151
|
Roach MJ, Beecroft SJ, Mihindukulasuriya KA, Wang L, Paredes A, Cárdenas LAC, Henry-Cocks K, Lima LFO, Dinsdale EA, Edwards RA, Handley SA. Hecatomb: an integrated software platform for viral metagenomics. Gigascience 2024; 13:giae020. [PMID: 38832467 PMCID: PMC11148595 DOI: 10.1093/gigascience/giae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Modern sequencing technologies offer extraordinary opportunities for virus discovery and virome analysis. Annotation of viral sequences from metagenomic data requires a complex series of steps to ensure accurate annotation of individual reads and assembled contigs. In addition, varying study designs will require project-specific statistical analyses. FINDINGS Here we introduce Hecatomb, a bioinformatic platform coordinating commonly used tasks required for virome analysis. Hecatomb means "a great sacrifice." In this setting, Hecatomb is "sacrificing" false-positive viral annotations using extensive quality control and tiered-database searches. Hecatomb processes metagenomic data obtained from both short- and long-read sequencing technologies, providing annotations to individual sequences and assembled contigs. Results are provided in commonly used data formats useful for downstream analysis. Here we demonstrate the functionality of Hecatomb through the reanalysis of a primate enteric and a novel coral reef virome. CONCLUSION Hecatomb provides an integrated platform to manage many commonly used steps for virome characterization, including rigorous quality control, host removal, and both read- and contig-based analysis. Each step is managed using the Snakemake workflow manager with dependency management using Conda. Hecatomb outputs several tables properly formatted for immediate use within popular data analysis and visualization tools, enabling effective data interpretation for a variety of study designs. Hecatomb is hosted on GitHub (github.com/shandley/hecatomb) and is available for installation from Bioconda and PyPI.
Collapse
Affiliation(s)
- Michael J Roach
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, SA, Australia
- Adelaide Centre for Epigenetics, University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sarah J Beecroft
- Harry Perkins Institute of Medical Research, Perth, WA, 6009, Australia
| | - Kathie A Mihindukulasuriya
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Leran Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anne Paredes
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Luis Alberto Chica Cárdenas
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kara Henry-Cocks
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, SA, Australia
| | | | - Elizabeth A Dinsdale
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, SA, Australia
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, SA, Australia
| | - Scott A Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
152
|
Cook R, Telatin A, Bouras G, Camargo AP, Larralde M, Edwards RA, Adriaenssens EM. Driving through stop signs: predicting stop codon reassignment improves functional annotation of bacteriophages. ISME COMMUNICATIONS 2024; 4:ycae079. [PMID: 38939532 PMCID: PMC11210395 DOI: 10.1093/ismeco/ycae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/20/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The majority of bacteriophage diversity remains uncharacterized, and new intriguing mechanisms of their biology are being continually described. Members of some phage lineages, such as the Crassvirales, repurpose stop codons to encode an amino acid by using alternate genetic codes. Here, we investigated the prevalence of stop codon reassignment in phage genomes and its subsequent impacts on functional annotation. We predicted 76 genomes within INPHARED and 712 vOTUs from the Unified Human Gut Virome Catalogue (UHGV) that repurpose a stop codon to encode an amino acid. We re-annotated these sequences with modified versions of Pharokka and Prokka, called Pharokka-gv and Prokka-gv, to automatically predict stop codon reassignment prior to annotation. Both tools significantly improved the quality of annotations, with Pharokka-gv performing best. For sequences predicted to repurpose TAG to glutamine (translation table 15), Pharokka-gv increased the median gene length (median of per genome median) from 287 to 481 bp for UHGV sequences (67.8% increase) and from 318 to 550 bp for INPHARED sequences (72.9% increase). The re-annotation increased median coding capacity from 66.8% to 90.0% and from 69.0% to 89.8% for UHGV and INPHARED sequences predicted to use translation table 15. Furthermore, the proportion of genes that could be assigned functional annotation increased, including an increase in the number of major capsid proteins that could be identified. We propose that automatic prediction of stop codon reassignment before annotation is beneficial to downstream viral genomic and metagenomic analyses.
Collapse
Affiliation(s)
- Ryan Cook
- Quadram Institute Bioscience, Norwich NR4 7UQ, United Kingdom
| | - Andrea Telatin
- Quadram Institute Bioscience, Norwich NR4 7UQ, United Kingdom
| | - George Bouras
- Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5070, Australia
- Department of Surgery—Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA 5070, Australia
| | - Antonio Pedro Camargo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Martin Larralde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | | |
Collapse
|
153
|
Zhuang Z, Cheng YY, Deng J, Cai Z, Zhong L, Qu JX, Wang K, Yang L. Genomic insights into the phage-defense systems of Stenotrophomonas maltophilia clinical isolates. Microbiol Res 2024; 278:127528. [PMID: 37918082 DOI: 10.1016/j.micres.2023.127528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
Stenotrophomonas maltophilia is a rapidly evolving multidrug-resistant opportunistic pathogen that can cause serious infections in immunocompromised patients. Although phage therapy is one of promising strategies for dealing with MDR bacteria, the main challenges of phage therapeutics include accumulation of phage resistant mutations and acquisition of the phage defense systems. To systematically evaluate the impact of (pro)phages in shaping genetic and evolutionary diversity of S. maltophilia, we collected 166 S. maltophilia isolates from three hospitals in southern China to analyze its pangenome, virulence factors, prophage regions, and anit-viral immune systems. Pangenome analysis indicated that there are 1328 saturated core genes and 26961 unsaturated accessory genes in the pangenome, suggesting existence of highly variable parts of S. maltophilia genome. The presence of genes in relation to T3SS and T6SS mechanisms suggests the great potential to secrete toxins by the S. maltophilia population, which is contrary to the conventional notion of low-virulence of S. maltophilia. Additionally, we characterized the pan-immune system maps of these clinical isolates against phage infections and revealed the co-harboring of CBASS and anti-CBASS in some strains, suggesting a never-ending arms race and the co-evolutionary dynamic between bacteria and phages. Furthermore, our study predicted 310 prophage regions in S. maltophilia with high genetic diversity. Six viral defense systems were found to be located at specific position of the S. maltophilia prophage genomes, indicating potential evolution of certain site/region similar to bacterial 'defense islands' in prophage. Our study provides novel insights into the S. maltophilia pangenome in relation to phage-defense mechanisms, which extends our understanding of bacterial-phage interactions and might guide the application of phage therapy in combating S. maltophilia infections.
Collapse
Affiliation(s)
- Zilin Zhuang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China
| | - Ying-Ying Cheng
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, PR China; BGI Forensic, Shenzhen 518083, PR China; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, PR China
| | - Jie Deng
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China
| | - Lin Zhong
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Jiu-Xin Qu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Ke Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China.
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China.
| |
Collapse
|
154
|
Minch B, Chakraborty M, Purkis S, Rodrigue M, Moniruzzaman M. Active prokaryotic and eukaryotic viral ecology across spatial scale in a deep-sea brine pool. ISME COMMUNICATIONS 2024; 4:ycae084. [PMID: 39021441 PMCID: PMC11252502 DOI: 10.1093/ismeco/ycae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024]
Abstract
Deep-sea brine pools represent rare, extreme environments, providing unique insight into the limits of life on Earth, and by analogy, the plausibility of life beyond it. A distinguishing feature of many brine pools is presence of thick microbial mats that develop at the brine-seawater interface. While these bacterial and archaeal communities have received moderate attention, viruses and their host interactions in these environments remain underexplored. To bridge this knowledge gap, we leveraged metagenomic and metatranscriptomic data from three distinct zones within the NEOM brine pool system (Gulf of Aqaba) to reveal the active viral ecology around the pools. We report a remarkable diversity and activity of viruses infecting microbial hosts in this environment, including giant viruses, RNA viruses, jumbo phages, and Polinton-like viruses. Many of these form distinct clades-suggesting presence of untapped viral diversity in this ecosystem. Brine pool viral communities exhibit zone-specific differences in infection strategy-with lysogeny dominating the bacterial mat further away from the pool's center. We linked viruses to metabolically important prokaryotes-including association between a jumbo phage and a key manganese-oxidizing and arsenic-metabolizing bacterium. These foundational results illuminate the role of viruses in modulating brine pool microbial communities and biogeochemistry through revealing novel viral diversity, host associations, and spatial heterogeneity in viral dynamics.
Collapse
Affiliation(s)
- Benjamin Minch
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| | - Morgan Chakraborty
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| | - Sam Purkis
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| | | | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| |
Collapse
|
155
|
Lamy-Besnier Q, Garneau JR. Enrichment, Sequencing, and Identification of DNA Bacteriophages from Fecal Samples. Methods Mol Biol 2024; 2732:133-144. [PMID: 38060122 DOI: 10.1007/978-1-0716-3515-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Research on individual viruses and phages, as well as viral populations (viromes), is greatly expanding. Phages and viromes are increasingly suspected to have numerous impacts on the ecosystem in which they reside by interacting directly or indirectly with the other organisms present in their environment. In particular, phage communities of the gut microbiota have been associated with a wide range of diseases. However, properly investigating intestinal viromes is still very challenging, both experimentally and analytically. This chapter proposes a simple and reproducible protocol to separate and enrich DNA phage particles from fecal samples, to sequence them, and finally obtain a basic but robust bioinformatic characterization and classification of the global bacteriophage community.
Collapse
Affiliation(s)
- Quentin Lamy-Besnier
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, Paris, France
| | - Julian R Garneau
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Paris, France.
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
156
|
Zhou Y, Wang Y, Prangishvili D, Krupovic M. Exploring the Archaeal Virosphere by Metagenomics. Methods Mol Biol 2024; 2732:1-22. [PMID: 38060114 DOI: 10.1007/978-1-0716-3515-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
During the past decade, environmental research has demonstrated that archaea are abundant and widespread in nature and play important ecological roles at a global scale. Currently, however, the majority of archaeal lineages cannot be cultivated under laboratory conditions and are known exclusively or nearly exclusively through metagenomics. A similar trend extends to the archaeal virosphere, where isolated representatives are available for a handful of model archaeal virus-host systems. Viral metagenomics provides an alternative way to circumvent the limitations of culture-based virus discovery and offers insight into the diversity, distribution, and environmental impact of uncultured archaeal viruses. Presently, metagenomics approaches have been successfully applied to explore the viromes associated with various lineages of extremophilic and mesophilic archaea, including Asgard archaea (Asgardarchaeota), ANME-1 archaea (Methanophagales), thaumarchaea (Nitrososphaeria), altiarchaea (Altiarchaeota), and marine group II archaea (Poseidoniales). Here, we provide an overview of methods widely used in archaeal virus metagenomics, covering metavirome preparation, genome annotation, phylogenetic and phylogenomic analyses, and archaeal host assignment. We hope that this summary will contribute to further exploration and characterization of the enigmatic archaeal virome lurking in diverse environments.
Collapse
Affiliation(s)
- Yifan Zhou
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| | - David Prangishvili
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
- Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France.
| |
Collapse
|
157
|
Cortés-Martín A, Denise R, Guerin E, Stockdale SR, Draper LA, Ross RP, Shkoporov AN, Hill C. Isolation and characterization of a novel lytic Parabacteroides distasonis bacteriophage φPDS1 from the human gut. Gut Microbes 2024; 16:2298254. [PMID: 38178369 PMCID: PMC10773633 DOI: 10.1080/19490976.2023.2298254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
The human gut microbiome plays a significant role in health and disease. The viral component (virome) is predominantly composed of bacteriophages (phages) and has received significantly less attention in comparison to the bacteriome. This knowledge gap is largely due to challenges associated with the isolation and characterization of novel gut phages, and bioinformatic hurdles such as the lack of a universal phage marker gene and the absence of sufficient numbers of homologs in viral databases. Here, we describe the isolation from human feces of a novel lytic phage with siphovirus morphology, φPDS1, infecting Parabacteroides distasonis APCS2/PD, and classified within a newly proposed Sagittacolavirus genus. In silico and biological characterization of this phage is presented in this study. Key to the isolation of φPDS1 was the antibiotic-driven selective enrichment of the bacterial host in a fecal fermenter. Despite producing plaques and lacking genes associated with lysogeny, φPDS1 demonstrates the ability to coexist in liquid culture for multiple days without affecting the abundance of its host. Multiple studies have shown that changes in Parabacteroides distasonis abundance can be linked to various disease states, rendering this novel phage-host pair and their interactions of particular interest.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Rémi Denise
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Emma Guerin
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Stephen R. Stockdale
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Lorraine A. Draper
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Andrey N. Shkoporov
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
158
|
Harman-McKenna VK, De Buck J. Effective Isolation and Characterization of Mycobacteriophages with the Ability to Lyse Mycobacterium avium subsp. paratuberculosis. Viruses 2023; 16:20. [PMID: 38257721 PMCID: PMC10819923 DOI: 10.3390/v16010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Johne's disease (JD), a chronic infectious enteritis of ruminants, causes major economic losses in the dairy industry globally. This enteritis is caused by Mycobacterium avium subsp. Paratuberculosis (MAP). Currently there is no cure for JD and test-based culling has proved ineffective at preventing the spread. To isolate new mycobacteriophages (mbps) that can potentially be used to control JD transmission and infection on dairy farms, we optimized an isolation protocol by fecal spiking and the testing of different isolation solution compositions. Using this protocol, we successfully enhanced the yield of mbps from spiked fecal samples, elevating it from less than 1% to 59%. With this method, we isolated 14 mbps from 475 environmental samples collected from MAP-positive dairy farms, after in-sample enrichment with MAP and the fast-growing M. smegmatis. The sample sources included soil, manure pits, lactation barns, feces, milk, and drain water. After fingerprinting these mbps by restriction enzyme profiling, we concluded that 12 were distinct and novel. Further characterization of their host range revealed that eight were capable of lysing multiple MAP strains. We also studied the cross-resistance, lysogeny, the effect of pH and their antimycobacterial properties in milk replacer. Each novel mbp showed limited cross-resistance and prophage immunity and showed no reduction in the titer in a range of pHs after 4 h. The novel phages were also able to reduce the mycobacterial counts to zero after 8 h in milk replacer. In conclusion, these novel mbps could be considered to be used in the control strategies of JD on farms.
Collapse
Affiliation(s)
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
159
|
Cook R, Telatin A, Bouras G, Camargo AP, Larralde M, Edwards RA, Adriaenssens EM. Predicting stop codon reassignment improves functional annotation of bacteriophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572299. [PMID: 38187747 PMCID: PMC10769273 DOI: 10.1101/2023.12.19.572299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The majority of bacteriophage diversity remains uncharacterised, and new intriguing mechanisms of their biology are being continually described. Members of some phage lineages, such as the Crassvirales, repurpose stop codons to encode an amino acid by using alternate genetic codes. Here, we investigated the prevalence of stop codon reassignment in phage genomes and subsequent impacts on functional annotation. We predicted 76 genomes within INPHARED and 712 vOTUs from the Unified Human Gut Virome catalogue (UHGV) that repurpose a stop codon to encode an amino acid. We re-annotated these sequences with modified versions of Pharokka and Prokka, called Pharokka-gv and Prokka-gv, to automatically predict stop codon reassignment prior to annotation. Both tools significantly improved the quality of annotations, with Pharokka-gv performing best. For sequences predicted to repurpose TAG to glutamine (translation table 15), Pharokka-gv increased the median gene length (median of per genome medians) from 287 to 481 bp for UHGV sequences (67.8% increase) and from 318 to 550 bp for INPHARED sequences (72.9% increase). The re-annotation increased mean coding density from 66.8% to 90.0%, and from 69.0% to 89.8% for UHGV and INPHARED sequences. Furthermore, the proportion of genes that could be assigned functional annotation increased, including an increase in the number of major capsid proteins that could be identified. We propose that automatic prediction of stop codon reassignment before annotation is beneficial to downstream viral genomic and metagenomic analyses.
Collapse
Affiliation(s)
- Ryan Cook
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Andrea Telatin
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5070, Australia
- Department of Surgery—Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, SA 5070, Australia
| | - Antonio Pedro Camargo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Martin Larralde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Evelien M. Adriaenssens
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| |
Collapse
|
160
|
Kosmopoulos JC, Klier KM, Langwig MV, Tran PQ, Anantharaman K. Viromes vs. mixed community metagenomes: choice of method dictates interpretation of viral community ecology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562385. [PMID: 37904928 PMCID: PMC10614762 DOI: 10.1101/2023.10.15.562385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Background Viruses, the majority of which are uncultivated, are among the most abundant biological entities on Earth. From altering microbial physiology to driving community dynamics, viruses are fundamental members of microbiomes. While the number of studies leveraging viral metagenomics (viromics) for studying uncultivated viruses is growing, standards for viromics research are lacking. Viromics can utilize computational discovery of viruses from total metagenomes of all community members (hereafter metagenomes) or use physical separation of virus-specific fractions (hereafter viromes). However, differences in the recovery and interpretation of viruses from metagenomes and viromes obtained from the same samples remain understudied. Results Here, we compare viral communities from paired viromes and metagenomes obtained from 60 diverse samples across human gut, soil, freshwater, and marine ecosystems. Overall, viral communities obtained from viromes were more abundant and species rich than those obtained from metagenomes, although there were some exceptions. Despite this, metagenomes still contained many viral genomes not detected in viromes. We also found notable differences in the predicted lytic state of viruses detected in viromes vs metagenomes at the time of sequencing. Other forms of variation observed include genome presence/absence, genome quality, and encoded protein content between viromes and metagenomes, but the magnitude of these differences varied by environment. Conclusions Overall, our results show that the choice of method can lead to differing interpretations of viral community ecology. We suggest that the choice of whether to target a metagenome or virome to study viral communities should be dependent on the environmental context and ecological questions being asked. However, our overall recommendation to researchers investigating viral ecology and evolution is to pair both approaches to maximize their respective benefits.
Collapse
Affiliation(s)
- James C. Kosmopoulos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katherine M. Klier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marguerite V. Langwig
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patricia Q. Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
161
|
Lukianova AA, Shneider MM, Evseev PV, Egorov MV, Kasimova AA, Shpirt AM, Shashkov AS, Knirel YA, Kostryukova ES, Miroshnikov KA. Depolymerisation of the Klebsiella pneumoniae Capsular Polysaccharide K21 by Klebsiella Phage K5. Int J Mol Sci 2023; 24:17288. [PMID: 38139119 PMCID: PMC10743669 DOI: 10.3390/ijms242417288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Klebsiella pneumoniae is a pathogen associated with various infection types, which often exhibits multiple antibiotic resistance. Phages, or bacterial viruses, have an ability to specifically target and destroy K. pneumoniae, offering a potential means of combatting multidrug-resistant infections. Phage enzymes are another promising therapeutic agent that can break down bacterial capsular polysaccharide, which shields K. pneumoniae from the immune response and external factors. In this study, Klebsiella phage K5 was isolated; this phage is active against Klebsiella pneumoniae with the capsular type K21. It was demonstrated that the phage can effectively lyse the host culture. The adsorption apparatus of the phage has revealed two receptor-binding proteins (RBPs) with predicted polysaccharide depolymerising activity. A recombinant form of both RBPs was obtained and experiments showed that one of them depolymerised the capsular polysaccharide K21. The structure of this polysaccharide and its degradation fragments were analysed. The second receptor-binding protein showed no activity on capsular polysaccharide of any of the 31 capsule types tested, so the substrate for this enzyme remains to be determined in the future. Klebsiella phage K5 may be considered a useful agent against Klebsiella infections.
Collapse
Affiliation(s)
- Anna A. Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (P.V.E.); (M.V.E.); (K.A.M.)
| | - Mikhail M. Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (P.V.E.); (M.V.E.); (K.A.M.)
| | - Peter V. Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (P.V.E.); (M.V.E.); (K.A.M.)
| | - Mikhail V. Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (P.V.E.); (M.V.E.); (K.A.M.)
| | - Anastasiya A. Kasimova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russia; (A.A.K.); (A.M.S.); (A.S.S.); (Y.A.K.)
| | - Anna M. Shpirt
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russia; (A.A.K.); (A.M.S.); (A.S.S.); (Y.A.K.)
| | - Alexander S. Shashkov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russia; (A.A.K.); (A.M.S.); (A.S.S.); (Y.A.K.)
| | - Yuriy A. Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russia; (A.A.K.); (A.M.S.); (A.S.S.); (Y.A.K.)
| | - Elena S. Kostryukova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya Str. 1, 119435 Moscow, Russia;
| | - Konstantin A. Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (P.V.E.); (M.V.E.); (K.A.M.)
| |
Collapse
|
162
|
Hsieh SY, Savva GM, Telatin A, Tiwari SK, Tariq MA, Newberry F, Seton KA, Booth C, Bansal AS, Wileman T, Adriaenssens EM, Carding SR. Investigating the Human Intestinal DNA Virome and Predicting Disease-Associated Virus-Host Interactions in Severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Int J Mol Sci 2023; 24:17267. [PMID: 38139096 PMCID: PMC10744171 DOI: 10.3390/ijms242417267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Understanding how the human virome, and which of its constituents, contributes to health or disease states is reliant on obtaining comprehensive virome profiles. By combining DNA viromes from isolated virus-like particles (VLPs) and whole metagenomes from the same faecal sample of a small cohort of healthy individuals and patients with severe myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), we have obtained a more inclusive profile of the human intestinal DNA virome. Key features are the identification of a core virome comprising tailed phages of the class Caudoviricetes, and a greater diversity of DNA viruses including extracellular phages and integrated prophages. Using an in silico approach, we predicted interactions between members of the Anaerotruncus genus and unique viruses present in ME/CFS microbiomes. This study therefore provides a framework and rationale for studies of larger cohorts of patients to further investigate disease-associated interactions between the intestinal virome and the bacteriome.
Collapse
Affiliation(s)
- Shen-Yuan Hsieh
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
| | - George M. Savva
- Core Science Resources, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (G.M.S.); (C.B.)
| | - Andrea Telatin
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
| | - Sumeet K. Tiwari
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
| | - Mohammad A. Tariq
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
| | - Fiona Newberry
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
| | - Katharine A. Seton
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
| | - Catherine Booth
- Core Science Resources, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (G.M.S.); (C.B.)
| | | | - Thomas Wileman
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Evelien M. Adriaenssens
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
| | - Simon R. Carding
- Food, Microbiome, and Health Research Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (S.-Y.H.); (A.T.); (S.K.T.); (M.A.T.); (F.N.); (K.A.S.); (T.W.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
163
|
Kallies R, Hu D, Abdulkadir N, Schloter M, Rocha U. Identification of Huge Phages from Wastewater Metagenomes. Viruses 2023; 15:2330. [PMID: 38140571 PMCID: PMC10747093 DOI: 10.3390/v15122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Huge phages have genomes larger than 200 kilobases, which are particularly interesting for their genetic inventory and evolution. We screened 165 wastewater metagenomes for the presence of viral sequences. After identifying over 600 potential huge phage genomes, we reduced the dataset using manual curation by excluding viral contigs that did not contain viral protein-coding genes or consisted of concatemers of several small phage genomes. This dataset showed seven fully annotated huge phage genomes. The phages grouped into distinct phylogenetic clades, likely forming new genera and families. A phylogenomic analysis between our huge phages and phages with smaller genomes, i.e., less than 200 kb, supported the hypothesis that huge phages have undergone convergent evolution. The genomes contained typical phage protein-coding genes, sequential gene cassettes for metabolic pathways, and complete inventories of tRNA genes covering all standard and rare amino acids. Our study showed a pipeline for huge phage analyses that may lead to new enzymes for therapeutic or biotechnological applications.
Collapse
Affiliation(s)
- René Kallies
- Department for Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany; (D.H.); (N.A.)
| | - Die Hu
- Department for Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany; (D.H.); (N.A.)
| | - Nafi’u Abdulkadir
- Department for Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany; (D.H.); (N.A.)
| | - Michael Schloter
- Department of Environmental Health, Helmholtz Munich, Ingolstaedter Landstr. 1, D-85758 Neuherberg, Germany;
| | - Ulisses Rocha
- Department for Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany; (D.H.); (N.A.)
| |
Collapse
|
164
|
Rosani U, Corinaldesi C, Luongo G, Sollitto M, Dal Monego S, Licastro D, Bongiorni L, Venier P, Pallavicini A, Dell’Anno A. Viral Diversity in Benthic Abyssal Ecosystems: Ecological and Methodological Considerations. Viruses 2023; 15:2282. [PMID: 38140524 PMCID: PMC10747316 DOI: 10.3390/v15122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Viruses are the most abundant 'biological entities' in the world's oceans. However, technical and methodological constraints limit our understanding of their diversity, particularly in benthic abyssal ecosystems (>4000 m depth). To verify advantages and limitations of analyzing virome DNA subjected either to random amplification or unamplified, we applied shotgun sequencing-by-synthesis to two sample pairs obtained from benthic abyssal sites located in the North-eastern Atlantic Ocean at ca. 4700 m depth. One amplified DNA sample was also subjected to single-molecule long-read sequencing for comparative purposes. Overall, we identified 24,828 viral Operational Taxonomic Units (vOTUs), belonging to 22 viral families. Viral reads were more abundant in the amplified DNA samples (38.5-49.9%) compared to the unamplified ones (4.4-5.8%), with the latter showing a greater viral diversity and 11-16% of dsDNA viruses almost undetectable in the amplified samples. From a procedural point of view, the viromes obtained by direct sequencing (without amplification step) provided a broader overview of both ss and dsDNA viral diversity. Nevertheless, our results suggest that the contextual use of random amplification of the same sample and long-read technology can improve the assessment of viral assemblages by reducing off-target reads.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy;
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Gabriella Luongo
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Marco Sollitto
- Department of Life Sciences, University of Trieste, Via Licio Giorgeri 5, 34127 Trieste, Italy; (M.S.); (A.P.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| | - Simeone Dal Monego
- Laboratorio di Genomica ed Epigenomica, AREA Scienze Park, Padriciano 99, 34149 Trieste, Italy; (S.D.M.); (D.L.)
| | - Danilo Licastro
- Laboratorio di Genomica ed Epigenomica, AREA Scienze Park, Padriciano 99, 34149 Trieste, Italy; (S.D.M.); (D.L.)
| | - Lucia Bongiorni
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Tesa 104–Arsenale, Castello 2737/F, 30122 Venezia, Italy;
| | - Paola Venier
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy;
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgeri 5, 34127 Trieste, Italy; (M.S.); (A.P.)
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| |
Collapse
|
165
|
Egido JE, Dekker SO, Toner-Bartelds C, Lood C, Rooijakkers SHM, Bardoel BW, Haas PJ. Human Complement Inhibits Myophages against Pseudomonas aeruginosa. Viruses 2023; 15:2211. [PMID: 38005888 PMCID: PMC10674969 DOI: 10.3390/v15112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Therapeutic bacteriophages (phages) are primarily chosen based on their in vitro bacteriolytic activity. Although anti-phage antibodies are known to inhibit phage infection, the influence of other immune system components is less well known. An important anti-bacterial and anti-viral innate immune system that may interact with phages is the complement system, a cascade of proteases that recognizes and targets invading microorganisms. In this research, we aimed to study the effects of serum components such as complement on the infectivity of different phages targeting Pseudomonas aeruginosa. We used a fluorescence-based assay to monitor the killing of P. aeruginosa by phages of different morphotypes in the presence of human serum. Our results reveal that several myophages are inhibited by serum in a concentration-dependent way, while the activity of four podophages and one siphophage tested in this study is not affected by serum. By using specific nanobodies blocking different components of the complement cascade, we showed that activation of the classical complement pathway is a driver of phage inhibition. To determine the mechanism of inhibition, we produced bioorthogonally labeled fluorescent phages to study their binding by means of microscopy and flow cytometry. We show that phage adsorption is hampered in the presence of active complement. Our results indicate that interactions with complement may affect the in vivo activity of therapeutically administered phages. A better understanding of this phenomenon is essential to optimize the design and application of therapeutic phage cocktails.
Collapse
Affiliation(s)
- Julia E. Egido
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Simon O. Dekker
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Catherine Toner-Bartelds
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Cédric Lood
- Laboratory of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
- Centre of Microbial and Plants Genetics, Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Suzan H. M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Bart W. Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Pieter-Jan Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
166
|
Grigson SR, Giles SK, Edwards RA, Papudeshi B. Knowing and Naming: Phage Annotation and Nomenclature for Phage Therapy. Clin Infect Dis 2023; 77:S352-S359. [PMID: 37932119 PMCID: PMC10627814 DOI: 10.1093/cid/ciad539] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Bacteriophages, or phages, are viruses that infect bacteria shaping microbial communities and ecosystems. They have gained attention as potential agents against antibiotic resistance. In phage therapy, lytic phages are preferred for their bacteria killing ability, while temperate phages, which can transfer antibiotic resistance or toxin genes, are avoided. Selection relies on plaque morphology and genome sequencing. This review outlines annotating genomes, identifying critical genomic features, and assigning functional labels to protein-coding sequences. These annotations prevent the transfer of unwanted genes, such as antimicrobial resistance or toxin genes, during phage therapy. Additionally, it covers International Committee on Taxonomy of Viruses (ICTV)-an established phage nomenclature system for simplified classification and communication. Accurate phage genome annotation and nomenclature provide insights into phage-host interactions, replication strategies, and evolution, accelerating our understanding of the diversity and evolution of phages and facilitating the development of phage-based therapies.
Collapse
Affiliation(s)
- Susanna R Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Sarah K Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, Australia
| |
Collapse
|
167
|
Magossi G, Holman DB, Schmidt KN, Hoselton SA, Amat S. Genome sequences of 11 Alkalihalobacillus clausii, Bacillus safensis, and Escherichia coli bacteriophages isolated from bovine rumen and vagina. Microbiol Resour Announc 2023; 12:e0042723. [PMID: 37489918 PMCID: PMC10508124 DOI: 10.1128/mra.00427-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
Here, we present the coding-complete genomes of 11 lytic bacteriophages isolated from bovine ruminal fluid and vaginal swabs that can infect the bacterial hosts Alkalihalobacillus clausii, Bacillus safensis, and Escherichia coli.
Collapse
Affiliation(s)
- Gabriela Magossi
- Department of Microbiological Sciences, NDSU, Fargo, North Dakota, USA
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Kaycie N. Schmidt
- Department of Microbiological Sciences, NDSU, Fargo, North Dakota, USA
| | - Scott A. Hoselton
- Department of Microbiological Sciences, NDSU, Fargo, North Dakota, USA
| | - Samat Amat
- Department of Microbiological Sciences, NDSU, Fargo, North Dakota, USA
| |
Collapse
|
168
|
Margulieux KR, Bird JT, Kevorkian RT, Ellison DW, Nikolich MP, Mzhavia N, Filippov AA. Complete genome sequence of the broad host range Acinetobacter baumannii phage EAb13. Microbiol Resour Announc 2023; 12:e0034123. [PMID: 37607055 PMCID: PMC10508131 DOI: 10.1128/mra.00341-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
We describe the genome of a lytic phage EAb13 isolated from sewage, with broad activity against multidrug-resistant Acinetobacter baumannii. EAb13 is an unclassified siphovirus. Its genome consists of 82,411 bp, with 40.15% GC content, 126 protein-coding sequences, 1 tRNA, and 2,177 bp-long direct terminal repeats.
Collapse
Affiliation(s)
- Katie R. Margulieux
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jordan T. Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Richard T. Kevorkian
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Damon W. Ellison
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mikeljon P. Nikolich
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Nino Mzhavia
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Andrey A. Filippov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
169
|
de Sousa DM, Janssen L, Rosa RB, Belmok A, Yamada JK, Corrêa RFT, de Souza Andrade M, Inoue-Nagata AK, Ribeiro BM, de Carvalho Pontes N. Isolation, characterization, and evaluation of putative new bacteriophages for controlling bacterial spot on tomato in Brazil. Arch Virol 2023; 168:222. [PMID: 37548749 DOI: 10.1007/s00705-023-05846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023]
Abstract
Bacterial spot is a highly damaging tomato disease caused by members of several species of the genus Xanthomonas. Bacteriophages have been studied for their potential use in the biological control of bacterial diseases. In the current study, bacteriophages were obtained from soil and tomato leaves in commercial fields in Brazil with the aim of obtaining biological control agents against bacterial spot. Phage isolation was carried out by co-cultivation with isolates of Xanthomonas euvesicatoria pv. perforans, which was prevalent in the collection areas. In a host range evaluation, none of the phage isolates was able to induce a lytic cycle in all of the bacterial isolates tested. In in vivo tests, treatment of susceptible bacterial isolates with the corresponding phage prior to application to tomato plants led to a reduction in the severity of the resulting disease. The level of disease control provided by phage application was equal to or greater than that achieved using copper hydroxide. Electron microscopy analysis showed that all of the phages had similar morphology, with head and tail structures similar to those of viruses belonging to the class Caudoviricetes. The presence of short, non-contractile tubular tails strongly suggested that these phages belong to the family Autographiviridae. This was confirmed by phylogenetic analysis, which further revealed that they all belong to the genus Pradovirus. The phages described here are closely related to each other and potentially belong to a new species within the genus. These phages will be evaluated in future studies against other tomato xanthomonad strains to assess their potential as biological control agents.
Collapse
Affiliation(s)
- Dayane Maria de Sousa
- Programa de Pós-Graduação em Olericultura, Instituto Federal Goiano (IF Goiano), Morrinhos, GO, Brazil
| | - Luis Janssen
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Raphael Barboza Rosa
- Programa de Pós-Graduação em Olericultura, Instituto Federal Goiano (IF Goiano), Morrinhos, GO, Brazil
| | - Aline Belmok
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Jaqueline Kiyomi Yamada
- Programa de Pós-Graduação em Olericultura, Instituto Federal Goiano (IF Goiano), Morrinhos, GO, Brazil
| | - Roberto Franco Teixeira Corrêa
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Miguel de Souza Andrade
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | | | - Bergmann Morais Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Nadson de Carvalho Pontes
- Programa de Pós-Graduação em Olericultura, Instituto Federal Goiano (IF Goiano), Morrinhos, GO, Brazil.
| |
Collapse
|
170
|
Elek CKA, Brown TL, Le Viet T, Evans R, Baker DJ, Telatin A, Tiwari SK, Al-Khanaq H, Thilliez G, Kingsley RA, Hall LJ, Webber MA, Adriaenssens EM. A hybrid and poly-polish workflow for the complete and accurate assembly of phage genomes: a case study of ten przondoviruses. Microb Genom 2023; 9:mgen001065. [PMID: 37463032 PMCID: PMC10438801 DOI: 10.1099/mgen.0.001065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/17/2023] [Indexed: 07/21/2023] Open
Abstract
Bacteriophages (phages) within the genus Przondovirus are T7-like podoviruses belonging to the subfamily Studiervirinae, within the family Autographiviridae, and have a highly conserved genome organisation. The genomes of these phages range from 37 to 42 kb in size, encode 50-60 genes and are characterised by the presence of direct terminal repeats (DTRs) flanking the linear chromosome. These DTRs are often deleted during short-read-only and hybrid assemblies. Moreover, long-read-only assemblies are often littered with sequencing and/or assembly errors and require additional curation. Here, we present the isolation and characterisation of ten novel przondoviruses targeting Klebsiella spp. We describe HYPPA, a HYbrid and Poly-polish Phage Assembly workflow, which utilises long-read assemblies in combination with short-read sequencing to resolve phage DTRs and correcting errors, negating the need for laborious primer walking and Sanger sequencing validation. Our assembly workflow utilised Oxford Nanopore Technologies for long-read sequencing for its accessibility, making it the more relevant long-read sequencing technology at this time, and Illumina DNA Prep for short-read sequencing, representing the most commonly used technologies globally. Our data demonstrate the importance of careful curation of phage assemblies before publication, and prior to using them for comparative genomics.
Collapse
Affiliation(s)
- Claire K. A. Elek
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Teagan L. Brown
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Thanh Le Viet
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - David J. Baker
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Sumeet K. Tiwari
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Haider Al-Khanaq
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Gaëtan Thilliez
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Robert A. Kingsley
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Lindsay J. Hall
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
- Chair of Intestinal Microbiome, ZIEL—Institute for Food and Health, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mark A. Webber
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
171
|
Bird JT, Margulieux KR, Burke KA, Mzhavia N, Kevorkian RT, Ellison DW, Nikolich MP, Filippov AA. Genome Sequence of Staphylococcus aureus Phage ESa2. Microbiol Resour Announc 2023:e0019223. [PMID: 37338419 DOI: 10.1128/mra.00192-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
We describe the genome of a lytic phage, ESa2, isolated from environmental water and specific for Staphylococcus aureus. ESa2 belongs to the family Herelleviridae and genus Kayvirus. Its genome consists of 141,828 bp, with 30.25% GC content, 253 predicted protein-coding sequences, 3 tRNAs, and 10,130-bp-long terminal repeats.
Collapse
Affiliation(s)
- Jordan T Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Katie R Margulieux
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kevin A Burke
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Nino Mzhavia
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Richard T Kevorkian
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Damon W Ellison
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mikeljon P Nikolich
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Andrey A Filippov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
172
|
Ho SFS, Wheeler NE, Millard AD, van Schaik W. Gauge your phage: benchmarking of bacteriophage identification tools in metagenomic sequencing data. MICROBIOME 2023; 11:84. [PMID: 37085924 PMCID: PMC10120246 DOI: 10.1186/s40168-023-01533-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The prediction of bacteriophage sequences in metagenomic datasets has become a topic of considerable interest, leading to the development of many novel bioinformatic tools. A comparative analysis of ten state-of-the-art phage identification tools was performed to inform their usage in microbiome research. METHODS Artificial contigs generated from complete RefSeq genomes representing phages, plasmids, and chromosomes, and a previously sequenced mock community containing four phage species, were used to evaluate the precision, recall, and F1 scores of the tools. We also generated a dataset of randomly shuffled sequences to quantify false-positive calls. In addition, a set of previously simulated viromes was used to assess diversity bias in each tool's output. RESULTS VIBRANT and VirSorter2 achieved the highest F1 scores (0.93) in the RefSeq artificial contigs dataset, with several other tools also performing well. Kraken2 had the highest F1 score (0.86) in the mock community benchmark by a large margin (0.3 higher than DeepVirFinder in second place), mainly due to its high precision (0.96). Generally, k-mer-based tools performed better than reference similarity tools and gene-based methods. Several tools, most notably PPR-Meta, called a high number of false positives in the randomly shuffled sequences. When analysing the diversity of the genomes that each tool predicted from a virome set, most tools produced a viral genome set that had similar alpha- and beta-diversity patterns to the original population, with Seeker being a notable exception. CONCLUSIONS This study provides key metrics used to assess performance of phage detection tools, offers a framework for further comparison of additional viral discovery tools, and discusses optimal strategies for using these tools. We highlight that the choice of tool for identification of phages in metagenomic datasets, as well as their parameters, can bias the results and provide pointers for different use case scenarios. We have also made our benchmarking dataset available for download in order to facilitate future comparisons of phage identification tools. Video Abstract.
Collapse
Affiliation(s)
- Siu Fung Stanley Ho
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nicole E. Wheeler
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew D. Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|