Oncology, Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Computational Medicine Program, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Frank M. Mason
- Department of Medicine, Division of Hematology and Oncology, and
| | - Jonathan M. Irish
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - W. Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, and
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
165
|
Hesterberg RS, Beatty MS, Han Y, Fernandez MR, Akuffo AA, Goodheart WE, Yang C, Chang S, Colin CM, Alontaga AY, McDaniel JM, Mailloux AW, Billington JMR, Yue L, Russell S, Gillies RJ, Yun SY, Ayaz M, Lawrence NJ, Lawrence HR, Yu XZ, Fu J, Darville LN, Koomen JM, Ren X, Messina J, Jiang K, Garrett TJ, Rajadhyaksha AM, Cleveland JL, Epling-Burnette PK. Cereblon harnesses Myc-dependent bioenergetics and activity of CD8+ T lymphocytes. Blood 2020; 136:857-870. [PMID: 32403132 PMCID: PMC7426646 DOI: 10.1182/blood.2019003257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/20/2020] [Indexed: 01/08/2023] Open
Abstract
Immunomodulatory drugs, such as thalidomide and related compounds, potentiate T-cell effector functions. Cereblon (CRBN), a substrate receptor of the DDB1-cullin-RING E3 ubiquitin ligase complex, is the only molecular target for this drug class, where drug-induced, ubiquitin-dependent degradation of known "neosubstrates," such as IKAROS, AIOLOS, and CK1α, accounts for their biological activity. Far less clear is whether these CRBN E3 ligase-modulating compounds disrupt the endogenous functions of CRBN. We report that CRBN functions in a feedback loop that harnesses antigen-specific CD8+ T-cell effector responses. Specifically, Crbn deficiency in murine CD8+ T cells augments their central metabolism manifested as elevated bioenergetics, with supraphysiological levels of polyamines, secondary to enhanced glucose and amino acid transport, and with increased expression of metabolic enzymes, including the polyamine biosynthetic enzyme ornithine decarboxylase. Treatment with CRBN-modulating compounds similarly augments central metabolism of human CD8+ T cells. Notably, the metabolic control of CD8+ T cells by modulating compounds or Crbn deficiency is linked to increased and sustained expression of the master metabolic regulator MYC. Finally, Crbn-deficient T cells have augmented antigen-specific cytolytic activity vs melanoma tumor cells, ex vivo and in vivo, and drive accelerated and highly aggressive graft-versus-host disease. Therefore, CRBN functions to harness the activation of CD8+ T cells, and this phenotype can be exploited by treatment with drugs.
Collapse
Affiliation(s)
- Rebecca S Hesterberg
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
- Cancer Biology PhD Program, University of South Florida, Tampa, FL
| | - Matthew S Beatty
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ying Han
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Mario R Fernandez
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Afua A Akuffo
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
- Cancer Biology PhD Program, University of South Florida, Tampa, FL
| | - William E Goodheart
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Chunying Yang
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Shiun Chang
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
- Cancer Biology PhD Program, University of South Florida, Tampa, FL
| | - Christelle M Colin
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Aileen Y Alontaga
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jessica M McDaniel
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Adam W Mailloux
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Julia M R Billington
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
- Cancer Biology PhD Program, University of South Florida, Tampa, FL
| | - Lanzhu Yue
- Department of Immunology, Moffitt Cancer Center and Research Institute, Tampa, FL
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shonagh Russell
- Cancer Biology PhD Program, University of South Florida, Tampa, FL
- Department of Cancer Physiology
| | | | | | | | - Nicholas J Lawrence
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Jianing Fu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | | | - John M Koomen
- Proteomics and Metabolomics Core
- Department of Molecular Oncology, and
| | - Xiubao Ren
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jane Messina
- Department of Anatomic Pathology and Cutaneous Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Kun Jiang
- Department of Anatomic Pathology and Cutaneous Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL; and
| | - Anjali M Rajadhyaksha
- Pediatric Neurology, Pediatrics, Weill Family Brain and Mind Research Institute, and
- Graduate Program in Neuroscience, Weill Cornell Medical College, Cornell University, Cornell, NY
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL
| | | |
Collapse
|
166
|
Ma S, Yang X, Zhou H, Zhang C, Kang J, Sun D. Combination of CpG Oligodeoxynucleotide and Anti-4-1BB Antibody in the Treatment of Multiple Hepatocellular Carcinoma in Mice. Onco Targets Ther 2020; 13:6997-7005. [PMID: 32764990 PMCID: PMC7381816 DOI: 10.2147/ott.s260353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Background To investigate the effect of topical application of CpG oligodeoxynucleotide (CpG-ODN) combined with anti-4-1BB antibodies on mouse HCC multiple tumor-bearing models and the degree of improvement of anti-tumor immune response in mice. Materials and Methods We inoculated each BALB/c male mouse subcutaneously with one tumor in the axillae of the four limbs and divided them into four groups. We only selected the tumor-bearing part of the left lower limb for drug treatment. We measured the tumor-bearing volume of mice in each group. Then, we tested the organ coefficients of mice, the concentrations of IL-12 and IFN-γ in peripheral blood, the ratio of spleen Tregs and CD8+T cells, the spleen CTL killing activity, and the survival time of mice. Results We found that the tumor-bearing volume decreased significantly after the combination of CpG-ODN and anti-4-1BB antibody (P<0.001). The organ coefficients of treated mice were not significantly different from normal mice (P>0.05). The concentration of IL-12 and IFN-in serum and the ratio of CD8+T cells in spleen were increased, while the ratio of spleen Tregs was decreased. CTL activity of spleen was increased. The survival time of mice was significantly prolonged (P<0.001). Conclusion The treatment programme combining CpG-ODN with an anti-4-1BB antibody can significantly reduce tumor growth at the treatment site, slow the growth rate of metastases and improve host prognosis.
Collapse
Affiliation(s)
- Shizhao Ma
- The Liver Disease Center of PLA, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang 050082, People's Republic of China
| | - Xinying Yang
- The Liver Disease Center of PLA, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang 050082, People's Republic of China
| | - Huifang Zhou
- The Liver Disease Center of PLA, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang 050082, People's Republic of China
| | - Chaoqun Zhang
- The Liver Disease Center of PLA, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang 050082, People's Republic of China
| | - Jiwen Kang
- The Liver Disease Center of PLA, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang 050082, People's Republic of China
| | - Dianxing Sun
- The Liver Disease Center of PLA, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang 050082, People's Republic of China
| |
Collapse
|
167
|
Li W, Qiu S, Chen J, Jiang S, Chen W, Jiang J, Wang F, Si W, Shu Y, Wei P, Fan G, Tian R, Wu H, Xu C, Wang H. Chimeric Antigen Receptor Designed to Prevent Ubiquitination and Downregulation Showed Durable Antitumor Efficacy. Immunity 2020; 53:456-470.e6. [PMID: 32758419 DOI: 10.1016/j.immuni.2020.07.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/21/2020] [Accepted: 07/15/2020] [Indexed: 01/01/2023]
Abstract
Clinical evidence suggests that poor persistence of chimeric antigen receptor-T cells (CAR-T) in patients limits therapeutic efficacy. Here, we designed a CAR with recyclable capability to promote in vivo persistence and to sustain antitumor activity. We showed that the engagement of tumor antigens induced rapid ubiquitination of CARs, causing CAR downmodulation followed by lysosomal degradation. Blocking CAR ubiquitination by mutating all lysines in the CAR cytoplasmic domain (CARKR) markedly repressed CAR downmodulation by inhibiting lysosomal degradation while enhancing recycling of internalized CARs back to the cell surface. Upon encountering tumor antigens, CARKR-T cells ameliorated the loss of surface CARs, which promoted their long-term killing capacity. Moreover, CARKR-T cells containing 4-1BB signaling domains displayed elevated endosomal 4-1BB signaling that enhanced oxidative phosphorylation and promoted memory T cell differentiation, leading to superior persistence in vivo. Collectively, our study provides a straightforward strategy to optimize CAR-T antitumor efficacy by redirecting CAR trafficking.
Collapse
Affiliation(s)
- Wentao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Qiu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian Chen
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Shutan Jiang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wendong Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingwei Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wen Si
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yilai Shu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ping Wei
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haitao Wu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
168
|
Barbari C, Fontaine T, Parajuli P, Lamichhane N, Jakubski S, Lamichhane P, Deshmukh RR. Immunotherapies and Combination Strategies for Immuno-Oncology. Int J Mol Sci 2020; 21:E5009. [PMID: 32679922 PMCID: PMC7404041 DOI: 10.3390/ijms21145009] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
The advent of novel immunotherapies in the treatment of cancers has dramatically changed the landscape of the oncology field. Recent developments in checkpoint inhibition therapies, tumor-infiltrating lymphocyte therapies, chimeric antigen receptor T cell therapies, and cancer vaccines have shown immense promise for significant advancements in cancer treatments. Immunotherapies act on distinct steps of immune response to augment the body's natural ability to recognize, target, and destroy cancerous cells. Combination treatments with immunotherapies and other modalities intend to activate immune response, decrease immunosuppression, and target signaling and resistance pathways to offer a more durable, long-lasting treatment compared to traditional therapies and immunotherapies as monotherapies for cancers. This review aims to briefly describe the rationale, mechanisms of action, and clinical efficacy of common immunotherapies and highlight promising combination strategies currently approved or under clinical development. Additionally, we will discuss the benefits and limitations of these immunotherapy approaches as monotherapies as well as in combination with other treatments.
Collapse
Affiliation(s)
- Cody Barbari
- OMS Students, School of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine (LECOM), 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (C.B.); (T.F.)
| | - Tyler Fontaine
- OMS Students, School of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine (LECOM), 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA; (C.B.); (T.F.)
| | - Priyanka Parajuli
- Department of Internal Medicine, Southern Illinois University, Springfield, IL 62702, USA;
| | - Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA;
| | - Silvia Jakubski
- Department of Biostatistics, University of Florida, Gainesville, FL 32611, USA;
| | - Purushottam Lamichhane
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine (LECOM), 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Rahul R. Deshmukh
- School of Pharmacy, Lake Erie College of Osteopathic Medicine (LECOM), 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| |
Collapse
|
169
|
Mo F, Watanabe N, McKenna MK, Hicks MJ, Srinivasan M, Gomes-Silva D, Atilla E, Smith T, Ataca Atilla P, Ma R, Quach D, Heslop HE, Brenner MK, Mamonkin M. Engineered off-the-shelf therapeutic T cells resist host immune rejection. Nat Biotechnol 2020; 39:56-63. [PMID: 32661440 PMCID: PMC7854790 DOI: 10.1038/s41587-020-0601-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Feiyan Mo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA.,Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Mary K McKenna
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - M John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Madhuwanti Srinivasan
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Diogo Gomes-Silva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Erden Atilla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Tyler Smith
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Pinar Ataca Atilla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Royce Ma
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA.,Graduate Program in Immunology, Baylor College of Medicine, Houston, TX, USA
| | - David Quach
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA.,Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA.,Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA. .,Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA. .,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA. .,Graduate Program in Immunology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
170
|
Scherwitzl I, Opp S, Hurtado AM, Pampeno C, Loomis C, Kannan K, Yu M, Meruelo D. Sindbis Virus with Anti-OX40 Overcomes the Immunosuppressive Tumor Microenvironment of Low-Immunogenic Tumors. Mol Ther Oncolytics 2020; 17:431-447. [PMID: 32478167 PMCID: PMC7251545 DOI: 10.1016/j.omto.2020.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 01/03/2023] Open
Abstract
Despite remarkable responses to cancer immunotherapy in a subset of patients, many patients remain resistant to therapies. It is now clear that elevated levels of tumor-infiltrating T cells as well as a systemic anti-tumor immune response are requirements for successful immunotherapies. However, the tumor microenvironment imposes an additional resistance mechanism to immunotherapy. We have developed a practical and improved strategy for cancer immunotherapy using an oncolytic virus and anti-OX40. This strategy takes advantage of a preexisting T cell immune repertoire in vivo, removing the need to know about present tumor antigens. We have shown in this study that the replication-deficient oncolytic Sindbis virus vector expressing interleukin-12 (IL-12) (SV.IL12) activates immune-mediated tumor killing by inducing OX40 expression on CD4 T cells, allowing the full potential of the agonistic anti-OX40 antibody. The combination of SV.IL12 with anti-OX40 markedly changes the transcriptome signature and metabolic program of T cells, driving the development of highly activated terminally differentiated effector T cells. These metabolically reprogrammed T cells demonstrate enhanced tumor infiltration capacity as well as anti-tumor activity capable of overcoming the repressive tumor microenvironment. Our findings identify SV.IL12 in combination with anti-OX40 to be a novel and potent therapeutic strategy that can cure multiple types of low-immunogenic solid tumors.
Collapse
Affiliation(s)
- Iris Scherwitzl
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Silvana Opp
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | | | | | - Cynthia Loomis
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Kasthuri Kannan
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Minjun Yu
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Daniel Meruelo
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
171
|
Abstract
Immune checkpoint therapies aiming to enhance T cell responses have revolutionized cancer immunotherapy. However, although a small fraction of patients develops durable anti-tumor responses, the majority of patients display only transient responses, underlying the need for finding auxiliary approaches. Tumor microenvironment poses a major metabolic barrier to efficient anti-tumor T cell activity. As it is now well accepted that metabolism regulates T cell fate and function, harnessing metabolism may be a new strategy to potentiate T cell-based immunotherapies.
Collapse
|
172
|
Manipulation of Metabolic Pathways and Its Consequences for Anti-Tumor Immunity: A Clinical Perspective. Int J Mol Sci 2020; 21:ijms21114030. [PMID: 32512898 PMCID: PMC7312891 DOI: 10.3390/ijms21114030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the relatively short history of anti-tumor treatment, numerous medications have been developed against a variety of targets. Intriguingly, although many anti-tumor strategies have failed in their clinical trials, metformin, an anti-diabetic medication, demonstrated anti-tumor effects in observational studies and even showed its synergistic potential with immune checkpoint inhibitors (ICIs) in subsequent clinical studies. Looking back from bedside-to-bench, it may not be surprising that the anti-tumor effect of metformin derives largely from its ability to rewire aberrant metabolic pathways within the tumor microenvironment. As one of the most promising breakthroughs in oncology, ICIs were also found to exert their immune-stimulatory effects at least partly via rewiring metabolic pathways. These findings underscore the importance of correcting metabolic pathways to achieve sufficient anti-tumor immunity. Herein, we start by introducing the tumor microenvironment, and then we review the implications of metabolic syndrome and treatments for targeting metabolic pathways in anti-tumor therapies. We further summarize the close associations of certain aberrant metabolic pathways with impaired anti-tumor immunity and introduce the therapeutic effects of targeting these routes. Lastly, we go through the metabolic effects of ICIs and conclude an overall direction to manipulate metabolic pathways in favor of anti-tumor responses.
Collapse
|
173
|
Etxeberria I, Olivera I, Bolaños E, Cirella A, Teijeira Á, Berraondo P, Melero I. Engineering bionic T cells: signal 1, signal 2, signal 3, reprogramming and the removal of inhibitory mechanisms. Cell Mol Immunol 2020; 17:576-586. [PMID: 32433539 PMCID: PMC7264123 DOI: 10.1038/s41423-020-0464-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gene engineering and combinatorial approaches with other cancer immunotherapy agents may confer capabilities enabling full tumor rejection by adoptive T cell therapy (ACT). The provision of proper costimulatory receptor activity and cytokine stimuli, along with the repression of inhibitory mechanisms, will conceivably make the most of these treatment strategies. In this sense, T cells can be genetically manipulated to become refractory to suppressive mechanisms and exhaustion, last longer and differentiate into memory T cells while endowed with the ability to traffic to malignant tissues. Their antitumor effects can be dramatically augmented with permanent or transient gene transfer maneuvers to express or delete/repress genes. A combination of such interventions seeks the creation of the ultimate bionic T cell, perfected to seek and destroy cancer cells upon systemic or local intratumor delivery.
Collapse
Affiliation(s)
- Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Asunta Cirella
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
174
|
Abstract
Tumor microenvironment is a network of complex cellular and molecular systems where cells will gain specific phenotypes and specific functions that would drive tumorigenesis. In skin cancers, tumor microenvironment is characterized by tumor infiltrating immune cells that sustain immune suppression, mainly lymphocytes. Melanoma cellular heterogeneity can be described on genetic, proteomic, transcriptomic and metabolomic levels. Melanoma cells display a metabolic reprogramming triggered by both genetic alterations and adaptation to a microenvironment that lacks nutrients and oxygen supply. Tumor cells present clear metabolic adaptations and identifying deregulated glycolysis pathway could offer new therapy targets. Moreover, the immune cells (T lymphocytes, macrophages, NK cells, neutrophils and so on) that infiltrate melanoma tumors have metabolic particularities that, upon interaction within tumor microenvironment, would favor tumorigenesis. Analyzing both tumor cell metabolism and the metabolic outline of immune cells can offer innovative insights in new therapy targets and cancer therapeutical approaches. In addition to already approved immune- and targeted therapy in melanoma, approaching metabolic check-points could improve therapy efficacy and hinder resistance to therapy.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, Colentina University Hospital, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania
| |
Collapse
|
175
|
Huang H, Long L, Zhou P, Chapman NM, Chi H. mTOR signaling at the crossroads of environmental signals and T-cell fate decisions. Immunol Rev 2020; 295:15-38. [PMID: 32212344 PMCID: PMC8101438 DOI: 10.1111/imr.12845] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/19/2020] [Indexed: 12/28/2022]
Abstract
The evolutionarily conserved serine/threonine kinase mTOR (mechanistic target of rapamycin) forms the distinct protein complexes mTORC1 and mTORC2 and integrates signals from the environment to coordinate downstream signaling events and various cellular processes. T cells rely on mTOR activity for their development and to establish their homeostasis and functional fitness. Here, we review recent progress in our understanding of the upstream signaling and downstream targets of mTOR. We also provide an updated overview of the roles of mTOR in T-cell development, homeostasis, activation, and effector-cell fate decisions, as well as its important impacts on the suppressive activity of regulatory T cells. Moreover, we summarize the emerging roles of mTOR in T-cell exhaustion and transdifferentiation. A better understanding of the contribution of mTOR to T-cell fate decisions will ultimately aid in the therapeutic targeting of mTOR in human disease.
Collapse
Affiliation(s)
- Hongling Huang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Lingyun Long
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Equal contribution
| | - Peipei Zhou
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Equal contribution
| | - Nicole M. Chapman
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
176
|
Turbitt WJ, Rosean CB, Weber KS, Norian LA. Obesity and CD8 T cell metabolism: Implications for anti-tumor immunity and cancer immunotherapy outcomes. Immunol Rev 2020; 295:203-219. [PMID: 32157710 PMCID: PMC7416819 DOI: 10.1111/imr.12849] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Obesity is an established risk factor for many cancers and has recently been found to alter the efficacy of T cell-based immunotherapies. Currently, however, the effects of obesity on immunometabolism remain unclear. Understanding these associations is critical, given the fact that T cell metabolism is tightly linked to effector function. Thus, any obesity-associated changes in T cell bioenergetics are likely to drive functional changes at the cellular level, alter the metabolome and cytokine/chemokine milieu, and impact cancer immunotherapy outcomes. Here, we provide a brief overview of T cell metabolism in the presence and absence of solid tumor growth and summarize current literature regarding obesity-associated changes in T cell function and bioenergetics. We also discuss recent findings related to the impact of host obesity on cancer immunotherapy outcomes and present potential mechanisms by which T cell metabolism may influence therapeutic efficacy. Finally, we describe promising pharmaceutical therapies that are being investigated for their ability to improve CD8 T cell metabolism and enhance cancer immunotherapy outcomes in patients, regardless of their obesity status.
Collapse
Affiliation(s)
- William J. Turbitt
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - K. Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah
| | - Lyse A. Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
177
|
Li Q, Huang Y. Mitochondrial targeted strategies and their
application for cancer and other diseases treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00481-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
178
|
Coleman MF, Cozzo AJ, Pfeil AJ, Etigunta SK, Hursting SD. Cell Intrinsic and Systemic Metabolism in Tumor Immunity and Immunotherapy. Cancers (Basel) 2020; 12:cancers12040852. [PMID: 32244756 PMCID: PMC7225951 DOI: 10.3390/cancers12040852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has shown extraordinary promise at treating cancers otherwise resistant to treatment. However, for ICI therapy to be effective, it must overcome the metabolic limitations of the tumor microenvironment. Tumor metabolism has long been understood to be highly dysregulated, with potent immunosuppressive effects. Moreover, T cell activation and longevity within the tumor microenvironment are intimately tied to T cell metabolism and are required for the long-term efficacy of ICI therapy. We discuss in this review the intersection of metabolic competition in the tumor microenvironment, T cell activation and metabolism, the roles of tumor cell metabolism in immune evasion, and the impact of host metabolism in determining immune surveillance and ICI therapy outcomes. We also discussed the effects of obesity and calorie restriction—two important systemic metabolic perturbations that impact intrinsic metabolic pathways in T cells as well as cancer cells.
Collapse
Affiliation(s)
- Michael F. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
- Department of Medicine, Duke University, Durham, NC 27705, USA
| | - Alexander J. Pfeil
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Suhas K. Etigunta
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27516, USA
- Correspondence:
| |
Collapse
|
179
|
Eskiocak U, Guzman W, Wolf B, Cummings C, Milling L, Wu HJ, Ophir M, Lambden C, Bakhru P, Gilmore DC, Ottinger S, Liu L, McConaughy WK, He SQ, Wang C, Leung CL, Lajoie J, Carson WF, Zizlsperger N, Schmidt MM, Anderson AC, Bobrowicz P, Schuetz TJ, Tighe R. Differentiated agonistic antibody targeting CD137 eradicates large tumors without hepatotoxicity. JCI Insight 2020; 5:133647. [PMID: 32161196 DOI: 10.1172/jci.insight.133647] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
CD137 (4-1BB) is a member of the TNFR superfamily that represents a promising target for cancer immunotherapy. Recent insights into the function of TNFR agonist antibodies implicate epitope, affinity, and IgG subclass as critical features, and these observations help explain the limited activity and toxicity seen with clinically tested CD137 agonists. Here, we describe the preclinical characterization of CTX-471, a fully human IgG4 agonist of CD137 that engages a unique epitope that is shared by human, cynomolgus monkey, and mouse and is associated with a differentiated pharmacology and toxicology profile. In vitro, CTX-471 increased IFN-γ production by human T cells in an Fcγ receptor-dependent (FcγR-dependent) manner, displaying an intermediate level of activity between 2 clinical-stage anti-CD137 antibodies. In mice, CTX-471 exhibited curative monotherapy activity in various syngeneic tumor models and showed a unique ability to cure mice of very large (~500 mm3) tumors compared with validated antibodies against checkpoints and TNFR superfamily members. Extremely high doses of CTX-471 were well tolerated, with no signs of hepatic toxicity. Collectively, these data demonstrate that CTX-471 is a unique CD137 agonist that displays an excellent safety profile and an unprecedented level of monotherapy efficacy against very large tumors.
Collapse
Affiliation(s)
| | | | | | | | - Lauren Milling
- Compass Therapeutics, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Hsin-Jung Wu
- Compass Therapeutics, Cambridge, Massachusetts, USA
| | | | - Conner Lambden
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pearl Bakhru
- Compass Therapeutics, Cambridge, Massachusetts, USA
| | | | | | - Lucy Liu
- Compass Therapeutics, Cambridge, Massachusetts, USA
| | | | - Sunny Q He
- Compass Therapeutics, Cambridge, Massachusetts, USA
| | - Chao Wang
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Jason Lajoie
- Compass Therapeutics, Cambridge, Massachusetts, USA
| | | | | | | | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Robert Tighe
- Compass Therapeutics, Cambridge, Massachusetts, USA
| |
Collapse
|
180
|
Siska PJ, Singer K, Evert K, Renner K, Kreutz M. The immunological Warburg effect: Can a metabolic-tumor-stroma score (MeTS) guide cancer immunotherapy? Immunol Rev 2020; 295:187-202. [PMID: 32157706 DOI: 10.1111/imr.12846] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
The "glycolytic switch" also known as the "Warburg effect" is a key feature of tumor cells and leads to the accumulation of lactate and protons in the tumor environment. Intriguingly, non-malignant lymphocytes or stromal cells such as tumor-associated macrophages and cancer-associated fibroblasts contribute to the lactate accumulation in the tumor environment, a phenomenon described as the "Reverse Warburg effect." Localized lactic acidosis has a strong immunosuppressive effect and mediates an immune escape of tumors. However, some tumors do not display the Warburg phenotype and either rely on respiration or appear as a mosaic of cells with different metabolic properties. Based on these findings and on the knowledge that T cell infiltration is predictive for patient outcome, we suggest a metabolic-tumor-stroma score to determine the likelihood of a successful anti-tumor immune response: (a) a respiring tumor with high T cell infiltration ("hot"); (b) a reverse Warburg type with respiring tumor cells but glycolytic stromal cells; (c) a mixed type with glycolytic and respiring compartments; and (d) a glycolytic (Warburg) tumor with low T cell infiltration ("cold"). Here, we provide evidence that these types can be independent of the organ of origin, prognostically relevant and might help select the appropriate immunotherapy approach.
Collapse
Affiliation(s)
- Peter J Siska
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Singer
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Marina Kreutz
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| |
Collapse
|
181
|
Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev 2020; 291:174-189. [PMID: 31402499 DOI: 10.1111/imr.12791] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies (PIDs) provide researchers with unique models to understand in vivo immune responses in general and immunity to infections in particular. In humans, impaired immune control of Epstein-Barr virus (EBV) infection is associated with the occurrence of several different immunopathologic conditions; these include non-malignant and malignant B-cell lymphoproliferative disorders, hemophagocytic lymphohistiocytosis (HLH), a severe inflammatory condition, and a chronic acute EBV infection of T cells. Studies of PIDs associated with a predisposition to develop severe, chronic EBV infections have led to the identification of key components of immunity to EBV - notably the central role of T-cell expansion and its regulation in the pathophysiology of EBV-associated diseases. On one hand, the defective expansion of EBV-specific CD8 T cells results from mutations in genes involved in T-cell activation (such as RASGRP1, MAGT1, and ITK), DNA metabolism (CTPS1) or co-stimulatory pathways (CD70, CD27, and TNFSFR9 (also known as CD137/4-1BB)) leads to impaired elimination of proliferating EBV-infected B cells and the occurrence of lymphoma. On the other hand, protracted T-cell expansion and activation after the defective killing of EBV-infected B cells is caused by genetic defects in the components of the lytic granule exocytosis pathway or in the small adapter protein SH2D1A (also known as SAP), a key activator of T- and NK cell-cytotoxicity. In this setting, the persistence of EBV-infected cells results in HLH, a condition characterized by unleashed T-cell and macrophage activation. Moreover, genetic defects causing selective vulnerability to EBV infection have highlighted the role of co-receptor molecules (CD27, CD137, and SLAM-R) selectively involved in immune responses against infected B cells via specific T-B cell interactions.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,Collège de France, Paris, France.,Inserm UMR 1163, Paris, France
| |
Collapse
|
182
|
Lubrano di Ricco M, Ronin E, Collares D, Divoux J, Grégoire S, Wajant H, Gomes T, Grinberg-Bleyer Y, Baud V, Marodon G, Salomon BL. Tumor necrosis factor receptor family costimulation increases regulatory T-cell activation and function via NF-κB. Eur J Immunol 2020; 50:972-985. [PMID: 32012260 PMCID: PMC7383872 DOI: 10.1002/eji.201948393] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 01/06/2023]
Abstract
Several drugs targeting members of the TNF superfamily or TNF receptor superfamily (TNFRSF) are widely used in medicine or are currently being tested in therapeutic trials. However, their mechanism of action remains poorly understood. Here, we explored the effects of TNFRSF co-stimulation on murine Foxp3+ regulatory T cell (Treg) biology, as they are pivotal modulators of immune responses. We show that engagement of TNFR2, 4-1BB, GITR, and DR3, but not OX40, increases Treg proliferation and survival. Triggering these TNFRSF in Tregs induces similar changes in gene expression patterns, suggesting that they engage common signal transduction pathways. Among them, we identified a major role of canonical NF-κB. Importantly, TNFRSF co-stimulation improves the ability of Tregs to suppress colitis. Our data demonstrate that stimulation of discrete TNFRSF members enhances Treg activation and function through a shared mechanism. Consequently, therapeutic effects of drugs targeting TNFRSF or their ligands may be mediated by their effect on Tregs.
Collapse
Affiliation(s)
- Martina Lubrano di Ricco
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Emilie Ronin
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Davi Collares
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire NF-κB, Différenciation et Cancer, Paris, France
| | - Jordane Divoux
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sylvie Grégoire
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Harald Wajant
- Division Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Tomás Gomes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Yenkel Grinberg-Bleyer
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Labex DEVweCAN, Centre Léon Bérard, Lyon, France
| | - Véronique Baud
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire NF-κB, Différenciation et Cancer, Paris, France
| | - Gilles Marodon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Benoît L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
183
|
Jeong S, Park SH. Co-Stimulatory Receptors in Cancers and Their Implications for Cancer Immunotherapy. Immune Netw 2020; 20:e3. [PMID: 32158591 PMCID: PMC7049585 DOI: 10.4110/in.2020.20.e3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-PD-1 and anti-CTLA-4 therapeutic agents, are now approved by the Food and Drug Administration for treatment of various types of cancer. However, the therapeutic efficacy of ICIs varies among patients and cancer types. Moreover, most patients do not develop durable antitumor responses after ICI therapy due to an ephemeral reversal of T-cell dysfunction. As co-stimulatory receptors play key roles in regulating the effector functions of T cells, activating co-stimulatory pathways may improve checkpoint inhibition efficacy, and lead to durable antitumor responses. Here, we review recent advances in our understating of co-stimulatory receptors in cancers, providing the necessary groundwork for the rational design of cancer immunotherapy.
Collapse
Affiliation(s)
- Seongju Jeong
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea
| | - Su-Hyung Park
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea.,Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
184
|
Liu A, Curran MA. Tumor hypermetabolism confers resistance to immunotherapy. Semin Cancer Biol 2020; 65:155-163. [PMID: 31982512 DOI: 10.1016/j.semcancer.2020.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
Advances in our understanding of tumor immune biology and development of cancer immunotherapies have led to improved outcomes for patients that suffer from aggressive cancers such as metastatic melanoma. Despite these advances, a significant proportion of patients still fail to benefit, and as a result, attention has shifted to understanding how cancer cells escape immune destruction. Of particular interest is the metabolic landscape of the tumor microenvironment, as recent studies have demonstrated how both competition for essential nutrients and depletion of specific amino acids can promote T cell dysfunction. Here, we will discuss the major energetic pathways engaged by both T cells and cancer cells, metabolic substrates present in the tumor microenvironment, and emerging therapeutic strategies that seek to improve T cell metabolic fitness and bolster the antitumor immune response.
Collapse
Affiliation(s)
- Arthur Liu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77054, USA
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77054, USA.
| |
Collapse
|
185
|
Zhao Y, Shao Q, Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol 2019; 17:27-35. [PMID: 31853000 DOI: 10.1038/s41423-019-0344-8] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023] Open
Abstract
The failure of a massive influx of tumor-infiltrating T lymphocytes to eradicate tumor cells in the tumor microenvironment is mainly due to the dysfunction of T cells hyporesponsive to tumors. T-cell exhaustion and senescence induced by malignant tumors are two important dysfunctional states that coexist in cancer patients, hindering effective antitumor immunity and immunotherapy and sustaining the suppressive tumor microenvironment. Although exhausted and senescent T cells share a similar dysfunctional role in antitumor immunity, they are distinctly different in terms of generation, development, and metabolic and molecular regulation during tumor progression. Here, we discuss the unique phenotypic and functional characteristics of these two types of dysfunctional T cells and their roles in tumor development and progression. In addition, we further discuss the potential molecular and metabolic signaling pathways responsible for the control of T-cell exhaustion and senescence in the suppressive tumor microenvironment. Understanding these critical and fundamental features should facilitate rethinking the unresponsiveness to current immunotherapies in clinical patients and lead to further development of novel and effective strategies that target different types of dysfunctional T cells to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yangjing Zhao
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA. .,Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
186
|
O'Sullivan D, Sanin DE, Pearce EJ, Pearce EL. Metabolic interventions in the immune response to cancer. Nat Rev Immunol 2019; 19:324-335. [PMID: 30820043 DOI: 10.1038/s41577-019-0140-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
At the centre of the therapeutic dilemma posed by cancer is the question of how to develop more effective treatments that discriminate between normal and cancerous tissues. Decades of research have shown us that universally applicable principles are rare, but two well-accepted concepts have emerged: first, that malignant transformation goes hand in hand with distinct changes in cellular metabolism; second, that the immune system is critical for tumour control and clearance. Unifying our understanding of tumour metabolism with immune cell function may prove to be a powerful approach in the development of more effective cancer therapies. Here, we explore how nutrient availability in the tumour microenvironment shapes immune responses and identify areas of intervention to modulate the metabolic constraints placed on immune cells in this setting.
Collapse
Affiliation(s)
- David O'Sullivan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,University of Freiburg, Freiburg, Germany
| | - David E Sanin
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,University of Freiburg, Freiburg, Germany
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany. .,University of Freiburg, Freiburg, Germany.
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
187
|
Abstract
Effective anticancer immunosurveillance after oncolytic viral infection is often hindered by the defective metabolic function of tumor-infiltrating lymphocytes (TILs). A recent paper by Rivadeneira et al. demonstrates that intratumoral delivery of leptin by a recombinant oncolytic vaccinia virus can metabolically enhance TIL effector and memory functions through improved mitochondrial oxidative phosphorylation, thereby enhancing therapeutic efficacy.
Collapse
|
188
|
Etxeberria I, Bolaños E, Quetglas JI, Gros A, Villanueva A, Palomero J, Sánchez-Paulete AR, Piulats JM, Matias-Guiu X, Olivera I, Ochoa MC, Labiano S, Garasa S, Rodriguez I, Vidal A, Mancheño U, Hervás-Stubbs S, Azpilikueta A, Otano I, Aznar MA, Sanmamed MF, Inogés S, Berraondo P, Teijeira Á, Melero I. Intratumor Adoptive Transfer of IL-12 mRNA Transiently Engineered Antitumor CD8 + T Cells. Cancer Cell 2019; 36:613-629.e7. [PMID: 31761658 DOI: 10.1016/j.ccell.2019.10.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 08/12/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023]
Abstract
Retroviral gene transfer of interleukin-12 (IL-12) into T cells markedly enhances antitumor efficacy upon adoptive transfer but has clinically shown unacceptable severe side effects. To overcome the toxicity, we engineered tumor-specific CD8+ T cells to transiently express IL-12. Engineered T cells injected intratumorally, but not intravenously, led to complete rejections not only of the injected lesion but also of distant concomitant tumors. Efficacy was further enhanced by co-injection with agonist anti-CD137 mAb or by transient co-expression of CD137 ligand. This treatment induced epitope spreading of the endogenous CD8+ T cell immune response in a manner dependent on cDC1 dendritic cells. Mouse and human tumor-infiltrating T lymphocyte cultures can be transiently IL-12 engineered to attain marked immunotherapeutic effects.
Collapse
Affiliation(s)
- Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose I Quetglas
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Alena Gros
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Vall d'Hebron Institute of Oncology (V.H.I.O.), Barcelona, Spain
| | - Alberto Villanueva
- Program against Cancer Therapeutic Resistance (ProCURE), IDIBELL, Catalan Institute of Oncology, L'hospitalet del Llobregat, Barcelona, Spain
| | - Jara Palomero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Vall d'Hebron Institute of Oncology (V.H.I.O.), Barcelona, Spain
| | - Alfonso R Sánchez-Paulete
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Jose María Piulats
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Program against Cancer Therapeutic Resistance (ProCURE), IDIBELL, Catalan Institute of Oncology, L'hospitalet del Llobregat, Barcelona, Spain; Department of Medical Oncology, IDIBELL, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Matias-Guiu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Pathology Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Lleida, Spain; Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria C Ochoa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sara Labiano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Inmaculada Rodriguez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - August Vidal
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Uxua Mancheño
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Itziar Otano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - M Angela Aznar
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Susana Inogés
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Avenida de Pio XII, 55, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
189
|
CAR-NK for tumor immunotherapy: Clinical transformation and future prospects. Cancer Lett 2019; 472:175-180. [PMID: 31790761 DOI: 10.1016/j.canlet.2019.11.033] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023]
Abstract
Recently, the use of chimeric antigen receptor-modified T (CAR-T)-cells in the treatment of hematological tumors has been successful and has become a clinical hotspot in tumor immunotherapy. However, their wide application is limited by inherent risks such as graft-versus-host disease (GvHD) and the amount of time it takes to produce CAR-T cells. Natural killer (NK) cells can be xenografted and have the potential to become off-the-shelf products, making CAR-NK cell therapies universal products. These products may be safer than CAR-T cell therapy. Considering that the fundamental researche is still in its infancy, this review focuses on clinical achievements and new strategies for improving the safety and efficacy of CAR-NK cell therapy, as well as the corresponding challenges.
Collapse
|
190
|
Jin T, Wang C, Tian Y, Dai C, Zhu Y, Xu F. Mitochondrial metabolic reprogramming: An important player in liver cancer progression. Cancer Lett 2019; 470:197-203. [PMID: 31783085 DOI: 10.1016/j.canlet.2019.11.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
Mitochondria are known as essential biosynthetic, bioenergetic and signaling organelles, and play a critical role in cell differentiation, proliferation, and death. Nowadays, cancer is emergingly considered as a mitochondrial metabolic disease. Mitochondria also play an essential role in liver carcinogenesis. Liver cells are highly regenerative and require high energy. For that reason, a large number of mitochondria are present and functional in liver cells. Abnormalities in mitochondrial metabolism in human liver are known to be one of the carcinogenic factors. Interestingly, immune checkpoints regulate mitochondrial metabolic energetics of the tumor, the tumor microenvironment, as well as the tumor-specific immune response. This regulation forms a positive loop between the metabolic reprogramming of both cancer cells and immune cells. In this review, we discuss the evidence and mechanisms that mitochondria interplay with immune checkpoints to influence different steps of oncogenesis, as well as the potential of mitochondria as therapeutic targets for liver cancer therapy.
Collapse
Affiliation(s)
- Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chao Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Surgery, Northeast International Hospital, Shenyang, 110623, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
191
|
Bretz AC, Parnitzke U, Kronthaler K, Dreker T, Bartz R, Hermann F, Ammendola A, Wulff T, Hamm S. Domatinostat favors the immunotherapy response by modulating the tumor immune microenvironment (TIME). J Immunother Cancer 2019; 7:294. [PMID: 31703604 PMCID: PMC6839078 DOI: 10.1186/s40425-019-0745-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/20/2019] [Indexed: 01/06/2023] Open
Abstract
Background The efficacy of PD-(L)1 blockade depends on the composition of the tumor immune microenvironment (TIME) and is generally higher in tumors with pre-existing cytotoxic T cells (CTL) than in those with low CTL numbers. Nonetheless, a significant proportion of patients with pre-existing immunity fail to respond, indicating a therapeutic potential for combining PD-(L)1 blockade with additional immunomodulatory agents in both CTL-high and -low immune phenotypes. Here, we evaluated domatinostat (4SC-202), a class I-selective histone deacetylase (HDAC) inhibitor, for its effect on the TIME and its antitumoral efficacy using syngeneic mouse models with CTL-high or CTL-low tumors. Methods Domatinostat was evaluated in PD-1 blockade-insensitive CTL-low (CT26) and CTL-high (C38) syngeneic models alone and in combination with different immune-inhibitory and -stimulatory approaches. Effects on the immunophenotype were assessed via flow cytometry and RNA-seq analyses. The changes in RNA-seq-based immune signatures determined in a murine setting were investigated in patient samples from the first-dose cohort of the SENSITIZE trial (NCT03278665) evaluating domatinostat combined with pembrolizumab in advanced-stage melanoma patients refractory/nonresponding to PD-1 blockade. Results Domatinostat increased the expression of antigen-presenting machinery (APM) genes and MHC class I and II molecules, along with CTL infiltration, in tumors of both immune phenotypes. In combination with PD-(L)1 blockade, domatinostat augmented antitumor effects substantially above the effects of single-agent therapies, displaying greater benefit in tumors with pre-existing CTLs. In this setting, the combination of domatinostat with agonistic anti-4-1BB or both PD-1 and LAG3 blockade further increased the antitumor efficacy. In CTL-low tumors, domatinostat enhanced the expression of genes known to reinforce immune responses against tumors. Specifically, domatinostat increased the expression of Ifng and genes associated with responses to pembrolizumab and nivolumab. Clinically, these findings were confirmed in patients with advanced melanoma treated with domatinostat for 14 days, who demonstrated elevated expression of APM and MHC genes, the IFNG gene, and the IFN-γ and pembrolizumab response signatures in individual tumor samples. Conclusion In summary, these data suggest a promising potential of domatinostat in combination with immunotherapy to improve the outcome of refractory cancer patients.
Collapse
Affiliation(s)
| | | | | | - Tobias Dreker
- 4SC AG, Fraunhoferstr. 22, 82152, Planegg-Martinsried, Germany
| | - René Bartz
- 4SC AG, Fraunhoferstr. 22, 82152, Planegg-Martinsried, Germany
| | - Frank Hermann
- 4SC AG, Fraunhoferstr. 22, 82152, Planegg-Martinsried, Germany
| | | | - Tanja Wulff
- 4SC AG, Fraunhoferstr. 22, 82152, Planegg-Martinsried, Germany
| | - Svetlana Hamm
- 4SC AG, Fraunhoferstr. 22, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
192
|
Maini MK, Burton AR. Restoring, releasing or replacing adaptive immunity in chronic hepatitis B. Nat Rev Gastroenterol Hepatol 2019; 16:662-675. [PMID: 31548710 DOI: 10.1038/s41575-019-0196-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 02/06/2023]
Abstract
Multiple new therapeutic approaches are currently being developed to achieve sustained, off-treatment suppression of HBV, a persistent hepatotropic infection that kills ~2,000 people a day. A fundamental therapeutic goal is the restoration of robust HBV-specific adaptive immune responses that are able to maintain prolonged immunosurveillance of residual infection. Here, we provide insight into key components of successful T cell and B cell responses to HBV, discussing the importance of different specificities and effector functions, local intrahepatic immunity and pathogenic potential. We focus on the parallels and interactions between T cell and B cell responses, highlighting emerging areas for future investigation. We review the potential for different immunotherapies in development to restore or release endogenous adaptive immunity by direct or indirect approaches, including limitations and risks. Finally, we consider an alternative HBV treatment strategy of replacing failed endogenous immunity with infusions of highly targeted T cells or antibodies.
Collapse
Affiliation(s)
- Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK.
| | - Alice R Burton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
193
|
Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. J Autoimmun 2019; 104:102333. [DOI: 10.1016/j.jaut.2019.102333] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
|
194
|
Munford H, Dimeloe S. Intrinsic and Extrinsic Determinants of T Cell Metabolism in Health and Disease. Front Mol Biosci 2019; 6:118. [PMID: 31709265 PMCID: PMC6823819 DOI: 10.3389/fmolb.2019.00118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/14/2019] [Indexed: 01/05/2023] Open
Abstract
T lymphocytes are a critical component of the adaptive immune system, with key roles in the immune response to infection and cancer. Their activity is fundamentally underpinned by dynamic, regulated changes in their metabolism. This ensures adequate availability of energy and biosynthetic precursors for clonal expansion and effector function, and also directly regulates cell signaling, gene transcription, and protein translation. In health, distinct T cells subtypes demonstrate differences in intrinsic metabolic capacity which correlate with their specialized immune functions. In disease, T cells with impaired immune function appear to be likewise metabolically impaired. Furthermore, diseased tissue environments-through inadequate provision of nutrients and oxygen, or accumulation of metabolic intermediates, end-products, and cytokines- can impose metabolic insufficiency upon these cells, and further compound intrinsic impairments. These intrinsic and extrinsic determinants of T cell metabolism and their potential compound effects, together with the mechanisms involved form the subject of this review. We will also discuss how dysfunctional metabolic pathways may be therapeutically targeted to restore normal T cell function in disease.
Collapse
Affiliation(s)
- Haydn Munford
- Institute of Immunology and Immunotherapy, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Dimeloe
- Institute of Immunology and Immunotherapy, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
195
|
Rivadeneira DB, DePeaux K, Wang Y, Kulkarni A, Tabib T, Menk AV, Sampath P, Lafyatis R, Ferris RL, Sarkar SN, Thorne SH, Delgoffe GM. Oncolytic Viruses Engineered to Enforce Leptin Expression Reprogram Tumor-Infiltrating T Cell Metabolism and Promote Tumor Clearance. Immunity 2019; 51:548-560.e4. [PMID: 31471106 DOI: 10.1016/j.immuni.2019.07.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/16/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Immunotherapy can reinvigorate dormant responses to cancer, but response rates remain low. Oncolytic viruses, which replicate in cancer cells, induce tumor lysis and immune priming, but their immune consequences are unclear. We profiled the infiltrate of aggressive melanomas induced by oncolytic Vaccinia virus using RNA sequencing and found substantial remodeling of the tumor microenvironment, dominated by effector T cell influx. However, responses to oncolytic viruses were incomplete due to metabolic insufficiencies induced by the tumor microenvironment. We identified the adipokine leptin as a potent metabolic reprogramming agent that supported antitumor responses. Leptin metabolically reprogrammed T cells in vitro, and melanoma cells expressing leptin were immunologically controlled in mice. Engineering oncolytic viruses to express leptin in tumor cells induced complete responses in tumor-bearing mice and supported memory development in the tumor infiltrate. Thus, leptin can provide metabolic support to tumor immunity, and oncolytic viruses represent a platform to deliver metabolic therapy.
Collapse
Affiliation(s)
- Dayana B Rivadeneira
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristin DePeaux
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yiyang Wang
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; School of Medicine, Tsinghua University, Beijing, China
| | - Aditi Kulkarni
- Head and Neck Cancer SPORE, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ashley V Menk
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Robert Lafyatis
- Division of Rheumatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert L Ferris
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Head and Neck Cancer SPORE, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Stephen H Thorne
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Head and Neck Cancer SPORE, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
196
|
Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2019; 100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.
Collapse
Affiliation(s)
- Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Annette Audigé
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Sara Granja
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Wan-Chen Cheng
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Ping-Chih Ho
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Fátima Baltazar
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Christian Stockmann
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| |
Collapse
|
197
|
Patel CH, Leone RD, Horton MR, Powell JD. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat Rev Drug Discov 2019; 18:669-688. [PMID: 31363227 DOI: 10.1038/s41573-019-0032-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
Abstract
Metabolic programming is emerging as a critical mechanism to alter immune cell activation, differentiation and function. Targeting metabolism does not completely suppress or activate the immune system but selectively regulates immune responses. The different metabolic requirements of the diverse cells that constitute an immune response provide a unique opportunity to separate effector functions from regulatory functions. Likewise, cells can be metabolically reprogrammed to promote either their short-term effector functions or long-term memory capacity. Studies in the growing field of immunometabolism support a paradigm of 'cellular selectivity based on demand', in which generic inhibitors of ubiquitous metabolic processes selectively affect cells with the greatest metabolic demand and have few effects on other cells of the body. Targeting metabolism, rather than particular cell types or cytokines, in metabolically demanding processes such as autoimmunity, graft rejection, cancer and uncontrolled inflammation could lead to successful strategies in controlling the pathogenesis of these complex disorders.
Collapse
Affiliation(s)
- Chirag H Patel
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D Leone
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maureen R Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan D Powell
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
198
|
Hope HC, Salmond RJ. Targeting the tumor microenvironment and T cell metabolism for effective cancer immunotherapy. Eur J Immunol 2019; 49:1147-1152. [DOI: 10.1002/eji.201848058] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/22/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Helen Carrasco Hope
- Leeds Institute of Medical Research at St James's, University of Leeds, Wellcome Trust Brenner BuildingSt James's University Hospital Leeds LS9 7TF UK
| | - Robert J. Salmond
- Leeds Institute of Medical Research at St James's, University of Leeds, Wellcome Trust Brenner BuildingSt James's University Hospital Leeds LS9 7TF UK
| |
Collapse
|
199
|
van Bruggen JAC, Martens AWJ, Fraietta JA, Hofland T, Tonino SH, Eldering E, Levin MD, Siska PJ, Endstra S, Rathmell JC, June CH, Porter DL, Melenhorst JJ, Kater AP, van der Windt GJW. Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8 + T cells and impede CAR T-cell efficacy. Blood 2019; 134:44-58. [PMID: 31076448 PMCID: PMC7022375 DOI: 10.1182/blood.2018885863] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/20/2019] [Indexed: 01/02/2023] Open
Abstract
In chronic lymphocytic leukemia (CLL), acquired T-cell dysfunction impedes development of effective immunotherapeutic strategies, through as-yet unresolved mechanisms. We have previously shown that CD8+ T cells in CLL exhibit impaired activation and reduced glucose uptake after stimulation. CD8+ T cells in CLL patients are chronically exposed to leukemic B cells, which potentially impacts metabolic homeostasis resulting in aberrant metabolic reprogramming upon stimulation. Here, we report that resting CD8+ T cells in CLL have reduced intracellular glucose transporter 1 (GLUT1) reserves, and have an altered mitochondrial metabolic profile as displayed by increased mitochondrial respiration, membrane potential, and levels of reactive oxygen species. This coincided with decreased levels of peroxisome proliferator-activated receptor γ coactivator 1-α, and in line with that, CLL-derived CD8+ T cells showed impaired mitochondrial biogenesis upon stimulation. In search of a therapeutic correlate of these findings, we analyzed mitochondrial biogenesis in CD19-directed chimeric antigen receptor (CAR) CD8+ T cells prior to infusion in CLL patients (who were enrolled in NCT01747486 and NCT01029366 [https://clinicaltrials.gov]). Interestingly, in cases with a subsequent complete response, the infused CD8+ CAR T cells had increased mitochondrial mass compared with nonresponders, which positively correlated with the expansion and persistence of CAR T cells. Our findings demonstrate that GLUT1 reserves and mitochondrial fitness of CD8+ T cells are impaired in CLL. Therefore, boosting mitochondrial biogenesis in CAR T cells might improve the efficacy of CAR T-cell therapy and other emerging cellular immunotherapies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Female
- Humans
- Immunotherapy, Adoptive
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Male
- Middle Aged
- Mitochondria/metabolism
- Organelle Biogenesis
- Receptors, Chimeric Antigen
Collapse
Affiliation(s)
- Jaco A C van Bruggen
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Anne W J Martens
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Joseph A Fraietta
- Department of Pathology and Laboratory Medicine
- Department of Microbiology
- Center for Cellular Immunotherapies, and
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tom Hofland
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Sanne H Tonino
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Peter J Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; and
| | - Sanne Endstra
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Carl H June
- Department of Pathology and Laboratory Medicine
- Center for Cellular Immunotherapies, and
| | | | - J Joseph Melenhorst
- Department of Pathology and Laboratory Medicine
- Center for Cellular Immunotherapies, and
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
| | - Gerritje J W van der Windt
- Department of Hematology, Cancer Center Amsterdam
- Lymphoma and Myeloma Center Amsterdam, and
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| |
Collapse
|
200
|
Simula L, Campanella M, Campello S. Targeting Drp1 and mitochondrial fission for therapeutic immune modulation. Pharmacol Res 2019; 146:104317. [PMID: 31220561 DOI: 10.1016/j.phrs.2019.104317] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 01/05/2023]
Abstract
Mitochondria are dynamic organelles whose processes of fusion and fission are tightly regulated by specialized proteins, known as mitochondria-shaping proteins. Among them, Drp1 is the main pro-fission protein and its activity is tightly regulated to ensure a strict control over mitochondria shape according to the cell needs. In the recent years, mitochondrial dynamics emerged as a new player in the regulation of fundamental processes during T cell life. Indeed, the morphology of mitochondria directly regulates T cell differentiation, this by affecting the engagment of alternative metabolic routes upon activation. Further, Drp1-dependent mitochondrial fission sustains both T cell clonal expansion and T cell migration and invasivness. By this review, we aim at discussing the most recent findings about the roles played by the Drp1-dependent mitochondrial fission in T cells, and at highlighting how its pharmacological modulation could open the way to future therapeutic approaches to modulate T cell response.
Collapse
Affiliation(s)
- Luca Simula
- Dept. of Biology, University of Rome Tor Vergata, Rome, Italy; Dept. of Paediatric Haemato-Oncology, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street NW1 0TU, London, United Kingdom; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, United Kingdom
| | - Silvia Campello
- Dept. of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|