151
|
Abstract
PURPOSE The aim of this study was to compare the expression patterns of 3 important biochemical characteristics of fibrosis-moesin, transforming growth factor (TGF)-β1, and α-smooth muscle actin (SMA) in the mouse cornea with fibrosis induced by common etiologies-sterile mechanical injury and infection. METHODS Corneas of 8-week-old C57BL6 mice were either wounded after an anterior keratectomy or were infected by Pseudomonas aeruginosa, and the animals were killed on days 2 and 7, and on weeks 2 and 4 after the procedure. Western blot and immunofluorescence were used to analyze the expression of moesin and phospho-moesin, and the presence of myofibroblasts identified by the expression of α-SMA in the corneal stroma. The expression of TGF-β1 was analyzed by immunofluorescence. RESULTS By immunofluorescent analysis, TGF-β1, α-SMA, and phospho-moesin were not detected in the normal corneal stroma. However, after either treatment, TGF-β1 expression increased, along with phospho-moesin in the wounded corneal stroma until day 7, and decreased after week 2. No expression of TGF-β1 and phospho-moesin was found at postoperative week 4. Moesin expression increased until week 2. Myofibroblasts positive for α-SMA were detected on day 2 until week 4 and peaked at week 2. Western blot analysis confirmed the immunofluorescent data for moesin, phospho-moesin, and α-SMA. CONCLUSIONS The similar expression pattern of moesin, phospho-moesin, TGF-β1, and α-SMA in the mouse cornea with fibrosis caused by sterile mechanical injury or infection indicated a role for moesin signaling in corneal fibrosis. Interference with the action of moesin may be a potential approach for intervention strategies to avert fibrosis after infection or mechanical injury.
Collapse
|
152
|
Rana MK, Srivastava J, Yang M, Chen CS, Barber DL. Hypoxia increases the abundance but not the assembly of extracellular fibronectin during epithelial cell transdifferentiation. J Cell Sci 2015; 128:1083-9. [PMID: 25616899 DOI: 10.1242/jcs.155036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Increased production and assembly of extracellular matrix proteins during transdifferentiation of epithelial cells to a mesenchymal phenotype contributes to diseases such as renal and pulmonary fibrosis. TGF-β and hypoxia, two cues that initiate injury-induced fibrosis, caused human kidney cells to develop a mesenchymal phenotype, including increased fibronectin expression and secretion. However, upon hypoxia, assembled extracellular fibronectin fibrils were mostly absent, whereas treatment with TGF-β led to abundant fibrils. Fibrillogenesis required cell-generated force and tension. TGF-β, but not hypoxia, increased cell contractility, as determined by phosphorylation of myosin light chain and quantifying force and tension generated by cells plated on engineered elastomeric microposts. Additionally, TGF-β, but not hypoxia, increased the activation of integrins. However, experimentally activating integrins markedly increased the levels of phosphorylated myosin light chain and fibronectin fibril assembly upon hypoxia. Our findings show that deficient integrin activation and subsequent lack of cell contractility are mechanisms that mediate a lack of fibrillogenesis upon hypoxia and they challenge current views on oxygen deprivation being sufficient for fibrosis.
Collapse
Affiliation(s)
- Manish K Rana
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA Department of Biomedical Engineering, Boston University and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Jyoti Srivastava
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Michael Yang
- Department of Biomedical Engineering, Boston University and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
153
|
LeClaire LL, Rana M, Baumgartner M, Barber DL. The Nck-interacting kinase NIK increases Arp2/3 complex activity by phosphorylating the Arp2 subunit. J Cell Biol 2015; 208:161-70. [PMID: 25601402 PMCID: PMC4298681 DOI: 10.1083/jcb.201404095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 12/10/2014] [Indexed: 12/26/2022] Open
Abstract
The nucleating activity of the Arp2/3 complex promotes the assembly of branched actin filaments that drive plasma membrane protrusion in migrating cells. Arp2/3 complex binding to nucleation-promoting factors of the WASP and WAVE families was previously thought to be sufficient to increase nucleating activity. However, phosphorylation of the Arp2 subunit was recently shown to be necessary for Arp2/3 complex activity. We show in mammary carcinoma cells that mutant Arp2 lacking phosphorylation assembled with endogenous subunits and dominantly suppressed actin filament assembly and membrane protrusion. We also report that Nck-interacting kinase (NIK), a MAP4K4, binds and directly phosphorylates the Arp2 subunit, which increases the nucleating activity of the Arp2/3 complex. In cells, NIK kinase activity was necessary for increased Arp2 phosphorylation and plasma membrane protrusion in response to epidermal growth factor. NIK is the first kinase shown to phosphorylate and increase the activity of the Arp2/3 complex, and our findings suggest that it integrates growth factor regulation of actin filament dynamics.
Collapse
Affiliation(s)
- Lawrence L LeClaire
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143 Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688
| | - Manish Rana
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Martin Baumgartner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143 Neuro-Oncology Laboratory, Infectious Diseases and Cancer Research, University of Children's Hospital Zürich, Zürich, Switzerland CH-8008
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
154
|
Ohara R, Michikami H, Nakamura Y, Sakata A, Sakashita S, Satomi K, Shiba-Ishii A, Kano J, Yoshikawa H, Noguchi M. Moesin overexpression is a unique biomarker of adenomyosis. Pathol Int 2014; 64:115-22. [PMID: 24698421 DOI: 10.1111/pin.12148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/12/2014] [Indexed: 01/29/2023]
Abstract
Adenomyosis is characterized by extension of endometrial glands and stromal cells into the myometrium. Here we proved that 'moesin' is a unique biomarker of adenomyosis. We selected two cases of adenomyosis that had been surgically resected and fixed with formalin. Proteins were extracted from the infiltrating adenomyosis lesions and normal endometrium by tissue microdissection. The extracted proteins were examined using a LC-MS/MS system and the expression profiles of each region were compared. Two hundred and sixty proteins were detected, among which 73 were expressed more in adenomyosis than in normal endometrium. Among these proteins, we focused on overexpression of moesin in adenomyosis. Expression of moesin estimated semiquantitatively using an immunohistochemistry score was higher in adenomyosis than in normal endometrium. In particular, moesin was significanly overexpressed in stromal cells of adenomyosis than in those of normal endometrium. Relative to normal endometrium, moesin was also overexpressed at the RNA level in 9 of 14 cases of adenomyosis and at the protein level in all 14 cases. We also detected activated (phosphorylated) moesin in adenomyosis lesions. The present findings suggest that moesin is characteristically overexpressed and activated in adenomyosis, and that moesin activation may be related to extension of adenomyosis in the myometrium.
Collapse
Affiliation(s)
- Rena Ohara
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Japan; Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Chen YX, Zhang W, Wang WM, Yu XL, Wang YM, Zhang MJ, Chen N. Role of moesin in renal fibrosis. PLoS One 2014; 9:e112936. [PMID: 25406076 PMCID: PMC4236084 DOI: 10.1371/journal.pone.0112936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 10/17/2014] [Indexed: 01/13/2023] Open
Abstract
Background Renal fibrosis is the final common pathway of chronic kidney disease (CKD). Moesin is a member of Ezrin/Radixin/Moesin (ERM) protein family but its role in renal fibrosis is not clear. Method Human proximal tubular cells (HK-2) were stimulated with or without TGF-β1. Moesin and downstream target genes were examined by real-time PCR and western blot. Phosphorylation of moesin and related signaling pathway was investigated as well. Rat model of unilateral ureteral obstruction (UUO) was established and renal moesin was examined by immunohistochemistry. Moesin in HK-2 cells were knocked down by siRNA and change of downstream genes in transfected HK-2 cells was studied. All animal experiments were reviewed and approved by the Ethics Committee for animal care of Ruijin Hospital. Result HK-2 cells stimulated with TGF-β1 showed up-regulated level of α-SMA and down-regulated level of E-Cadherin as well as elevated mRNA and protein level of moesin. In rat model of UUO, renal moesin expression increased in accordance with severity of tubulointerestital fibrosis in the kidneys with ureteral ligation while the contralateral kidneys were normal. Further study showed that TGF-β1 could induce phosphorylation of moesin which depended on Erk signaling pathway and Erk inhibitor PD98059 could block moesin phosphorylation. Effects of TGF-β1 on moesin phosphorylation was prior to its activation to total moesin. RNA silencing studies showed that knocking down of moesin could attenuate decrease of E-Cadherin induced by TGF-β1. Conclusion We find that moesin might be involved in renal fibrosis and its effects could be related to interacting with E-Cadherin.
Collapse
Affiliation(s)
- Yong-Xi Chen
- Department of nephrology, Ruijin Hospital, Shanghai Jiaotong University, school of medicine, Shanghai, PR China
| | - Wen Zhang
- Department of nephrology, Ruijin Hospital, Shanghai Jiaotong University, school of medicine, Shanghai, PR China
| | - Wei-Ming Wang
- Department of nephrology, Ruijin Hospital, Shanghai Jiaotong University, school of medicine, Shanghai, PR China
| | - Xia-Lian Yu
- Department of nephrology, Ruijin Hospital, Shanghai Jiaotong University, school of medicine, Shanghai, PR China
| | - Yi-Mei Wang
- Department of nephrology, Ruijin Hospital, Shanghai Jiaotong University, school of medicine, Shanghai, PR China
| | - Min-Jun Zhang
- Animal Experiment and Research Center, Ruijin Hospital, Shanghai Jiaotong University, school of medicine, Shanghai, PR China
| | - Nan Chen
- Department of nephrology, Ruijin Hospital, Shanghai Jiaotong University, school of medicine, Shanghai, PR China
- * E-mail:
| |
Collapse
|
156
|
Larabee SM, Coia H, Jones S, Cheung E, Gallicano GI. miRNA-17 members that target Bmpr2 influence signaling mechanisms important for embryonic stem cell differentiation in vitro and gastrulation in embryos. Stem Cells Dev 2014; 24:354-71. [PMID: 25209090 DOI: 10.1089/scd.2014.0051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Body axes and germ layers evolve at gastrulation, and in mammals are driven by many genes; however, what orchestrates the genetic pathways during gastrulation remains elusive. Previously, we presented evidence that microRNA-17 (miRNA-17) family members, miR-17-5p, miR-20a, miR-93, and miR-106a were differentially expressed in mouse embryos and functioned to control differentiation of the stem cell population. Here, we identify function(s) that these miRNAs have during gastrulation. Fluorescent in situ hybridization miRNA probes reveal that these miRNAs are localized at the mid/posterior primitive streak (ps) in distinct populations of primitive ectoderm, mesendoderm, and mesoderm. Seven different miRNA prediction algorithms are identified in silico bone morphogenic protein receptor 2 (Bmpr2) as a target of these miRNAs. Bmpr2 is a member of the TGFβ pathway and invokes stage-specific changes during gastrulation. Recently, Bmpr2 was shown regulating cytoskeletal dynamics, cell movement, and invasion. Our previous and current data led to a hypothesis by which members of the miR-17 family influence gastrulation by suppressing Bmpr2 expression at the primitive streak. This suppression influences fate decisions of cells by affecting genes downstream of BMPR2 as well as mesoderm invasion through regulation of actin dynamics.
Collapse
Affiliation(s)
- Shannon M Larabee
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center , Washington, District of Columbia
| | | | | | | | | |
Collapse
|
157
|
Knoll S, Fürst K, Kowtharapu B, Schmitz U, Marquardt S, Wolkenhauer O, Martin H, Pützer BM. E2F1 induces miR-224/452 expression to drive EMT through TXNIP downregulation. EMBO Rep 2014; 15:1315-29. [PMID: 25341426 DOI: 10.15252/embr.201439392] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma is highly lethal due to its aggressive invasive properties and metastatic dissemination. The transcription factor E2F1 is crucial for melanoma progression through poorly understood mechanisms. Here, we show that the miR-224/miR-452 cluster is significantly increased in advanced melanoma and invasive/metastatic cell lines that express high levels of E2F1. miR-224/miR-452 expression is directly activated by E2F1 through transactivation of the GABRE gene. Ectopic expression of miR-224/miR-452 in less aggressive cells induces EMT and cytoskeletal rearrangements and enhances migration/invasion. Conversely, miR-224/miR-452 depletion in metastatic cells induces the reversal of EMT, inhibition of motility, loss of the invasive phenotype and an absence of lung metastases in mice. We identify the metastasis suppressor TXNIP as new target of miR-224/miR-452 that induces feedback inhibition of E2F1 and show that miR-224/452-mediated downregulation of TXNIP is essential for E2F1-induced EMT and invasion. The E2F1-miR-224/452-TXNIP axis constitutes a molecular signature that predicts patient survival and may help to set novel therapies.
Collapse
Affiliation(s)
- Susanne Knoll
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Katharina Fürst
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Bhavani Kowtharapu
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Ulf Schmitz
- Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Stephan Marquardt
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Olaf Wolkenhauer
- Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Hubert Martin
- Department of Neuropathology, University Hospital Charité, Berlin, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
158
|
Swa HLF, Shaik AA, Lim LHK, Gunaratne J. Mass spectrometry based quantitative proteomics and integrative network analysis accentuates modulating roles of annexin-1 in mammary tumorigenesis. Proteomics 2014; 15:408-18. [PMID: 25124533 DOI: 10.1002/pmic.201400175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/03/2014] [Accepted: 08/11/2014] [Indexed: 01/01/2023]
Abstract
Annexin-1 (ANXA1) is known to be involved in important cellular processes and implicated in cancer. Our previous study showed its roles in cell migration and DNA-damage response processes in breast cancer initiation. In order to understand its roles in tumorigenesis, we extended our studies to analyze tumors derived from polyomavirus middle T-antigen ANXA1 heterozygous (ANXA1(+/-) ) and ANXA1 null (ANXA1(-/-) ) mice. We performed quantitative comparison of ANXA1(+/-) and ANXA1(-/-) tumors employing reductive dimethyl labeling quantitative proteomics. We observed 253 differentially expressed proteins (DEPs) with high statistical significance among over 5000 quantified proteins. Combinatorial use of pathway and network-based computational analyses of the DEPs revealed that ANXA1 primarily modulates processes related to cytoskeletal remodeling and immune responses in these mammary tumors. Of particular note, ANXA1(-/-) tumor showed reduced expression of a known epithelial-to-mesenchymal transition (EMT) marker vimentin, as well as myosin light-chain kinase, which has been reported to induce Rho-kinase mediated assembly of stress fibers known to be implicated in EMT. Integrative network analysis of established interactome of ANXA1 alongside with DEPs further highlights the involvement of ANXA1 in EMT. Functional role of ANXA1 in tumorigenesis was established in invasion assay where knocking down ANXA1 in murine mammary tumor cell line 168FARN showed lower invasive capability. Altogether, this study emphasizes that ANXA1 plays modulating roles contributing to invasion-metastasis in mammary tumorigenesis, distinctive to its roles in cancer initiation.
Collapse
Affiliation(s)
- Hannah L F Swa
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | | | | | | |
Collapse
|
159
|
Bracken CP, Li X, Wright JA, Lawrence DM, Pillman KA, Salmanidis M, Anderson MA, Dredge BK, Gregory PA, Tsykin A, Neilsen C, Thomson DW, Bert AG, Leerberg JM, Yap AS, Jensen KB, Khew-Goodall Y, Goodall GJ. Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion. EMBO J 2014; 33:2040-56. [PMID: 25069772 PMCID: PMC4195771 DOI: 10.15252/embj.201488641] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 12/14/2022] Open
Abstract
The microRNAs of the miR-200 family maintain the central characteristics of epithelia and inhibit tumor cell motility and invasiveness. Using the Ago-HITS-CLIP technology for transcriptome-wide identification of direct microRNA targets in living cells, along with extensive validation to verify the reliability of the approach, we have identified hundreds of miR-200a and miR-200b targets, providing insights into general features of miRNA target site selection. Gene ontology analysis revealed a predominant effect of miR-200 targets in widespread coordinate control of actin cytoskeleton dynamics. Functional characterization of the miR-200 targets indicates that they constitute subnetworks that underlie the ability of cancer cells to migrate and invade, including coordinate effects on Rho-ROCK signaling, invadopodia formation, MMP activity, and focal adhesions. Thus, the miR-200 family maintains the central characteristics of the epithelial phenotype by acting on numerous targets at multiple levels, encompassing both cytoskeletal effectors that control actin filament organization and dynamics, and upstream signals that locally regulate the cytoskeleton to maintain cell morphology and prevent cell migration.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Xiaochun Li
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Josephine A Wright
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - David M Lawrence
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Marika Salmanidis
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Matthew A Anderson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - B Kate Dredge
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Anna Tsykin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Corine Neilsen
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Daniel W Thomson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Joanne M Leerberg
- Division of Molecular Cell Biology, Institute for Molecular Bioscience University of Queensland, St Lucia, Brisbane, Qld, Australia
| | - Alpha S Yap
- Division of Molecular Cell Biology, Institute for Molecular Bioscience University of Queensland, St Lucia, Brisbane, Qld, Australia
| | - Kirk B Jensen
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
160
|
Sarkar TR, Battula VL, Werden SJ, Vijay GV, Ramirez-Peña EQ, Taube JH, Chang JT, Miura N, Porter W, Sphyris N, Andreeff M, Mani SA. GD3 synthase regulates epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene 2014; 34:2958-67. [PMID: 25109336 DOI: 10.1038/onc.2014.245] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/04/2014] [Accepted: 06/20/2014] [Indexed: 12/14/2022]
Abstract
The epithelial-mesenchymal transition (EMT) bestows cancer cells with increased stem cell properties and metastatic potential. To date, multiple extracellular stimuli and transcription factors have been shown to regulate EMT. Many of them are not druggable and therefore it is necessary to identify targets, which can be inhibited using small molecules to prevent metastasis. Recently, we identified the ganglioside GD2 as a novel breast cancer stem cell marker. Moreover, we found that GD3 synthase (GD3S)--an enzyme involved in GD2 biosynthesis--is critical for GD2 production and could serve as a potential druggable target for inhibiting tumor initiation and metastasis. Indeed, there is a small molecule known as triptolide that has been shown to inhibit GD3S function. Accordingly, in this manuscript, we demonstrate that the inhibition of GD3S using small hairpin RNA or triptolide compromises the initiation and maintenance of EMT instigated by various signaling pathways, including Snail, Twist and transforming growth factor-β1 as well as the mesenchymal characteristics of claudin-low breast cancer cell lines (SUM159 and MDA-MB-231). Moreover, GD3S is necessary for wound healing, migration, invasion and stem cell properties in vitro. Most importantly, inhibition of GD3S in vivo prevents metastasis in experimental as well as in spontaneous syngeneic wild-type mouse models. We also demonstrate that the transcription factor FOXC2, a central downstream effector of several EMT pathways, directly regulates GD3S expression by binding to its promoter. In clinical specimens, the expression of GD3S correlates with poor prognosis in triple-negative human breast tumors. Moreover, GD3S expression correlates with activation of the c-Met signaling pathway leading to increased stem cell properties and metastatic competence. Collectively, these findings suggest that the GD3S-c-Met axis could serve as an effective target for the treatment of metastatic breast cancers.
Collapse
Affiliation(s)
- T R Sarkar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - V L Battula
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S J Werden
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G V Vijay
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Q Ramirez-Peña
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J H Taube
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - N Miura
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - W Porter
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - N Sphyris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S A Mani
- 1] Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [3] Center for Stem Cells and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
161
|
BCLAF1 and its splicing regulator SRSF10 regulate the tumorigenic potential of colon cancer cells. Nat Commun 2014; 5:4581. [PMID: 25091051 DOI: 10.1038/ncomms5581] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/02/2014] [Indexed: 12/31/2022] Open
Abstract
Bcl-2-associated transcription factor 1 (BCLAF1) is known to be involved in multiple biological processes. Although several splice variants of BCLAF1 have been identified, little is known about how BCLAF1 splicing is regulated or the contribution of alternative splicing to its developmental functions. Here we find that inclusion of alternative exon5a was significantly increased in colorectal cancer (CRC) samples. Knockdown of the BCLAF1 protein isoform resulting from exon5a inclusion inhibited growth and that its overexpression increased tumorigenic potential. We also found that the splicing factor SRSF10 stimulates inclusion of exon5a and has growth-inducing activity. Importantly, the upregulation of SRSF10 expression observed in clinical CRC samples parallels the increased inclusion of BCLAF1 exon5a, both of which are associated with higher tumour grade. These findings identify SRSF10 as a key regulator of BCLAF1 pre-mRNA splicing and the maintenance of oncogenic features in human colon cancer cells.
Collapse
|
162
|
Chen A, Beetham H, Black MA, Priya R, Telford BJ, Guest J, Wiggins GAR, Godwin TD, Yap AS, Guilford PJ. E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition. BMC Cancer 2014. [PMID: 25079037 DOI: 10.1186/1471-2407-14-552%2010.1186/1471-2407-14-552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND E-cadherin is an adherens junction protein that forms homophilic intercellular contacts in epithelial cells while also interacting with the intracellular cytoskeletal networks. It has roles including establishment and maintenance of cell polarity, differentiation, migration and signalling in cell proliferation pathways. Its downregulation is commonly observed in epithelial tumours and is a hallmark of the epithelial to mesenchymal transition (EMT). METHODS To improve our understanding of how E-cadherin loss contributes to tumorigenicity, we investigated the impact of its elimination from the non-tumorigenic breast cell line MCF10A. We performed cell-based assays and whole genome RNAseq to characterize an isogenic MCF10A cell line that is devoid of CDH1 expression due to an engineered homozygous 4 bp deletion in CDH1 exon 11. RESULTS The E-cadherin-deficient line, MCF10A CDH1-/- showed subtle morphological changes, weaker cell-substrate adhesion, delayed migration, but retained cell-cell contact, contact growth inhibition and anchorage-dependent growth. Within the cytoskeleton, the apical microtubule network in the CDH1-deficient cells lacked the radial pattern of organization present in the MCF10A cells and F-actin formed thicker, more numerous stress fibres in the basal part of the cell. Whole genome RNAseq identified compensatory changes in the genes involved in cell-cell adhesion while genes involved in cell-substrate adhesion, notably ITGA1, COL8A1, COL4A2 and COL12A1, were significantly downregulated. Key EMT markers including CDH2, FN1, VIM and VTN were not upregulated although increased expression of proteolytic matrix metalloprotease and kallikrein genes was observed. CONCLUSIONS Overall, our results demonstrated that E-cadherin loss alone was insufficient to induce an EMT or enhance transforming potential in the non-tumorigenic MCF10A cells but was associated with broad transcriptional changes associated with tissue remodelling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Parry J Guilford
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
163
|
Chen A, Beetham H, Black MA, Priya R, Telford BJ, Guest J, Wiggins GAR, Godwin TD, Yap AS, Guilford PJ. E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition. BMC Cancer 2014; 14:552. [PMID: 25079037 PMCID: PMC4131020 DOI: 10.1186/1471-2407-14-552] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/15/2014] [Indexed: 01/06/2023] Open
Abstract
Background E-cadherin is an adherens junction protein that forms homophilic intercellular contacts in epithelial cells while also interacting with the intracellular cytoskeletal networks. It has roles including establishment and maintenance of cell polarity, differentiation, migration and signalling in cell proliferation pathways. Its downregulation is commonly observed in epithelial tumours and is a hallmark of the epithelial to mesenchymal transition (EMT). Methods To improve our understanding of how E-cadherin loss contributes to tumorigenicity, we investigated the impact of its elimination from the non-tumorigenic breast cell line MCF10A. We performed cell-based assays and whole genome RNAseq to characterize an isogenic MCF10A cell line that is devoid of CDH1 expression due to an engineered homozygous 4 bp deletion in CDH1 exon 11. Results The E-cadherin-deficient line, MCF10A CDH1-/- showed subtle morphological changes, weaker cell-substrate adhesion, delayed migration, but retained cell-cell contact, contact growth inhibition and anchorage-dependent growth. Within the cytoskeleton, the apical microtubule network in the CDH1-deficient cells lacked the radial pattern of organization present in the MCF10A cells and F-actin formed thicker, more numerous stress fibres in the basal part of the cell. Whole genome RNAseq identified compensatory changes in the genes involved in cell-cell adhesion while genes involved in cell-substrate adhesion, notably ITGA1, COL8A1, COL4A2 and COL12A1, were significantly downregulated. Key EMT markers including CDH2, FN1, VIM and VTN were not upregulated although increased expression of proteolytic matrix metalloprotease and kallikrein genes was observed. Conclusions Overall, our results demonstrated that E-cadherin loss alone was insufficient to induce an EMT or enhance transforming potential in the non-tumorigenic MCF10A cells but was associated with broad transcriptional changes associated with tissue remodelling. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-552) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Parry J Guilford
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
164
|
Chen A, Beetham H, Black MA, Priya R, Telford BJ, Guest J, Wiggins GAR, Godwin TD, Yap AS, Guilford PJ. E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition. BMC Cancer 2014; 14:552. [PMID: 25079037 PMCID: PMC4131020 DOI: 10.1186/1471-2407-14-552 10.1186/1471-2407-14-552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND E-cadherin is an adherens junction protein that forms homophilic intercellular contacts in epithelial cells while also interacting with the intracellular cytoskeletal networks. It has roles including establishment and maintenance of cell polarity, differentiation, migration and signalling in cell proliferation pathways. Its downregulation is commonly observed in epithelial tumours and is a hallmark of the epithelial to mesenchymal transition (EMT). METHODS To improve our understanding of how E-cadherin loss contributes to tumorigenicity, we investigated the impact of its elimination from the non-tumorigenic breast cell line MCF10A. We performed cell-based assays and whole genome RNAseq to characterize an isogenic MCF10A cell line that is devoid of CDH1 expression due to an engineered homozygous 4 bp deletion in CDH1 exon 11. RESULTS The E-cadherin-deficient line, MCF10A CDH1-/- showed subtle morphological changes, weaker cell-substrate adhesion, delayed migration, but retained cell-cell contact, contact growth inhibition and anchorage-dependent growth. Within the cytoskeleton, the apical microtubule network in the CDH1-deficient cells lacked the radial pattern of organization present in the MCF10A cells and F-actin formed thicker, more numerous stress fibres in the basal part of the cell. Whole genome RNAseq identified compensatory changes in the genes involved in cell-cell adhesion while genes involved in cell-substrate adhesion, notably ITGA1, COL8A1, COL4A2 and COL12A1, were significantly downregulated. Key EMT markers including CDH2, FN1, VIM and VTN were not upregulated although increased expression of proteolytic matrix metalloprotease and kallikrein genes was observed. CONCLUSIONS Overall, our results demonstrated that E-cadherin loss alone was insufficient to induce an EMT or enhance transforming potential in the non-tumorigenic MCF10A cells but was associated with broad transcriptional changes associated with tissue remodelling.
Collapse
Affiliation(s)
- Augustine Chen
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Henry Beetham
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Michael A Black
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Rashmi Priya
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane 4072 Australia
| | - Bryony J Telford
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Joanne Guest
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - George A R Wiggins
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Tanis D Godwin
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| | - Alpha S Yap
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane 4072 Australia
| | - Parry J Guilford
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, 9054 New Zealand
| |
Collapse
|
165
|
Cordie T, Harkness T, Jing X, Carlson-Stevermer J, Mi HY, Turng LS, Saha K. Nanofibrous Electrospun Polymers for Reprogramming Human Cells. Cell Mol Bioeng 2014. [DOI: 10.1007/s12195-014-0341-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
166
|
CHEN MIAOJUAN, GAO XUEJUAN, XU LINA, LIU TENGFEI, LIU XIAOHUI, LIU LANGXIA. Ezrin is required for epithelial-mesenchymal transition induced by TGF-β1 in A549 cells. Int J Oncol 2014; 45:1515-22. [PMID: 25051016 DOI: 10.3892/ijo.2014.2554] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/02/2014] [Indexed: 11/05/2022] Open
|
167
|
RAGE overexpression confers a metastatic phenotype to the WM115 human primary melanoma cell line. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1017-27. [DOI: 10.1016/j.bbadis.2014.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 02/16/2014] [Accepted: 02/26/2014] [Indexed: 12/19/2022]
|
168
|
de Faria Poloni J, Chapola H, Feltes BC, Bonatto D. The importance of sphingolipids and reactive oxygen species in cardiovascular development. Biol Cell 2014; 106:167-81. [PMID: 24678717 DOI: 10.1111/boc.201400008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/24/2014] [Indexed: 02/01/2023]
Abstract
The heart is the first organ in the embryo to form. Its structural and functional complexity is the result of a thorough developmental program, where sphingolipids play an important role in cardiogenesis, heart maturation, angiogenesis, the regulation of vascular tone and vessel permeability. Sphingolipids are necessary for signal transduction and membrane microdomain formation. In addition, recent evidence suggests that sphingolipid metabolism is directly interconnected to the modulation of oxidative stress. However, cardiovascular development is highly sensitive to excessive reactive species production, and disturbances in sphingolipid metabolism can lead to abnormal development and cardiac disease. Therefore, in this review, we address the molecular link between sphingolipids and oxidative stress, connecting these pathways to cardiovascular development and cardiovascular disease.
Collapse
Affiliation(s)
- Joice de Faria Poloni
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
169
|
Abstract
The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial-mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-β (TGFβ) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT.
Collapse
|
170
|
Britton D, Zen Y, Quaglia A, Selzer S, Mitra V, Lößner C, Jung S, Böhm G, Schmid P, Prefot P, Hoehle C, Koncarevic S, Gee J, Nicholson R, Ward M, Castellano L, Stebbing J, Zucht HD, Sarker D, Heaton N, Pike I. Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets. PLoS One 2014; 9:e90948. [PMID: 24670416 PMCID: PMC3966770 DOI: 10.1371/journal.pone.0090948] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 02/05/2014] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE LC-MS/MS phospho-proteomics is an essential technology to help unravel the complex molecular events that lead to and propagate cancer. We have developed a global phospho-proteomic workflow to determine activity of signaling pathways and drug targets in pancreatic cancer tissue for clinical application. METHODS Peptides resulting from tryptic digestion of proteins extracted from frozen tissue of pancreatic ductal adenocarcinoma and background pancreas (n = 12), were labelled with tandem mass tags (TMT 8-plex), separated by strong cation exchange chromatography, then were analysed by LC-MS/MS directly or first enriched for phosphopeptides using IMAC and TiO2, prior to analysis. In-house, commercial and freeware bioinformatic platforms were used to identify relevant biological events from the complex dataset. RESULTS Of 2,101 proteins identified, 152 demonstrated significant difference in abundance between tumor and non-tumor tissue. They included proteins that are known to be up-regulated in pancreatic cancer (e.g. Mucin-1), but the majority were new candidate markers such as HIPK1 & MLCK. Of the 6,543 unique phosphopeptides identified (6,284 unique phosphorylation sites), 635 showed significant regulation, particularly those from proteins involved in cell migration (Rho guanine nucleotide exchange factors & MRCKα) and formation of focal adhesions. Activator phosphorylation sites on FYN, AKT1, ERK2, HDAC1 and other drug targets were found to be highly modulated (≥2 fold) in different cases highlighting their predictive power. CONCLUSION Here we provided critical information enabling us to identify the common and unique molecular events likely contributing to cancer in each case. Such information may be used to help predict more bespoke therapy suitable for an individual case.
Collapse
Affiliation(s)
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Alberto Quaglia
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | | | | | | | | | - Gitte Böhm
- Proteome Sciences plc, Cobham, United Kingdom
| | | | | | | | | | - Julia Gee
- Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Robert Nicholson
- Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Leandro Castellano
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College, London, United Kingdom
| | - Justin Stebbing
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College, London, United Kingdom
| | | | - Debashis Sarker
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Nigel Heaton
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Ian Pike
- Proteome Sciences plc, Cobham, United Kingdom
| |
Collapse
|
171
|
Knockdown of BAG3 induces epithelial-mesenchymal transition in thyroid cancer cells through ZEB1 activation. Cell Death Dis 2014; 5:e1092. [PMID: 24577090 PMCID: PMC3944249 DOI: 10.1038/cddis.2014.32] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/15/2013] [Accepted: 01/14/2014] [Indexed: 12/13/2022]
Abstract
The process by which epithelial features are lost in favor of a mesenchymal phenotype is referred to as epithelial–mesenchymal transition (EMT). Most carcinomas use this mechanism to evade into neighboring tissues. Reduction or a loss of E-cadherin expression is a well-established hallmark of EMT. As a potent suppressor of E-cadherin, transcription factor ZEB1 is one of the key inducers of EMT, whose expression promotes tumorigenesis and metastasis of carcinomas. Bcl-2-associated athanogene 3 (BAG3) affects multifaceted cellular functions, including proliferation, apoptosis, cell adhesion and invasion, viral infection, and autophagy. Recently, we have reported a novel role of BAG3 implicated in EMT, while the mechanisms are poorly elucidated. The current study demonstrated that knockdown of BAG3 induced EMT, and increased cell migratory and invasiveness in thyroid cancer cells via transcriptional activation of ZEB1. We also found that BAG3 knockdown led to nuclear accumulation of β-catenin, which was responsible for the transcriptional activation of ZEB1. These results indicate BAG3 as a regulator of ZEB1 expression in EMT and as a regulator of metastasis in thyroid cancer cells, providing potential targets to prevent and/or treat thyroid cancer cell invasion and metastasis.
Collapse
|
172
|
Vergara D, Simeone P, del Boccio P, Toto C, Pieragostino D, Tinelli A, Acierno R, Alberti S, Salzet M, Giannelli G, Sacchetta P, Maffia M. Comparative proteome profiling of breast tumor cell lines by gel electrophoresis and mass spectrometry reveals an epithelial mesenchymal transition associated protein signature. MOLECULAR BIOSYSTEMS 2014; 9:1127-38. [PMID: 23247860 DOI: 10.1039/c2mb25401h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The epithelial to mesenchymal transition (EMT) is a cellular program associated with the organ morphogenesis but also with the disease progression. EMT in the cancer field fuels neoplastic progression promoting the resistance to cell death, the resistance to chemotherapy and the acquisition of stem cell properties. Considering the crucial role of EMT in breast cancer metastasis, a better understanding of this process may provide new therapeutic options. Here, by using a proteomic approach we identified a set of proteins differentially expressed between an epithelial and a mesenchymal breast cancer cell line. The protein-protein network of these identified proteins was determined by an in silico analysis highlighting, in the EMT program, the role of proteins involved in cell adhesion, migration, and invasion, together with protein kinases involved in proliferation and survival, with many of these emerging as possible targets of novel biological agents. Finally, the pharmacological inhibition of some of these kinases was able to reverse the mesenchymal phenotype to an epithelial phenotype.
Collapse
Affiliation(s)
- Daniele Vergara
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni 73100, Lecce, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Jeppesen DK, Nawrocki A, Jensen SG, Thorsen K, Whitehead B, Howard KA, Dyrskjøt L, Ørntoft TF, Larsen MR, Ostenfeld MS. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors. Proteomics 2014; 14:699-712. [PMID: 24376083 DOI: 10.1002/pmic.201300452] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/28/2013] [Accepted: 12/15/2013] [Indexed: 12/20/2022]
Abstract
Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and metastatic spread. Here, we used an in vivo metastasis model of human bladder carcinoma cell line T24 without metastatic capacity and its two isogenic derivate cell lines SLT4 and FL3, which form metastases in the lungs and liver of mice, respectively. Cultivation in CLAD1000 bioreactors rather than conventional culture flasks resulted in a 13- to 16-fold increased exosome yield and facilitated quantitative proteomics of fractionated exosomes. Exosomes from T24, SLT4, and FL3 cells were partitioned into membrane and luminal fractions and changes in protein abundance related to the gain of metastatic capacity were identified by quantitative iTRAQ proteomics. We identified several proteins linked to epithelial-mesenchymal transition, including increased abundance of vimentin and hepatoma-derived growth factor in the membrane, and casein kinase II α and annexin A2 in the lumen of exosomes, respectively, from metastatic cells. The change in exosome protein abundance correlated little, although significant for FL3 versus T24, with changes in cellular mRNA expression. Our proteomic approach may help identification of proteins in the membrane and lumen of exosomes potentially involved in the metastatic process.
Collapse
|
174
|
Ghosh D, Lili L, McGrail DJ, Matyunina LV, McDonald JF, Dawson MR. Integral role of platelet-derived growth factor in mediating transforming growth factor-β1-dependent mesenchymal stem cell stiffening. Stem Cells Dev 2014; 23:245-61. [PMID: 24093435 PMCID: PMC3904528 DOI: 10.1089/scd.2013.0240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/04/2013] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in matrix remodeling, fibroblast activation, angiogenesis, and immunomodulation and are an integral part of fibrovascular networks that form in developing tissues and tumors. The engraftment and function of MSCs in tissue niches is regulated by a multitude of soluble proteins. Transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor-BB (PDGF) have previously been recognized for their role in MSC biology; thus, we sought to investigate their function in mediating MSC mechanics and matrix interactions. Cytoskeletal organization, characterized by cell elongation, stress fiber formation, and condensation of actin and microtubules, was dramatically affected by TGF-β1, individually and in combination with PDGF. The intracellular mechanical response to these stimuli was measured with particle tracking microrheology. MSCs stiffened in response to TGF-β1 (their elastic moduli was ninefold higher than control cells), a result that was enhanced by the addition of PDGF (100-fold change). Blocking TGF-β1 or PDGF signaling with inhibitors SB-505124 or JNJ-10198409, respectively, reversed soluble-factor-induced stiffening, indicating that crosstalk between these two pathways is essential for stiffening response. A genome-wide microarray analysis revealed TGF-β1-dependent regulation of cytoskeletal actin-binding protein genes. Actin crosslinking and bundling protein genes, which regulate cytosolic rheology through changes in semiflexible actin polymer meshwork, were upregulated with TGF-β1 treatment. TGF-β1 alone and in combination with PDGF also amplified surface integrin expression and adhesivity of MSCs with extracellular matrix proteins. These findings will provide a more mechanistic insight for modeling tissue-level rigidity in fibrotic tissues and tumors.
Collapse
Affiliation(s)
- Deepraj Ghosh
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, Georgia
| | - Loukia Lili
- Georgia Institute of Technology, School of Biology, Atlanta, Georgia
- Georgia Institute of Technology, Integrated Cancer Research Center, Atlanta, Georgia
| | - Daniel J. McGrail
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, Georgia
| | - Lilya V. Matyunina
- Georgia Institute of Technology, School of Biology, Atlanta, Georgia
- Georgia Institute of Technology, Integrated Cancer Research Center, Atlanta, Georgia
| | - John F. McDonald
- Georgia Institute of Technology, School of Biology, Atlanta, Georgia
- Georgia Institute of Technology, Integrated Cancer Research Center, Atlanta, Georgia
- The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Michelle R. Dawson
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, Georgia
- The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
175
|
Kedracka-Krok S, Jankowska U, Elas M, Sowa U, Swakon J, Cierniak A, Olko P, Romanowska-Dixon B, Urbanska K. Proteomic analysis of proton beam irradiated human melanoma cells. PLoS One 2014; 9:e84621. [PMID: 24392146 PMCID: PMC3879347 DOI: 10.1371/journal.pone.0084621] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/26/2013] [Indexed: 12/19/2022] Open
Abstract
Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma.
Collapse
Affiliation(s)
- Sylwia Kedracka-Krok
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Urszula Jankowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Martyna Elas
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Urszula Sowa
- Institute of Nuclear Physics, PAS, Kraków, Poland
| | - Jan Swakon
- Institute of Nuclear Physics, PAS, Kraków, Poland
| | - Agnieszka Cierniak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Pawel Olko
- Institute of Nuclear Physics, PAS, Kraków, Poland
| | - Bozena Romanowska-Dixon
- Department of Ophthalmology and Ophthalmic Oncology, Jagiellonian University Medical College, Kraków, Poland
| | - Krystyna Urbanska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
176
|
Abstract
Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein (FP) tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate FP constructs by spinning disk confocal microscopy.
Collapse
Affiliation(s)
- Andreas Ettinger
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| |
Collapse
|
177
|
Schneider D, Baronsky T, Pietuch A, Rother J, Oelkers M, Fichtner D, Wedlich D, Janshoff A. Tension monitoring during epithelial-to-mesenchymal transition links the switch of phenotype to expression of moesin and cadherins in NMuMG cells. PLoS One 2013; 8:e80068. [PMID: 24339870 PMCID: PMC3855076 DOI: 10.1371/journal.pone.0080068] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 10/09/2013] [Indexed: 01/06/2023] Open
Abstract
Structural alterations during epithelial-to-mesenchymal transition (EMT) pose a substantial challenge to the mechanical response of cells and are supposed to be key parameters for an increased malignancy during metastasis. Herein, we report that during EMT, apical tension of the epithelial cell line NMuMG is controlled by cell-cell contacts and the architecture of the underlying actin structures reflecting the mechanistic interplay between cellular structure and mechanics. Using force spectroscopy we find that tension in NMuMG cells slightly increases 24 h after EMT induction, whereas upon reaching the final mesenchymal-like state characterized by a complete loss of intercellular junctions and a concerted down-regulation of the adherens junction protein E-cadherin, the overall tension becomes similar to that of solitary adherent cells and fibroblasts. Interestingly, the contribution of the actin cytoskeleton on apical tension increases significantly upon EMT induction, most likely due to the formation of stable and highly contractile stress fibers which dominate the elastic properties of the cells after the transition. The structural alterations lead to the formation of single, highly motile cells rendering apical tension a good indicator for the cellular state during phenotype switching. In summary, our study paves the way towards a more profound understanding of cellular mechanics governing fundamental morphological programs such as the EMT.
Collapse
Affiliation(s)
- David Schneider
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Thilo Baronsky
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Anna Pietuch
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Jan Rother
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Marieelen Oelkers
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Dagmar Fichtner
- Institute for Cell and Developmental Biology, Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 2, Karlsruhe, Germany
| | - Doris Wedlich
- Institute for Cell and Developmental Biology, Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 2, Karlsruhe, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
178
|
An in vivo RNAi screen identifies SALL1 as a tumor suppressor in human breast cancer with a role in CDH1 regulation. Oncogene 2013; 33:4273-8. [PMID: 24292671 DOI: 10.1038/onc.2013.515] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 10/10/2013] [Accepted: 10/21/2013] [Indexed: 01/01/2023]
Abstract
The gold standard for determining the tumorigenic potential of human cancer cells is a xenotransplantation into immunodeficient mice. Higher tumorigenicity of cells is associated with earlier tumor onset. Here, we used xenotransplantation to assess the tumorigenic potential of human breast cancer cells following RNA interference-mediated inhibition of over 5000 genes. We identify 16 candidate tumor suppressors, one of which is the zinc-finger transcription factor SALL1. Analyzing this particular molecule in more detail, we show that inhibition of SALL1 correlates with reduced levels of CDH1, an important contributor to epithelial-to-mesenchymal transition. Furthermore, SALL1 expression led to an increased migration and more than twice as many cells expressing a cancer stem cell signature. Also, SALL1 expression correlates with the survival of breast cancer patients. These findings cast new light on a gene that has previously been described to be relevant during embryogenesis, but not carcinogenesis.
Collapse
|
179
|
Actin in action: imaging approaches to study cytoskeleton structure and function. Cells 2013; 2:715-31. [PMID: 24709877 PMCID: PMC3972653 DOI: 10.3390/cells2040715] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 01/18/2023] Open
Abstract
The cytoskeleton plays several fundamental roles in the cell, including organizing the spatial arrangement of subcellular organelles, regulating cell dynamics and motility, providing a platform for interaction with neighboring cells, and ultimately defining overall cell shape. Fluorescence imaging has proved to be vital in furthering our understanding of the cytoskeleton, and is now a mainstay technique used widely by cell biologists. In this review we provide an introduction to various imaging modalities used to study focal adhesions and the actin cytoskeleton, and using specific examples we highlight a number of recent studies in animal cells that have advanced our knowledge of cytoskeletal behavior.
Collapse
|
180
|
Dong P, Kaneuchi M, Xiong Y, Cao L, Cai M, Liu X, Guo SW, Ju J, Jia N, Konno Y, Watari H, Hosaka M, Sudo S, Sakuragi N. Identification of KLF17 as a novel epithelial to mesenchymal transition inducer via direct activation of TWIST1 in endometrioid endometrial cancer. Carcinogenesis 2013; 35:760-8. [PMID: 24220291 DOI: 10.1093/carcin/bgt369] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Krüppel-like factor 17 (KLF17), a member of the KLF transcription factor family, has been shown to inhibit the epithelial-mesenchymal transition (EMT) and tumor growth. However, the expression, the cellular function and the mechanism of KLF17 in endometrioid endometrial cancer (EEC; a dominant type of endometrial cancer) remain elusive. Here, we report that among the KLF family members, KLF17 was consistently upregulated in EEC cell lines compared with immortalized endometrial epithelial cells. Overexpression of KLF17 in EEC cell lines induced EMT and promoted cell invasion and drug resistance, resulting in increased expression of TWIST1. In contrast, KLF17 suppression reversed EMT, diminished cell invasion, restored drug sensitivity and suppressed TWIST1 expression. Luciferase assays, site-directed mutagenesis and transcription factor DNA-binding analysis demonstrated that KLF17 transactivates TWIST1 expression by directly binding to the TWIST1 promoter. Knockdown of TWIST1 prevented KLF17-induced EMT. Consistent with these results, both KLF17 and TWIST1 levels were found to be elevated in EECs compared with normal tissues. KLF17 expression positively correlated with tumor grade but inversely correlated with estrogen and progesterone receptor expression. Thus, KLF17 may have an oncogenic role during EEC progression via initiating EMT through the regulation of TWIST1.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways. Oncogene 2013; 33:4077-88. [PMID: 24037528 DOI: 10.1038/onc.2013.370] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 07/11/2013] [Accepted: 07/26/2013] [Indexed: 12/12/2022]
Abstract
The microRNA-200 (miR-200) family has a critical role in regulating epithelial-mesenchymal transition and cancer cell invasion through inhibition of the E-cadherin transcriptional repressors ZEB1 and ZEB2. Recent studies have indicated that the miR-200 family may exert their effects at distinct stages in the metastatic process, with an overall effect of enhancing metastasis in a syngeneic mouse breast cancer model. We find in a xenograft orthotopic model of breast cancer metastasis that ectopic expression of members of the miR-200b/200c/429, but not the miR-141/200a, functional groups limits tumour cell invasion and metastasis. Despite modulation of the ZEB1-E-cadherin axis, restoration of ZEB1 in miR-200b-expressing cells was not able to alter metastatic potential suggesting that other targets contribute to this process. Instead, we found that miR-200b repressed several actin-associated genes, with the knockdown of the ezrin-radixin-moesin family member moesin alone phenocopying the repression of cell invasion by miR-200b. Moesin was verified to be directly targeted by miR-200b, and restoration of moesin in miR-200b-expressing cells was sufficient to alleviate metastatic repression. In breast cancer cell lines and patient samples, the expression of moesin significantly inversely correlated with miR-200 expression, and high levels of moesin were associated with poor relapse-free survival. These findings highlight the context-dependent effects of miR-200 in breast cancer metastasis and demonstrate the existence of a moesin-dependent pathway, distinct from the ZEB1-E-cadherin axis, through which miR-200 can regulate tumour cell plasticity and metastasis.
Collapse
|
182
|
Lekva T, Berg JP, Heck A, Lyngvi Fougner S, Olstad OK, Ringstad G, Bollerslev J, Ueland T. Attenuated RORC expression in the presence of EMT progression in somatotroph adenomas following treatment with somatostatin analogs is associated with poor clinical recovery. PLoS One 2013; 8:e66927. [PMID: 23825587 PMCID: PMC3692554 DOI: 10.1371/journal.pone.0066927] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/13/2013] [Indexed: 12/02/2022] Open
Abstract
Somatostatin analogs (SA) have been established as the first line medical treatment for acromegaly, but following long-term treatment, SA normalizes GH and IGF-I levels in only 40–60% of patients. The epithelial marker E-cadherin plays a crucial role in the epithelial mesenchymal transition (EMT) and is associated with a poor response to SA treatment. We hypothesized that the characterization of transcripts regulated by SA in somatotroph adenomas with high and low E-cadherin expression may identify signaling pathways and mediators that can explain the poor response to SA treatment. We performed a microarray analysis of sixteen adenomas with different levels of E-cadherin and SA treatment to identify regulated transcripts. Candidate transcripts were further explored in vivo in sixty-five adenomas, and interactions between SA treatment and EMT progression on mRNA expression profiles and associations with clinical recovery were assessed. Finally, the effects of SA treatment on adenoma cells in vitro from acromegalic patients were determined. Microarray analysis of selected adenomas with differential E-cadherin expression, as a marker of EMT progression, identified 172 genes that displayed differential expression that was dependent on SA treatment. The validation of selected candidates in the entire cohort identified 9 transcripts that showed an interaction between E-cadherin expression and SA treatment. Further analysis of the impact of these genes suggests that attenuated RORC expression in somatotroph adenomas is associated with increased tumor size and a blunted clinical response. Our study indicates that attenuated RORC may be involved in the poor clinical response to SA treatment in patients with acromegaly.
Collapse
Affiliation(s)
- Tove Lekva
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Williams K, Motiani K, Giridhar PV, Kasper S. CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches. Exp Biol Med (Maywood) 2013; 238:324-38. [PMID: 23598979 PMCID: PMC11037417 DOI: 10.1177/1535370213480714] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The stem cell niche provides a regulatory microenvironment for cells as diverse as totipotent embryonic stem cells to cancer stem cells (CSCs) which exhibit stem cell-like characteristics and have the capability of regenerating the bulk of tumor cells while maintaining self-renewal potential. The transmembrane glycoprotein CD44 is a common component of the stem cell niche and exists as a standard isoform (CD44s) and a range of variant isoforms (CD44v) generated though alternative splicing. CD44 modulates signal transduction through post-translational modifications as well as interactions with hyaluronan, extracellular matrix molecules and growth factors and their cognate receptor tyrosine kinases. While the function of CD44 in hematopoietic stem cells has been studied in considerable detail, our knowledge of CD44 function in tissue-derived stem cell niches remains limited. Here we review CD44s and CD44v in both hematopoietic and tissue-derived stem cell niches, focusing on their roles in regulating stem cell behavior including self-renewal and differentiation in addition to cell-matrix interactions and signal transduction during cell migration and tumor progression. Determining the role of CD44 and CD44v in normal stem cell, CSC and (pre)metastatic niches and elucidating their unique functions could provide tools and therapeutic strategies for treating diseases as diverse as fibrosis during injury repair to cancer progression.
Collapse
Affiliation(s)
- Karin Williams
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| | - Karan Motiani
- Division of Urology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| | | | - Susan Kasper
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| |
Collapse
|
184
|
Maniti O, Carvalho K, Picart C. Model membranes to shed light on the biochemical and physical properties of ezrin/radixin/moesin. Biochimie 2013; 95:3-11. [PMID: 23041444 PMCID: PMC4112940 DOI: 10.1016/j.biochi.2012.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
Ezrin, radixin and moesin (ERM) proteins are now more and more recognized to play a key role in a large number of important physiological processes such as morphogenesis, cancer metastasis and virus infection. Several recent reviews extensively discuss their biological functions [1 -4 ]. In this review, we will first remind the main features of this family of proteins, which are now known as linkers and regulators of the plasma membrane/cytoskeleton linkage. We will then briefly review their implication in pathological processes such as cancer and viral infection. In a second part, we will focus on biochemical and biophysical approaches to study ERM interaction with lipid membranes and conformational change in well-defined environments. In vitro studies using biomimetic lipid membranes, especially large unilamellar vesicles (LUVs), giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) and recombinant proteins help to understand the molecular mechanism of conformational activation of ERM proteins. These tools are aimed to decorticate the different steps of the interaction, to simplify the experiments performed in vivo in much more complex biological environments.
Collapse
Affiliation(s)
- Ofélia Maniti
- CNRS UMR 5628 (LMGP), Grenoble Institute of Technology and CNRS, 3 parvis Louis Néel, F-38016 Grenoble Cedex, France
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, Université de Lyon, Université Lyon 1, INSA-Lyon, CPE-Lyon, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Kevin Carvalho
- Institut Curie, centre de recherche and CNRS UMR 168, 11 rue Pierre et Marie Curie, Paris, F-75248 cedex 5
| | - Catherine Picart
- CNRS UMR 5628 (LMGP), Grenoble Institute of Technology and CNRS, 3 parvis Louis Néel, F-38016 Grenoble Cedex, France
| |
Collapse
|
185
|
Abstract
PURPOSE OF REVIEW Pathogenesis of interstitial lung diseases (ILD) has largely been investigated in the context of the most frequent ILD, idiopathic pulmonary fibrosis (IPF). We review studies of epithelial-to-mesenchymal transition (EMT) and discuss its potential contribution to collagen-producing (myo)fibroblasts in IPF. RECENT FINDINGS Endoplasmic reticulum (ER) stress leading to epithelial apoptosis has been reported as a potential etiologic factor in fibrosis. Recent studies further suggest EMT as a link between ER stress and fibrosis. Combinatorial interactions among Smad3, β-catenin and other transcriptional co-activators at the α-smooth muscle actin (α-SMA) promoter provide direct evidence for crosstalk between transforming growth factor-β (TGFβ) and β-catenin pathways during EMT. Lineage tracing yielded conflicting results, with two recent studies supporting and one opposing a role for EMT in lung fibrosis. SUMMARY Advances have been made in elucidating causes and mechanisms of EMT, potentially leading to new treatment options, although contributions of EMT to lung fibrosis in vivo remain controversial. In addition to EMT providing a direct source of (myo)fibroblasts, expression of mesenchymal markers may reflect epithelial injury, in which case inhibition of EMT might be deleterious. EMT-derived cells may also contribute to aberrant epithelial-mesenchymal crosstalk that promotes fibrogenesis.
Collapse
|
186
|
Smith A, Teknos TN, Pan Q. Epithelial to mesenchymal transition in head and neck squamous cell carcinoma. Oral Oncol 2012. [PMID: 23182398 DOI: 10.1016/j.oraloncology.2012.10.009] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a dynamic cellular process that is essential for the development of metastatic disease. During EMT, a tumor cell with epithelial characteristics transitions to a tumor cell with mesenchymal characteristics through modulation of cell polarity and adhesion. Two hallmark EMT proteins, E-Cadherin and Vimentin, are tightly controlled during EMT through multiple signal transduction pathways. Epidermal growth factor (EGF) and transforming growth factorβ (TGFβ) promote EMT by regulating a distinct set of transcription factors, including Snail and Twist. Snail, Twist, and Slug are integral to the induction of EMT through direct regulation of genes involved in cellular adhesion, migration, and invasion. This review highlights the current literature on EMT in HNSCC. Understanding the role of EMT will provide insight to the pathogenesis of disease progression and may lead to the development of novel anti-cancer therapeutics for metastatic HNSCC.
Collapse
Affiliation(s)
- Ashley Smith
- Department of Otolaryngology-Head and Neck Surgery, Wexner Medical Center at Ohio State University, 442 Tzagournis Medical Research, 420 West 12th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
187
|
PKCδ-mediated phosphorylation of BAG3 at Ser187 site induces epithelial−mesenchymal transition and enhances invasiveness in thyroid cancer FRO cells. Oncogene 2012; 32:4539-48. [DOI: 10.1038/onc.2012.466] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/27/2012] [Accepted: 08/19/2012] [Indexed: 11/08/2022]
|
188
|
Moustakas A, Heldin CH. Induction of epithelial–mesenchymal transition by transforming growth factor β. Semin Cancer Biol 2012; 22:446-54. [DOI: 10.1016/j.semcancer.2012.04.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/16/2012] [Indexed: 11/29/2022]
|
189
|
Brock AR, Wang Y, Berger S, Renkawitz-Pohl R, Han VC, Wu Y, Galko MJ. Transcriptional regulation of Profilin during wound closure in Drosophila larvae. J Cell Sci 2012; 125:5667-76. [PMID: 22976306 DOI: 10.1242/jcs.107490] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Injury is an inevitable part of life, making wound healing essential for survival. In postembryonic skin, wound closure requires that epidermal cells recognize the presence of a gap and change their behavior to migrate across it. In Drosophila larvae, wound closure requires two signaling pathways [the Jun N-terminal kinase (JNK) pathway and the Pvr receptor tyrosine kinase signaling pathway] and regulation of the actin cytoskeleton. In this and other systems, it remains unclear how the signaling pathways that initiate wound closure connect to the actin regulators that help execute wound-induced cell migrations. Here, we show that chickadee, which encodes the Drosophila Profilin, a protein important for actin filament recycling and cell migration during development, is required for the physiological process of larval epidermal wound closure. After injury, chickadee is transcriptionally upregulated in cells proximal to the wound. We found that JNK, but not Pvr, mediates the increase in chic transcription through the Jun and Fos transcription factors. Finally, we show that chic-deficient larvae fail to form a robust actin cable along the wound edge and also fail to form normal filopodial and lamellipodial extensions into the wound gap. Our results thus connect a factor that regulates actin monomer recycling to the JNK signaling pathway during wound closure. They also reveal a physiological function for an important developmental regulator of actin and begin to tease out the logic of how the wound repair response is organized.
Collapse
Affiliation(s)
- Amanda R Brock
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
190
|
EB1-recruited microtubule +TIP complexes coordinate protrusion dynamics during 3D epithelial remodeling. Curr Biol 2012; 22:753-62. [PMID: 22483942 DOI: 10.1016/j.cub.2012.02.069] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/08/2012] [Accepted: 02/27/2012] [Indexed: 01/21/2023]
Abstract
BACKGROUND Epithelial remodeling, in which apical-basal polarized cells switch to a migratory phenotype, plays a central role in development and disease of multicellular organisms. Although dynamic microtubules (MTs) are required for directed migration on flat surfaces, how MT dynamics are controlled or contribute to epithelial remodeling in a more physiological three-dimensional (3D) environment is not understood. We use confocal live-cell imaging to analyze MT function and dynamics during 3D epithelial morphogenesis and remodeling of polarized Madin-Darby canine kidney epithelial cells that undergo partial epithelial-to-mesenchymal transition in response to hepatocyte growth factor (HGF). RESULTS We find that HGF treatment increases MT growth rate before morphological changes are evident and that large numbers of MTs grow into HGF-induced cell extensions independent of centrosome reorientation. Using lentivirus-mediated small hairpin RNA, we demonstrate that EB1, an adaptor protein that mediates recruitment of numerous other +TIP proteins to growing MT plus ends, is required for this HGF-induced MT reorganization. We further show that protrusion and adhesion dynamics are disorganized and that vesicular trafficking to the tip of HGF-induced cell extensions is disrupted in EB1-depleted cells. CONCLUSIONS We conclude that EB1-mediated interactions with growing MTs are important to coordinate cell shape changes and directed migration into the surrounding extracellular matrix during epithelial remodeling in a physiological 3D environment. In contrast, EB1 is not required for the establishment or maintenance of apical-basal cell polarity, suggesting different functions of +TIPs and MTs in different types of cell polarity.
Collapse
|
191
|
Pan X, Xiong D, Yao X, Xin Y, Zhang L, Chen J. RETRACTED: Up-regulating ribonuclease inhibitor inhibited epithelial-to-mesenchymal transition and metastasis in murine melanoma cells. Int J Biochem Cell Biol 2012; 44:998-1008. [PMID: 22465710 DOI: 10.1016/j.biocel.2012.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the Editor-in-Chief. The journal was notified about discrepancies in Figures 6C, 3C, 3E and 6A where a number of images had been inappropriately duplicated https://pubpeer.com/publications/16B7F676D60092A7A05400BE4DFE8E#3. Upon further investigation and discussion with the authors, insufficient evidence was provided to support a reasonable explanation for these discrepancies. As the concerns around these datasets are likely to affect the overall conclusions of the paper, the Editor-in-Chief has decided to retract the paper.
Collapse
Affiliation(s)
- Xiangyang Pan
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, PR China
| | | | | | | | | | | |
Collapse
|