151
|
Carreté L, Ksiezopolska E, Pegueroles C, Gómez-Molero E, Saus E, Iraola-Guzmán S, Loska D, Bader O, Fairhead C, Gabaldón T. Patterns of Genomic Variation in the Opportunistic Pathogen Candida glabrata Suggest the Existence of Mating and a Secondary Association with Humans. Curr Biol 2017; 28:15-27.e7. [PMID: 29249661 PMCID: PMC5772174 DOI: 10.1016/j.cub.2017.11.027] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/13/2017] [Accepted: 11/09/2017] [Indexed: 12/30/2022]
Abstract
Candida glabrata is an opportunistic fungal pathogen that ranks as the second most common cause of systemic candidiasis. Despite its genus name, this yeast is more closely related to the model yeast Saccharomyces cerevisiae than to other Candida pathogens, and hence its ability to infect humans is thought to have emerged independently. Moreover, C. glabrata has all the necessary genes to undergo a sexual cycle but is considered an asexual organism due to the lack of direct evidence of sexual reproduction. To reconstruct the recent evolution of this pathogen and find footprints of sexual reproduction, we assessed genomic and phenotypic variation across 33 globally distributed C. glabrata isolates. We cataloged extensive copy-number variation, which particularly affects genes encoding cell-wall-associated proteins, including adhesins. The observed level of genetic variation in C. glabrata is significantly higher than that found in Candida albicans. This variation is structured into seven deeply divergent clades, which show recent geographical dispersion and large within-clade genomic and phenotypic differences. We show compelling evidence of recent admixture between differentiated lineages and of purifying selection on mating genes, which provides the first evidence for the existence of an active sexual cycle in this yeast. Altogether, our data point to a recent global spread of previously genetically isolated populations and suggest that humans are only a secondary niche for this yeast. Candida glabrata strains can be clustered into highly genetically divergent clades Genetic structure suggests a recent global spread of previously isolated populations The existence of sex in C. glabrata is supported by genomic footprints of selection Mating-type switching occurs in C. glabrata natural populations but is error prone
Collapse
Affiliation(s)
- Laia Carreté
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Ewa Ksiezopolska
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Cinta Pegueroles
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Emilia Gómez-Molero
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, Göttingen 37075, Germany
| | - Ester Saus
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Susana Iraola-Guzmán
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Damian Loska
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, Göttingen 37075, Germany
| | - Cecile Fairhead
- GQE-Le Moulon, INRA-Université Paris-Sud-CNRS-AgroParisTech, 91400 Orsay, France
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
152
|
Johnston C, Magaret A, Roychoudhury P, Greninger AL, Reeves D, Schiffer J, Jerome KR, Sather C, Diem K, Lingappa JR, Celum C, Koelle DM, Wald A. Dual-strain genital herpes simplex virus type 2 (HSV-2) infection in the US, Peru, and 8 countries in sub-Saharan Africa: A nested cross-sectional viral genotyping study. PLoS Med 2017; 14:e1002475. [PMID: 29281620 PMCID: PMC5744910 DOI: 10.1371/journal.pmed.1002475] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Quantitative estimation of the extent to which the immune system's protective effect against one herpes simplex virus type 2 (HSV-2) infection protects against infection with additional HSV-2 strains is important for understanding the potential for HSV-2 vaccine development. Using viral genotyping, we estimated the prevalence of HSV-2 dual-strain infection and identified risk factors. METHODS AND FINDINGS People with and without HIV infection participating in HSV-2 natural history studies (University of Washington Virology Research Clinic) and HIV prevention trials (HIV Prevention Trials Network 039 and Partners in Prevention HSV/HIV Transmission Study) in the US, Africa, and Peru with 2 genital specimens each containing ≥105 copies herpes simplex virus DNA/ml collected a median of 5 months apart (IQR: 2-11 months) were included. It is unlikely that 2 strains would be detected in the same sample simultaneously; therefore, 2 samples were required to detect dual-strain infection. We identified 85 HSV-2 SNPs that, in aggregate, could determine whether paired HSV-2 strains were the same or different with >90% probability. These SNPs were then used to create a customized high-throughput array-based genotyping assay. Participants were considered to be infected with more than 1 strain of HSV-2 if their samples differed by ≥5 SNPs between the paired samples, and dual-strain infection was confirmed using high-throughput sequencing (HTS). We genotyped pairs of genital specimens from 459 people; 213 (46%) were men, the median age was 34 years (IQR: 27-44), and 130 (28%) were HIV seropositive. Overall, 272 (59%) people were from the US, 59 (13%) were from Peru, and 128 (28%) were from 8 countries in Africa. Of the 459 people, 18 (3.9%) met the criteria for dual-strain infection. HTS and phylogenetic analysis of paired specimens confirmed shedding of 2 distinct HSV-2 strains collected at different times in 17 pairs, giving an estimated dual-strain infection prevalence of 3.7% (95% CI = 2.0%-5.4%). Paired samples with dual-strain infection differed by a median of 274 SNPs in the UL_US region (range 129-413). Matching our observed dual-strain infection frequency to simulated data of varying prevalences and allowing only 2 samples per person, we inferred the true prevalence of dual-strain infection to be 7%. In multivariable analysis, controlling for HIV status and continent of origin, people from Africa had a higher risk for dual-strain infection (risk ratio [RR] = 9.20, 95% CI = 2.05-41.32), as did people who were HIV seropositive (RR = 4.06, 95% CI = 1.42-11.56). CONCLUSIONS HSV-2 dual-strain infection was detected in 3.7% of paired samples from individual participants, and was more frequent among people with HIV infection. Simulations suggest that the true prevalence of dual-strain infection is 7%. Our data indicate that naturally occurring immunity to HSV-2 may be protective against infection with a second strain. This study is limited by the inability to determine the timing of acquisition of the second strain.
Collapse
Affiliation(s)
- Christine Johnston
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| | - Amalia Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Alexander L. Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Daniel Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Joshua Schiffer
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Cassandra Sather
- Genomics and Bioinformatics Resource, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Kurt Diem
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Jairam R. Lingappa
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Connie Celum
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
153
|
Mortimer TD, Annis DS, O’Neill MB, Bohr LL, Smith TM, Poinar HN, Mosher DF, Pepperell CS. Adaptation in a Fibronectin Binding Autolysin of Staphylococcus saprophyticus. mSphere 2017; 2:e00511-17. [PMID: 29202045 PMCID: PMC5705806 DOI: 10.1128/msphere.00511-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Human-pathogenic bacteria are found in a variety of niches, including free-living, zoonotic, and microbiome environments. Identifying bacterial adaptations that enable invasive disease is an important means of gaining insight into the molecular basis of pathogenesis and understanding pathogen emergence. Staphylococcus saprophyticus, a leading cause of urinary tract infections, can be found in the environment, food, animals, and the human microbiome. We identified a selective sweep in the gene encoding the Aas adhesin, a key virulence factor that binds host fibronectin. We hypothesize that the mutation under selection (aas_2206A>C) facilitates colonization of the urinary tract, an environment where bacteria are subject to strong shearing forces. The mutation appears to have enabled emergence and expansion of a human-pathogenic lineage of S. saprophyticus. These results demonstrate the power of evolutionary genomic approaches in discovering the genetic basis of virulence and emphasize the pleiotropy and adaptability of bacteria occupying diverse niches. IMPORTANCEStaphylococcus saprophyticus is an important cause of urinary tract infections (UTI) in women; such UTI are common, can be severe, and are associated with significant impacts to public health. In addition to being a cause of human UTI, S. saprophyticus can be found in the environment, in food, and associated with animals. After discovering that UTI strains of S. saprophyticus are for the most part closely related to each other, we sought to determine whether these strains are specially adapted to cause disease in humans. We found evidence suggesting that a mutation in the gene aas is advantageous in the context of human infection. We hypothesize that the mutation allows S. saprophyticus to survive better in the human urinary tract. These results show how bacteria found in the environment can evolve to cause disease.
Collapse
Affiliation(s)
- Tatum D. Mortimer
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Douglas S. Annis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Mary B. O’Neill
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Lindsey L. Bohr
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Tracy M. Smith
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Diseases, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Hendrik N. Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Caitlin S. Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Diseases, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
154
|
Zielezinski A, Vinga S, Almeida J, Karlowski WM. Alignment-free sequence comparison: benefits, applications, and tools. Genome Biol 2017; 18:186. [PMID: 28974235 PMCID: PMC5627421 DOI: 10.1186/s13059-017-1319-7] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Alignment-free sequence analyses have been applied to problems ranging from whole-genome phylogeny to the classification of protein families, identification of horizontally transferred genes, and detection of recombined sequences. The strength of these methods makes them particularly useful for next-generation sequencing data processing and analysis. However, many researchers are unclear about how these methods work, how they compare to alignment-based methods, and what their potential is for use for their research. We address these questions and provide a guide to the currently available alignment-free sequence analysis tools.
Collapse
Affiliation(s)
- Andrzej Zielezinski
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| | - Susana Vinga
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Jonas Almeida
- Stony Brook University (SUNY), 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Wojciech M Karlowski
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland.
| |
Collapse
|
155
|
Johnston C, Magaret A, Roychoudhury P, Greninger AL, Cheng A, Diem K, Fitzgibbon MP, Huang ML, Selke S, Lingappa JR, Celum C, Jerome KR, Wald A, Koelle DM. Highly conserved intragenic HSV-2 sequences: Results from next-generation sequencing of HSV-2 U L and U S regions from genital swabs collected from 3 continents. Virology 2017; 510:90-98. [PMID: 28711653 PMCID: PMC5565707 DOI: 10.1016/j.virol.2017.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Understanding the variability in circulating herpes simplex virus type 2 (HSV-2) genomic sequences is critical to the development of HSV-2 vaccines. METHODS Genital lesion swabs containing ≥ 107log10 copies HSV DNA collected from Africa, the USA, and South America underwent next-generation sequencing, followed by K-mer based filtering and de novo genomic assembly. Sites of heterogeneity within coding regions in unique long and unique short (UL_US) regions were identified. Phylogenetic trees were created using maximum likelihood reconstruction. RESULTS Among 46 samples from 38 persons, 1468 intragenic base-pair substitutions were identified. The maximum nucleotide distance between strains for concatenated UL_US segments was 0.4%. Phylogeny did not reveal geographic clustering. The most variable proteins had non-synonymous mutations in < 3% of amino acids. CONCLUSIONS Unenriched HSV-2 DNA can undergo next-generation sequencing to identify intragenic variability. The use of clinical swabs for sequencing expands the information that can be gathered directly from these specimens.
Collapse
Affiliation(s)
- Christine Johnston
- Department of Medicine, University of Washington, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, USA.
| | - Amalia Magaret
- Department of Laboratory Medicine, University of Washington, USA; Department of Biostatistics, University of Washington, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, USA
| | | | | | - Anqi Cheng
- Department of Biostatistics, University of Washington, USA
| | - Kurt Diem
- Department of Laboratory Medicine, University of Washington, USA
| | - Matthew P Fitzgibbon
- Genomics and Bioinformatics Resource, Fred Hutchinson Cancer Research Center, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, USA
| | - Stacy Selke
- Department of Laboratory Medicine, University of Washington, USA
| | - Jairam R Lingappa
- Department of Medicine, University of Washington, USA; Department of Global Health, University of Washington, USA; Department of Pediatrics, University of Washington, USA
| | - Connie Celum
- Department of Medicine, University of Washington, USA; Department of Epidemiology, University of Washington, USA; Department of Global Health, University of Washington, USA
| | - Keith R Jerome
- Department of Laboratory Medicine, University of Washington, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, USA
| | - Anna Wald
- Department of Medicine, University of Washington, USA; Department of Laboratory Medicine, University of Washington, USA; Department of Epidemiology, University of Washington, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, USA
| | - David M Koelle
- Department of Medicine, University of Washington, USA; Department of Laboratory Medicine, University of Washington, USA; Department of Global Health, University of Washington, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, USA; Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
156
|
Draft Genome Sequence of Marinobacter vinifirmus Type Strain FB1. GENOME ANNOUNCEMENTS 2017; 5:5/39/e01058-17. [PMID: 28963221 PMCID: PMC5624767 DOI: 10.1128/genomea.01058-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gammaproteobacterium Marinobacter vinifirmus is associated with moderately saline environments and is often found in marine ecosystems. Here, we report the draft genome sequence of M. vinifirmus type strain FB1 (3.8 Mbp, 3,588 predicted genes). The presented sequence will improve our understanding of the taxonomy and evolution of the genus Marinobacter.
Collapse
|
157
|
XCAVATOR: accurate detection and genotyping of copy number variants from second and third generation whole-genome sequencing experiments. BMC Genomics 2017; 18:747. [PMID: 28934930 PMCID: PMC5609061 DOI: 10.1186/s12864-017-4137-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/11/2017] [Indexed: 11/10/2022] Open
Abstract
Background We developed a novel software package, XCAVATOR, for the identification of genomic regions involved in copy number variants/alterations (CNVs/CNAs) from short and long reads whole-genome sequencing experiments. Results By using simulated and real datasets we showed that our tool, based on read count approach, is capable to predict the boundaries and the absolute number of DNA copies CNVs/CNAs with high resolutions. To demonstrate the power of our software we applied it to the analysis Illumina and Pacific Bioscencies data and we compared its performance to other ten state of the art tools. Conclusion All the analyses we performed demonstrate that XCAVATOR is capable to detect germline and somatic CNVs/CNAs outperforming all the other tools we compared. XCAVATOR is freely available at http://sourceforge.net/projects/xcavator/. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4137-0) contains supplementary material, which is available to authorized users.
Collapse
|
158
|
Kwon T, Chung SY, Jung YH, Jung SJ, Roh SG, Park JS, Kim CH, Kim W, Bak YS, Cho SH. Comparative genomic analysis and characteristics of NCCP15740, the major type of enterotoxigenic Escherichia coli in Korea. Gut Pathog 2017; 9:55. [PMID: 28943892 PMCID: PMC5607484 DOI: 10.1186/s13099-017-0204-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/08/2017] [Indexed: 02/03/2023] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) cause infectious diarrhea and diarrheal death. However, the genetic properties of pathogenic strains vary spatially and temporally, making prevention and treatment difficult. In this study, the genomic features of the major type of ETEC in Korea from 2003 to 2011 were examined by whole-genome sequencing of strain NCCP15740, and a comparative genomic analysis was performed with O6 reference strains. Results The assembled genome size of NCCP15740 was 4,795,873 bp with 50.54% G+C content. Using rapid annotation using subsystem technology analysis, we predicted 4492 ORFs and 17 RNA genes. NCCP15740 was investigated for enterotoxin genes, colonization factor (CF) genes, serotype, multilocus sequence typing (MLST) profiles, and classical and nonclassical virulence factors. NCCP15740 belonged to the O6:H16 serotype and possessed enterotoxin genes encoding heat-stable toxin (STh) and heat-labile toxin (LT); 87.5% of the O6 serotype strains possessed both toxin types. NCCP15740 carried the colonization factors CS2 and CS3, whereas most O6 strains carried CS2-CS3-CS21 (79.2%). NCCP15740 harbored fewer virulence factors (59.4%) than the average observed in other O6 strains (62.0%). Interestingly, NCCP15740 did not harbor any nonclassical virulence genes. Conclusions The major type of ETEC in Korea had the same MLST sequence type as that of isolates from the USA obtained in 2011 and 2014, but had different colonization factor types and virulence profiles. These results provide important information for the development of an ETEC vaccine candidate. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0204-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taesoo Kwon
- Interdisciplinary Program in Bioinformatics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Si-Yun Chung
- Interdisciplinary Program in Bioinformatics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Young-Hee Jung
- Department of Biotechnology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Su-Jin Jung
- Department of Dental Hygiene, College of Medical Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon-Metropolitan City, 35365 Republic of Korea
| | - Sang-Gyun Roh
- Department of Emergency Medical Services, Sun Moon University, Asan, Chungcheongnam-do 31460 Republic of Korea
| | - Je-Seop Park
- Fire Science Laboratory, National Fire Service Academy, Asan, Chungcheongnam-do 31555 Republic of Korea
| | - Cheorl-Ho Kim
- Glycobiology Unit, Department of Biological Science, Sungkyunkwan University and Samsung Advanced Institute for Health Sciences and Technology (SAIHST), 2066 Seobu-ro, Suwon, 16419 Republic of Korea
| | - Won Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Young-Seok Bak
- Department of Emergency Medical Services, Sun Moon University, Asan, Chungcheongnam-do 31460 Republic of Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| |
Collapse
|
159
|
Reinert K, Dadi TH, Ehrhardt M, Hauswedell H, Mehringer S, Rahn R, Kim J, Pockrandt C, Winkler J, Siragusa E, Urgese G, Weese D. The SeqAn C++ template library for efficient sequence analysis: A resource for programmers. J Biotechnol 2017; 261:157-168. [PMID: 28888961 DOI: 10.1016/j.jbiotec.2017.07.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND The use of novel algorithmic techniques is pivotal to many important problems in life science. For example the sequencing of the human genome (Venter et al., 2001) would not have been possible without advanced assembly algorithms and the development of practical BWT based read mappers have been instrumental for NGS analysis. However, owing to the high speed of technological progress and the urgent need for bioinformatics tools, there was a widening gap between state-of-the-art algorithmic techniques and the actual algorithmic components of tools that are in widespread use. We previously addressed this by introducing the SeqAn library of efficient data types and algorithms in 2008 (Döring et al., 2008). RESULTS The SeqAn library has matured considerably since its first publication 9 years ago. In this article we review its status as an established resource for programmers in the field of sequence analysis and its contributions to many analysis tools. CONCLUSIONS We anticipate that SeqAn will continue to be a valuable resource, especially since it started to actively support various hardware acceleration techniques in a systematic manner.
Collapse
Affiliation(s)
- Knut Reinert
- Algorithmic Bioinformatics, Institute for Bioinformatics, FU Berlin, Takustrasse 9, 14195 Berlin, Germany.
| | - Temesgen Hailemariam Dadi
- Algorithmic Bioinformatics, Institute for Bioinformatics, FU Berlin, Takustrasse 9, 14195 Berlin, Germany
| | - Marcel Ehrhardt
- Algorithmic Bioinformatics, Institute for Bioinformatics, FU Berlin, Takustrasse 9, 14195 Berlin, Germany
| | - Hannes Hauswedell
- Algorithmic Bioinformatics, Institute for Bioinformatics, FU Berlin, Takustrasse 9, 14195 Berlin, Germany
| | - Svenja Mehringer
- Algorithmic Bioinformatics, Institute for Bioinformatics, FU Berlin, Takustrasse 9, 14195 Berlin, Germany
| | - René Rahn
- Algorithmic Bioinformatics, Institute for Bioinformatics, FU Berlin, Takustrasse 9, 14195 Berlin, Germany
| | - Jongkyu Kim
- Efficient Algorithms for -Omics Data, Max Planck Institute for Molecular Genetics, Ihnestrasse 62-73, 14195 Berlin, Germany
| | - Christopher Pockrandt
- Efficient Algorithms for -Omics Data, Max Planck Institute for Molecular Genetics, Ihnestrasse 62-73, 14195 Berlin, Germany
| | - Jörg Winkler
- Efficient Algorithms for -Omics Data, Max Planck Institute for Molecular Genetics, Ihnestrasse 62-73, 14195 Berlin, Germany
| | | | - Gianvito Urgese
- Department of Control and Computer Engineering, Politecnico di Torino, Italy
| | | |
Collapse
|
160
|
Gerlach RG, Walter S, McClelland M, Schmidt C, Steglich M, Prager R, Bender JK, Fuchs S, Schoerner C, Rabsch W, Lang W, Jantsch J. Comparative whole genome analysis of three consecutive Salmonella diarizonae isolates. Int J Med Microbiol 2017; 307:542-551. [PMID: 28939438 DOI: 10.1016/j.ijmm.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/03/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022] Open
Abstract
Infections of very young children or immunocompromised people with Salmonella of higher subspecies are a well-known phenomenon often associated with contact to cold-blooded animals. We describe the molecular characterization of three S. enterica subsp. diarizonae strains, isolated consecutively over a period of several months from a hospital patient suffering from diarrhea and sepsis with fatal outcome. With the initial isolate the first complete genome sequence of a member of subsp. diarizonae is provided and based on this reference we revealed the genomic differences between the three isolates by use of next-generation sequencing and confirmed by phenotypical tests. Genome comparisons revealed mutations within gpt, hfq and purK in the first isolate as a sign of clonal variation rather than host-directed evolution. Furthermore, our work demonstrates that S. enterica subsp. diarizonae possess, besides a conserved set of known Salmonella Pathogenicity Islands, a variable portfolio of additional genomic islands of unknown function.
Collapse
Affiliation(s)
- Roman G Gerlach
- Project Group 5, Robert Koch Institute, Wernigerode, Germany.
| | - Steffi Walter
- Project Group 5, Robert Koch Institute, Wernigerode, Germany
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, USA
| | | | - Matthias Steglich
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Rita Prager
- National Reference Centre for Salmonella and other Enteric Bacterial Pathogens and Division of Enteropathogenic Bacteria and Legionella, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Jennifer K Bender
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Stephan Fuchs
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Christoph Schoerner
- Institute of Microbiology - Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Rabsch
- National Reference Centre for Salmonella and other Enteric Bacterial Pathogens and Division of Enteropathogenic Bacteria and Legionella, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Werner Lang
- Department of Vascular Surgery, University Hospital Erlangen and Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
| |
Collapse
|
161
|
Abdad MY, Abdallah RA, Karkouri KE, Beye M, Stenos J, Owen H, Unsworth N, Robertson I, Blacksell SD, Nguyen TT, Nappez C, Raoult D, Fenwick S, Fournier PE. Rickettsia gravesii sp. nov.: a novel spotted fever group rickettsia in Western Australian Amblyomma triguttatum triguttatum ticks. Int J Syst Evol Microbiol 2017; 67:3156-3161. [PMID: 28857025 DOI: 10.1099/ijsem.0.001865] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A rickettsial organism harboured by Amblyomma triguttatum ticks on Barrow Island, Western Australia, was discovered after reports of possible rickettsiosis among local workers. Subsequent isolation of this rickettsia (strain BWI-1) in cell culture and analysis of its phylogenetic, genotypic and phenotypic relationships with type strains of Rickettsia species with standing in nomenclature suggested that it was sufficiently divergent to warrant its classification as a new species. Multiple gene comparison of strain BWI-1 revealed degrees of sequence similarity with Rickettsia raoultii, its closest relative, of 99.58, 98.89, 97.03, 96.93 and 95.73 % for the 16S rRNA, citrate synthase, ompA, ompB and sca4 genes, respectively. Serotyping in mice also demonstrated that strain BWI-1T was distinct from Rickettsia raoultii. Thus, we propose the naming of a new species, Rickettsia gravesii sp. nov., based on its novel genotypic and phenotypic characteristics. Strain BWI-1T was deposited in the ATCC, CSUR and ARRL collections under reference numbers VR-1664, CSUR R172 and RGBWI-1, respectively.
Collapse
Affiliation(s)
- Mohammad Y Abdad
- School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch 6150, Western Australia, Australia.,Australian Rickettsial Reference Laboratory, Barwon Biomedical Research, Geelong Hospital, Bellerine Street, Geelong 3220, Victoria, Australia
| | - Rita Abou Abdallah
- URMITE, Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095 IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille cedex 05, France
| | - Khalid El Karkouri
- URMITE, Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095 IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille cedex 05, France
| | - Mamadou Beye
- URMITE, Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095 IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille cedex 05, France
| | - John Stenos
- Australian Rickettsial Reference Laboratory, Barwon Biomedical Research, Geelong Hospital, Bellerine Street, Geelong 3220, Victoria, Australia
| | - Helen Owen
- School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch 6150, Western Australia, Australia
| | - Nathan Unsworth
- Australian Rickettsial Reference Laboratory, Barwon Biomedical Research, Geelong Hospital, Bellerine Street, Geelong 3220, Victoria, Australia.,Defense Science and Technology Group, Land Division, 506 Lorimer St. Fishermans Bend, Victoria, Australia
| | - Ian Robertson
- School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch 6150, Western Australia, Australia
| | - Stuart D Blacksell
- Mahidol-Oxford Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Churchill Hospital, University of Oxford, Oxford, UK
| | - Thi-Tien Nguyen
- URMITE, Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095 IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille cedex 05, France
| | - Claude Nappez
- URMITE, Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095 IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille cedex 05, France
| | - Didier Raoult
- URMITE, Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095 IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille cedex 05, France
| | - Stan Fenwick
- School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch 6150, Western Australia, Australia
| | - Pierre-Edouard Fournier
- Centre National de Référence des Rickettsia, Coxiella et Bartonella, Faculté de Médecine, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille cedex 05, France.,URMITE, Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095 IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille cedex 05, France
| |
Collapse
|
162
|
Hansen TA, Bartels MD, Høgh SV, Dons LE, Pedersen M, Jensen TG, Kemp M, Skov MN, Gumpert H, Worning P, Westh H. Whole Genome Sequencing of Danish Staphylococcus argenteus Reveals a Genetically Diverse Collection with Clear Separation from Staphylococcus aureus. Front Microbiol 2017; 8:1512. [PMID: 28848522 PMCID: PMC5552656 DOI: 10.3389/fmicb.2017.01512] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/27/2017] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus argenteus (S. argenteus) is a newly identified Staphylococcus species that has been misidentified as Staphylococcus aureus (S. aureus) and is clinically relevant. We identified 25 S. argenteus genomes in our collection of whole genome sequenced S. aureus. These genomes were compared to publicly available genomes and a phylogeny revealed seven clusters corresponding to seven clonal complexes. The genome of S. argenteus was found to be different from the genome of S. aureus and a core genome analysis showed that ~33% of the total gene pool was shared between the two species, at 90% homology level. An assessment of mobile elements shows flow of SCCmec cassettes, plasmids, phages, and pathogenicity islands, between S. argenteus and S. aureus. This dataset emphasizes that S. argenteus and S. aureus are two separate species that share genetic material.
Collapse
Affiliation(s)
- Thomas A Hansen
- Department of Clinical Microbiology, Hvidovre University HospitalHvidovre, Denmark
| | - Mette D Bartels
- Department of Clinical Microbiology, Hvidovre University HospitalHvidovre, Denmark
| | - Silje V Høgh
- Department of Clinical Microbiology, Odense University HospitalOdense, Denmark
| | - Lone E Dons
- Department of Clinical Microbiology, Hvidovre University HospitalHvidovre, Denmark.,Department of Technology, Faculty of Health and Technology, Metropolitan University CollegeCopenhagen, Denmark
| | - Michael Pedersen
- Department of Clinical Microbiology, Herlev University HospitalHerlev, Denmark
| | - Thøger G Jensen
- Department of Clinical Microbiology, Odense University HospitalOdense, Denmark
| | - Michael Kemp
- Department of Clinical Microbiology, Odense University HospitalOdense, Denmark
| | - Marianne N Skov
- Department of Clinical Microbiology, Odense University HospitalOdense, Denmark
| | - Heidi Gumpert
- Department of Clinical Microbiology, Hvidovre University HospitalHvidovre, Denmark
| | - Peder Worning
- Department of Clinical Microbiology, Hvidovre University HospitalHvidovre, Denmark
| | - Henrik Westh
- Department of Clinical Microbiology, Hvidovre University HospitalHvidovre, Denmark.,Institute of Clinical Medicine, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
163
|
Transcriptional Variation of Diverse Enteropathogenic Escherichia coli Isolates under Virulence-Inducing Conditions. mSystems 2017; 2:mSystems00024-17. [PMID: 28766584 PMCID: PMC5527300 DOI: 10.1128/msystems.00024-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/06/2017] [Indexed: 12/23/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) bacteria are a diverse group of pathogens that cause moderate to severe diarrhea in young children in developing countries. EPEC isolates can be further subclassified as typical EPEC (tEPEC) isolates that contain the bundle-forming pilus (BFP) or as atypical EPEC (aEPEC) isolates that do not contain BFP. Comparative genomics studies have recently highlighted the considerable genomic diversity among EPEC isolates. In the current study, we used RNA sequencing (RNA-Seq) to characterize the global transcriptomes of eight tEPEC isolates representing the identified genomic diversity, as well as one aEPEC isolate. The global transcriptomes were determined for the EPEC isolates under conditions of laboratory growth that are known to induce expression of virulence-associated genes. The findings demonstrate that unique genes of EPEC isolates from diverse phylogenomic lineages contribute to variation in their global transcriptomes. There were also phylogroup-specific differences in the global transcriptomes, including genes involved in iron acquisition, which had significant differential expression in the EPEC isolates belonging to phylogroup B2. Also, three EPEC isolates from the same phylogenomic lineage (EPEC8) had greater levels of similarity in their genomic content and exhibited greater similarities in their global transcriptomes than EPEC from other lineages; however, even among closely related isolates there were isolate-specific differences among their transcriptomes. These findings highlight the transcriptional variability that correlates with the previously unappreciated genomic diversity of EPEC. IMPORTANCE Recent studies have demonstrated that there is considerable genomic diversity among EPEC isolates; however, it is unknown if this genomic diversity leads to differences in their global transcription. This study used RNA-Seq to compare the global transcriptomes of EPEC isolates from diverse phylogenomic lineages. We demonstrate that there are lineage- and isolate-specific differences in the transcriptomes of genomically diverse EPEC isolates during growth under in vitro virulence-inducing conditions. This study addressed biological variation among isolates of a single pathovar in an effort to demonstrate that while each of these isolates is considered an EPEC isolate, there is significant transcriptional diversity among members of this pathovar. Future studies should consider whether this previously undescribed transcriptional variation may play a significant role in isolate-specific variability of EPEC clinical presentations.
Collapse
|
164
|
Tsang AKL, Lee HH, Yiu SM, Lau SKP, Woo PCY. Failure of phylogeny inferred from multilocus sequence typing to represent bacterial phylogeny. Sci Rep 2017; 7:4536. [PMID: 28674428 PMCID: PMC5495804 DOI: 10.1038/s41598-017-04707-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/18/2017] [Indexed: 11/09/2022] Open
Abstract
Although multilocus sequence typing (MLST) is highly discriminatory and useful for outbreak investigations and epidemiological surveillance, it has always been controversial whether clustering and phylogeny inferred from the MLST gene loci can represent the real phylogeny of bacterial strains. In this study, we compare the phylogenetic trees constructed using three approaches, (1) concatenated blocks of homologous sequence shared between the bacterial genomes, (2) genome single-nucleotide polymorphisms (SNP) profile and (3) concatenated nucleotide sequences of gene loci in the corresponding MLST schemes, for 10 bacterial species with >30 complete genome sequences available. Major differences in strain clustering at more than one position were observed between the phylogeny inferred using genome/SNP data and MLST for all 10 bacterial species. Shimodaira-Hasegawa test revealed significant difference between the topologies of the genome and MLST trees for nine of the 10 bacterial species, and significant difference between the topologies of the SNP and MLST trees were present for all 10 bacterial species. Matching Clusters and R-F Clusters metrics showed that the distances between the genome/SNP and MLST trees were larger than those between the SNP and genome trees. Phylogeny inferred from MLST failed to represent genome phylogeny with the same bacterial species.
Collapse
Affiliation(s)
- Alan K L Tsang
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hwei Huih Lee
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Siu-Ming Yiu
- Department of Computer Science, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Research Centre of Infection and Immunology, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Carol Yu Centre for Infection, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Research Centre of Infection and Immunology, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Carol Yu Centre for Infection, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
165
|
Xu C, Jiao C, Sun H, Cai X, Wang X, Ge C, Zheng Y, Liu W, Sun X, Xu Y, Deng J, Zhang Z, Huang S, Dai S, Mou B, Wang Q, Fei Z, Wang Q. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat Commun 2017; 8:15275. [PMID: 28537264 PMCID: PMC5458060 DOI: 10.1038/ncomms15275] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/07/2017] [Indexed: 01/21/2023] Open
Abstract
Spinach is an important leafy vegetable enriched with multiple necessary nutrients. Here we report the draft genome sequence of spinach (Spinacia oleracea, 2n=12), which contains 25,495 protein-coding genes. The spinach genome is highly repetitive with 74.4% of its content in the form of transposable elements. No recent whole genome duplication events are observed in spinach. Genome syntenic analysis between spinach and sugar beet suggests substantial inter- and intra-chromosome rearrangements during the Caryophyllales genome evolution. Transcriptome sequencing of 120 cultivated and wild spinach accessions reveals more than 420 K variants. Our data suggests that S. turkestanica is likely the direct progenitor of cultivated spinach and spinach domestication has a weak bottleneck. We identify 93 domestication sweeps in the spinach genome, some of which are associated with important agronomic traits including bolting, flowering and leaf numbers. This study offers insights into spinach evolution and domestication and provides resources for spinach research and improvement. Spinach is an economically important vegetable crop but previous genomic resources were of limited use for comparative and functional analyses. Here, Xu et al. present a high quality draft spinach genome and transcriptome data for multiple Spinacia accessions providing insight into Caryophyllales genome evolution.
Collapse
Affiliation(s)
- Chenxi Xu
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | - Honghe Sun
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | - Xiaofeng Cai
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoli Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chenhui Ge
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yi Zheng
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | - Wenli Liu
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | - Xuepeng Sun
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | - Yimin Xu
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | - Jie Deng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhonghua Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sanwen Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaojun Dai
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Beiquan Mou
- USDA-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, California 93905, USA
| | - Quanxi Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhangjun Fei
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.,Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA.,USDA-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Quanhua Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
166
|
Leimbach A, Poehlein A, Vollmers J, Görlich D, Daniel R, Dobrindt U. No evidence for a bovine mastitis Escherichia coli pathotype. BMC Genomics 2017; 18:359. [PMID: 28482799 PMCID: PMC5422975 DOI: 10.1186/s12864-017-3739-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/27/2017] [Indexed: 11/30/2022] Open
Abstract
Background Escherichia coli bovine mastitis is a disease of significant economic importance in the dairy industry. Molecular characterization of mastitis-associated E. coli (MAEC) did not result in the identification of common traits. Nevertheless, a mammary pathogenic E. coli (MPEC) pathotype has been proposed suggesting virulence traits that differentiate MAEC from commensal E. coli. The present study was designed to investigate the MPEC pathotype hypothesis by comparing the genomes of MAEC and commensal bovine E. coli. Results We sequenced the genomes of eight E. coli isolated from bovine mastitis cases and six fecal commensal isolates from udder-healthy cows. We analyzed the phylogenetic history of bovine E. coli genomes by supplementing this strain panel with eleven bovine-associated E. coli from public databases. The majority of the isolates originate from phylogroups A and B1, but neither MAEC nor commensal strains could be unambiguously distinguished by phylogenetic lineage. The gene content of both MAEC and commensal strains is highly diverse and dominated by their phylogenetic background. Although individual strains carry some typical E. coli virulence-associated genes, no traits important for pathogenicity could be specifically attributed to MAEC. Instead, both commensal strains and MAEC have very few gene families enriched in either pathotype. Only the aerobactin siderophore gene cluster was enriched in commensal E. coli within our strain panel. Conclusions This is the first characterization of a phylogenetically diverse strain panel including several MAEC and commensal isolates. With our comparative genomics approach we could not confirm previous studies that argue for a positive selection of specific traits enabling MAEC to elicit bovine mastitis. Instead, MAEC are facultative and opportunistic pathogens recruited from the highly diverse bovine gastrointestinal microbiota. Virulence-associated genes implicated in mastitis are a by-product of commensalism with the primary function to enhance fitness in the bovine gastrointestinal tract. Therefore, we put the definition of the MPEC pathotype into question and suggest to designate corresponding isolates as MAEC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3739-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Leimbach
- Institute of Hygiene, University of Münster, Mendelstrasse 7, 48149, Münster, Germany. .,Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany. .,Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany.
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - John Vollmers
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Mendelstrasse 7, 48149, Münster, Germany. .,Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany.
| |
Collapse
|
167
|
Pérez-Zamorano B, Vallebueno-Estrada M, Martínez González J, García Cook A, Montiel R, Vielle-Calzada JP, Delaye L. Organellar Genomes from a ∼5,000-Year-Old Archaeological Maize Sample Are Closely Related to NB Genotype. Genome Biol Evol 2017; 9:904-915. [PMID: 28338960 PMCID: PMC5387994 DOI: 10.1093/gbe/evx048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
The story of how preColumbian civilizations developed goes hand-in-hand with the process of plant domestication by Mesoamerican inhabitants. Here, we present the almost complete sequence of a mitochondrial genome and a partial chloroplast genome from an archaeological maize sample collected at the Valley of Tehuacán, México. Accelerator mass spectrometry dated the maize sample to be 5,040–5,300 years before present (95% probability). Phylogenetic analysis of the mitochondrial genome shows that the archaeological sample branches basal to the other Zea mays genomes, as expected. However, this analysis also indicates that fertile genotype NB is closely related to the archaeological maize sample and evolved before cytoplasmic male sterility genotypes (CMS-S, CMS-T, and CMS-C), thus contradicting previous phylogenetic analysis of mitochondrial genomes from maize. We show that maximum-likelihood infers a tree where CMS genotypes branch at the base of the tree when including sites that have a relative fast rate of evolution thus suggesting long-branch attraction. We also show that Bayesian analysis infer a topology where NB and the archaeological maize sample are at the base of the tree even when including faster sites. We therefore suggest that previous trees suffered from long-branch attraction. We also show that the phylogenetic analysis of the ancient chloroplast is congruent with genotype NB to be more closely related to the archaeological maize sample. As shown here, the inclusion of ancient genomes on phylogenetic trees greatly improves our understanding of the domestication process of maize, one of the most important crops worldwide.
Collapse
Affiliation(s)
| | - Miguel Vallebueno-Estrada
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato, México
| | | | - Angel García Cook
- Instituto Nacional de Antropología e Historia, Ciudad de México, CDMX, México
| | - Rafael Montiel
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato, México
| | - Jean-Philippe Vielle-Calzada
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato, México
| | - Luis Delaye
- Departamento de Ingeniería Genética, CINVESTAV Irapuato, Guanajuato, México
| |
Collapse
|
168
|
Agrawal S, Arze C, Adkins RS, Crabtree J, Riley D, Vangala M, Galens K, Fraser CM, Tettelin H, White O, Angiuoli SV, Mahurkar A, Fricke WF. CloVR-Comparative: automated, cloud-enabled comparative microbial genome sequence analysis pipeline. BMC Genomics 2017; 18:332. [PMID: 28449639 PMCID: PMC5408420 DOI: 10.1186/s12864-017-3717-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/21/2017] [Indexed: 11/11/2022] Open
Abstract
Background The benefit of increasing genomic sequence data to the scientific community depends on easy-to-use, scalable bioinformatics support. CloVR-Comparative combines commonly used bioinformatics tools into an intuitive, automated, and cloud-enabled analysis pipeline for comparative microbial genomics. Results CloVR-Comparative runs on annotated complete or draft genome sequences that are uploaded by the user or selected via a taxonomic tree-based user interface and downloaded from NCBI. CloVR-Comparative runs reference-free multiple whole-genome alignments to determine unique, shared and core coding sequences (CDSs) and single nucleotide polymorphisms (SNPs). Output includes short summary reports and detailed text-based results files, graphical visualizations (phylogenetic trees, circular figures), and a database file linked to the Sybil comparative genome browser. Data up- and download, pipeline configuration and monitoring, and access to Sybil are managed through CloVR-Comparative web interface. CloVR-Comparative and Sybil are distributed as part of the CloVR virtual appliance, which runs on local computers or the Amazon EC2 cloud. Representative datasets (e.g. 40 draft and complete Escherichia coli genomes) are processed in <36 h on a local desktop or at a cost of <$20 on EC2. Conclusions CloVR-Comparative allows anybody with Internet access to run comparative genomics projects, while eliminating the need for on-site computational resources and expertise. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3717-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Cesar Arze
- Institute for Genome Sciences, Baltimore, MD, USA
| | | | | | - David Riley
- Institute for Genome Sciences, Baltimore, MD, USA
| | | | - Kevin Galens
- Institute for Genome Sciences, Baltimore, MD, USA
| | - Claire M Fraser
- Institute for Genome Sciences, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Owen White
- Institute for Genome Sciences, Baltimore, MD, USA.,Department of Epidemiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - W Florian Fricke
- Institute for Genome Sciences, Baltimore, MD, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Nutrigenomics, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
169
|
Skelly DA, Magwene PM, Meeks B, Murphy HA. Known mutator alleles do not markedly increase mutation rate in clinical Saccharomyces cerevisiae strains. Proc Biol Sci 2017; 284:20162672. [PMID: 28404772 PMCID: PMC5394658 DOI: 10.1098/rspb.2016.2672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/17/2017] [Indexed: 11/12/2022] Open
Abstract
Natural selection has the potential to act on all phenotypes, including genomic mutation rate. Classic evolutionary theory predicts that in asexual populations, mutator alleles, which cause high mutation rates, can fix due to linkage with beneficial mutations. This phenomenon has been demonstrated experimentally and may explain the frequency of mutators found in bacterial pathogens. By contrast, in sexual populations, recombination decouples mutator alleles from beneficial mutations, preventing mutator fixation. In the facultatively sexual yeast Saccharomyces cerevisiae, segregating alleles of MLH1 and PMS1 have been shown to be incompatible, causing a high mutation rate when combined. These alleles had never been found together naturally, but were recently discovered in a cluster of clinical isolates. Here we report that the incompatible mutator allele combination only marginally elevates mutation rate in these clinical strains. Genomic and phylogenetic analyses provide no evidence of a historically elevated mutation rate. We conclude that the effect of the mutator alleles is dampened by background genetic modifiers. Thus, the relationship between mutation rate and microbial pathogenicity may be more complex than once thought. Our findings provide rare observational evidence that supports evolutionary theory suggesting that sexual organisms are unlikely to harbour alleles that increase their genomic mutation rate.
Collapse
Affiliation(s)
| | | | - Brianna Meeks
- Department of Biology, The College of William and Mary, Williamsburg, VA, USA
| | - Helen A Murphy
- Department of Biology, The College of William and Mary, Williamsburg, VA, USA
| |
Collapse
|
170
|
Wendling CC, Piecyk A, Refardt D, Chibani C, Hertel R, Liesegang H, Bunk B, Overmann J, Roth O. Tripartite species interaction: eukaryotic hosts suffer more from phage susceptible than from phage resistant bacteria. BMC Evol Biol 2017; 17:98. [PMID: 28399796 PMCID: PMC5387238 DOI: 10.1186/s12862-017-0930-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 12/22/2022] Open
Abstract
Background Evolutionary shifts in bacterial virulence are often associated with a third biological player, for instance temperate phages, that can act as hyperparasites. By integrating as prophages into the bacterial genome they can contribute accessory genes, which can enhance the fitness of their prokaryotic carrier (lysogenic conversion). Hyperparasitic influence in tripartite biotic interactions has so far been largely neglected in empirical host-parasite studies due to their inherent complexity. Here we experimentally address whether bacterial resistance to phages and bacterial harm to eukaryotic hosts is linked using a natural tri-partite system with bacteria of the genus Vibrio, temperate vibriophages and the pipefish Syngnathus typhle. We induced prophages from all bacterial isolates and constructed a three-fold replicated, fully reciprocal 75 × 75 phage-bacteria infection matrix. Results According to their resistance to phages, bacteria could be grouped into three distinct categories: highly susceptible (HS-bacteria), intermediate susceptible (IS-bacteria), and resistant (R-bacteria). We experimentally challenged pipefish with three selected bacterial isolates from each of the three categories and determined the amount of viable Vibrio counts from infected pipefish and the expression of pipefish immune genes. While the amount of viable Vibrio counts did not differ between bacterial groups, we observed a significant difference in relative gene expression between pipefish infected with phage susceptible and phage resistant bacteria. Conclusion These findings suggest that bacteria with a phage-susceptible phenotype are more harmful against a eukaryotic host, and support the importance of hyperparasitism and the need for an integrative view across more than two levels when studying host-parasite evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0930-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolin C Wendling
- GEOMAR, Helmholtz Centre for Ocean Research, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany.
| | - Agnes Piecyk
- GEOMAR, Helmholtz Centre for Ocean Research, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany.,Present address: Max Planck Institute for Evolutionary Biology, Department of Evolutionary Ecology, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Dominik Refardt
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Campus Grüental, CH-8820, Wädenswil, Switzerland
| | - Cynthia Chibani
- Institute for Microbiology and Genetics, Georg-August University Goettingen, Grisebachstr. 8, 37077, Goettingen, Germany
| | - Robert Hertel
- Institute for Microbiology and Genetics, Georg-August University Goettingen, Grisebachstr. 8, 37077, Goettingen, Germany
| | - Heiko Liesegang
- Institute for Microbiology and Genetics, Georg-August University Goettingen, Grisebachstr. 8, 37077, Goettingen, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Olivia Roth
- GEOMAR, Helmholtz Centre for Ocean Research, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, 24105, Kiel, Germany
| |
Collapse
|
171
|
Wang D, Li S, Guo F, Ning K, Wang L. Core-genome scaffold comparison reveals the prevalence that inversion events are associated with pairs of inverted repeats. BMC Genomics 2017; 18:268. [PMID: 28356070 PMCID: PMC5372343 DOI: 10.1186/s12864-017-3655-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/22/2017] [Indexed: 01/01/2023] Open
Abstract
Background Genome rearrangement describes gross changes of chromosomal regions, plays an important role in evolutionary biology and has profound impacts on phenotype in organisms ranging from microbes to humans. With more and more complete genomes accomplished, lots of genomic comparisons have been conducted in order to find genome rearrangements and the mechanisms which underlie the rearrangement events. In our opinion, genomic comparison of different individuals/strains within the same species (pan-genome) is more helpful to reveal the mechanisms for genome rearrangements since genomes of the same species are much closer to each other. Results We study the mechanism for inversion events via core-genome scaffold comparison of different strains within the same species. We focus on two kinds of bacteria, Pseudomonas aeruginosa and Escherichia coli, and investigate the inversion events among different strains of the same species. We find an interesting phenomenon that long (larger than 10,000 bp) inversion regions are flanked by a pair of Inverted Repeats (IRs). This mechanism can also explain why the breakpoint reuses for inversion events happen. We study the prevalence of the phenomenon and find that it is a major mechanism for inversions. The other observation is that for different rearrangement events such as transposition and inverted block interchange, the two ends of the swapped regions are also associated with repeats so that after the rearrangement operations the two ends of the swapped regions remain unchanged. To our knowledge, this is the first time such a phenomenon is reported for transposition event. Conclusions In both Pseudomonas aeruginosa and Escherichia coli strains, IRs were found at the two ends of long sequence inversions. The two ends of the inversion remained unchanged before and after the inversion event. The existence of IRs can explain the breakpoint reuse phenomenon. We also observed that other rearrangement operations such as transposition, inverted transposition, and inverted block interchange, had repeats (not necessarily inverted) at the ends of each segment, where the ends remained unchanged before and after the rearrangement operations. This suggests that the conservation of ends could possibly be a popular phenomenon in many types of chromosome rearrangement events. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3655-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong, SAR, People's Republic of China
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong, SAR, People's Republic of China
| | - Fei Guo
- School of Computer Science and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Kang Ning
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lusheng Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong, SAR, People's Republic of China. .,University of Hong Kong Shenzhen Research Institute, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, People's Republic of China.
| |
Collapse
|
172
|
Zhou P, Silverstein KAT, Ramaraj T, Guhlin J, Denny R, Liu J, Farmer AD, Steele KP, Stupar RM, Miller JR, Tiffin P, Mudge J, Young ND. Exploring structural variation and gene family architecture with De Novo assemblies of 15 Medicago genomes. BMC Genomics 2017; 18:261. [PMID: 28347275 PMCID: PMC5369179 DOI: 10.1186/s12864-017-3654-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies exploring sequence variation in the model legume, Medicago truncatula, relied on mapping short reads to a single reference. However, read-mapping approaches are inadequate to examine large, diverse gene families or to probe variation in repeat-rich or highly divergent genome regions. De novo sequencing and assembly of M. truncatula genomes enables near-comprehensive discovery of structural variants (SVs), analysis of rapidly evolving gene families, and ultimately, construction of a pan-genome. RESULTS Genome-wide synteny based on 15 de novo M. truncatula assemblies effectively detected different types of SVs indicating that as much as 22% of the genome is involved in large structural changes, altogether affecting 28% of gene models. A total of 63 million base pairs (Mbp) of novel sequence was discovered, expanding the reference genome space for Medicago by 16%. Pan-genome analysis revealed that 42% (180 Mbp) of genomic sequences is missing in one or more accession, while examination of de novo annotated genes identified 67% (50,700) of all ortholog groups as dispensable - estimates comparable to recent studies in rice, maize and soybean. Rapidly evolving gene families typically associated with biotic interactions and stress response were found to be enriched in the accession-specific gene pool. The nucleotide-binding site leucine-rich repeat (NBS-LRR) family, in particular, harbors the highest level of nucleotide diversity, large effect single nucleotide change, protein diversity, and presence/absence variation. However, the leucine-rich repeat (LRR) and heat shock gene families are disproportionately affected by large effect single nucleotide changes and even higher levels of copy number variation. CONCLUSIONS Analysis of multiple M. truncatula genomes illustrates the value of de novo assemblies to discover and describe structural variation, something that is often under-estimated when using read-mapping approaches. Comparisons among the de novo assemblies also indicate that different large gene families differ in the architecture of their structural variation.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Kevin A T Silverstein
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, MN, USA
| | | | - Joseph Guhlin
- Department of Plant Biology, University of Minnesota, St. Paul, MN, USA
| | - Roxanne Denny
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Junqi Liu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Kelly P Steele
- Science and Mathematics Faculty, Arizona State University, Mesa, AZ, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Peter Tiffin
- Department of Plant Biology, University of Minnesota, St. Paul, MN, USA
| | - Joann Mudge
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Nevin D Young
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA. .,Department of Plant Biology, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
173
|
Hazenbos WL, Skippington E, Tan MW. Staphylococcus aureus type I signal peptidase: essential or not essential, that's the question. MICROBIAL CELL 2017; 4:108-111. [PMID: 28435837 PMCID: PMC5376350 DOI: 10.15698/mic2017.04.566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Secretion of proteins into the extracellular environment is crucial for the normal physiology and virulence of pathogenic bacteria. Type I signal peptidase (SPase I) mediates the final step of bacterial secretion, by cleaving proteins at their signal peptide once they are translocated by the Sec or twin-arginine (Tat) translocon. SPase I has long been thought to be essential for viability in multiple bacterial pathogens. Challenging this view, we and others have recently created Staphylococcus aureus bacteria lacking the SPase I SpsB that are viable and able to grow in vitro when over-expressing a native gene cassette encoding for a putative ABC transporter. This transporter apparently compensates for SpsB's essential function by mediating alternative cleavage of a subset of proteins at a site distinct from the SpsB-cleavage site, leading to SpsB-independent secretion. This alternative secretion system also drives the main mechanism of resistance to an arylomycin-derived SpsB inhibitor, by means of mutations in a putative transcriptional repressor (cro/cI) causing over-expression of the ABC transporter. These findings raise multiple interesting biological questions. Unraveling the mechanism of SpsB-independent secretion may provide an interesting twist to the paradigm of bacterial secretion.
Collapse
Affiliation(s)
- Wouter L Hazenbos
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Elizabeth Skippington
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
174
|
Kwon T, Kim W, Cho SH. Comparative genomic analysis of Shiga toxin-producing and non-Shiga toxin-producing Escherichia coli O157 isolated from outbreaks in Korea. Gut Pathog 2017; 9:7. [PMID: 28191041 PMCID: PMC5292798 DOI: 10.1186/s13099-017-0156-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/24/2017] [Indexed: 12/01/2022] Open
Abstract
Background The Shiga toxin-producing Escherichia coli (STEC) O157 strain NCCP15739 and non-STEC O157 strain NCCP15738 were isolated from outbreaks in Korea. We characterized NCCP15739 and NCCP15738 by genome sequencing and a comparative genomic analysis using two additional strains, E. coli K-12 substr. MG1655 and O157:H7 EDL933. Results Using the Illumina HiSeq 2000 platform and the RAST server, the whole genomes of NCCP15739 and NCCP15738 were obtained and annotated. NCCP15739 and NCCP15738 clustered with different E. coli strains based on a whole-genome phylogeny and multi-locus sequence typing analysis. Functional annotation clustering indicated enrichment for virulence plasmid and hemolysis-related genes in NCCP15739 and conjugation- and flagellum-related genes in NCCP15738. Defense mechanism- and pathogenicity-related pathways were enriched in NCCP15739 and pathways related to the assimilation of energy sources were enriched in NCCP15738. We identified 66 and 18 virulence factors from the NCCP15739 and NCCP15738 genome, respectively. Five and eight antibiotic resistance genes were identified in the NCCP15739 and NCCP15738 genomes, respectively. Based on a comparative analysis of phage-associated regions, NCCP15739 and NCCP15738 had specific prophages. The prophages in NCCP15739 carried virulence factors, but those in NCCP15738 did not, and no antibiotic resistance genes were found in the phage-associated regions. Conclusions Our whole-genome sequencing and comparative genomic analysis revealed that NCCP15739 and NCCP15738 have specific genes and pathways. NCCP15739 had more genes (410), virulence factors (48), and phage-related regions (11) than NCCP15738. However, NCCP15738 had three more antibiotic resistance genes than NCCP15739. These differences may explain differences in pathogenicity and biological characteristics. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0156-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taesoo Kwon
- Interdisciplinary Program in Bioinformatics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea.,Division of Biosafety Evaluation and Control, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| | - Won Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| |
Collapse
|
175
|
Tørresen OK, Star B, Jentoft S, Reinar WB, Grove H, Miller JR, Walenz BP, Knight J, Ekholm JM, Peluso P, Edvardsen RB, Tooming-Klunderud A, Skage M, Lien S, Jakobsen KS, Nederbragt AJ. An improved genome assembly uncovers prolific tandem repeats in Atlantic cod. BMC Genomics 2017; 18:95. [PMID: 28100185 PMCID: PMC5241972 DOI: 10.1186/s12864-016-3448-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/20/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The first Atlantic cod (Gadus morhua) genome assembly published in 2011 was one of the early genome assemblies exclusively based on high-throughput 454 pyrosequencing. Since then, rapid advances in sequencing technologies have led to a multitude of assemblies generated for complex genomes, although many of these are of a fragmented nature with a significant fraction of bases in gaps. The development of long-read sequencing and improved software now enable the generation of more contiguous genome assemblies. RESULTS By combining data from Illumina, 454 and the longer PacBio sequencing technologies, as well as integrating the results of multiple assembly programs, we have created a substantially improved version of the Atlantic cod genome assembly. The sequence contiguity of this assembly is increased fifty-fold and the proportion of gap-bases has been reduced fifteen-fold. Compared to other vertebrates, the assembly contains an unusual high density of tandem repeats (TRs). Indeed, retrospective analyses reveal that gaps in the first genome assembly were largely associated with these TRs. We show that 21% of the TRs across the assembly, 19% in the promoter regions and 12% in the coding sequences are heterozygous in the sequenced individual. CONCLUSIONS The inclusion of PacBio reads combined with the use of multiple assembly programs drastically improved the Atlantic cod genome assembly by successfully resolving long TRs. The high frequency of heterozygous TRs within or in the vicinity of genes in the genome indicate a considerable standing genomic variation in Atlantic cod populations, which is likely of evolutionary importance.
Collapse
Affiliation(s)
- Ole K. Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
- Department of Natural Sciences, University of Agder, Kristiansand, NO-4604 Norway
| | - William B. Reinar
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
| | - Harald Grove
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, NO-1432 Norway
| | - Jason R. Miller
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, 20850 MD USA
| | - Brian P. Walenz
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892 MD USA
| | - James Knight
- Yale School of Medicine, Yale University, New Haven, 06520 CT USA
| | | | | | | | - Ave Tooming-Klunderud
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
| | - Morten Skage
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, NO-1432 Norway
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
| | - Alexander J. Nederbragt
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, NO-0316 Norway
- Biomedical Informatics Research Group, Department of Informatics, University of Oslo, Oslo, NO-0316 Norway
| |
Collapse
|
176
|
Devault AM, Mortimer TD, Kitchen A, Kiesewetter H, Enk JM, Golding GB, Southon J, Kuch M, Duggan AT, Aylward W, Gardner SN, Allen JE, King AM, Wright G, Kuroda M, Kato K, Briggs DE, Fornaciari G, Holmes EC, Poinar HN, Pepperell CS. A molecular portrait of maternal sepsis from Byzantine Troy. eLife 2017; 6. [PMID: 28072390 PMCID: PMC5224923 DOI: 10.7554/elife.20983] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
Pregnancy complications are poorly represented in the archeological record, despite their importance in contemporary and ancient societies. While excavating a Byzantine cemetery in Troy, we discovered calcified abscesses among a woman’s remains. Scanning electron microscopy of the tissue revealed ‘ghost cells’, resulting from dystrophic calcification, which preserved ancient maternal, fetal and bacterial DNA of a severe infection, likely chorioamnionitis. Gardnerella vaginalis and Staphylococcus saprophyticus dominated the abscesses. Phylogenomic analyses of ancient, historical, and contemporary data showed that G. vaginalis Troy fell within contemporary genetic diversity, whereas S. saprophyticus Troy belongs to a lineage that does not appear to be commonly associated with human disease today. We speculate that the ecology of S. saprophyticus infection may have differed in the ancient world as a result of close contacts between humans and domesticated animals. These results highlight the complex and dynamic interactions with our microbial milieu that underlie severe maternal infections. DOI:http://dx.doi.org/10.7554/eLife.20983.001 Why and how have some bacteria evolved to cause illness in humans? One way to study bacterial evolution is to search for ancient samples of bacteria and use DNA sequencing technology to investigate how modern bacteria have changed from their ancestors. Understanding the evolution process may help researchers to understand how some bacteria become resistant to the antibiotics designed to kill them. Complications that occur during pregnancy, including bacterial infections, have long been a major cause of death for women. Now, Devault, Mortimer et al. have been able to sequence the DNA of bacteria found in tissue collected from a woman buried 800 years ago in a cemetery in Troy. Some of the woman’s tissues had been well preserved because they had calcified (probably as the result of infection), which preserved their structure in a mineralized layer. Two mineralized “nodules” in the body appear to be the remains of abscesses. Some of the human DNA in the nodules came from a male, suggesting that the woman was pregnant with a boy and that the abscesses formed in placental tissue. Sequencing the DNA of the bacteria in the abscess allowed Devault, Mortimer et al. to diagnose the woman’s infection, which was caused by two types of bacteria. One species, called Gardnerella vaginalis, is found in modern pregnancy-related infections. The DNA of the ancient samples was similar to that of modern bacteria. The other bacteria species was an ancient form of Staphylococcus saprophyticus, a type of bacteria that causes urinary tract infections. However, the DNA of the ancient S. saprophyticus bacteria is quite different to that of the bacteria found in modern humans. Instead, their DNA sequence appears more similar to forms of the bacteria that infect currently livestock. As humans lived closely with their livestock at the time the woman lived, her infection may be due to a type of bacteria that passed easily between humans and animals. Overall, the results suggest that the disease-causing properties of bacteria can arise from a wide range of sources. In addition, Devault, Mortimer et al. have demonstrated that certain types of tissue found in archeological remains are a potential gold mine of information about the evolution of bacteria and other microbes found in the human body. DOI:http://dx.doi.org/10.7554/eLife.20983.002
Collapse
Affiliation(s)
- Alison M Devault
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, Canada.,MYcroarray, Ann Arbor, United States
| | - Tatum D Mortimer
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States.,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, United States
| | - Andrew Kitchen
- Department of Anthropology, University of Iowa, Iowa City, United States
| | - Henrike Kiesewetter
- Project Troia, Institute of Prehistory, Early History, and Medieval Archaeology, Tübingen University, Tübingen, Germany
| | - Jacob M Enk
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, Canada.,MYcroarray, Ann Arbor, United States
| | - G Brian Golding
- Department of Biology, McMaster University, Hamilton, Canada
| | - John Southon
- Keck Carbon Cycle Accelerator Mass Spectrometer, Earth Systems Science Department, University of California, Irvine, United States
| | - Melanie Kuch
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, Canada
| | - Ana T Duggan
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, Canada
| | - William Aylward
- Molecular Archaeology Laboratory, Biotechnology Center, University of Wisconsin-Madison, Madison, United States.,Department of Classics and Ancient Near Eastern Studies, University of Wisconsin-Madison, Madison, United States
| | - Shea N Gardner
- Lawrence Livermore National Laboratory, Livermore, United States
| | - Jonathan E Allen
- Lawrence Livermore National Laboratory, Livermore, United States
| | - Andrew M King
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | - Gerard Wright
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | - Makoto Kuroda
- Laboratory of Bacterial Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kengo Kato
- Laboratory of Bacterial Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Derek Eg Briggs
- Department of Geology and Geophysics, Yale University, New Haven, United States
| | - Gino Fornaciari
- Division of Paleopathology, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Hendrik N Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, Canada.,Department of Biology, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada.,Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Canada
| | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States.,Molecular Archaeology Laboratory, Biotechnology Center, University of Wisconsin-Madison, Madison, United States.,Department of Medicine (Infectious Diseases), School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
177
|
Vishwakarma MK, Kale SM, Sriswathi M, Naresh T, Shasidhar Y, Garg V, Pandey MK, Varshney RK. Genome-Wide Discovery and Deployment of Insertions and Deletions Markers Provided Greater Insights on Species, Genomes, and Sections Relationships in the Genus Arachis. FRONTIERS IN PLANT SCIENCE 2017; 8:2064. [PMID: 29312366 PMCID: PMC5742254 DOI: 10.3389/fpls.2017.02064] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/17/2017] [Indexed: 05/04/2023]
Abstract
Small insertions and deletions (InDels) are the second most prevalent and the most abundant structural variations in plant genomes. In order to deploy these genetic variations for genetic analysis in genus Arachis, we conducted comparative analysis of the draft genome assemblies of both the diploid progenitor species of cultivated tetraploid groundnut (Arachis hypogaea L.) i.e., Arachis duranensis (A subgenome) and Arachis ipaënsis (B subgenome) and identified 515,223 InDels. These InDels include 269,973 insertions identified in A. ipaënsis against A. duranensis while 245,250 deletions in A. duranensis against A. ipaënsis. The majority of the InDels were of single bp (43.7%) and 2-10 bp (39.9%) while the remaining were >10 bp (16.4%). Phylogenetic analysis using genotyping data for 86 (40.19%) polymorphic markers grouped 96 diverse Arachis accessions into eight clusters mostly by the affinity of their genome. This study also provided evidence for the existence of "K" genome, although distinct from both the "A" and "B" genomes, but more similar to "B" genome. The complete homology between A. monticola and A. hypogaea tetraploid taxa showed a very similar genome composition. The above analysis has provided greater insights into the phylogenetic relationship among accessions, genomes, sub species and sections. These InDel markers are very useful resource for groundnut research community for genetic analysis and breeding applications.
Collapse
Affiliation(s)
| | - Sandip M. Kale
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Manda Sriswathi
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Talari Naresh
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Yaduru Shasidhar
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Vanika Garg
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- *Correspondence: Manish K. Pandey
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- The University of Western Australia, Crawley, WA, Australia
- Rajeev K. Varshney
| |
Collapse
|
178
|
Origins of pandemic Vibrio cholerae from environmental gene pools. Nat Microbiol 2016; 2:16240. [DOI: 10.1038/nmicrobiol.2016.240] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/27/2016] [Indexed: 11/08/2022]
|
179
|
Abstract
There are millions of sequences deposited in genomic databases, and it is an important task to categorize them according to their structural and functional roles. Sequence comparison is a prerequisite for proper categorization of both DNA and protein sequences, and helps in assigning a putative or hypothetical structure and function to a given sequence. There are various methods available for comparing sequences, alignment being first and foremost for sequences with a small number of base pairs as well as for large-scale genome comparison. Various tools are available for performing pairwise large sequence comparison. The best known tools either perform global alignment or generate local alignments between the two sequences. In this chapter we first provide basic information regarding sequence comparison. This is followed by the description of the PAM and BLOSUM matrices that form the basis of sequence comparison. We also give a practical overview of currently available methods such as BLAST and FASTA, followed by a description and overview of tools available for genome comparison including LAGAN, MumMER, BLASTZ, and AVID.
Collapse
|
180
|
Kwon T, Bak YS, Jung YH, Yu YB, Choi JT, Kim CH, Kim JB, Kim W, Cho SH. Whole-genome sequencing and comparative genomic analysis of Escherichia coli O91 strains isolated from symptomatic and asymptomatic human carriers. Gut Pathog 2016; 8:57. [PMID: 27891181 PMCID: PMC5106847 DOI: 10.1186/s13099-016-0138-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/01/2016] [Indexed: 01/05/2023] Open
Abstract
Background The Shiga toxin–producing Escherichia coli (STEC) O91:H21 strains NCCP15736 and NCCP15737 were isolated during a single outbreak in Korea, NCCP15736 from a symptomatic carrier and NCCP15737 from an asymptomatic carrier. To investigate genomic differences between the two strains, we performed whole-genome sequencing of both strains and conducted a comparative genomic analysis. Results Using the Illumina HiSeq 2000 platform and Rapid Annotation using the Subsystem Technology (RAST) server, whole-genome sequences of NCCP15736 and NCCP15737 were obtained and annotated. Phylogenetic analysis of ten E. coli strains showed that NCCP15736 and NCCP15737 are evolutionarily close. The two strains were found to be most close to E. coli O91:NM str. 2009C-3745. The genomic comparison showed that the fimD gene of NCCP15737 is truncated and that the truncation could underlie the defects in infection and pathogenicity of NCCP15737. The two strains showed the same virulence factor profiles, and we identified 25 virulence factors from NCCP15736 and NCCP15737, respectively. We identified ten and nine phage-associated regions in the NCCP15736 and NCCP15737 genomes, respectively; the two strains share five of these. Conclusions NCCP15736 and NCCP15737 differ at the genomic level, even though they share features such as virulence-related genes. NCCP15737 has a deletion in fimD, which may underlie its asymptomatic character. We conclude that complete genome sequencing and integration of other types of omics data are needed to fully reveal the mechanism underlying the asymptomatic character of NCCP15737. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0138-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taesoo Kwon
- Interdisciplinary Program in Bioinformatics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Young-Seok Bak
- Department of Emergency Medical Service, Sun Moon University, Asan-si, Chungcheongnam-do, 31460 Republic of Korea
| | - Young-Hee Jung
- Division of Antimicrobial Resistance, Center for Infectious Diseases, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| | - Young-Bin Yu
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, 302-832 Republic of Korea
| | - Jong Tae Choi
- Department of Biomedical Laboratory Science, Kyungdong University, 815 Gyeonhwon-ro, Munmak-eup, Wonju-si, Gangwon-do 26495 Republic of Korea
| | - Cheorl-Ho Kim
- Glycobiology Unit, Department of Biological Science, Sungkyunkwan University and Samsung Advanced Institute for Health Sciences and Technology (SAIHST), 2066 Seobu-ro, Suwon, 16419 Republic of Korea
| | - Jung-Beom Kim
- Department of Food Science and Technology, Sunchon National University, Sunchon, Jeonnam 540-950 Republic of Korea
| | - Won Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| |
Collapse
|
181
|
Gregory AC, Solonenko SA, Ignacio-Espinoza JC, LaButti K, Copeland A, Sudek S, Maitland A, Chittick L, Dos Santos F, Weitz JS, Worden AZ, Woyke T, Sullivan MB. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics 2016; 17:930. [PMID: 27852226 PMCID: PMC5112629 DOI: 10.1186/s12864-016-3286-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/09/2016] [Indexed: 12/21/2022] Open
Abstract
Background Genetic recombination is a driving force in genome evolution. Among viruses it has a dual role. For genomes with higher fitness, it maintains genome integrity in the face of high mutation rates. Conversely, for genomes with lower fitness, it provides immediate access to sequence space that cannot be reached by mutation alone. Understanding how recombination impacts the cohesion and dissolution of individual whole genomes within viral sequence space is poorly understood across double-stranded DNA bacteriophages (a.k.a phages) due to the challenges of obtaining appropriately scaled genomic datasets. Results Here we explore the role of recombination in both maintaining and differentiating whole genomes of 142 wild double-stranded DNA marine cyanophages. Phylogenomic analysis across the 51 core genes revealed ten lineages, six of which were well represented. These phylogenomic lineages represent discrete genotypic populations based on comparisons of intra- and inter- lineage shared gene content, genome-wide average nucleotide identity, as well as detected gaps in the distribution of pairwise differences between genomes. McDonald-Kreitman selection tests identified putative niche-differentiating genes under positive selection that differed across the six well-represented genotypic populations and that may have driven initial divergence. Concurrent with patterns of recombination of discrete populations, recombination analyses of both genic and intergenic regions largely revealed decreased genetic exchange across individual genomes between relative to within populations. Conclusions These findings suggest that discrete double-stranded DNA marine cyanophage populations occur in nature and are maintained by patterns of recombination akin to those observed in bacteria, archaea and in sexual eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3286-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ann C Gregory
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, 85721, USA.,Present Address: Departments of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Sergei A Solonenko
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.,Present Address: Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, 43210, USA
| | - J Cesar Ignacio-Espinoza
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA.,Present Address: Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kurt LaButti
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Alex Copeland
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039, USA
| | - Ashley Maitland
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Lauren Chittick
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Filipa Dos Santos
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039, USA.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, M5G 1Z8, Canada
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Matthew B Sullivan
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, 85721, USA. .,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA. .,Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA. .,Present Address: Departments of Microbiology, Ohio State University, Columbus, OH, 43210, USA. .,Present Address: Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, 43210, USA. .,Present Address: Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
182
|
Domazet-Lošo M, Domazet-Lošo T. gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances. PLoS One 2016; 11:e0166602. [PMID: 27846272 PMCID: PMC5112998 DOI: 10.1371/journal.pone.0166602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos).
Collapse
Affiliation(s)
- Mirjana Domazet-Lošo
- Department of Applied Computing, Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
- * E-mail:
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Ruđer Bošković Institute, Zagreb, Croatia
- Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
183
|
A genomic island in Vibrio cholerae with VPI-1 site-specific recombination characteristics contains CRISPR-Cas and type VI secretion modules. Sci Rep 2016; 6:36891. [PMID: 27845364 PMCID: PMC5109276 DOI: 10.1038/srep36891] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022] Open
Abstract
Cholera is a devastating diarrhoeal disease caused by certain strains of serogroup O1/O139 Vibrio cholerae. Mobile genetic elements such as genomic islands (GIs) have been pivotal in the evolution of O1/O139 V. cholerae. Perhaps the most important GI involved in cholera disease is the V. cholerae pathogenicity island 1 (VPI-1). This GI contains the toxin-coregulated pilus (TCP) gene cluster that is necessary for colonization of the human intestine as well as being the receptor for infection by the cholera-toxin bearing CTX phage. In this study, we report a GI (designated GIVchS12) from a non-O1/O139 strain of V. cholerae that is present in the same chromosomal location as VPI-1, contains an integrase gene with 94% nucleotide and 100% protein identity to the VPI-1 integrase, and attachment (att) sites 100% identical to those found in VPI-1. However, instead of TCP and the other accessory genes present in VPI-1, GIVchS12 contains a CRISPR-Cas element and a type VI secretion system (T6SS). GIs similar to GIVchS12 were identified in other V. cholerae genomes, also containing CRISPR-Cas elements and/or T6SS's. This study highlights the diversity of GIs circulating in natural V. cholerae populations and identifies GIs with VPI-1 recombination characteristics as a propagator of CRISPR-Cas and T6SS modules.
Collapse
|
184
|
Price SJ. Comparative Genomics of Amphibian-like Ranaviruses, Nucleocytoplasmic Large DNA Viruses of Poikilotherms. Evol Bioinform Online 2016; 11:71-82. [PMID: 27812275 PMCID: PMC5081246 DOI: 10.4137/ebo.s33490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
Recent research on genome evolution of large DNA viruses has highlighted a number of incredibly dynamic processes that can facilitate rapid adaptation. The genomes of amphibian-like ranaviruses – double-stranded DNA viruses infecting amphibians, reptiles, and fish (family Iridoviridae) – were examined to assess variation in genome content and evolutionary processes. The viruses studied were closely related, but their genome content varied considerably, with 29 genes identified that were not present in all of the major clades. Twenty-one genes had evidence of recombination, while a virus isolated from a captive reptile appeared to be a mosaic of two divergent parents. Positive selection was also found to be acting on more than a quarter of Ranavirus genes and was found most frequently in the Spanish common midwife toad virus, which has had a severe impact on amphibian host communities. Efforts to resolve the root of this group by inclusion of an outgroup were inconclusive, but a set of core genes were identified, which recovered a well-supported species tree.
Collapse
Affiliation(s)
- Stephen J Price
- Genetics, Evolution and Environment department, UCL Genetics Institute, London, UK.; Institute of Zoology, Zoological Society of London (ZSL), London, UK
| |
Collapse
|
185
|
Cao H, Pang E, Lin K. Hierarchical Map of Orthologous Genomic Regions Reconstructed from Two Closely Related Genomes: Cucumber Case Study. THE PLANT GENOME 2016; 9. [PMID: 27902804 DOI: 10.3835/plantgenome2015.10.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Accurate identification of orthologous genomic regions (OGRs) between two closely related genomes is crucial for the reliable detection of genomic changes, which range from small-scale changes (e.g., single nucleotide or small nucleotides) to large-scale structural changes. Although diverse OGRs inferred at different levels have been successfully applied to address various biological questions, a limited number of studies have simultaneously integrated OGRs from different levels. Here, we report on a new approach to construct a hierarchical map of OGRs. Using different types of genomic markers, this approach was applied to two very closely related cucumber genomes [ L. var. and L. var. (Royle) Alef.]. We identified two different levels of OGRs using Mugsy (denoted as dnaOGRs) and i-ADHoRe (denoted as proOGRs). Using information regarding the anchored chromosomes of the two genomes, a third level of OGRs (denoted chrOGRs) could be built at the chromosomal level. Together, these OGRs could be organized into a hierarchical map that represented the parent-child relationships (chrOGR:proOGRs:dnaOGRs) between the two genomes. For this case study, the map consisted of seven chrOGRs, 540 proOGRs, and 22,321 dnaOGRs. Based on this map, we designed different methods to detect both small-scale and large-scale genomic changes. Surprisingly, many genomic changes were detected at each OGR level despite the very short divergence time between the two subspecies. Together, our results show that a hierarchical map of OGRs and their related genomic changes are useful resources for elucidating the diversity and evolution of cucumber genomes and phenotypes.
Collapse
|
186
|
Rasmussen-Ivey CR, Hossain MJ, Odom SE, Terhune JS, Hemstreet WG, Shoemaker CA, Zhang D, Xu DH, Griffin MJ, Liu YJ, Figueras MJ, Santos SR, Newton JC, Liles MR. Classification of a Hypervirulent Aeromonas hydrophila Pathotype Responsible for Epidemic Outbreaks in Warm-Water Fishes. Front Microbiol 2016; 7:1615. [PMID: 27803692 PMCID: PMC5067525 DOI: 10.3389/fmicb.2016.01615] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/27/2016] [Indexed: 11/24/2022] Open
Abstract
Lineages of hypervirulent Aeromonas hydrophila (vAh) are the cause of persistent outbreaks of motile Aeromonas septicemia in warm-water fishes worldwide. Over the last decade, this virulent lineage of A. hydrophila has resulted in annual losses of millions of tons of farmed carp and catfish in the People's Republic of China and the United States (US). Multiple lines of evidence indicate US catfish and Asian carp isolates of A. hydrophila affiliated with sequence type 251 (ST251) share a recent common ancestor. To address the genomic context for the putative intercontinental transfer and subsequent geographic spread of this pathogen, we conducted a core genome phylogenetic analysis on 61 Aeromonas spp. genomes, of which 40 were affiliated with A. hydrophila, with 26 identified as epidemic strains. Phylogenetic analyses indicate all ST251 strains form a coherent lineage affiliated with A. hydrophila. Within this lineage, conserved genetic loci unique to A. hydrophila were identified, with some genes present in consistently higher copy numbers than in non-epidemic A. hydrophila isolates. In addition, results from analyses of representative ST251 isolates support the conclusion that multiple lineages are present within US vAh isolated from Mississippi, whereas vAh isolated from Alabama appear clonal. This is the first report of genomic heterogeneity within US vAh isolates, with some Mississippi isolates showing closer affiliation with the Asian grass carp isolate ZC1 than other vAh isolated in the US. To evaluate the biological significance of the identified heterogeneity, comparative disease challenges were conducted with representatives of different vAh genotypes. These studies revealed that isolate ZC1 yielded significantly lower mortality in channel catfish, relative to Alabama and Mississippi vAh isolates. Like other Asian vAh isolates, the ZC1 lineage contains all core genes for a complete type VI secretion system (T6SS). In contrast, more virulent US isolates retain only remnants of the T6SS (clpB, hcp, vgrG, and vasH) which may have functional implications. Collectively, these results characterize a hypervirulent A. hydrophila pathotype that affects farmed fish on multiple continents.
Collapse
Affiliation(s)
| | | | - Sara E Odom
- Department of Biological Sciences, Auburn University Auburn, AL, USA
| | - Jeffery S Terhune
- School of Fisheries, Aquaculture and Aquatic Sciences Auburn, AL, USA
| | | | - Craig A Shoemaker
- Aquatic Animal Health Research Unit, United States Department of Agriculture-Agricultural Research Service Auburn, AL, USA
| | - Dunhua Zhang
- Aquatic Animal Health Research Unit, United States Department of Agriculture-Agricultural Research Service Auburn, AL, USA
| | - De-Hai Xu
- Aquatic Animal Health Research Unit, United States Department of Agriculture-Agricultural Research Service Auburn, AL, USA
| | - Matt J Griffin
- Thad Cochran National Warmwater Aquaculture Center, College of Veterinary Medicine, Mississippi State University Stoneville, MS, USA
| | - Yong-Jie Liu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Maria J Figueras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili Reus, Spain
| | - Scott R Santos
- Department of Biological Sciences, Auburn University Auburn, AL, USA
| | - Joseph C Newton
- Department of Pathobiology, Auburn University Auburn, AL, USA
| | - Mark R Liles
- Department of Biological Sciences, Auburn University Auburn, AL, USA
| |
Collapse
|
187
|
Danaher RJ, Fouts DE, Chan AP, Choi Y, DePew J, McCorrison JM, Nelson KE, Wang C, Miller CS. HSV-1 clinical isolates with unique in vivo and in vitro phenotypes and insight into genomic differences. J Neurovirol 2016; 23:171-185. [PMID: 27739035 DOI: 10.1007/s13365-016-0485-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022]
Abstract
Strain-specific factors contribute in significant but undefined ways to the variable incidence of herpes simplex virus (HSV) recrudescence. Studies that investigate these strain-specific factors are needed. Here, we used qPCR, in vitro assays, and genomic sequencing to identify important relationships between in vitro and clinical phenotypes of unique HSV-1 clinical isolates. Nine HSV-1 isolates from individuals displaying varying reactivation patterns were studied. Isolates associated with frequent recurrent herpes labialis (RHL) (1) displayed higher rates of viral shedding in the oral cavity than those associated with rare RHL and (2) tended to replicate more efficiently at 33 °C than 39 °C. HSV-1 isolates also displayed a more stable phenotype during propagation in U2OS cells than in Vero cells. Draft genome sequences of four isolates and one variant spanning 95.6 to 97.2 % of the genome were achieved, and whole-genome alignment demonstrated that the majority of these isolates clustered with known North American/European isolates. These findings revealed procedures that could help identify unique genotypes and phenotypes associated with HSV-1 isolates, which can be important for determining viral factors critical for regulating HSV-1 reactivation.
Collapse
Affiliation(s)
- Robert J Danaher
- Department of Oral Health Practice, Division of Oral Medicine, Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.
| | - Derrick E Fouts
- Department of Genomic Medicine, J. Craig Venter Institute (JCVI), Rockville, MD, USA
| | - Agnes P Chan
- Department of Genomic Medicine, J. Craig Venter Institute (JCVI), Rockville, MD, USA
| | - Yongwook Choi
- Department of Genomic Medicine, J. Craig Venter Institute (JCVI), Rockville, MD, USA
| | - Jessica DePew
- Department of Genomic Medicine, J. Craig Venter Institute (JCVI), Rockville, MD, USA
| | - Jamison M McCorrison
- Department of Genomic Medicine, J. Craig Venter Institute (JCVI), Rockville, MD, USA
| | - Karen E Nelson
- Department of Genomic Medicine, J. Craig Venter Institute (JCVI), Rockville, MD, USA
| | - Chunmei Wang
- Department of Oral Health Practice, Division of Oral Medicine, Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Craig S Miller
- Department of Oral Health Practice, Division of Oral Medicine, Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
188
|
Saw SH, Tan JL, Chan XY, Chan KG, Ngeow YF. Chromosomal rearrangements and protein globularity changes in Mycobacterium tuberculosis isolates from cerebrospinal fluid. PeerJ 2016; 4:e2484. [PMID: 27688977 PMCID: PMC5036109 DOI: 10.7717/peerj.2484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 08/24/2016] [Indexed: 01/07/2023] Open
Abstract
Background Meningitis is a major cause of mortality in tuberculosis (TB). It is not clear what factors promote central nervous system invasion and pathology but it has been reported that certain strains of Mycobacterium tuberculosis (Mtb) might have genetic traits associated with neurotropism. Methods In this study, we generated whole genome sequences of eight clinical strains of Mtb that were isolated from the cerebrospinal fluid (CSF) of patients presenting with tuberculous meningitis (TBM) in Malaysia, and compared them to the genomes of H37Rv and other respiratory Mtb genomes either downloaded from public databases or extracted from local sputum isolates. We aimed to find genomic features that might be distinctly different between CSF-derived and respiratory Mtb. Results Genome-wide comparisons revealed rearrangements (translocations, inversions, insertions and deletions) and non-synonymous SNPs in our CSF-derived strains that were not observed in the respiratory Mtb genomes used for comparison. These rearranged segments were rich in genes for PE (proline-glutamate)/PPE (proline-proline-glutamate), transcriptional and membrane proteins. Similarly, most of the ns SNPs common in CSF strains were noted in genes encoding PE/PPE proteins. Protein globularity differences were observed among mycobacteria from CSF and respiratory sources and in proteins previously reported to be associated with TB meningitis. Transcription factors and other transcription regulators featured prominently in these proteins. Homologs of proteins associated with Streptococcus pneumoniae meningitis and Neisseria meningitidis virulence were identified in neuropathogenic as well as respiratory mycobacterial spp. examined in this study. Discussion The occurrence of in silico genetic differences in CSF-derived but not respiratory Mtb suggests their possible involvement in the pathogenesis of TBM. However, overall findings in this comparative analysis support the postulation that TB meningeal infection is more likely to be related to the expression of multiple virulence factors on interaction with host defences than to CNS tropism associated with specific genetic traits.
Collapse
Affiliation(s)
- Seow Hoon Saw
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Malaysia.,Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Joon Liang Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Faculty of Information Science and Technology, Multimedia University, Melaka, Malaysia
| | - Xin Yue Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yun Fong Ngeow
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Malaysia.,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
189
|
A Small Number of Phylogenetically Distinct Clonal Complexes Dominate a Coastal Vibrio cholerae Population. Appl Environ Microbiol 2016; 82:5576-86. [PMID: 27371587 DOI: 10.1128/aem.01177-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Vibrio cholerae is a ubiquitous aquatic microbe in temperate and tropical coastal areas. It is a diverse species, with many isolates that are harmless to humans, while others are highly pathogenic. Most notable among them are strains belonging to the pandemic O1/O139 serogroup lineage, which contains the causative agents of cholera. The environmental selective regimes that led to this diversity are key to understanding how pathogens evolve in environmental reservoirs. A local population of V. cholerae and its close relative Vibrio metoecus from a coastal pond and lagoon system was extensively sampled during two consecutive months across four size fractions (480 isolates). In stark contrast to previous studies, the observed population was highly clonal, with 60% of V. cholerae isolates falling into one of five clonal complexes, which varied in abundance in the short temporal scale sampled. V. cholerae clonal complexes had significantly different distributions across size fractions and the two environments sampled, the pond and the lagoon. Sequencing the genomes of 20 isolates representing these five V. cholerae clonal complexes revealed different evolutionary trajectories, with considerable variations in gene content with potential ecological significance. Showing genotypic differentiation and differential spatial distribution, the dominant clonal complexes are likely ecologically divergent. Temporal variation in the relative abundance of these complexes suggests that transient blooms of specific clones could dominate local diversity. IMPORTANCE Vibrio cholerae is commonly found in coastal areas worldwide, with only a single group of this bacterium capable of causing severe cholera outbreaks. However, the potential to evolve the ability to cause disease exists in many strains of this species in its aquatic reservoir. Understanding how pathogenic bacteria evolve requires the study of their natural environments. By extensive sampling in a geographically restricted location in the United States, we found that most cells of a V. cholerae population belong to only a small number of strains. Analysis of their genome composition and spatial distribution indicates differential environmental adaptations between these strains. Other strains exist in smaller numbers, and the population was found to be temporally varied. This suggests frequent bloom and collapse cycles on a time scale of weeks. These population dynamics make it possible that more virulent strains could stochastically rise to large numbers, allowing for infection to occur.
Collapse
|
190
|
Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production. Appl Microbiol Biotechnol 2016; 100:9995-10004. [PMID: 27566690 DOI: 10.1007/s00253-016-7789-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/27/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
Rhamnolipids produced by Pseudomonas aeruginosa are biosurfactants with a high biotechnological potential, but their extensive commercialization is limited by the potential virulence of P. aeruginosa and by restrictions in producing these surfactants in heterologous hosts. In this work, we report the characterization of P. aeruginosa strain ATCC 9027 in terms of its genome-sequence, virulence, antibiotic resistance, and its ability to produce mono-rhamnolipids when carrying plasmids with different cloned genes from the type strain PAO1. The genes that were expressed from the plasmids are those coding for enzymes involved in the synthesis of this biosurfactant (rhlA and rhlB), as well as the gene that codes for the RhlR transcriptional regulator. We confirm that strain ATCC 9027 forms part of the PA7 clade, but contrary to strain PA7, it is sensitive to antibiotics and is completely avirulent in a mouse model. We also report that strain ATCC 9027 mono-rhamnolipid synthesis is limited by the expression of the rhlAB-R operon. Thus, this strain carrying the rhlAB-R operon produces similar rhamnolipids levels as PAO1 strain. We determined that strain ATCC 9027 with rhlAB-R operon was not virulent to mice. These results show that strain ATCC 9027, expressing PAO1 rhlAB-R operon, has a high biotechnological potential for industrial mono-rhamnolipid production.
Collapse
|
191
|
Sahl JW, Lemmer D, Travis J, Schupp JM, Gillece JD, Aziz M, Driebe EM, Drees KP, Hicks ND, Williamson CHD, Hepp CM, Smith DE, Roe C, Engelthaler DM, Wagner DM, Keim P. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb Genom 2016; 2:e000074. [PMID: 28348869 DOI: 10.1099/mgen.0.000074] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/17/2016] [Indexed: 12/30/2022] Open
Abstract
Whole-genome sequencing (WGS) of bacterial isolates has become standard practice in many laboratories. Applications for WGS analysis include phylogeography and molecular epidemiology, using single nucleotide polymorphisms (SNPs) as the unit of evolution. NASP was developed as a reproducible method that scales well with the hundreds to thousands of WGS data typically used in comparative genomics applications. In this study, we demonstrate how NASP compares with other tools in the analysis of two real bacterial genomics datasets and one simulated dataset. Our results demonstrate that NASP produces similar, and often better, results in comparison with other pipelines, but is much more flexible in terms of data input types, job management systems, diversity of supported tools and output formats. We also demonstrate differences in results based on the choice of the reference genome and choice of inferring phylogenies from concatenated SNPs or alignments including monomorphic positions. NASP represents a source-available, version-controlled, unit-tested method and can be obtained from tgennorth.github.io/NASP.
Collapse
Affiliation(s)
- Jason W Sahl
- 1Translational Genomics Research Institute, Phoenix, Arizona, USA.,2Northern Arizona University, S San Francisco St, Flagstaff, AZ 86011, USA
| | - Darrin Lemmer
- 1Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Jason Travis
- 1Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - James M Schupp
- 1Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - John D Gillece
- 1Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Maliha Aziz
- 3The George Washington University, 2121 I St NW, Washington, DC 20052, USA
| | | | - Kevin P Drees
- 4University of New Hampshire, 105 Main St, Durham, NH 03824, USA
| | | | | | - Crystal M Hepp
- 2Northern Arizona University, S San Francisco St, Flagstaff, AZ 86011, USA
| | - David Earl Smith
- 1Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Chandler Roe
- 1Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | - David M Wagner
- 2Northern Arizona University, S San Francisco St, Flagstaff, AZ 86011, USA
| | - Paul Keim
- 2Northern Arizona University, S San Francisco St, Flagstaff, AZ 86011, USA
| |
Collapse
|
192
|
Ultra Large Gene Families: A Matter of Adaptation or Genomic Parasites? Life (Basel) 2016; 6:life6030032. [PMID: 27509525 PMCID: PMC5041008 DOI: 10.3390/life6030032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/27/2016] [Accepted: 07/20/2016] [Indexed: 01/17/2023] Open
Abstract
Gene duplication is an important mechanism of molecular evolution. It offers a fast track to modification, diversification, redundancy or rescue of gene function. However, duplication may also be neutral or (slightly) deleterious, and often ends in pseudo-geneisation. Here, we investigate the phylogenetic distribution of ultra large gene families on long and short evolutionary time scales. In particular, we focus on a family of NACHT-domain and leucine-rich-repeat-containing (NLR)-genes, which we previously found in large numbers to occupy one chromosome arm of the zebrafish genome. We were interested to see whether such a tight clustering is characteristic for ultra large gene families. Our data reconfirm that most gene family inflations are lineage-specific, but we can only identify very few gene clusters. Based on our observations we hypothesise that, beyond a certain size threshold, ultra large gene families continue to proliferate in a mechanism we term “run-away evolution”. This process might ultimately lead to the failure of genomic integrity and drive species to extinction.
Collapse
|
193
|
Australian human and parrot Chlamydia psittaci strains cluster within the highly virulent 6BC clade of this important zoonotic pathogen. Sci Rep 2016; 6:30019. [PMID: 27488134 PMCID: PMC4973220 DOI: 10.1038/srep30019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/27/2016] [Indexed: 12/02/2022] Open
Abstract
Chlamydia psittaci is an avian pathogen and zoonotic agent of atypical pneumonia. The most pathogenic C. psittaci strains cluster into the 6BC clade, predicted to have recently emerged globally. Exposure to infected parrots is a risk factor with limited evidence also of an indirect exposure risk. Genome sequencing was performed on six Australian human and a single avian C. psittaci strain isolated over a 9 year period. Only one of the five human patients had explicit psittacine contact. Genomics analyses revealed that the Australian C. psittaci strains are remarkably similar, clustering tightly within the C. psittaci 6BC clade suggested to have been disseminated by South America parrot importation. Molecular clock analysis using the newly sequenced C. psittaci genomes predicted the emergence of the 6BC clade occurring approximately 2,000 years ago. These findings reveal the potential for an Australian natural reservoir of C. psittaci 6BC strains. These strains can also be isolated from seriously ill patients without explicit psittacine contact. The apparent recent and global spread of C. psittaci 6BC strains raises important questions over how this happened. Further studies may reveal whether the dissemination of this important zoonotic pathogen is linked to Australian parrot importation rather than parrots from elsewhere.
Collapse
|
194
|
Van Lent S, Creasy HH, Myers GS, Vanrompay D. The Number, Organization, and Size of Polymorphic Membrane Protein Coding Sequences as well as the Most Conserved Pmp Protein Differ within and across Chlamydia Species. J Mol Microbiol Biotechnol 2016; 26:333-44. [DOI: 10.1159/000447092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/25/2016] [Indexed: 11/19/2022] Open
Abstract
Variation is a central trait of the polymorphic membrane protein (Pmp) family. The number of <i>pmp</i> coding sequences differs between <i>Chlamydia</i> species, but it is unknown whether the number of <i>pmp</i> coding sequences is constant within a <i>Chlamydia</i> species. The level of conservation of the Pmp proteins has previously only been determined for <i>Chlamydia trachomatis.</i> As different Pmp proteins might be indispensible for the pathogenesis of different <i>Chlamydia </i>species, this study investigated the conservation of Pmp proteins both within and across <i>C. trachomatis,</i><i>C. pneumoniae,</i><i>C. abortus,</i> and <i>C. psittaci.</i> The <i>pmp</i> coding sequences were annotated in 16 <i>C. trachomatis,</i> 6 <i>C. pneumoniae,</i> 2 <i>C. abortus,</i> and 16 <i>C. psittaci</i> genomes. The number and organization of polymorphic membrane coding sequences differed within and across the analyzed <i>Chlamydia </i>species. The length of coding sequences of <i>pmpA,</i><i>pmpB,</i> and <i>pmpH</i> was conserved among all analyzed genomes, while the length of <i>pmpE/F</i> and <i>pmpG,</i> and remarkably also of the subtype <i>pmpD,</i> differed among the analyzed genomes. PmpD, PmpA, PmpH, and PmpA were the most conserved Pmp in <i>C. trachomatis,</i><i>C. pneumoniae,</i><i>C. abortus,</i> and <i>C. psittaci</i>, respectively. PmpB was the most conserved Pmp across the 4 analyzed <i>Chlamydia</i> species.
Collapse
|
195
|
Investigating the Relatedness of Enteroinvasive Escherichia coli to Other E. coli and Shigella Isolates by Using Comparative Genomics. Infect Immun 2016; 84:2362-2371. [PMID: 27271741 DOI: 10.1128/iai.00350-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022] Open
Abstract
Enteroinvasive Escherichia coli (EIEC) is a unique pathovar that has a pathogenic mechanism nearly indistinguishable from that of Shigella species. In contrast to isolates of the four Shigella species, which are widespread and can be frequent causes of human illness, EIEC causes far fewer reported illnesses each year. In this study, we analyzed the genome sequences of 20 EIEC isolates, including 14 first described in this study. Phylogenomic analysis of the EIEC genomes demonstrated that 17 of the isolates are present in three distinct lineages that contained only EIEC genomes, compared to reference genomes from each of the E. coli pathovars and Shigella species. Comparative genomic analysis identified genes that were unique to each of the three identified EIEC lineages. While many of the EIEC lineage-specific genes have unknown functions, those with predicted functions included a colicin and putative proteins involved in transcriptional regulation or carbohydrate metabolism. In silico detection of the Shigella virulence plasmid (pINV), which is essential for the invasion of host cells, demonstrated that a form of pINV was present in nearly all EIEC genomes, but the Mxi-Spa-Ipa region of the plasmid that encodes the invasion-associated proteins was absent from several of the EIEC isolates. The comparative genomic findings in this study support the hypothesis that multiple EIEC lineages have evolved independently from multiple distinct lineages of E. coli via the acquisition of the Shigella virulence plasmid and, in some cases, the Shigella pathogenicity islands.
Collapse
|
196
|
Pérez Carrascal OM, VanInsberghe D, Juárez S, Polz MF, Vinuesa P, González V. Population genomics of the symbiotic plasmids of sympatric nitrogen-fixing Rhizobium species associated with Phaseolus vulgaris. Environ Microbiol 2016; 18:2660-76. [PMID: 27312778 DOI: 10.1111/1462-2920.13415] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/13/2016] [Indexed: 11/28/2022]
Abstract
Cultivated common beans are the primary protein source for millions of people around the world who subsist on low-input agriculture, enabled by the symbiotic N2 -fixation these legumes perform in association with rhizobia. Within a single agricultural plot, multiple Rhizobium species can nodulate bean roots, but it is unclear how genetically isolated these species remain in sympatry. To better understand this issue, we sequenced and compared the genomes of 33 strains isolated from the rhizosphere and root nodules of a particular bean variety grown in the same agricultural plot. We found that the Rhizobium species we observed coexist with low genetic recombination across their core genomes. Accessory plasmids thought to be necessary for the saprophytic lifestyle in soil show similar levels of genetic isolation, but with higher rates of recombination than the chromosomes. However, the symbiotic plasmids are extremely similar, with high rates of recombination and do not appear to have co-evolved with the chromosome or accessory plasmids. Therefore, while Rhizobium species are genetically isolated units within the microbial community, a common symbiotic plasmid allows all Rhizobium species to engage in symbiosis with the same host in a single agricultural plot.
Collapse
Affiliation(s)
- Olga M Pérez Carrascal
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - David VanInsberghe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Soledad Juárez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| |
Collapse
|
197
|
Kwon T, Jung YH, Lee S, Yun MR, Kim W, Kim DW. Comparative genomic analysis of Klebsiella pneumoniae subsp. pneumoniae KP617 and PittNDM01, NUHL24835, and ATCC BAA-2146 reveals unique evolutionary history of this strain. Gut Pathog 2016; 8:34. [PMID: 27408624 PMCID: PMC4940875 DOI: 10.1186/s13099-016-0117-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/16/2016] [Indexed: 01/21/2023] Open
Abstract
Background Klebsiella pneumoniae subsp. pneumoniae KP617 is a pathogenic strain that coproduces OXA-232 and NDM-1 carbapenemases. We sequenced the genome of KP617, which was isolated from the wound of a Korean burn patient, and performed a comparative genomic analysis with three additional strains: PittNDM01, NUHL24835 and ATCC BAA-2146. Results The complete genome of KP617 was obtained via multi-platform whole-genome sequencing. Phylogenetic analysis along with whole genome and multi-locus sequence typing of genes of the Klebsiella pneumoniae species showed that KP617 belongs to the WGLW2 group, which includes PittNDM01 and NUHL24835. Comparison of annotated genes showed that KP617 shares 98.3 % of its genes with PittNDM01. Nineteen antibiotic resistance genes were identified in the KP617 genome: blaOXA-1 and blaSHV-28 in the chromosome, blaNDM-1 in plasmid 1, and blaOXA-232 in plasmid 2 conferred resistance to beta-lactams; however, colistin- and tetracycline-resistance genes were not found. We identified 117 virulence factors in the KP617 genome, and discovered that the genes encoding these factors were also harbored by the reference strains; eight genes were lipopolysaccharide-related and four were capsular polysaccharide-related. A comparative analysis of phage-associated regions indicated that two phage regions are specific to the KP617 genome and that prophages did not act as a vehicle for transfer of antimicrobial resistance genes in this strain. Conclusions Whole-genome sequencing and bioinformatics analysis revealed similarity in the genome sequences and content, and differences in phage-related genes, plasmids and antimicrobial resistance genes between KP617 and the references. In order to elucidate the precise role of these factors in the pathogenicity of KP617, further studies are required. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0117-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taesoo Kwon
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Young-Hee Jung
- Division of Antimicrobial Resistance, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| | - Sanghyun Lee
- Division of Biosafety Evaluation and Control, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| | - Mi-Ran Yun
- Division of Biosafety Evaluation and Control, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| | - Won Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Dae-Won Kim
- Division of Biosafety Evaluation and Control, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| |
Collapse
|
198
|
Pryszcz LP, Németh T, Gácser A, Gabaldón T. Genome comparison of Candida orthopsilosis clinical strains reveals the existence of hybrids between two distinct subspecies. Genome Biol Evol 2016; 6:1069-78. [PMID: 24747362 PMCID: PMC4040990 DOI: 10.1093/gbe/evu082] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Candida parapsilosis species complex comprises a group of emerging human pathogens of varying virulence. This complex was recently subdivided into three different species: C. parapsilosis sensu stricto, C. metapsilosis, and C. orthopsilosis. Within the latter, at least two clearly distinct subspecies seem to be present among clinical isolates (Type 1 and Type 2). To gain insight into the genomic differences between these subspecies, we undertook the sequencing of a clinical isolate classified as Type 1 and compared it with the available sequence of a Type 2 clinical strain. Unexpectedly, the analysis of the newly sequenced strain revealed a highly heterozygous genome, which we show to be the consequence of a hybridization event between both identified subspecies. This implicitly suggests that C. orthopsilosis is able to mate, a so-far unanswered question. The resulting hybrid shows a chimeric genome that maintains a similar gene dosage from both parental lineages and displays ongoing loss of heterozygosity. Several of the differences found between the gene content in both strains relate to virulent-related families, with the hybrid strain presenting a higher copy number of genes coding for efflux pumps or secreted lipases. Remarkably, two clinical strains isolated from distant geographical locations (Texas and Singapore) are descendants of the same hybrid line, raising the intriguing possibility of a relationship between the hybridization event and the global spread of a virulent clone.
Collapse
Affiliation(s)
- Leszek P Pryszcz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | | | | | | |
Collapse
|
199
|
Kwon T, Kim JB, Bak YS, Yu YB, Kwon KS, Kim W, Cho SH. Draft genome sequence of non-shiga toxin-producing Escherichia coli O157 NCCP15738. Gut Pathog 2016; 8:13. [PMID: 27096008 PMCID: PMC4835932 DOI: 10.1186/s13099-016-0096-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/04/2016] [Indexed: 11/21/2022] Open
Abstract
Background The non-shiga toxin-producing Escherichia coli (non-STEC) O157 is a pathogenic strain that cause diarrhea but does not cause hemolytic-uremic syndrome, or hemorrhagic colitis. Here, we present the 5-Mb draft genome sequence of non-STEC O157 NCCP15738, which was isolated from the feces of a Korean patient with diarrhea, and describe its features and the structural basis for its genome evolution. Results A total of 565-Mbp paired-end reads were generated using the Illumina-HiSeq 2000 platform. The reads were assembled into 135 scaffolds throughout the de novo assembly. The assembled genome size of NCCP15738 was 5,005,278 bp with an N50 value of 142,450 bp and 50.65 % G+C content. Using Rapid Annotation using Subsystem Technology analysis, we predicted 4780 ORFs and 31 RNA genes. The evolutionary tree was inferred from multiple sequence alignment of 45 E. coli species. The most closely related neighbor of NCCP15738 indicated by whole-genome phylogeny was E. coli UMNK88, but that indicated by multilocus sequence analysis was E. coli DH1(ME8569). Conclusions A comparison between the NCCP15738 genome and those of reference strains, E. coli K-12 substr. MG1655 and EHEC O157:H7 EDL933 by bioinformatics analyses revealed unique genes in NCCP15738 associated with lysis protein S, two-component signal transduction system, conjugation, the flagellum, nucleotide-binding proteins, and metal-ion binding proteins. Notably, NCCP15738 has a dual flagella system like that in Vibrio parahaemolyticus, Aeromonas spp., and Rhodospirillum centenum. The draft genome sequence and the results of bioinformatics analysis of NCCP15738 provide the basis for understanding the genomic evolution of this strain. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0096-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taesoo Kwon
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea ; Division of Biosafety Evaluation and Control, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| | - Jung-Beom Kim
- Department of Food Science and Technology, Sunchon National University, Sunchon, Jeonnam 540-950 Republic of Korea
| | - Young-Seok Bak
- Department of Emergency Medical Service, College of Medical Science, Konyang University, Daejeon, 302-832 Republic of Korea
| | - Young-Bin Yu
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, 302-832 Republic of Korea
| | - Ki Sung Kwon
- New Hazardous Substances Team, National Institute of Food and Drug Safety Evaluation, Cheongju, 363-700 Republic of Korea
| | - Won Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| |
Collapse
|
200
|
Kania DA, Hazen TH, Hossain A, Nataro JP, Rasko DA. Genome diversity of Shigella boydii. Pathog Dis 2016; 74:ftw027. [PMID: 27056949 DOI: 10.1093/femspd/ftw027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
ITALIC! Shigella boydiiis one of the four ITALIC! Shigellaspecies that causes disease worldwide; however, there are few published studies that examine the genomic variation of this species. This study compares genomes of 72 total isolates; 28 ITALIC! S. boydiifrom Bangladesh and The Gambia that were recently isolated as part of the Global Enteric Multicenter Study (GEMS), 14 historical ITALIC! S. boydiigenomes in the public domain and 30 ITALIC! Escherichia coliand ITALIC! Shigellareference genomes that represent the genomic diversity of these pathogens. This comparative analysis of these 72 genomes identified that the ITALIC! S. boydiiisolates separate into three phylogenomic clades, each with specific gene content. Each of the clades contains ITALIC! S. boydiiisolates from geographic and temporally distant sources, indicating that the ITALIC! S. boydiiisolates from the GEMS are representative of ITALIC! S. boydii.This study describes the genome sequences of a collection of novel ITALIC! S. boydiiisolates and provides insight into the diversity of this species in comparison to the ITALIC! E. coliand other ITALIC! Shigellaspecies.
Collapse
Affiliation(s)
- Dane A Kania
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore Street, Suite 600, Baltimore, MD 21201, USA
| | - Tracy H Hazen
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore Street, Suite 600, Baltimore, MD 21201, USA
| | | | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - David A Rasko
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore Street, Suite 600, Baltimore, MD 21201, USA
| |
Collapse
|