151
|
Salinas I, Magadán S. Omics in fish mucosal immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:99-108. [PMID: 28235585 DOI: 10.1016/j.dci.2017.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 05/22/2023]
Abstract
The mucosal immune system of fish is a complex network of immune cells and molecules that are constantly surveilling the environment and protecting the host from infection. A number of "omics" tools are now available and utilized to understand the complexity of mucosal immune systems in non-traditional animal models. This review summarizes recent advances in the implementation of "omics" tools pertaining to the four mucosa-associated lymphoid tissues in teleosts. Genomics, transcriptomics, proteomics, and "omics" in microbiome research require interdisciplinary collaboration and careful experimental design. The data-rich datasets generated are proving really useful at discovering new innate immune players in fish mucosal secretions, identifying novel markers of specific mucosal immune responses, unraveling the diversity of the B and T cell repertoires and characterizing the diversity of the microbial communities present in teleost mucosal surfaces. Bioinformatics, data analysis and storage platforms should be developed to facilitate rapid processing of large datasets, especially when mammalian tools such as bioinformatics analysis software are not available in fishes.
Collapse
Affiliation(s)
- Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM 87131, USA
| | - Susana Magadán
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM 87131, USA; Immunology Laboratory, Biomedical Research Center (CINBIO), University of Vigo, Campus Lagoas Marcosende, Vigo, Pontevedra 36310, Spain.
| |
Collapse
|
152
|
Challenges and advances for transcriptome assembly in non-model species. PLoS One 2017; 12:e0185020. [PMID: 28931057 PMCID: PMC5607178 DOI: 10.1371/journal.pone.0185020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/04/2017] [Indexed: 12/28/2022] Open
Abstract
Analyses of high-throughput transcriptome sequences of non-model organisms are based on two main approaches: de novo assembly and genome-guided assembly using mapping to assign reads prior to assembly. Given the limits of mapping reads to a reference when it is highly divergent, as is frequently the case for non-model species, we evaluate whether using blastn would outperform mapping methods for read assignment in such situations (>15% divergence). We demonstrate its high performance by using simulated reads of lengths corresponding to those generated by the most common sequencing platforms, and over a realistic range of genetic divergence (0% to 30% divergence). Here we focus on gene identification and not on resolving the whole set of transcripts (i.e. the complete transcriptome). For simulated datasets, the transcriptome-guided assembly based on blastn recovers 94.8% of genes irrespective of read length at 0% divergence; however, assignment rate of reads is negatively correlated with both increasing divergence level and reducing read lengths. Nevertheless, we still observe 92.6% of recovered genes at 30% divergence irrespective of read length. This analysis also produces a categorization of genes relative to their assignment, and suggests guidelines for data processing prior to analyses of comparative transcriptomics and gene expression to minimize potential inferential bias associated with incorrect transcript assignment. We also compare the performances of de novo assembly alone vs in combination with a transcriptome-guided assembly based on blastn both via simulation and empirically, using data from a cyprinid fish species and from an oak species. For any simulated scenario, the transcriptome-guided assembly using blastn outperforms the de novo approach alone, including when the divergence level is beyond the reach of traditional mapping methods. Combining de novo assembly and a related reference transcriptome for read assignment also addresses the bias/error in contigs caused by the dependence on a related reference alone. Empirical data corroborate these findings when assembling transcriptomes from the two non-model organisms: Parachondrostoma toxostoma (fish) and Quercus pubescens (plant). For the fish species, out of the 31,944 genes known from D. rerio, the guided and de novo assemblies recover respectively 20,605 and 20,032 genes but the performance of the guided assembly approach is much higher for both the contiguity and completeness metrics. For the oak, out of the 29,971 genes known from Vitis vinifera, the transcriptome-guided and de novo assemblies display similar performance, but the new guided approach detects 16,326 genes where the de novo assembly only detects 9,385 genes.
Collapse
|
153
|
De Quattro C, Pè ME, Bertolini E. Long noncoding RNAs in the model species Brachypodium distachyon. Sci Rep 2017; 7:11252. [PMID: 28900227 PMCID: PMC5595811 DOI: 10.1038/s41598-017-11206-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic genomes are pervasively transcribed and only a small portion of the transcribed sequences belongs to protein coding genes. High-throughput sequencing technology contributed to consolidate this perspective, allowing the identification of numerous noncoding RNAs with key roles in biological processes. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nt with limited phylogenetic conservation, expressed at low levels and characterized by tissue/organ specific expression profiles. Although a large set of lncRNAs has been identified, the functional roles of lncRNAs are only beginning to be recognized and the molecular mechanism of lncRNA-mediated gene regulation remains largely unexplored, particularly in plants where their annotation and characterization are still incomplete. Using public and proprietary poly-(A)+ RNA-seq data as well as a collection of full length ESTs from several organs, developmental stages and stress conditions in three Brachypodium distachyon inbred lines, we describe the identification and the main features of thousands lncRNAs. Here we provide a genome-wide characterization of lncRNAs, highlighting their intraspecies conservation and describing their expression patterns among several organs/tissues and stress conditions. This work represents a fundamental resource to deepen our knowledge on long noncoding RNAs in C3 cereals, allowing the Brachypodium community to exploit these results in future research programs.
Collapse
Affiliation(s)
- Concetta De Quattro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Edoardo Bertolini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA.
| |
Collapse
|
154
|
Oomen RA, Hutchings JA. Transcriptomic responses to environmental change in fishes: Insights from RNA sequencing. Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The need to better understand how plasticity and evolution affect organismal responses to environmental variability is paramount in the face of global climate change. The potential for using RNA sequencing (RNA-seq) to study complex responses by non-model organisms to the environment is evident in a rapidly growing body of literature. This is particularly true of fishes for which research has been motivated by their ecological importance, socioeconomic value, and increased use as model species for medical and genetic research. Here, we review studies that have used RNA-seq to study transcriptomic responses to continuous abiotic variables to which fishes have likely evolved a response and that are predicted to be affected by climate change (e.g., salinity, temperature, dissolved oxygen concentration, and pH). Field and laboratory experiments demonstrate the potential for individuals to respond plastically to short- and long-term environmental stress and reveal molecular mechanisms underlying developmental and transgenerational plasticity, as well as adaptation to different environmental regimes. We discuss experimental, analytical, and conceptual issues that have arisen from this work and suggest avenues for future study.
Collapse
Affiliation(s)
- Rebekah A. Oomen
- Department of Biology, Dalhousie University, Halifax, NS B3H 4J1, Canada
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- Institute of Marine Research, Flødevigen Research Station, 4817 His, Norway
| | - Jeffrey A. Hutchings
- Department of Biology, Dalhousie University, Halifax, NS B3H 4J1, Canada
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- Institute of Marine Research, Flødevigen Research Station, 4817 His, Norway
- Department of Natural Sciences, University of Agder, 4604 Kristiansand, Norway
| |
Collapse
|
155
|
Hu Y, Li A, Xu Y, Jiang B, Lu G, Luo X. Transcriptomic variation of locally-infected skin of Epinephelus coioides reveals the mucosal immune mechanism against Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2017; 66:398-410. [PMID: 28526573 DOI: 10.1016/j.fsi.2017.05.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Fish skin is the largest immunologically active mucosal organ, providing first-line defense against external pathogens. However, the skin-associated immune mechanisms of fish are still unclear. Cryptocaryon irritans is an obligate ectoparasitic ciliated protozoan that infects almost all marine fish, and is believed to be an excellent pathogen model to study fish mucosal immunity. In this study, a de novo transcriptome assembly of Epinephelus coioides skin post C. irritans tail-infection was performed for the first time using the Illumina HiSeq™ 2500 system. Comparative analyses of infected skin (group Isk) and uninfected skin (group Nsk) from the same challenged fish and control skin (group C) from uninfected control fish were conducted. As a result, a total of 91,082 unigenes with an average length of 2880 base pairs were obtained and among them, 38,704 and 48,617 unigenes were annotated based on homology with matches in the non-redundant and zebrafish database, respectively. Pairwise comparison resulted in 10,115 differentially-expressed genes (DEGs) in the Isk/C group comparison (4,983 up-regulated and 5,132 down-regulated), 2,275 DEGs in the Isk/Nsk group comparison (1,319 up-regulated and 956 down-regulated) and 4,566 DEGs in the Nsk/C group comparison (1,534 up-regulated and 3,032 down-regulated). Seven immune-related categories including 91 differentially-expressed immune genes (86 up-regulated and 5 down-regulated) were scrutinized. Both DEGs and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and immune-related gene expression analysis were used, and both analyses showed that the genes were more significantly altered in the locally-infected skin than in the uninfected skin of the same challenged fish. This suggests the skin's local immune response is important for host defense against this ectoparasite infection. Innate immune molecules, including hepcidin, C-type lectin, transferrin, transferrin receptor protein, serum amyloid A, cathepsin and complement components were significantly up-regulated (fold-change ranged from 3.3 to 12,944) in infected skin compared with control skin. The up-regulation of chemokines and chemokine receptors and activation of the leukocyte transendothelial migration pathway suggested that leucocytes intensively migrated to the local infected sites to mount a local immune defense. Toll-like receptors (TLRs) 1, 2, 5 and 5S were most significantly up-regulated in the infected skin, suggesting that these TLRs may be involved in parasite pathogen-associated molecular pattern (PAMPs) recognition. Up-regulation of the dendritic cell markers CD209 and CD83 and other antigen presentation pathway molecules provided evidence for skin local antigen presentation. Up-regulation of the T cell markers CD4 and CD48, B cell markers CD22 and CD81 and B cell receptor signaling kinase Lyn, showed the presence and population expansion of T/B cells at locally-infected sites, which suggested possible activation of a local specific immune response in the skin. Our results will facilitate in-depth understanding of local immune defense mechanisms in fish skin against ectoparasite infection.
Collapse
Affiliation(s)
- Yazhou Hu
- State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Anxing Li
- State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China.
| | - Yang Xu
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, PR China
| | - Biao Jiang
- State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Geling Lu
- State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Xiaochun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
156
|
江 海, 李 平, 张 梅, 张 锋, 苏 丽. RNA-Seq技术及其在胃肠肿瘤研究中的应用现状. Shijie Huaren Xiaohua Zazhi 2017; 25:1564-1571. [DOI: 10.11569/wcjd.v25.i17.1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
转录组是特定的细胞或组织在特定的时间或状态下转录出来的RNA集合, 转录组研究能够从整体水平研究基因功能以及基因结构, 并能很好的显示处于表达状态的基因数量和活跃程度. 作为转录组学新一代高通量测序技术之一, RNA-Seq技术能够更为快速、准确地为人们提供更多的生物体转录信息, 在生物医学研究中已经得到广泛应用. 随着全球胃肠肿瘤发病率的逐年提高, RNA-Seq技术在胃肠肿瘤研究领域进行全转录组测序分析的应用越来越多, 并取得了一些新的进展. 本文将就RNA-Seq技术原理、优势及其在胃肠肿瘤研究中的具体应用进行论述.
Collapse
|
157
|
Comparative proteome analysis of the hepatopancreas from the Pacific white shrimp Litopenaeus vannamei under long-term low salinity stress. J Proteomics 2017; 162:1-10. [DOI: 10.1016/j.jprot.2017.04.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/09/2016] [Accepted: 04/04/2017] [Indexed: 01/12/2023]
|
158
|
Gonçalves AT, Valenzuela-Muñoz V, Gallardo-Escárate C. Intestinal transcriptome modulation by functional diets in rainbow trout: A high-throughput sequencing appraisal to highlight GALT immunomodulation. FISH & SHELLFISH IMMUNOLOGY 2017; 64:325-338. [PMID: 28300682 DOI: 10.1016/j.fsi.2017.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Functional ingredients such as pre- and probiotics are used in aquaculture to improve fish condition, modulating microbiota and promoting a healthy intestinal functioning. They also exert an active effect on the gut associated lymphoid tissue (GALT), stimulating the immune system. However, the molecular underpinnings of pre- and probiotics effect on intestinal mucosa are still unknown. This study investigated the intestinal mucosa transcriptome modulation when fish were fed functional diets and kept at different stocking densities. Juvenile rainbow trout were kept at low (LD-3Kgm-3) and high density (HD-40 kgm-3) and fed for 30 days functional diets with the prebiotic mannanoligosaccharide (PRE-0.6%), the probiotic Saccharomyces cerevisiae (PRO-0.5%), the mixture of both (MIX) and a control diet (CTRL). Intestinal transcriptome was evaluated by high-throughput sequencing and blood plasma for biochemical parameters. Fish fed functional diets presented better condition regardless density, and that functional diets modulate intestinal transcriptome in different manner depending on the stocking density. At LD, fish from PRO presented stronger modulation with the majority of transcripts being down-regulated, including the immune related ones, whereas at HD both PRO and MIX groups were more modulated, when comparing to the respective CTRL groups. Density had an overwhelming suppressive effect on the immune-related genes, but this effect was counteracted by feeding functional diets, especially in fish fed with probiotics. This study shows for the first time the intestinal transcriptomic modulation when fish are fed functional diets at different stocking densities, and it shows the mitigating effect of these diets against deleterious conditions such as high density.
Collapse
Affiliation(s)
- Ana Teresa Gonçalves
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, University of Concepción, Concepción, Chile.
| | - Valentina Valenzuela-Muñoz
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, University of Concepción, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, University of Concepción, Concepción, Chile
| |
Collapse
|
159
|
A protocol for identifying suitable biomarkers to assess fish health: A systematic review. PLoS One 2017; 12:e0174762. [PMID: 28403149 PMCID: PMC5389625 DOI: 10.1371/journal.pone.0174762] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 03/15/2017] [Indexed: 12/25/2022] Open
Abstract
Background Biomarkers have been used extensively to provide the connection between external levels of contaminant exposure, internal levels of tissue contamination, and early adverse effects in organisms. Objectives To present a three-step protocol for identifying suitable biomarkers to assess fish health in coastal and marine ecosystems, using Gladstone Harbour (Australia) as a case study. Methods Prior to applying our protocol, clear working definitions for biomarkers were developed to ensure consistency with the global literature on fish health assessment. First, contaminants of concern were identified based on the presence of point and diffuse sources of pollution and available monitoring data for the ecosystem of interest. Second, suitable fish species were identified using fisheries dependent and independent data, and prioritised based on potential pathways of exposure to the contaminants of concern. Finally, a systematic and critical literature review was conducted on the use of biomarkers to assess the health of fish exposed to the contaminants of concern. Results/Discussion We present clear working definitions for bioaccumulation markers, biomarkers of exposure, biomarkers of effect and biomarkers of susceptibility. Based on emission and concentration information, seven metals were identified as contaminants of concern for Gladstone Harbour. Twenty out of 232 fish species were abundant enough to be potentially suitable for biomarker studies; five of these were prioritised based on potential pathways of exposure and susceptibility to metals. The literature search on biomarkers yielded 5,035 articles, of which 151met the inclusion criteria. Based on our review, the most suitable biomarkers include bioaccumulation markers, biomarkers of exposure (CYP1A, EROD, SOD, LPOX, HSP, MT, DNA strand breaks, micronuclei, apoptosis), and biomarkers of effect (histopathology, TAG:ST). Conclusion Our protocol outlines a clear pathway to identify suitable biomarkers to assess fish health in coastal and marine ecosystems, which can be applied to biomarker studies in aquatic ecosystems around the world.
Collapse
|
160
|
Domingos A, Pinheiro-Silva R, Couto J, do Rosário V, de la Fuente J. The Anopheles gambiae transcriptome - a turning point for malaria control. INSECT MOLECULAR BIOLOGY 2017; 26:140-151. [PMID: 28067439 DOI: 10.1111/imb.12289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence.
Collapse
Affiliation(s)
- A Domingos
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
- Global Health and Tropical Medicine (GHMT), Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - R Pinheiro-Silva
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - J Couto
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - V do Rosário
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - J de la Fuente
- SaBio. Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
161
|
Wei J, Liu B, Fan S, Li H, Chen M, Zhang B, Su J, Meng Z, Yu D. Differentially expressed immune-related genes in hemocytes of the pearl oyster Pinctada fucata against allograft identified by transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2017; 62:247-256. [PMID: 28126621 DOI: 10.1016/j.fsi.2017.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
The pearl oyster Pinctada fucata is commonly cultured for marine pearls in China. To culture pearls, a mantle piece from a donor pearl oyster is grafted with a nucleus into a receptor. This transplanted mantle piece may be rejected by the immune system of the recipient oyster, thus reducing the success of transplantation. However, there have been limited studies about the oyster's immune defense against allograft. In this study, hemocyte transcriptome analysis was performed to detect the immune responses to allograft in P. fucata at 0 h and 48 h after a transplant. The sequencing reaction produced 92.5 million reads that were mapped against the reference genome sequences of P. fucata. The Gene Ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to identify all immune-related differentially expressed genes (DEGs). Compared with patterns at 0 h, a total of 798 DEGs were identified, including 410 up-regulated and 388 down-regulated genes at 48 h. The expression levels of interleukin receptor and toll-like receptor in hemocytes were increased significantly 48 h post-transplant, indicating that the oyster immune response was induced. Finally, altered levels of 18 randomly selected immune-related DEGs were confirmed by quantitative real-time PCR (qRT-PCR). Our results provide the basis for further analysis of the immune rejection of allotransplantation.
Collapse
Affiliation(s)
- Jinfen Wei
- Qinzhou University, Qinzhou 535011, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Haimei Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mingqiang Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jiaqi Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zihao Meng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Dahui Yu
- Qinzhou University, Qinzhou 535011, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou 510300, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
162
|
Giraudo M, Douville M, Cottin G, Houde M. Transcriptomic, cellular and life-history responses of Daphnia magna chronically exposed to benzotriazoles: Endocrine-disrupting potential and molting effects. PLoS One 2017; 12:e0171763. [PMID: 28196088 PMCID: PMC5308779 DOI: 10.1371/journal.pone.0171763] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/25/2017] [Indexed: 11/19/2022] Open
Abstract
Benzotriazoles (BZTs) are ubiquitous aquatic contaminants used in a wide range of industrial and domestic applications from aircraft deicers to dishwasher tablets. Acute toxicity has been reported in aquatic organisms for some of the BZTs but their mode of action remains unknown. The objectives of this study were to evaluate the transcriptomic response of D. magna exposed to sublethal doses of 1H-benzotriazole (BTR), 5-methyl-1H-benzotriazole (5MeBTR) and 5-chloro-1H-benzotriazole (5ClBTR) using RNA-sequencing and quantitative real-time PCR. Cellular and life-history endpoints (survival, number of neonates, growth) were also investigated. Significant effects on the molting frequency were observed after 21-d exposure to 5MeBTR and 5ClBTR. No effects on molting frequency were observed for BTR but RNA-seq results indicated that this BZT induced the up-regulation of genes coding for cuticular proteins, which could have compensated the molting disruption. Molting in cladocerans is actively controlled by ecdysteroid hormones. Complementary short-term temporal analysis (4- and 8-d exposure) of the transcription of genes related to molting and hormone-mediated processes indicated that the three compounds had specific modes of action. BTR induced the transcription of genes involved in 20-hydroxyecdysone synthesis, which suggests pro-ecdysteroid properties. 5ClBTR exposure induced protein activity and transcriptional levels of chitinase enzymes, associated with an impact on ecdysteroid signaling pathways, which could explain the decrease in molt frequency. Finally, 5MeBTR seemed to increase molt frequency through epigenetic processes. Overall, results suggested that molting effects observed at the physiological level could be linked to endocrine regulation impacts of BZTs at the molecular level.
Collapse
Affiliation(s)
- Maeva Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
| | - Mélanie Douville
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
| | - Guillaume Cottin
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
- Université Paris Descartes, Paris, France
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Montreal, Québec, Canada
| |
Collapse
|
163
|
Wang Z, Qiu X, Kong D, Zhou X, Guo Z, Gao C, Ma S, Hao W, Jiang Z, Liu S, Zhang T, Meng X, Wang X. Comparative RNA-Seq analysis of differentially expressed genes in the testis and ovary of Takifugu rubripes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:50-57. [PMID: 28189874 DOI: 10.1016/j.cbd.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
Takifugu rubripes is a classical model organism for studying the role of gonad organogenesis in such physiological processes as fertilization, sex determination, and sexual development. To explicitly investigate the mechanism associated with gonad organogenesis in T. rubripes, we obtained 44.3 million and 55.2 million raw reads from the testis and ovary, respectively, by RNA-seq and from these, 18,523 genes were identified. A total of 680 differentially expressed genes were obtained from comparison transcriptome analysis between the testis and ovary, and of these, 556 genes were up-regulated in the testis, whereas only 124 genes were upregulated in the ovary. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that many of these genes encode proteins involved in signal transduction and gonad development. We mainly focused on the differentially expressed genes that have the potential to develop into the gonad. The generation of large scale transcriptomic data presented in this work would enrich the genetic resources of T. rubripes, which should be valuable to the comparative and evolutionary studies of teleosts.
Collapse
Affiliation(s)
- Zhicheng Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xuemei Qiu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Derong Kong
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xiaoxu Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhongbao Guo
- Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Changfu Gao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Shuai Ma
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Weiwei Hao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhiqiang Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Shengcong Liu
- Dalian Tianzheng Industrial Corporation Limited, Dalian 116011, China
| | - Tao Zhang
- Dalian Tianzheng Industrial Corporation Limited, Dalian 116011, China
| | - Xuesong Meng
- Dalian Tianzheng Industrial Corporation Limited, Dalian 116011, China
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
164
|
Pirih N, Kunej T. Toward a Taxonomy for Multi-Omics Science? Terminology Development for Whole Genome Study Approaches by Omics Technology and Hierarchy. ACTA ACUST UNITED AC 2017; 21:1-16. [DOI: 10.1089/omi.2016.0144] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Nina Pirih
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| |
Collapse
|
165
|
Martin SAM, Dehler CE, Król E. Transcriptomic responses in the fish intestine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:103-117. [PMID: 26995769 DOI: 10.1016/j.dci.2016.03.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/05/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
The intestine, being a multifunctional organ central to both nutrient uptake, pathogen recognition and regulating the intestinal microbiome, has been subjected to intense research. This review will focus on the recent studies carried out using high-throughput gene expression approaches, such as microarray and RNA sequencing (RNA-seq). These techniques have advanced greatly in recent years, mainly as a result of the massive changes in sequencing methodologies. At the time of writing, there is a transition between relatively well characterised microarray platforms and the developing RNA-seq, with the prediction that within a few years as costs decrease and computation power increase, RNA-seq related approaches will supersede the microarrays. Comparisons between the approaches are made and specific examples of how the techniques have been used to examine intestinal responses to pathogens, dietary manipulations and osmoregulatory challenges are given.
Collapse
Affiliation(s)
- Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Carola E Dehler
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Elżbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
166
|
Samarut É. Zebrafish embryos as in vivo test tubes to unravel cell-specific mechanisms of neurogenesis during neurodevelopment and in diseases. NEUROGENESIS 2016; 3:e1232678. [PMID: 27785454 DOI: 10.1080/23262133.2016.1232678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 10/20/2022]
Abstract
Zebrafish has become a model of choice for developmental studies in particular for studying neural development and related mechanisms involved in diseases. Indeed, zebrafish provides a fast, handy and accurate model to perform functional genomics on a gene or network of genes of interest. Recently, we successfully purified neural stem cells (NSCs) by fluorescence-activated cell sorting (FACS) from whole embryos in order to analyze cell-specific transcriptomic effects by RNA sequencing. As a result, our work sheds light on signaling pathways that are more likely to be involved in our morpholino-induced neurogenesis phenotype. This cell purification strategy brings zebrafish to a higher level since it now allows one to investigate cell-specific effects of a genetic condition of interest (knockout, knock-down, gain-of-function etc.) at the genomic, transcriptomic and proteomic levels in a genuine in vivo context. With this new potential, there is no doubt that zebrafish will be of a major model with which to unravel complex underlying molecular mechanisms of neurological disorders such as epilepsy, autism spectrum disorders and schizophrenia.
Collapse
Affiliation(s)
- Éric Samarut
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal , Montréal, QC, Canada
| |
Collapse
|
167
|
Transcriptome altered by latent human cytomegalovirus infection on THP-1 cells using RNA-seq. Gene 2016; 594:144-150. [PMID: 27623506 PMCID: PMC7126988 DOI: 10.1016/j.gene.2016.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 02/08/2023]
Abstract
Human cytomegalovirus (HCMV) has been recognized as a cause of severe, sometimes life-threatening disease in congenitally infected newborns as well as in immunocompromised individuals. However, the molecular mechanisms of the host-virus interaction remain poorly understood. Here, we profiled the expression of mRNAs and long noncoding RNAs (lncRNAs) in THP-1 cells using the emerging RNA-seq to investigate the transcriptional changes during HCMV latent infection. At 4 days post HCMV infection, a total of 169,008,624 sequence reads and 180,616 transcripts were obtained, respectively. Of these transcripts, 1,354 noncoding genes and 12,952 protein-coding genes were observed in Refseq database. Differential gene expression analysis identified 2,153 differentially expressed genes (DEGs) between HCMV-infected and mock-infected THP-1 cells, including 1,098 up-regulated genes and 1,055 down-regulated genes. These regulated genes were involved in pathways of apoptosis, inflammatory response and cell cycle progression, all of which may be implicated in viral pathogenesis. In addition, 646 lncRNAs (208 known lncRNAs and 438 novel lncRNAs) were upregulated and 424 (140 known and 284 novel) were downregulated in infected THP-1 cells. These findings have provided a dynamic scenario of DE candidate genes and lncRNAs at the virus-host interface and clearly warrant further experimental investigation associated with HCMV infection. Differential gene expression analysis identified 2,153 differentially expressed genes between HCMV-infected cells and mock-infected THP-1 cells. These regulated genes were involved in pathways of apoptosis, inflammatory response and cell cycle progression, all of which may be implicated in viral pathogenesis. lncRNAs may involved in regulation of HCMV latent infection.
Collapse
|
168
|
Pareek CS, Smoczyński R, Kadarmideen HN, Dziuba P, Błaszczyk P, Sikora M, Walendzik P, Grzybowski T, Pierzchała M, Horbańczuk J, Szostak A, Ogluszka M, Zwierzchowski L, Czarnik U, Fraser L, Sobiech P, Wąsowicz K, Gelfand B, Feng Y, Kumar D. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology. PLoS One 2016; 11:e0161370. [PMID: 27606429 PMCID: PMC5015895 DOI: 10.1371/journal.pone.0161370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/04/2016] [Indexed: 01/14/2023] Open
Abstract
Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs) within potential candidate genes (CGs) or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF), Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis of 76 QTLs/CGs with RNA-seq data identified KCNIP4, CCSER1, DPP6, MAP3K5 and GHR CGs with highest SNPs hit loci in all three breeds and developmental ages. However, CAST CG with more than 100 SNPs hits were observed only in Polish HF and Hereford breeds.These findings are important for identification and construction of novel tissue specific SNP-db and breed specific SNP-db dataset by screening of putative SNPs according to QTL db and candidate genes for bovine growth and reproduction traits, one can develop genomic selection strategies for growth and reproductive traits.
Collapse
Affiliation(s)
- Chandra Shekhar Pareek
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
- * E-mail:
| | - Rafał Smoczyński
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Haja N. Kadarmideen
- Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Piotr Dziuba
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Paweł Błaszczyk
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Marcin Sikora
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Paulina Walendzik
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Tomasz Grzybowski
- Ludwik Rydygier Collegium Medicum, Institute of Forensic Medicine, Department of Molecular and Forensic Genetics, The Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Jarosław Horbańczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Agnieszka Szostak
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Magdalena Ogluszka
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Lech Zwierzchowski
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Urszula Czarnik
- Faculty of Animal Bio-engineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Leyland Fraser
- Faculty of Animal Bio-engineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Przemysław Sobiech
- Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Krzysztof Wąsowicz
- Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Brian Gelfand
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Yaping Feng
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Dibyendu Kumar
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
169
|
Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J. Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax). Front Physiol 2016; 7:359. [PMID: 27610085 PMCID: PMC4997091 DOI: 10.3389/fphys.2016.00359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/05/2016] [Indexed: 01/23/2023] Open
Abstract
High-quality sequencing reads from the intestine of European sea bass were assembled, annotated by similarity against protein reference databases and combined with nucleotide sequences from public and private databases. After redundancy filtering, 24,906 non-redundant annotated sequences encoding 15,367 different gene descriptions were obtained. These annotated sequences were used to design a custom, high-density oligo-microarray (8 × 15 K) for the transcriptomic profiling of anterior (AI), middle (MI), and posterior (PI) intestinal segments. Similar molecular signatures were found for AI and MI segments, which were combined in a single group (AI-MI) whereas the PI outstood separately, with more than 1900 differentially expressed genes with a fold-change cutoff of 2. Functional analysis revealed that molecular and cellular functions related to feed digestion and nutrient absorption and transport were over-represented in AI-MI segments. By contrast, the initiation and establishment of immune defense mechanisms became especially relevant in PI, although the microarray expression profiling validated by qPCR indicated that these functional changes are gradual from anterior to posterior intestinal segments. This functional divergence occurred in association with spatial transcriptional changes in nutrient transporters and the mucosal chemosensing system via G protein-coupled receptors. These findings contribute to identify key indicators of gut functions and to compare different fish feeding strategies and immune defense mechanisms acquired along the evolution of teleosts.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| |
Collapse
|
170
|
Zhu R, Du HJ, Li SY, Li YD, Ni H, Yu XJ, Yang YY, Fan YD, Jiang N, Zeng LB, Wang XG. De novo annotation of the immune-enriched transcriptome provides insights into immune system genes of Chinese sturgeon (Acipenser sinensis). FISH & SHELLFISH IMMUNOLOGY 2016; 55:699-716. [PMID: 27368537 DOI: 10.1016/j.fsi.2016.06.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Chinese sturgeon (Acipenser sinensis), one of the oldest extant actinopterygian fishes with very high evolutionary, economical and conservation interest, is considered to be one of the critically endangered aquatic animals in China. Up to date, the immune system of this species remains largely undetermined with little sequence information publicly available. Herein, the first comprehensive transcriptome of immune tissues for Chinese sturgeon was characterized using Illumina deep sequencing. Over 67 million high-quality reads were generated and de novo assembled into the final set of 91,739 unique sequences. The annotation pipeline revealed that 25,871 unigenes were successfully annotated in the public databases, of which only 2002 had significant match to the existing sequences for the genus Acipenser. Overall 22,827 unigenes were categorized into 52 GO terms, 12,742 were classified into 26 KOG categories, and 4968 were assigned to 339 KEGG pathways. A more detailed annotation search showed the presence of a notable representation of immune-related genes, which suggests that this non-teleost actinopterygian fish harbors the same intermediates as in the well known immune pathways from mammals and teleosts, such as pattern recognition receptor (PRR) signaling pathway, JAK-STAT signaling pathway, complement and coagulation pathway, T-cell receptor (TCR) and B-cell receptor (BCR) signaling pathways. Additional genetic marker discovery led to the retrieval of 20,056 simple sequence repeats (SSRs) and 327,140 single nucleotide polymorphisms (SNPs). This immune-enriched transcriptome of Chinese sturgeon represents a rich resource that adds to the currently nascent field of chondrostean fish immunogenetics and furthers the conservation and management of this valuable fish.
Collapse
Affiliation(s)
- Rong Zhu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - He-Jun Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Shun-Yi Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Ya-Dong Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Hong Ni
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xue-Jing Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yan-Yan Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yu-Ding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Ling-Bing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.
| | - Xing-Guo Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
171
|
Transcriptome analysis of male and female mature gonads of Japanese scallop Patinopecten yessonsis. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0449-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
172
|
Abernathy J, Overturf K. Comparison of Ribosomal RNA Removal Methods for Transcriptome Sequencing Workflows in Teleost Fish. Anim Biotechnol 2016; 27:60-5. [PMID: 26732342 DOI: 10.1080/10495398.2015.1086365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
RNA sequencing (RNA-Seq) is becoming the standard for transcriptome analysis. Removal of contaminating ribosomal RNA (rRNA) is a priority in the preparation of libraries suitable for sequencing. These methods have been well documented in mammals but typically require some optimization for lower vertebrates. Three commercial kits, including Dynabeads mRNA Purification Kit, RiboMinus Eukaryote System v2, and Ribo-Zero Gold rRNA Removal Kit were examined for the ability to remove rRNAs from rainbow trout (Oncorhynchus mykiss) RNA isolations. Total RNA was isolated from liver and muscle tissue samples (n = 24) and rRNAs removed using one of the three kits. Samples were analyzed visually on the Agilent Bioanalyzer and by Illumina RNA-seq, screening for Oncorhynchus rRNAs. There were significant differences between the kits in regards to their ability to remove rRNA, ranging from 2.74% - 10.94% rRNA sequences left behind per kit on average. Using the Bioanalyzer to evaluate ribosomal contamination in rRNA-depleted samples for RNA-Seq was good for detecting samples with higher concentrations of rRNA (>5%), but not very accurate at lower levels. Although all three kits were able to remove a substantial portion of the rRNA from different fish tissues, the Ribo-Zero Gold rRNA Removal Kit eliminated significantly more contaminating ribosomal RNAs than the others.
Collapse
Affiliation(s)
- Jason Abernathy
- a USDA-ARS , Hagerman Fish Culture Experiment Station , Hagerman , Idaho , USA
| | - Ken Overturf
- a USDA-ARS , Hagerman Fish Culture Experiment Station , Hagerman , Idaho , USA
| |
Collapse
|
173
|
Yang H, Xu XL, Ma HM, Jiang J. Integrative analysis of transcriptomics and proteomics of skeletal muscles of the Chinese indigenous Shaziling pig compared with the Yorkshire breed. BMC Genet 2016; 17:80. [PMID: 27296698 PMCID: PMC4906580 DOI: 10.1186/s12863-016-0389-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/02/2016] [Indexed: 11/08/2022] Open
Abstract
Background The Shaziling pig (Sus scrofa) is a well-known indigenous breed in China. One of its main advantages over European breeds is its high meat quality. However, little genetic information is available for the Shaziling pig. To screen for differentially expressed genes and proteins that might be responsible for the meat quality, the longissimus dorsi muscles from Shaziling and Yorkshire pig breeds were investigated using an integrative analysis of transcriptomics and proteomics, involving high-throughput sequencing, the two-dimensional gel electrophoresis, and mass spectrometry. Results Sequencing produced 79,320 unigenes by de novo assembly, and 488 differentially expressed genes in the longissimus dorsi muscle of Shaziling pig compared with the Yorkshire breed were identified. Gene Ontology term enrichment of biological functions and Kyoto Encyclopedia of Genes and Genomes analysis showed that the gene products were mainly involved in metabolism, protein binding, and regulation of skeletal muscle development. At the protein level, 23 differentially expressed proteins were identified, which were potentially associated with fatty acid metabolism, the glycolytic pathway, and skeletal muscle growth. Eight differentially expressed genes were confirmed by real-time PCR. These results give an insight into the mechanisms underlying the formation of skeletal muscle in the Shaziling pig. Conclusions Certain differentially expressed genes and proteins are involved in fatty acid metabolism, intramuscular fat deposition, and skeletal muscle growth in the Shaziling pig. These results provide candidate genes for improving meat quality and will promote further transcriptomic research in Shaziling pigs. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0389-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hu Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China.,College of Life Science and Resource Environment, Yichun University, Yichun, 336000, People's Republic of China
| | - Xing-Li Xu
- College of Life Science and Resource Environment, Yichun University, Yichun, 336000, People's Republic of China
| | - Hai-Ming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Jun Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| |
Collapse
|
174
|
Magnanou E, Noirot C, Falcón J, Jørgensen EH. Sequencing and characterization of a multi-organ Arctic charr transcriptome: A toolbox for investigating polymorphism and seasonal life in a high Arctic fish. Mar Genomics 2016; 29:45-53. [PMID: 27118202 DOI: 10.1016/j.margen.2016.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 02/06/2023]
Abstract
The Arctic charr (Salvelinus alpinus L.) inhabits fresh water ecosystems of the high North. The species has developed a strong phenotypic plasticity and variability in life history characteristics which has made this species an attractive model for investigations on phenotype plasticity, morph formation and ecological speciation. Further, the extreme seasonal variations in environmental conditions (e.g. food availability) in the high North induce seasonal changes in phenotype, which require precise timing mechanisms and physiological preparations. Individual gating of life-history strategies (e.g. formation of resident and sea-migrating morphs) and transitions (e.g. maturation) depends on conditional traits (size/energy status) at specific assessment time windows, and complex neuroendocrine regulation, which so far is poorly understood. In the absence of a reference genome, and in order to facilitate the investigation of the complex biological mechanisms of this unique fish model, the present study reveals a reference transcriptome for the Arctic charr. Using Roche 454 GS FLX+, we targeted various organs being either at the crossroads of many key pathways (neuroendocrine, metabolic, behavioral), of different ontological origins or displaying complementary physiological functions. The assemblage yielded 34,690 contigs greater than 1000bp with an average length (1690bp) and annotation rate (52%) within the range, or even higher, than what has been previously obtained with other teleost de novo transcriptomes. We dramatically improve the publically available transcript data on this species that may indeed be useful for various disciplines, from basic research to applied aspects related to conservation issues and aquaculture.
Collapse
Affiliation(s)
- Elodie Magnanou
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France.
| | - Celine Noirot
- INRA, Plateforme bioinformatique Toulouse Midi-Pyrénées, UR875 Biométrie et Intelligence Artificielle, BP 52627, 31326 Castanet-Tolosan Cedex, France
| | - Jack Falcón
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Even Hjalmar Jørgensen
- Faculty of Biosciences, Fisheries and Economy, Department of Arctic and Marine Biology, UiT the Arctic University of Norway, NO-9037 Tormsø, Norway.
| |
Collapse
|
175
|
RNA-seq analysis of early enteromyxosis in turbot (Scophthalmus maximus): new insights into parasite invasion and immune evasion strategies. Int J Parasitol 2016; 46:507-17. [PMID: 27109557 DOI: 10.1016/j.ijpara.2016.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/26/2016] [Accepted: 03/06/2016] [Indexed: 12/13/2022]
Abstract
Enteromyxum scophthalmi, an intestinal myxozoan parasite, is the causative agent of a threatening disease for turbot (Scophthalmus maximus, L.) aquaculture. The colonisation of the digestive tract by this parasite leads to a cachectic syndrome associated with high morbidity and mortality rates. This myxosporidiosis has a long pre-patent period and the first detectable clinical and histopathological changes are subtle. The pathogenic mechanisms acting in the early stages of infection are still far from being fully understood. Further information on the host-parasite interaction is needed to assist in finding efficient preventive and therapeutic measures. Here, a RNA-seq-based transcriptome analysis of head kidney, spleen and pyloric caeca from experimentally-infected and control turbot was performed. Only infected fish with early signs of infection, determined by histopathology and immunohistochemical detection of E. scophthalmi, were selected. The RNA-seq analysis revealed, as expected, less intense transcriptomic changes than those previously found during later stages of the disease. Several genes involved in IFN-related pathways were up-regulated in the three organs, suggesting that the IFN-mediated immune response plays a main role in this phase of the disease. Interestingly, an opposite expression pattern had been found in a previous study on severely infected turbot. In addition, possible strategies for immune system evasion were suggested by the down-regulation of different genes encoding complement components and acute phase proteins. At the site of infection (pyloric caeca), modulation of genes related to different structural proteins was detected and the expression profile indicated the inhibition of cell proliferation and differentiation. These transcriptomic changes provide indications regarding the mechanisms of parasite attachment to and invasion of the host. The current results contribute to a better knowledge of the events that characterise the early stages of turbot enteromyxosis and provide valuable information to identify molecular markers for early detection and control of this important parasitosis.
Collapse
|
176
|
Genge CE, Lin E, Lee L, Sheng X, Rayani K, Gunawan M, Stevens CM, Li AY, Talab SS, Claydon TW, Hove-Madsen L, Tibbits GF. The Zebrafish Heart as a Model of Mammalian Cardiac Function. Rev Physiol Biochem Pharmacol 2016; 171:99-136. [PMID: 27538987 DOI: 10.1007/112_2016_5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Zebrafish (Danio rerio) are widely used as vertebrate model in developmental genetics and functional genomics as well as in cardiac structure-function studies. The zebrafish heart has been increasingly used as a model of human cardiac function, in part, due to the similarities in heart rate and action potential duration and morphology with respect to humans. The teleostian zebrafish is in many ways a compelling model of human cardiac function due to the clarity afforded by its ease of genetic manipulation, the wealth of developmental biological information, and inherent suitability to a variety of experimental techniques. However, in addition to the numerous advantages of the zebrafish system are also caveats related to gene duplication (resulting in paralogs not present in human or other mammals) and fundamental differences in how zebrafish hearts function. In this review, we discuss the use of zebrafish as a cardiac function model through the use of techniques such as echocardiography, optical mapping, electrocardiography, molecular investigations of excitation-contraction coupling, and their physiological implications relative to that of the human heart. While some of these techniques (e.g., echocardiography) are particularly challenging in the zebrafish because of diminutive size of the heart (~1.5 mm in diameter) critical information can be derived from these approaches and are discussed in detail in this article.
Collapse
Affiliation(s)
- Christine E Genge
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Eric Lin
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Ling Lee
- BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - XiaoYe Sheng
- BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - Kaveh Rayani
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Marvin Gunawan
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Charles M Stevens
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.,BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4
| | - Alison Yueh Li
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Sanam Shafaat Talab
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Thomas W Claydon
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Leif Hove-Madsen
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.,Cardiovascular Research Centre CSIC-ICCC, Hospital de Sant Pau, Barcelona, Spain
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6. .,BC Children's Hospital Research Institute, Vancouver, BC, Canada, V5Z 4H4.
| |
Collapse
|
177
|
Bahamonde PA, Feswick A, Isaacs MA, Munkittrick KR, Martyniuk CJ. Defining the role of omics in assessing ecosystem health: Perspectives from the Canadian environmental monitoring program. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:20-35. [PMID: 26771350 DOI: 10.1002/etc.3218] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/16/2015] [Accepted: 08/20/2015] [Indexed: 05/22/2023]
Abstract
Scientific reviews and studies continue to describe omics technologies as the next generation of tools for environmental monitoring, while cautioning that there are limitations and obstacles to overcome. However, omics has not yet transitioned into national environmental monitoring programs designed to assess ecosystem health. Using the example of the Canadian Environmental Effects Monitoring (EEM) program, the authors describe the steps that would be required for omics technologies to be included in such an established program. These steps include baseline collection of omics endpoints across different species and sites to generate a range of what is biologically normal within a particular ecosystem. Natural individual variability in the omes is not adequately characterized and is often not measured in the field, but is a key component to an environmental monitoring program, to determine the critical effect size or action threshold for management. Omics endpoints must develop a level of standardization, consistency, and rigor that will allow interpretation of the relevance of changes across broader scales. To date, population-level consequences of routinely measured endpoints such as reduced gonad size or intersex in fish is not entirely clear, and the significance of genome-wide molecular, proteome, or metabolic changes on organism or population health is further removed from the levels of ecological change traditionally managed. The present review is not intended to dismiss the idea that omics will play a future role in large-scale environmental monitoring studies, but rather outlines the necessary actions for its inclusion in regulatory monitoring programs focused on assessing ecosystem health.
Collapse
Affiliation(s)
- Paulina A Bahamonde
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - April Feswick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Meghan A Isaacs
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Kelly R Munkittrick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| |
Collapse
|
178
|
Ayuso M, Fernández A, Núñez Y, Benítez R, Isabel B, Barragán C, Fernández AI, Rey AI, Medrano JF, Cánovas Á, González-Bulnes A, López-Bote C, Ovilo C. Comparative Analysis of Muscle Transcriptome between Pig Genotypes Identifies Genes and Regulatory Mechanisms Associated to Growth, Fatness and Metabolism. PLoS One 2015; 10:e0145162. [PMID: 26695515 PMCID: PMC4687939 DOI: 10.1371/journal.pone.0145162] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Iberian ham production includes both purebred (IB) and Duroc-crossbred (IBxDU) Iberian pigs, which show important differences in meat quality and production traits, such as muscle growth and fatness. This experiment was conducted to investigate gene expression differences, transcriptional regulation and genetic polymorphisms that could be associated with the observed phenotypic differences between IB and IBxDU pigs. Nine IB and 10 IBxDU pigs were slaughtered at birth. Morphometric measures and blood samples were obtained and samples from Biceps femoris muscle were employed for compositional and transcriptome analysis by RNA-Seq technology. Phenotypic differences were evident at this early age, including greater body size and weight in IBxDU and greater Biceps femoris intramuscular fat and plasma cholesterol content in IB newborns. We detected 149 differentially expressed genes between IB and IBxDU neonates (p < 0.01 and Fold-Change > 1. 5). Several were related to adipose and muscle tissues development (DLK1, FGF21 or UBC). The functional interpretation of the transcriptomic differences revealed enrichment of functions and pathways related to lipid metabolism in IB and to cellular and muscle growth in IBxDU pigs. Protein catabolism, cholesterol biosynthesis and immune system were functions enriched in both genotypes. We identified transcription factors potentially affecting the observed gene expression differences. Some of them have known functions on adipogenesis (CEBPA, EGRs), lipid metabolism (PPARGC1B) and myogenesis (FOXOs, MEF2D, MYOD1), which suggest a key role in the meat quality differences existing between IB and IBxDU hams. We also identified several polymorphisms showing differential segregation between IB and IBxDU pigs. Among them, non-synonymous variants were detected in several transcription factors as PPARGC1B and TRIM63 genes, which could be associated to altered gene function. Taken together, these results provide information about candidate genes, metabolic pathways and genetic polymorphisms potentially involved in phenotypic differences between IB and IBxDU pigs associated to meat quality and production traits.
Collapse
Affiliation(s)
- Miriam Ayuso
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | - Yolanda Núñez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Rita Benítez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Beatriz Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | - Ana Isabel Rey
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Juan F. Medrano
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Ángela Cánovas
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | | | - Clemente López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Cristina Ovilo
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
179
|
Evaluation of potential candidate genes involved in salinity tolerance in striped catfish (Pangasianodon hypophthalmus) using an RNA-Seq approach. Mar Genomics 2015; 25:75-88. [PMID: 26653845 DOI: 10.1016/j.margen.2015.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/21/2015] [Accepted: 11/21/2015] [Indexed: 12/19/2022]
Abstract
Increasing salinity levels in freshwater and coastal environments caused by sea level rise linked to climate change is now recognized to be a major factor that can impact fish growth negatively, especially for freshwater teleost species. Striped catfish (Pangasianodon hypophthalmus) is an important freshwater teleost that is now widely farmed across the Mekong River Delta in Vietnam. Understanding the basis for tolerance and adaptation to raised environmental salinity conditions can assist the regional culture industry to mitigate predicted impacts of climate change across this region. Attempt of next generation sequencing using the ion proton platform results in more than 174 million raw reads from three tissue libraries (gill, kidney and intestine). Reads were filtered and de novo assembled using a variety of assemblers and then clustered together to generate a combined reference transcriptome. Downstream analysis resulted in a final reference transcriptome that contained 60,585 transcripts with an N50 of 683 bp. This resource was further annotated using a variety of bioinformatics databases, followed by differential gene expression analysis that resulted in 3062 transcripts that were differentially expressed in catfish samples raised under two experimental conditions (0 and 15 ppt). A number of transcripts with a potential role in salinity tolerance were then classified into six different functional gene categories based on their gene ontology assignments. These included; energy metabolism, ion transportation, detoxification, signal transduction, structural organization and detoxification. Finally, we combined the data on functional salinity tolerance genes into a hypothetical schematic model that attempted to describe potential relationships and interactions among target genes to explain the molecular pathways that control adaptive salinity responses in P. hypophthalmus. Our results indicate that P. hypophthalmus exhibit predictable plastic regulatory responses to elevated salinity by means of characteristic gene expression patterns, providing numerous candidate genes for future investigations.
Collapse
|
180
|
Kumar RR, Goswami S, Sharma SK, Kala YK, Rai GK, Mishra DC, Grover M, Singh GP, Pathak H, Rai A, Chinnusamy V, Rai RD. Harnessing Next Generation Sequencing in Climate Change: RNA-Seq Analysis of Heat Stress-Responsive Genes in Wheat (Triticum aestivum L.). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:632-47. [PMID: 26406536 DOI: 10.1089/omi.2015.0097] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Wheat is a staple food worldwide and provides 40% of the calories in the diet. Climate change and global warming pose a threat to wheat production, however, and demand a deeper understanding of how heat stress might impact wheat production and wheat biology. However, it is difficult to identify novel heat stress associated genes when the genomic information is not available. Wheat has a very large and complex genome that is about 37 times the size of the rice genome. The present study sequenced the whole transcriptome of the wheat cv. HD2329 at the flowering stage, under control (22°±3°C) and heat stress (42°C, 2 h) conditions using Illumina HiSeq and Roche GS-FLX 454 platforms. We assembled more than 26.3 and 25.6 million high-quality reads from the control and HS-treated tissues transcriptome sequences respectively. About 76,556 (control) and 54,033 (HS-treated) contigs were assembled and annotated de novo using different assemblers and a total of 21,529 unigenes were obtained. Gene expression profile showed significant differential expression of 1525 transcripts under heat stress, of which 27 transcripts showed very high (>10) fold upregulation. Cellular processes such as metabolic processes, protein phosphorylation, oxidations-reductions, among others were highly influenced by heat stress. In summary, these observations significantly enrich the transcript dataset of wheat available on public domain and show a de novo approach to discover the heat-responsive transcripts of wheat, which can accelerate the progress of wheat stress-genomics as well as the course of wheat breeding programs in the era of climate change.
Collapse
Affiliation(s)
- Ranjeet R Kumar
- 1 Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| | - Suneha Goswami
- 1 Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| | - Sushil K Sharma
- 1 Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| | - Yugal K Kala
- 2 Division of Genetics, Indian Agricultural Research Institute , New Delhi, India
| | - Gyanendra K Rai
- 3 Sher-e-Kashmir University of Agricultural Sciences and Technology , Jammu, India
| | - Dwijesh C Mishra
- 4 Centre for Agricultural Bio-Informatics (CAB-in), Indian Agricultural Statistics Research Institute (IASRI) , New Delhi, India
| | - Monendra Grover
- 4 Centre for Agricultural Bio-Informatics (CAB-in), Indian Agricultural Statistics Research Institute (IASRI) , New Delhi, India
| | | | - Himanshu Pathak
- 6 Division of CESCRA, Indian Agricultural Research Institute , New Delhi, India
| | - Anil Rai
- 4 Centre for Agricultural Bio-Informatics (CAB-in), Indian Agricultural Statistics Research Institute (IASRI) , New Delhi, India
| | - Viswanathan Chinnusamy
- 7 Division of Plant Physiology, Indian Agricultural Research Institute , New Delhi, India
| | - Raj D Rai
- 1 Division of Biochemistry, Indian Agricultural Research Institute , New Delhi, India
| |
Collapse
|
181
|
MetaRNA-Seq: An Interactive Tool to Browse and Annotate Metadata from RNA-Seq Studies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:318064. [PMID: 26380270 PMCID: PMC4561952 DOI: 10.1155/2015/318064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 11/17/2022]
Abstract
The number of RNA-Seq studies has grown in recent years. The design of RNA-Seq studies varies from very simple (e.g., two-condition case-control) to very complicated (e.g., time series involving multiple samples at each time point with separate drug treatments). Most of these publically available RNA-Seq studies are deposited in NCBI databases, but their metadata are scattered throughout four different databases: Sequence Read Archive (SRA), Biosample, Bioprojects, and Gene Expression Omnibus (GEO). Although the NCBI web interface is able to provide all of the metadata information, it often requires significant effort to retrieve study- or project-level information by traversing through multiple hyperlinks and going to another page. Moreover, project- and study-level metadata lack manual or automatic curation by categories, such as disease type, time series, case-control, or replicate type, which are vital to comprehending any RNA-Seq study. Here we describe "MetaRNA-Seq," a new tool for interactively browsing, searching, and annotating RNA-Seq metadata with the capability of semiautomatic curation at the study level.
Collapse
|
182
|
Uren Webster TM, Shears JA, Moore K, Santos EM. Identification of conserved hepatic transcriptomic responses to 17β-estradiol using high-throughput sequencing in brown trout. Physiol Genomics 2015; 47:420-31. [PMID: 26082144 PMCID: PMC4556936 DOI: 10.1152/physiolgenomics.00123.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/08/2015] [Indexed: 01/11/2023] Open
Abstract
Estrogenic chemicals are major contaminants of surface waters and can threaten the sustainability of natural fish populations. Characterization of the global molecular mechanisms of toxicity of environmental contaminants has been conducted primarily in model species rather than species with limited existing transcriptomic or genomic sequence information. We aimed to investigate the global mechanisms of toxicity of an endocrine disrupting chemical of environmental concern [17β-estradiol (E2)] using high-throughput RNA sequencing (RNA-Seq) in an environmentally relevant species, brown trout (Salmo trutta). We exposed mature males to measured concentrations of 1.94, 18.06, and 34.38 ng E2/l for 4 days and sequenced three individual liver samples per treatment using an Illumina HiSeq 2500 platform. Exposure to 34.4 ng E2/L resulted in 2,113 differentially regulated transcripts (FDR < 0.05). Functional analysis revealed upregulation of processes associated with vitellogenesis, including lipid metabolism, cellular proliferation, and ribosome biogenesis, together with a downregulation of carbohydrate metabolism. Using real-time quantitative PCR, we validated the expression of eight target genes and identified significant differences in the regulation of several known estrogen-responsive transcripts in fish exposed to the lower treatment concentrations (including esr1 and zp2.5). We successfully used RNA-Seq to identify highly conserved responses to estrogen and also identified some estrogen-responsive transcripts that have been less well characterized, including nots and tgm2l. These results demonstrate the potential application of RNA-Seq as a valuable tool for assessing mechanistic effects of pollutants in ecologically relevant species for which little genomic information is available.
Collapse
Affiliation(s)
- Tamsyn M Uren Webster
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Janice A Shears
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Karen Moore
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Eduarda M Santos
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
183
|
Animal Models and "Omics" Technologies for Identification of Novel Biomarkers and Drug Targets to Prevent Heart Failure. BIOMED RESEARCH INTERNATIONAL 2015; 2015:212910. [PMID: 26236717 PMCID: PMC4508378 DOI: 10.1155/2015/212910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
Abstract
It is now accepted that heart failure (HF) is a complex multifunctional disease rather than simply a hemodynamic dysfunction. Despite its complexity, stressed cardiomyocytes often follow conserved patterns of structural remodelling in order to adapt, survive, and regenerate. When cardiac adaptations cannot cope with mechanical, ischemic, and metabolic loads efficiently or become chronically activated, as, for example, after infection, then the ongoing structural remodelling and dedifferentiation often lead to compromised pump function and patient death. It is, therefore, of major importance to understand key events in the progression from a compensatory left ventricular (LV) systolic dysfunction to a decompensatory LV systolic dysfunction and HF. To achieve this, various animal models in combination with an “omics” toolbox can be used. These approaches will ultimately lead to the identification of an arsenal of biomarkers and therapeutic targets which have the potential to shape the medicine of the future.
Collapse
|
184
|
Transcriptome and Molecular Pathway Analysis of the Hepatopancreas in the Pacific White Shrimp Litopenaeus vannamei under Chronic Low-Salinity Stress. PLoS One 2015; 10:e0131503. [PMID: 26147449 PMCID: PMC4492601 DOI: 10.1371/journal.pone.0131503] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/03/2015] [Indexed: 11/29/2022] Open
Abstract
The Pacific white shrimp Litopenaeus vannamei is a euryhaline penaeid species that shows ontogenetic adaptations to salinity, with its larvae inhabiting oceanic environments and postlarvae and juveniles inhabiting estuaries and lagoons. Ontogenetic adaptations to salinity manifest in L. vannamei through strong hyper-osmoregulatory and hypo-osmoregulatory patterns and an ability to tolerate extremely low salinity levels. To understand this adaptive mechanism to salinity stress, RNA-seq was used to compare the transcriptomic response of L. vannamei to changes in salinity from 30 (control) to 3 practical salinity units (psu) for 8 weeks. In total, 26,034 genes were obtained from the hepatopancreas tissue of L. vannamei using the Illumina HiSeq 2000 system, and 855 genes showed significant changes in expression under salinity stress. Eighteen top Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly involved in physiological responses, particularly in lipid metabolism, including fatty-acid biosynthesis, arachidonic acid metabolism and glycosphingolipid and glycosaminoglycan metabolism. Lipids or fatty acids can reduce osmotic stress in L. vannamei by providing additional energy or changing the membrane structure to allow osmoregulation in relevant organs, such as the gills. Steroid hormone biosynthesis and the phosphonate and phosphinate metabolism pathways were also involved in the adaptation of L. vannamei to low salinity, and the differential expression patterns of 20 randomly selected genes were validated by quantitative real-time PCR (qPCR). This study is the first report on the long-term adaptive transcriptomic response of L. vannamei to low salinity, and the results will further our understanding of the mechanisms underlying osmoregulation in euryhaline crustaceans.
Collapse
|
185
|
Gudbrandsson J, Ahi EP, Franzdottir SR, Kapralova KH, Kristjansson BK, Steinhaeuser SS, Maier VH, Johannesson IM, Snorrason SS, Jonsson ZO, Palsson A. The developmental transcriptome of contrasting Arctic charr (Salvelinus alpinus) morphs. F1000Res 2015; 4:136. [PMID: 27635217 PMCID: PMC5007756 DOI: 10.12688/f1000research.6402.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charrSalvelinus alpinuspopulations in Iceland. To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr.The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, includinglysozymeandnatterin-likewhich was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr.The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.
Collapse
|
186
|
Ulloa PE, Rincón G, Islas-Trejo A, Araneda C, Iturra P, Neira R, Medrano JF. RNA sequencing to study gene expression and SNP variations associated with growth in zebrafish fed a plant protein-based diet. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:353-63. [PMID: 25702041 DOI: 10.1007/s10126-015-9624-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/16/2015] [Indexed: 05/16/2023]
Abstract
The objectives of this study were to measure gene expression in zebrafish and then identify SNP to be used as potential markers in a growth association study. We developed an approach where muscle samples collected from low- and high-growth fish were analyzed using RNA-Sequencing (RNA-seq), and SNP were chosen from the genes that were differentially expressed between the low and high groups. A population of 24 families was fed a plant protein-based diet from the larval to adult stages. From a total of 440 males, 5 % of the fish from both tails of the weight gain distribution were selected. Total RNA was extracted from individual muscle of 8 low-growth and 8 high-growth fish. Two pooled RNA-Seq libraries were prepared for each phenotype using 4 fish per library. Libraries were sequenced using the Illumina GAII Sequencer and analyzed using the CLCBio genomic workbench software. One hundred and twenty-four genes were differentially expressed between phenotypes (p value < 0.05 and FDR < 0.2). From these genes, 164 SNP were selected and genotyped in 240 fish samples. Marker-trait analysis revealed 5 SNP associated with growth in key genes (Nars, Lmod2b, Cuzd1, Acta1b, and Plac8l1). These genes are good candidates for further growth studies in fish and to consider for identification of potential SNPs associated with different growth rates in response to a plant protein-based diet.
Collapse
Affiliation(s)
- Pilar E Ulloa
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Casilla 54-D, Temuco, Chile,
| | | | | | | | | | | | | |
Collapse
|
187
|
Evans TG. Considerations for the use of transcriptomics in identifying the ‘genes that matter’ for environmental adaptation. J Exp Biol 2015; 218:1925-35. [DOI: 10.1242/jeb.114306] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT
Transcriptomics has emerged as a powerful approach for exploring physiological responses to the environment. However, like any other experimental approach, transcriptomics has its limitations. Transcriptomics has been criticized as an inappropriate method to identify genes with large impacts on adaptive responses to the environment because: (1) genes with large impacts on fitness are rare; (2) a large change in gene expression does not necessarily equate to a large effect on fitness; and (3) protein activity is most relevant to fitness, and mRNA abundance is an unreliable indicator of protein activity. In this review, these criticisms are re-evaluated in the context of recent systems-level experiments that provide new insight into the relationship between gene expression and fitness during environmental stress. In general, these criticisms remain valid today, and indicate that exclusively using transcriptomics to screen for genes that underlie environmental adaptation will overlook constitutively expressed regulatory genes that play major roles in setting tolerance limits. Standard practices in transcriptomic data analysis pipelines may also be limiting insight by prioritizing highly differentially expressed and conserved genes over those genes that undergo moderate fold-changes and cannot be annotated. While these data certainly do not undermine the continued and widespread use of transcriptomics within environmental physiology, they do highlight the types of research questions for which transcriptomics is best suited and the need for more gene functional analyses. Such information is pertinent at a time when transcriptomics has become increasingly tractable and many researchers may be contemplating integrating transcriptomics into their research programs.
Collapse
|
188
|
Sun X, Zuo F, Ru Y, Guo J, Yan X, Sablok G. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2015; 119:53-62. [PMID: 25720307 DOI: 10.1016/j.cmpb.2015.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/16/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html.
Collapse
Affiliation(s)
- Xiaoyong Sun
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Fenghua Zuo
- College of Information Engineering, Taishan Medical University, Taian, Shandong 271000, China
| | - Yuanbin Ru
- Department of Biomedical Informatics, Windber Research Institute, Windber, PA 15963, USA
| | - Jiqiang Guo
- Applied Statistics Center, Columbia University, New York, NY 10027, USA
| | - Xiaoyan Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42 Wenhua West Road, Jinan, Shandong 250011, China
| | - Gaurav Sablok
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
189
|
He L, Pei Y, Jiang Y, Li Y, Liao L, Zhu Z, Wang Y. Global gene expression patterns of grass carp following compensatory growth. BMC Genomics 2015; 16:184. [PMID: 25887225 PMCID: PMC4374334 DOI: 10.1186/s12864-015-1427-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Compensatory growth is accelerated compared with normal growth and occurs when growth-limiting conditions are overcome. Most animals, especially fish, are capable of compensatory growth, but the mechanisms remain unclear. Further investigation of the mechanism of compensatory growth in fish is needed to improve feeding efficiency, reduce cost, and explore growth-related genes. RESULTS In the study, grass carp, an important farmed fish in China, were subjected to a compensatory growth experiment followed by transcriptome analysis by RNA-sequencing. Samples of fish from starved and re-feeding conditions were compared with the control. Under starved conditions, 4061 and 1988 differentially expressed genes (DEGs) were detected in muscle and liver tissue when compared the experimental group with control group, respectively. After re-feeding, 349 and 247 DEGs were identified in muscle and liver when the two groups were compared. Moreover, when samples from experimental group in starved and re-feeding conditions were compared, 4903 and 2444 DEGs were found in muscle and liver. Most of these DEGs were involved in metabolic processes, or encoded enzymes or proteins with catalytic activity or binding functions, or involved in metabolic and biosynthetic pathways. A number of the more significant DEGs were subjected to further analysis. Under fasting conditions, many up-regulated genes were associated with protein ubiquitination or degradation, whereas many down-regulated genes were involved in the metabolism of glucose and fatty acids. Under re-feeding conditions, genes participating in muscle synthesis and fatty acid metabolism were up-regulated significantly, and genes related to protein ubiquitination or degradation were down-regulated. Moreover, Several DEGs were random selected for confirmation by real-time quantitative PCR. CONCLUSIONS Global gene expression patterns of grass carp during compensatory growth were determined. To our knowledge, this is a first reported for a teleost fish. The results will enhance our understanding of the mechanism of compensatory growth in teleost fish.
Collapse
Affiliation(s)
- Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yongyan Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yao Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
190
|
Lombardo VA, Otten C, Abdelilah-Seyfried S. Large-scale zebrafish embryonic heart dissection for transcriptional analysis. J Vis Exp 2015:52087. [PMID: 25651299 DOI: 10.3791/52087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The zebrafish embryonic heart is composed of only a few hundred cells, representing only a small fraction of the entire embryo. Therefore, to prevent the cardiac transcriptome from being masked by the global embryonic transcriptome, it is necessary to collect sufficient numbers of hearts for further analyses. Furthermore, as zebrafish cardiac development proceeds rapidly, heart collection and RNA extraction methods need to be quick in order to ensure homogeneity of the samples. Here, we present a rapid manual dissection protocol for collecting functional/beating hearts from zebrafish embryos. This is an essential prerequisite for subsequent cardiac-specific RNA extraction to determine cardiac-specific gene expression levels by transcriptome analyses, such as quantitative real-time polymerase chain reaction (RT-qPCR). The method is based on differential adhesive properties of the zebrafish embryonic heart compared with other tissues; this allows for the rapid physical separation of cardiac from extracardiac tissue by a combination of fluidic shear force disruption, stepwise filtration and manual collection of transgenic fluorescently labeled hearts.
Collapse
Affiliation(s)
- Verónica A Lombardo
- Max Delbrück Center for Molecular Medicine; Institute of Biochemistry and Biology, University of Potsdam; Institute of Molecular Biology, Medizinische Hochschule Hannover
| | - Cécile Otten
- Max Delbrück Center for Molecular Medicine; Institute of Biochemistry and Biology, University of Potsdam
| | - Salim Abdelilah-Seyfried
- Max Delbrück Center for Molecular Medicine; Institute of Biochemistry and Biology, University of Potsdam; Institute of Molecular Biology, Medizinische Hochschule Hannover;
| |
Collapse
|
191
|
Robledo D, Ronza P, Harrison PW, Losada AP, Bermúdez R, Pardo BG, Redondo MJ, Sitjà-Bobadilla A, Quiroga MI, Martínez P. RNA-seq analysis reveals significant transcriptome changes in turbot (Scophthalmus maximus) suffering severe enteromyxosis. BMC Genomics 2014; 15:1149. [PMID: 25526753 PMCID: PMC4320470 DOI: 10.1186/1471-2164-15-1149] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/16/2014] [Indexed: 12/31/2022] Open
Abstract
Background Enteromyxosis caused by the intestinal myxozoan parasite Enteromyxum scophthalmi is a serious threat for turbot (Scophthalmus maximus, L.) aquaculture, causing severe catarrhal enteritis leading to a cachectic syndrome, with no therapeutic options available. There are still many aspects of host-parasite interaction and disease pathogenesis that are yet to be elucidated, and to date, no analysis of the transcriptomic changes induced by E. scophthalmi in turbot organs has been conducted. In this study, RNA-seq technology was applied to head kidney, spleen and pyloric caeca of severely infected turbot with the aim of furthering our understanding of the pathogenetic mechanisms and turbot immune response against enteromyxosis. Results A huge amount of information was generated with more than 23,000 identified genes in the three organs, amongst which 4,762 were differently expressed (DE) between infected and control fish. Associate gene functions were studied based on gene ontology terms and available literature, and the most interesting DE genes were classified into five categories: 1) immune and defence response; 2) apoptosis and cell proliferation; 3) iron metabolism and erythropoiesis; 4) cytoskeleton and extracellular matrix and 5) metabolism and digestive function. The analysis of down-regulated genes of the first category revealed evidences of a connexion failure between innate and adaptive immune response, especially represented by a high number of DE interferon-related genes in the three organs. Furthermore, we found an intense activation of local immune response at intestinal level that appeared exacerbated, whereas in kidney and spleen genes involved in adaptive immune response were mainly down-regulated. The apoptotic machinery was only clearly activated in pyloric caeca, while kidney and spleen showed a marked depression of genes related to erythropoiesis, probably related to disorders in iron homeostasis. The genetic signature of the causes and consequences of cachexia was also demonstrated by the down-regulation of the genes encoding structural proteins and those involved in the digestive metabolism. Conclusions This transcriptomic study has enabled us to gain a better understanding of the pathogenesis of enteromyxosis and identify a large number of DE target genes that bring us closer to the development of strategies designed to effectively combat this pathogen. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1149) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - María Isabel Quiroga
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain.
| | | |
Collapse
|
192
|
Ulloa PE, Medrano JF, Feijoo CG. Zebrafish as animal model for aquaculture nutrition research. Front Genet 2014; 5:313. [PMID: 25309575 PMCID: PMC4160086 DOI: 10.3389/fgene.2014.00313] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/20/2014] [Indexed: 11/14/2022] Open
Abstract
The aquaculture industry continues to promote the diversification of ingredients used in aquafeed in order to achieve a more sustainable aquaculture production system. The evaluation of large numbers of diets in aquaculture species is costly and requires time-consuming trials in some species. In contrast, zebrafish (Danio rerio) can solve these drawbacks as an experimental model, and represents an ideal organism to carry out preliminary evaluation of diets. In addition, zebrafish has a sequenced genome allowing the efficient utilization of new technologies, such as RNA-sequencing and genotyping platforms to study the molecular mechanisms that underlie the organism’s response to nutrients. Also, biotechnological tools like transgenic lines with fluorescently labeled neutrophils that allow the evaluation of the immune response in vivo, are readily available in this species. Thus, zebrafish provides an attractive platform for testing many ingredients to select those with the highest potential of success in aquaculture. In this perspective article aspects related to diet evaluation in which zebrafish can make important contributions to nutritional genomics and nutritional immunity are discussed.
Collapse
Affiliation(s)
- Pilar E Ulloa
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello Santiago, Chile
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA USA
| | - Carmen G Feijoo
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello Santiago, Chile
| |
Collapse
|
193
|
Santos CA, Blanck DV, de Freitas PD. RNA-seq as a powerful tool for penaeid shrimp genetic progress. Front Genet 2014; 5:298. [PMID: 25221571 PMCID: PMC4147233 DOI: 10.3389/fgene.2014.00298] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/11/2014] [Indexed: 11/27/2022] Open
Abstract
The sequences of all different RNA transcripts present in a cell or tissue that are related to the gene expression and its functional control represent what it is called a transcriptome. The transcripts vary between cells, tissues, ontogenetic and environmental conditions, and the knowledge that can be gained through them is of a solid relevance for genetic applications in aquaculture. Some of the techniques used in transcriptome studies, such as microarrays, are being replaced for next-generation sequencing approaches. RNA-seq emerges as a new possibility for the transcriptome complexity analysis as well as for the candidate genes and polymorphisms identification of penaeid species. Thus, it may also help to understand the determination of complex traits mechanisms and genetic improvement of stocks. In this review, it is first introduced an overview of transcriptome analysis by RNA-seq, followed by a discussion of how this approach may be applied in genetic progress within penaeid stocks.
Collapse
Affiliation(s)
- Camilla A Santos
- Laboratory of Molecular Biodiversity and Conservation, Department of Genetics and Evolution, Federal University of São Carlos São Carlos, Brazil
| | - Danielly V Blanck
- Laboratory of Molecular Biodiversity and Conservation, Department of Genetics and Evolution, Federal University of São Carlos São Carlos, Brazil
| | - Patrícia D de Freitas
- Laboratory of Molecular Biodiversity and Conservation, Department of Genetics and Evolution, Federal University of São Carlos São Carlos, Brazil
| |
Collapse
|
194
|
Aedo JE, Maldonado J, Estrada JM, Fuentes EN, Silva H, Gallardo-Escarate C, Molina A, Valdés JA. Sequencing and de novo assembly of the red cusk-eel (Genypterus chilensis) transcriptome. Mar Genomics 2014; 18 Pt B:105-7. [PMID: 25139027 DOI: 10.1016/j.margen.2014.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/07/2014] [Accepted: 08/07/2014] [Indexed: 11/17/2022]
Abstract
The red cusk-eel (Genypterus chilensis) is an endemic fish species distributed along the coasts of the Eastern South Pacific. Biological studies on this fish are scarce, and genomic information for G. chilensis is practically non-existent. Thus, transcriptome information for this species is an essential resource that will greatly enrich molecular information and benefit future studies of red cusk-eel biology. In this work, we obtained transcriptome information of G. chilensis using the Illumina platform. The RNA sequencing generated 66,307,362 and 59,925,554 paired-end reads from skeletal muscle and liver tissues, respectively. De novo assembly using the CLC Genomic Workbench version 7.0.3 produced 48,480 contigs and created a reference transcriptome with a N50 of 846bp and average read coverage of 28.3×. By sequence similarity search for known proteins, a total of 21,272 (43.9%) contigs were annotated for their function. Out of these annotated contigs, 33.5% GO annotation results for biological processes, 32.6% GO annotation results for cellular components and 34.5% GO annotation results for molecular functions. This dataset represents the first transcriptomic resource for the red cusk-eel and for a member of the Ophidiimorpharia taxon.
Collapse
Affiliation(s)
- J E Aedo
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - J Maldonado
- Universidad de Chile, Facultad de Ciencias Agronómicas, Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, Av. Santa Rosa 11315, La Pintana, 8820808 Santiago, Chile
| | - J M Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - E N Fuentes
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile; Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - H Silva
- Universidad de Chile, Facultad de Ciencias Agronómicas, Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, Av. Santa Rosa 11315, La Pintana, 8820808 Santiago, Chile
| | - C Gallardo-Escarate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Chile
| | - A Molina
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile; Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - J A Valdés
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile; Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile.
| |
Collapse
|
195
|
Braasch I, Peterson SM, Desvignes T, McCluskey BM, Batzel P, Postlethwait JH. A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:316-41. [PMID: 25111899 DOI: 10.1002/jez.b.22589] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 01/08/2023]
Abstract
Many fields of biology--including vertebrate Evo-Devo research--are facing an explosion of genomic and transcriptomic sequence information and a multitude of fish species are now swimming in this "genomic tsunami." Here, we first give an overview of recent developments in sequencing fish genomes and transcriptomes that identify properties of fish genomes requiring particular attention and propose strategies to overcome common challenges in fish genomics. We suggest that the generation of chromosome-level genome assemblies--for which we introduce the term "chromonome"--should be a key component of genomic investigations in fish because they enable large-scale conserved synteny analyses that inform orthology detection, a process critical for connectivity of genomes. Orthology calls in vertebrates, especially in teleost fish, are complicated by divergent evolution of gene repertoires and functions following two rounds of genome duplication in the ancestor of vertebrates and a third round at the base of teleost fish. Second, using examples of spotted gar, basal teleosts, zebrafish-related cyprinids, cavefish, livebearers, icefish, and lobefin fish, we illustrate how next generation sequencing technologies liberate emerging fish systems from genomic ignorance and transform them into a new model army to answer longstanding questions on the genomic and developmental basis of their biodiversity. Finally, we discuss recent progress in the genetic toolbox for the major fish models for functional analysis, zebrafish, and medaka, that can be transferred to many other fish species to study in vivo the functional effect of evolutionary genomic change as Evo-Devo research enters the postgenomic era.
Collapse
Affiliation(s)
- Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | | | | | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
196
|
Abstract
Personalized medicine is the cornerstone of medical practice. It tailors treatments for specific conditions of an affected individual. The borders of personalized medicine are defined by limitations in technology and our understanding of biology, physiology and pathology of various conditions. Current advances in technology have provided physicians with the tools to investigate the molecular makeup of the disease. Translating these molecular make-ups to actionable targets has led to the development of small molecular inhibitors. Also, detailed understanding of genetic makeup has allowed us to develop prognostic markers, better known as companion diagnostics. Current attempts in the development of drug delivery systems offer the opportunity of delivering specific inhibitors to affected cells in an attempt to reduce the unwanted side effects of drugs.
Collapse
Affiliation(s)
- Gayane Badalian-Very
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline ave, Boston, MA 02115, United States. Tel.: + 1 617 513 7940; fax: + 1 617 632 5998.
| |
Collapse
|