151
|
Wang L, Li J, Hou X, Yan H, Zhang L, Liu X, Gao H, Zhao F, Wang L. Genome-Wide Identification of RNA Editing Sites Affecting Intramuscular Fat in Pigs. Animals (Basel) 2020; 10:E1616. [PMID: 32927662 PMCID: PMC7552122 DOI: 10.3390/ani10091616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Intramuscular fat (IMF) is essential for improving the palatability and flavor of meat, and it is strongly associated with human insulin resistance. RNA editing is a widespread regulating event in different tissues. Here, we investigated the global RNA editing difference of two groups of pig with different IMF contents to find the potential editing sites affecting IMF. In this research, RES-Scanner and REDItools were used to identify RNA editing sites based on the whole genome and transcriptome sequencing data of the high and low groups composed of three full-sib pairs with opposite IMF phenotypes. A total of 295 RNA editing sites were investigated in the longissimus dorsi muscle, and 90.17% of these sites caused A to G conversion. After annotation, most editing sites were located in noncoding regions (including five sites located on the 3' UTR regions). Five editing sites (including two sites that could lead to nonsynonymous amino acid changes) were located in the exons of genes. A total of 36 intergroup (high and low IMF) differential RNA editing sites were found in 33 genes. Some candidate editing sites, such as sites in acyl-coenzymeA: cholesterol acyltransferase 1 (ACAT1), coatomer protein, subunit alpha (COPA), and nuclear receptor coactivator 3 (NCOA3), were selected as candidate RNA editing sites associated with IMF. One site located on the 3' UTR region of growth hormone secretagogue receptor (GHSR) may regulate GHSR expression by affecting the interaction of miRNA and mRNA. In conclusion, we identified a total of 36 nonredundant RNA editing sites in the longissimus dorsi muscle, which may reveal the potential importance of RNA editing in IMF. Four were selected as candidate sites associated with IMF. Our findings provide some new insights of RNA editing function in pig longissimus dorsi muscle which useful for pig IMF breeding or human insulin resistances research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (J.L.); (X.H.); (H.Y.); (L.Z.); (X.L.); (H.G.); (F.Z.)
| |
Collapse
|
152
|
Cai W, Shi L, Cao M, Shen D, Li J, Zhang S, Song J. Pan-RNA editing analysis of the bovine genome. RNA Biol 2020; 18:368-381. [PMID: 32794424 DOI: 10.1080/15476286.2020.1807724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
RNA editing is an essential process for modifying nucleotides at specific RNA sites during post-transcription in many species. However, its genomic landscape and characters have not been systematically explored in the bovine genome. In the present study, we characterized global RNA editing profiles from 50 samples of cattle and revealed a range of RNA editing profiles in different tissues. Most editing sites were significantly enriched in specific BovB-derived SINEs, especially the dispersed Bov-tAs, which likely forms dsRNA structures similar to the primate-specific Alu elements. Interestingly, ADARB1 (ADAR2) was observed to be predominant in determining global editing in the bovine genome. Common RNA editing sites among similar tissues were associated with tissue-specific biological functions. Taken together, the wide distribution of RNA editing sites and their tissue-specific characters implied the bovine RNA editome should be further explored.
Collapse
Affiliation(s)
- Wentao Cai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Animal and Avian Science, University of Maryland, College Park, USA.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lijun Shi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingyue Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiuzhou Song
- Department of Animal and Avian Science, University of Maryland, College Park, USA
| |
Collapse
|
153
|
Chu D, Wei L. Systematic analysis reveals cis and trans determinants affecting C-to-U RNA editing in Arabidopsis thaliana. BMC Genet 2020; 21:98. [PMID: 32883207 PMCID: PMC7469343 DOI: 10.1186/s12863-020-00907-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Background C-to-U RNA editing is prevalent in the mitochondrial and chloroplast genes in plants. The biological functions of a fraction of C-to-U editing sites are continuously discovered by case studies. However, at genome-wide level, the cis and trans determinants affecting the occurrence or editing levels of these C-to-U events are relatively less studied. What is known is that the PPR (pentatricopeptide repeat) proteins are the main trans-regulatory elements responsible for the C-to-U conversion, but other determinants especially the cis-regulatory elements remain largely uninvestigated. Results By analyzing the transcriptome and translatome data in Arabidopsis thaliana roots and shoots, combined with RNA-seq data from hybrids of Arabidopsis thaliana and Arabidopsis lyrata, we perform genome-wide investigation on the cis elements and trans-regulatory elements that potentially affect C-to-U editing events. An upstream guanosine or double-stranded RNA (dsRNA) regions are unfavorable for editing events. Meanwhile, many genes including the transcription factors may indirectly play regulatory roles in trans. Conclusions The 5-prime thymidine facilitates editing and dsRNA structures prevent editing in cis. Many transcription factors affect editing in trans. Although the detailed molecular mechanisms underlying the cis and trans regulation remain to be experimentally verified, our findings provide novel aspects in studying the botanical C-to-U RNA editing events.
Collapse
Affiliation(s)
- Duan Chu
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lai Wei
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China.
| |
Collapse
|
154
|
Castrignanò T, Gioiosa S, Flati T, Cestari M, Picardi E, Chiara M, Fratelli M, Amente S, Cirilli M, Tangaro MA, Chillemi G, Pesole G, Zambelli F. ELIXIR-IT HPC@CINECA: high performance computing resources for the bioinformatics community. BMC Bioinformatics 2020; 21:352. [PMID: 32838759 PMCID: PMC7446135 DOI: 10.1186/s12859-020-03565-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The advent of Next Generation Sequencing (NGS) technologies and the concomitant reduction in sequencing costs allows unprecedented high throughput profiling of biological systems in a cost-efficient manner. Modern biological experiments are increasingly becoming both data and computationally intensive and the wealth of publicly available biological data is introducing bioinformatics into the "Big Data" era. For these reasons, the effective application of High Performance Computing (HPC) architectures is becoming progressively more recognized also by bioinformaticians. Here we describe HPC resources provisioning pilot programs dedicated to bioinformaticians, run by the Italian Node of ELIXIR (ELIXIR-IT) in collaboration with CINECA, the main Italian supercomputing center. RESULTS Starting from April 2016, CINECA and ELIXIR-IT launched the pilot Call "ELIXIR-IT HPC@CINECA", offering streamlined access to HPC resources for bioinformatics. Resources are made available either through web front-ends to dedicated workflows developed at CINECA or by providing direct access to the High Performance Computing systems through a standard command-line interface tailored for bioinformatics data analysis. This allows to offer to the biomedical research community a production scale environment, continuously updated with the latest available versions of publicly available reference datasets and bioinformatic tools. Currently, 63 research projects have gained access to the HPC@CINECA program, for a total handout of ~ 8 Millions of CPU/hours and, for data storage, ~ 100 TB of permanent and ~ 300 TB of temporary space. CONCLUSIONS Three years after the beginning of the ELIXIR-IT HPC@CINECA program, we can appreciate its impact over the Italian bioinformatics community and draw some considerations. Several Italian researchers who applied to the program have gained access to one of the top-ranking public scientific supercomputing facilities in Europe. Those investigators had the opportunity to sensibly reduce computational turnaround times in their research projects and to process massive amounts of data, pursuing research approaches that would have been otherwise difficult or impossible to undertake. Moreover, by taking advantage of the wealth of documentation and training material provided by CINECA, participants had the opportunity to improve their skills in the usage of HPC systems and be better positioned to apply to similar EU programs of greater scale, such as PRACE. To illustrate the effective usage and impact of the resources awarded by the program - in different research applications - we report five successful use cases, which have already published their findings in peer-reviewed journals.
Collapse
Affiliation(s)
- Tiziana Castrignanò
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy.
| | - Silvia Gioiosa
- CINECA, SuperComputing Applications and Innovation Department, Rome, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (IBIOM-CNR), Bari, Italy
| | - Tiziano Flati
- CINECA, SuperComputing Applications and Innovation Department, Rome, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (IBIOM-CNR), Bari, Italy
| | - Mirko Cestari
- CINECA, SuperComputing Applications and Innovation Department, Rome, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (IBIOM-CNR), Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Matteo Chiara
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (IBIOM-CNR), Bari, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| | - Maddalena Fratelli
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Milan, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Marco Cirilli
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
| | - Marco Antonio Tangaro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (IBIOM-CNR), Bari, Italy
| | - Giovanni Chillemi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (IBIOM-CNR), Bari, Italy.,Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (IBIOM-CNR), Bari, Italy. .,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.
| | - Federico Zambelli
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (IBIOM-CNR), Bari, Italy. .,Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
155
|
Flati T, Gioiosa S, Spallanzani N, Tagliaferri I, Diroma MA, Pesole G, Chillemi G, Picardi E, Castrignanò T. HPC-REDItools: a novel HPC-aware tool for improved large scale RNA-editing analysis. BMC Bioinformatics 2020; 21:353. [PMID: 32838738 PMCID: PMC7446188 DOI: 10.1186/s12859-020-03562-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND RNA editing is a widespread co-/post-transcriptional mechanism that alters primary RNA sequences through the modification of specific nucleotides and it can increase both the transcriptome and proteome diversity. The automatic detection of RNA-editing from RNA-seq data is computational intensive and limited to small data sets, thus preventing a reliable genome-wide characterisation of such process. RESULTS In this work we introduce HPC-REDItools, an upgraded tool for accurate RNA-editing events discovery from large dataset repositories. AVAILABILITY https://github.com/BioinfoUNIBA/REDItools2 . CONCLUSIONS HPC-REDItools is dramatically faster than the previous version, REDItools, enabling big-data analysis by means of a MPI-based implementation and scaling almost linearly with the number of available cores.
Collapse
Affiliation(s)
- Tiziano Flati
- SCAI-Super Computing Applications and Innovation Department, CINECA, Via dei Tizii, 6B, Rome, 00185 Italy
| | - Silvia Gioiosa
- SCAI-Super Computing Applications and Innovation Department, CINECA, Via dei Tizii, 6B, Rome, 00185 Italy
| | - Nicola Spallanzani
- SCAI-Super Computing Applications and Innovation Department, CINECA, Via dei Tizii, 6B, Rome, 00185 Italy
| | - Ilario Tagliaferri
- SCAI-Super Computing Applications and Innovation Department, CINECA, Via dei Tizii, 6B, Rome, 00185 Italy
| | - Maria Angela Diroma
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Giovanni Amendola, 165/A, Bari, 70125 Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Giovanni Amendola, 165/A, Bari, 70125 Italy
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari ‘Aldo Moro’, Via Giovanni Amendola, 165/A, Bari, 70125 Italy
| | - Giovanni Chillemi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Giovanni Amendola, 165/A, Bari, 70125 Italy
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Via S. Camillo de Lellis snc, Viterbo, 01100 Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Giovanni Amendola, 165/A, Bari, 70125 Italy
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari ‘Aldo Moro’, Via Giovanni Amendola, 165/A, Bari, 70125 Italy
| | - Tiziana Castrignanò
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Via S. Camillo de Lellis, 44, Viterbo, 01100 Italy
| |
Collapse
|
156
|
Vallecillo-Viejo IC, Liscovitch-Brauer N, Diaz Quiroz JF, Montiel-Gonzalez MF, Nemes SE, Rangan KJ, Levinson SR, Eisenberg E, Rosenthal JJC. Spatially regulated editing of genetic information within a neuron. Nucleic Acids Res 2020; 48:3999-4012. [PMID: 32201888 PMCID: PMC7192619 DOI: 10.1093/nar/gkaa172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/14/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
In eukaryotic cells, with the exception of the specialized genomes of mitochondria and plastids, all genetic information is sequestered within the nucleus. This arrangement imposes constraints on how the information can be tailored for different cellular regions, particularly in cells with complex morphologies like neurons. Although messenger RNAs (mRNAs), and the proteins that they encode, can be differentially sorted between cellular regions, the information itself does not change. RNA editing by adenosine deamination can alter the genome's blueprint by recoding mRNAs; however, this process too is thought to be restricted to the nucleus. In this work, we show that ADAR2 (adenosine deaminase that acts on RNA), an RNA editing enzyme, is expressed outside of the nucleus in squid neurons. Furthermore, purified axoplasm exhibits adenosine-to-inosine activity and can specifically edit adenosines in a known substrate. Finally, a transcriptome-wide analysis of RNA editing reveals that tens of thousands of editing sites (>70% of all sites) are edited more extensively in the squid giant axon than in its cell bodies. These results indicate that within a neuron RNA editing can recode genetic information in a region-specific manner.
Collapse
Affiliation(s)
| | - Noa Liscovitch-Brauer
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Juan F Diaz Quiroz
- The Eugene Bell Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02540, USA
| | | | - Sonya E Nemes
- The Eugene Bell Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02540, USA
| | - Kavita J Rangan
- The Eugene Bell Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02540, USA
| | - Simon R Levinson
- Department of Physiology and Biophysics, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Joshua J C Rosenthal
- The Eugene Bell Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02540, USA
| |
Collapse
|
157
|
Mathlin J, Le Pera L, Colombo T. A Census and Categorization Method of Epitranscriptomic Marks. Int J Mol Sci 2020; 21:ijms21134684. [PMID: 32630140 PMCID: PMC7370119 DOI: 10.3390/ijms21134684] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few years, thorough investigation of chemical modifications operated in the cells on ribonucleic acid (RNA) molecules is gaining momentum. This new field of research has been dubbed “epitranscriptomics”, in analogy to best-known epigenomics, to stress the potential of ensembles of RNA modifications to constitute a post-transcriptional regulatory layer of gene expression orchestrated by writer, reader, and eraser RNA-binding proteins (RBPs). In fact, epitranscriptomics aims at identifying and characterizing all functionally relevant changes involving both non-substitutional chemical modifications and editing events made to the transcriptome. Indeed, several types of RNA modifications that impact gene expression have been reported so far in different species of cellular RNAs, including ribosomal RNAs, transfer RNAs, small nuclear RNAs, messenger RNAs, and long non-coding RNAs. Supporting functional relevance of this largely unknown regulatory mechanism, several human diseases have been associated directly to RNA modifications or to RBPs that may play as effectors of epitranscriptomic marks. However, an exhaustive epitranscriptome’s characterization, aimed to systematically classify all RNA modifications and clarify rules, actors, and outcomes of this promising regulatory code, is currently not available, mainly hampered by lack of suitable detecting technologies. This is an unfortunate limitation that, thanks to an unprecedented pace of technological advancements especially in the sequencing technology field, is likely to be overcome soon. Here, we review the current knowledge on epitranscriptomic marks and propose a categorization method based on the reference ribonucleotide and its rounds of modifications (“stages”) until reaching the given modified form. We believe that this classification scheme can be useful to coherently organize the expanding number of discovered RNA modifications.
Collapse
Affiliation(s)
- Julia Mathlin
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Correspondence: (J.M.); (L.L.P.); Tel.: +39-06-4991-0556 (L.L.P.)
| | - Loredana Le Pera
- CNR-Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70126 Bari, Italy
- CNR-Institute of Molecular Biology and Pathology (IBPM), 00185 Rome, Italy;
- Correspondence: (J.M.); (L.L.P.); Tel.: +39-06-4991-0556 (L.L.P.)
| | - Teresa Colombo
- CNR-Institute of Molecular Biology and Pathology (IBPM), 00185 Rome, Italy;
| |
Collapse
|
158
|
Li T, Li Q, Li H, Xiao X, Ahmad Warraich D, Zhang N, Chen Z, Hou J, Liu T, Weng X, Liu Z, Hua J, Liao M. Pig-specific RNA editing during early embryo development revealed by genome-wide comparisons. FEBS Open Bio 2020; 10:1389-1402. [PMID: 32433824 PMCID: PMC7327910 DOI: 10.1002/2211-5463.12900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Posttranscriptional modification of mRNA sequences through RNA editing can increase transcriptome and proteome diversity in eukaryotes. Studies of fetal and adult tissues showed that adenosine‐to‐inosine RNA editing plays a crucial role in early human development, but there is a lack of global understanding of dynamic RNA editing during mammalian early embryonic development. Therefore, here we used RNA sequencing data from human, pig and mouse during early embryonic development to detect edited genes that may regulate stem cell pluripotency. We observed that although most of the RNA editing sites are located in intergenic, intron and UTR, a few editing sites are in coding regions and may result in nonsynonymous amino acid changes. Some editing sites are predicted to change the structure of a protein. We also report that HNF1A, TBX3, ACLY, ECI1 and ERDR1 are related to embryonic development and cell division.
Collapse
Affiliation(s)
- Tongtong Li
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Qun Li
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Hao Li
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xia Xiao
- College of Life Sciences, Northwest A&F University, Yangling, China
| | | | - Ning Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Ziyun Chen
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Junyao Hou
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Tong Liu
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Weng
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Mingzhi Liao
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
159
|
Schaffer AA, Kopel E, Hendel A, Picardi E, Levanon E, Eisenberg E. The cell line A-to-I RNA editing catalogue. Nucleic Acids Res 2020; 48:5849-5858. [PMID: 32383740 PMCID: PMC7293008 DOI: 10.1093/nar/gkaa305] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/30/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a common post transcriptional modification. It has a critical role in protecting against false activation of innate immunity by endogenous double stranded RNAs and has been associated with various regulatory processes and diseases such as autoimmune and cardiovascular diseases as well as cancer. In addition, the endogenous A-to-I editing machinery has been recently harnessed for RNA engineering. The study of RNA editing in humans relies heavily on the usage of cell lines as an important and commonly-used research tool. In particular, manipulations of the editing enzymes and their targets are often developed using cell line platforms. However, RNA editing in cell lines behaves very differently than in normal and diseased tissues, and most cell lines exhibit low editing levels, requiring over-expression of the enzymes. Here, we explore the A-to-I RNA editing landscape across over 1000 human cell lines types and show that for almost every editing target of interest a suitable cell line that mimics normal tissue condition may be found. We provide CLAIRE, a searchable catalogue of RNA editing levels across cell lines available at http://srv00.recas.ba.infn.it/atlas/claire.html, to facilitate rational choice of appropriate cell lines for future work on A-to-I RNA editing.
Collapse
Affiliation(s)
- Amos A Schaffer
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Eli Kopel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ayal Hendel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, I-70126 Bari, Italy
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
160
|
Di Giorgio S, Martignano F, Torcia MG, Mattiuz G, Conticello SG. Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. SCIENCE ADVANCES 2020; 6:eabb5813. [PMID: 32596474 PMCID: PMC7299625 DOI: 10.1126/sciadv.abb5813] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/05/2020] [Indexed: 05/13/2023]
Abstract
The COVID-19 outbreak has become a global health risk, and understanding the response of the host to the SARS-CoV-2 virus will help to combat the disease. RNA editing by host deaminases is an innate restriction process to counter virus infection, but it is not yet known whether this process operates against coronaviruses. Here, we analyze RNA sequences from bronchoalveolar lavage fluids obtained from coronavirus-infected patients. We identify nucleotide changes that may be signatures of RNA editing: adenosine-to-inosine changes from ADAR deaminases and cytosine-to-uracil changes from APOBEC deaminases. Mutational analysis of genomes from different strains of Coronaviridae from human hosts reveals mutational patterns consistent with those observed in the transcriptomic data. However, the reduced ADAR signature in these data raises the possibility that ADARs might be more effective than APOBECs in restricting viral propagation. Our results thus suggest that both APOBECs and ADARs are involved in coronavirus genome editing, a process that may shape the fate of both virus and patient.
Collapse
Affiliation(s)
- Salvatore Di Giorgio
- Core Research Laboratory, ISPRO, Firenze 50139, Italy
- Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Filippo Martignano
- Core Research Laboratory, ISPRO, Firenze 50139, Italy
- Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Maria Gabriella Torcia
- Department of Experimental and Clinical Medicine, University of Florence, Firenze 50139, Italy
| | - Giorgio Mattiuz
- Core Research Laboratory, ISPRO, Firenze 50139, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Firenze 50139, Italy
| | - Silvestro G. Conticello
- Core Research Laboratory, ISPRO, Firenze 50139, Italy
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
161
|
Sorce S, Nuvolone M, Russo G, Chincisan A, Heinzer D, Avar M, Pfammatter M, Schwarz P, Delic M, Müller M, Hornemann S, Sanoudou D, Scheckel C, Aguzzi A. Genome-wide transcriptomics identifies an early preclinical signature of prion infection. PLoS Pathog 2020; 16:e1008653. [PMID: 32598380 PMCID: PMC7360066 DOI: 10.1371/journal.ppat.1008653] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/14/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
The clinical course of prion diseases is accurately predictable despite long latency periods, suggesting that prion pathogenesis is driven by precisely timed molecular events. We constructed a searchable genome-wide atlas of mRNA abundance and splicing alterations during the course of disease in prion-inoculated mice. Prion infection induced PrP-dependent transient changes in mRNA abundance and processing already at eight weeks post inoculation, well ahead of any neuropathological and clinical signs. In contrast, microglia-enriched genes displayed an increase simultaneous with the appearance of clinical signs, whereas neuronal-enriched transcripts remained unchanged until the very terminal stage of disease. This suggests that glial pathophysiology, rather than neuronal demise, could be the final driver of disease. The administration of young plasma attenuated the occurrence of early mRNA abundance alterations and delayed signs in the terminal phase of the disease. The early onset of prion-induced molecular changes might thus point to novel biomarkers and potential interventional targets.
Collapse
Affiliation(s)
- Silvia Sorce
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Mario Nuvolone
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
- Amyloidosis Research and Treatment Center, Foundation Scientific Institute Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giancarlo Russo
- Functional Genomics Center Zurich, ETH/University of Zurich, Zurich, Switzerland
| | - Andra Chincisan
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Daniel Heinzer
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Merve Avar
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | | | - Petra Schwarz
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Mirzet Delic
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Micha Müller
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Claudia Scheckel
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
162
|
Yang L, Li L, Kyei B, Guo J, Zhan S, Zhao W, Song Y, Zhong T, Wang L, Xu L, Zhang H. Systematic analyses reveal RNA editing events involved in skeletal muscle development of goat (Capra hircus). Funct Integr Genomics 2020; 20:633-643. [PMID: 32447468 DOI: 10.1007/s10142-020-00741-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 11/24/2022]
Abstract
RNA editing is a posttranscriptional molecular process involved with specific nucleic modification, which can enhance the diversity of gene products. Adenosine-to-inosine (A-to-I, I is read as guanosine by both splicing and translation machinery) is the main type of RNA editing in mammals, which manifested as AG (adenosine-to-guanosine) in sequence data. Here, we aimed to explore patterns of RNA editing using RNA sequencing data from skeletal muscle at four developmental stages (three fetal periods and one postnatal period) in goat. We found the occurrences of RNA editing events raised at fetal periods and declined at the postnatal period. Also, we observed distinct editing levels of AG editing across stages, and significant difference was found between postnatal period and fetal periods. AG editing patterns in newborn goats are similar to those of 45-day embryo compared with embryo at 105 days and embryo at 60 days. In this study, we found a total of 1415 significantly differential edited AG sites among four groups. Moreover, 420 sites were obviously clustered into six time-series profiles, and one profile had significant association between editing level and gene expression. Our findings provided some novel insights into understanding the molecular mechanism of muscle development in mammals.
Collapse
Affiliation(s)
- Liu Yang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bismark Kyei
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhao
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yumo Song
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
163
|
Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res 2020; 47:W65-W73. [PMID: 31066451 PMCID: PMC6602467 DOI: 10.1093/nar/gkz345] [Citation(s) in RCA: 719] [Impact Index Per Article: 143.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
We previously developed a web server CPGAVAS for annotation, visualization and GenBank submission of plastome sequences. Here, we upgrade the server into CPGAVAS2 to address the following challenges: (i) inaccurate annotation in the reference sequence likely causing the propagation of errors; (ii) difficulty in the annotation of small exons of genes petB, petD and rps16 and trans-splicing gene rps12; (iii) lack of annotation for other genome features and their visualization, such as repeat elements; and (iv) lack of modules for diversity analysis of plastomes. In particular, CPGAVAS2 provides two reference datasets for plastome annotation. The first dataset contains 43 plastomes whose annotation have been validated or corrected by RNA-seq data. The second one contains 2544 plastomes curated with sequence alignment. Two new algorithms are also implemented to correctly annotate small exons and trans-splicing genes. Tandem and dispersed repeats are identified, whose results are displayed on a circular map together with the annotated genes. DNA-seq and RNA-seq data can be uploaded for identification of single-nucleotide polymorphism sites and RNA-editing sites. The results of two case studies show that CPGAVAS2 annotates better than several other servers. CPGAVAS2 will likely become an indispensible tool for plastome research and can be accessed from http://www.herbalgenomics.org/cpgavas2.
Collapse
Affiliation(s)
- Linchun Shi
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P.R. China
| | - Haimei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P.R. China
| | - Mei Jiang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P.R. China
| | - Liqiang Wang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P.R. China
| | - Xi Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P.R. China
| | - Linfang Huang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P.R. China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P.R. China
| |
Collapse
|
164
|
Lo Giudice C, Silvestris DA, Roth SH, Eisenberg E, Pesole G, Gallo A, Picardi E. Quantifying RNA Editing in Deep Transcriptome Datasets. Front Genet 2020; 11:194. [PMID: 32211029 PMCID: PMC7069340 DOI: 10.3389/fgene.2020.00194] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Massive transcriptome sequencing through the RNAseq technology has enabled quantitative transcriptome-wide investigation of co-/post-transcriptional mechanisms such as alternative splicing and RNA editing. The latter is abundant in human transcriptomes in which million adenosines are deaminated into inosines by the ADAR enzymes. RNA editing modulates the innate immune response and its deregulation has been associated with different human diseases including autoimmune and inflammatory pathologies, neurodegenerative and psychiatric disorders, and tumors. Accurate profiling of RNA editing using deep transcriptome data is still a challenge, and the results depend strongly on processing and alignment steps taken. Accurate calling of the inosinome repertoire, however, is required to reliably quantify RNA editing and, in turn, investigate its biological and functional role across multiple samples. Using real RNAseq data, we demonstrate the impact of different bioinformatics steps on RNA editing detection and describe the main metrics to quantify its level of activity.
Collapse
Affiliation(s)
- Claudio Lo Giudice
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | | | - Shalom Hillel Roth
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Eisenberg
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| | - Angela Gallo
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù," Rome, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
165
|
Knutson SD, Arthur RA, Johnston HR, Heemstra JM. Selective Enrichment of A-to-I Edited Transcripts from Cellular RNA Using Endonuclease V. J Am Chem Soc 2020; 142:5241-5251. [PMID: 32109061 DOI: 10.1021/jacs.9b13406] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Creating accurate maps of A-to-I RNA editing activity is vital to improving our understanding of the biological role of this process and harnessing it as a signal for disease diagnosis. Current RNA sequencing techniques are susceptible to random sampling limitations due to the complexity of the transcriptome and require large amounts of RNA material, specialized instrumentation, and high read counts to accurately interrogate A-to-I editing sites. To address these challenges, we show that Escherichia coli Endonuclease V (eEndoV), an inosine-cleaving enzyme, can be repurposed to bind and isolate A-to-I edited transcripts from cellular RNA. While Mg2+ enables eEndoV to catalyze RNA cleavage, we show that similar levels of Ca2+ instead promote binding of inosine without cleavage and thus enable high affinity capture of inosine in RNA. We leverage this capability to demonstrate EndoVIPER-seq (Endonuclease V inosine precipitation enrichment sequencing) as a facile and effective method to enrich A-to-I edited transcripts prior to RNA-seq, producing significant increases in the coverage and detection of identified editing sites. We envision the use of this approach as a straightforward and cost-effective strategy to improve the epitranscriptomic informational density of RNA samples, facilitating a deeper understanding of the functional roles of A-to-I editing.
Collapse
Affiliation(s)
- Steve D Knutson
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Robert A Arthur
- Emory Integrated Computational Core, Emory Integrated Core Facilities, Emory University, Atlanta, Georgia 30322, United States
| | - H Richard Johnston
- Department of Human Genetics, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
166
|
Lo Giudice C, Tangaro MA, Pesole G, Picardi E. Investigating RNA editing in deep transcriptome datasets with REDItools and REDIportal. Nat Protoc 2020; 15:1098-1131. [PMID: 31996844 DOI: 10.1038/s41596-019-0279-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
RNA editing is a widespread post-transcriptional mechanism able to modify transcripts through insertions/deletions or base substitutions. It is prominent in mammals, in which millions of adenosines are deaminated to inosines by members of the ADAR family of enzymes. A-to-I RNA editing has a plethora of biological functions, but its detection in large-scale transcriptome datasets is still an unsolved computational task. To this aim, we developed REDItools, the first software package devoted to the RNA editing profiling in RNA-sequencing (RNAseq) data. It has been successfully used in human transcriptomes, proving the tissue and cell type specificity of RNA editing as well as its pervasive nature. Outcomes from large-scale REDItools analyses on human RNAseq data have been collected in our specialized REDIportal database, containing more than 4.5 million events. Here we describe in detail two bioinformatic procedures based on our computational resources, REDItools and REDIportal. In the first procedure, we outline a workflow to detect RNA editing in the human cell line NA12878, for which transcriptome and whole genome data are available. In the second procedure, we show how to identify dysregulated editing at specific recoding sites in post-mortem brain samples of Huntington disease donors. On a 64-bit computer running Linux with ≥32 GB of random-access memory (RAM), both procedures should take ~76 h, using 4 to 24 cores. Our protocols have been designed to investigate RNA editing in different organisms with available transcriptomic and/or genomic reads. Scripts to complete both procedures and a docker image are available at https://github.com/BioinfoUNIBA/REDItools.
Collapse
Affiliation(s)
- Claudio Lo Giudice
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Marco Antonio Tangaro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy. .,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy. .,National Institute of Biostructures and Biosystems (INBB), Rome, Italy.
| |
Collapse
|
167
|
Chu D, Wei L. Reduced C-to-U RNA editing rates might play a regulatory role in stress response of Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153081. [PMID: 31783167 DOI: 10.1016/j.jplph.2019.153081] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
C-to-U RNA editing is prevalent in the mitochondrial and chloroplast genes in plants. The C-to-U editing rates are constantly very high. During genome evolution, those edited cytidines are likely to be replaced with thymidines at the DNA level. C-to-U editing events are suggested to be designed for reversing the unfavorable T-to-C DNA mutations. Despite the existing theory showing the importance of editing mechanisms, few studies have investigated the genome-wide adaptive signals of the C-to-U editome or the potential function of C-to-U editing events in the stress response. By analyzing the transcriptome and translatome data of normal and heat-shocked Arabidopsis thaliana and the RNA-seq from cold-stressed plants, combined with genome-wide comparison of mitochondrial/chloroplast genes and nuclear genes from multiple aspects, we present the conservational and translational features of each gene and depict the dynamic mitochondrial/chloroplast C-to-U RNA editome. We found that the tAI (tRNA adaptation index) and basic translation levels are lower for mitochondrial/chloroplast genes than for nuclear genes. Interestingly, although we found adaptive signals for the global C-to-U RNA editome in mitochondrial/chloroplast genes, the C-to-U (T) alteration would usually cause a reduction in the codon tAI value. Moreover, the C-to-U editing rates are significantly reduced under heat or cold stress when compared to the normal condition. This reduction is irrelevant to the temperature-sensitive RNA structures. Several cases have illustrated that under heat stress, the reduced C-to-U editing rates alleviate ribosome stalling and consequently facilitate the local translation. Our study reveals that in Arabidopsis thaliana the mitochondrial/chloroplast C-to-U RNA editing rates are reduced under heat or cold stress. This reduction is associated with the alleviation of decreased tAI/translation rate of edited codons. The regulation of C-to-U editing rates could be the tradeoff between quantity and quality. We profile the dynamic change of C-to-U RNA editome under heat stress and propose a potential role of editing sites in the heat response. Our work should be appealing to the plant physiologists as well as the RNA editing community.
Collapse
Affiliation(s)
- Duan Chu
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lai Wei
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China.
| |
Collapse
|
168
|
Chen SCC, Lo CM, Wang SH, Su ECY. RNA editing-based classification of diffuse gliomas: predicting isocitrate dehydrogenase mutation and chromosome 1p/19q codeletion. BMC Bioinformatics 2019; 20:659. [PMID: 31870275 PMCID: PMC6929429 DOI: 10.1186/s12859-019-3236-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Accurate classification of diffuse gliomas, the most common tumors of the central nervous system in adults, is important for appropriate treatment. However, detection of isocitrate dehydrogenase (IDH) mutation and chromosome1p/19q codeletion, biomarkers to classify gliomas, is time- and cost-intensive and diagnostic discordance remains an issue. Adenosine to inosine (A-to-I) RNA editing has emerged as a novel cancer prognostic marker, but its value for glioma classification remains largely unexplored. We aim to (1) unravel the relationship between RNA editing and IDH mutation and 1p/19q codeletion and (2) predict IDH mutation and 1p/19q codeletion status using machine learning algorithms. RESULTS By characterizing genome-wide A-to-I RNA editing signatures of 638 gliomas, we found that tumors without IDH mutation exhibited higher total editing level compared with those carrying it (Kolmogorov-Smirnov test, p < 0.0001). When tumor grade was considered, however, only grade IV tumors without IDH mutation exhibited higher total editing level. According to 10-fold cross-validation, support vector machines (SVM) outperformed random forest and AdaBoost (DeLong test, p < 0.05). The area under the receiver operating characteristic curve (AUC) of SVM in predicting IDH mutation and 1p/19q codeletion were 0.989 and 0.990, respectively. After performing feature selection, AUCs of SVM and AdaBoost in predicting IDH mutation were higher than that of random forest (0.985 and 0.983 vs. 0.977; DeLong test, p < 0.05), but AUCs of the three algorithms in predicting 1p/19q codeletion were similar (0.976-0.982). Furthermore, 67% of the six continuously misclassified samples by our 1p/19q codeletion prediction models were misclassifications in the original labelling after inspection of 1p/19q status and/or pathology report, highlighting the accuracy and clinical utility of our models. CONCLUSIONS The study represents the first genome-wide analysis of glioma editome and identifies RNA editing as a novel prognostic biomarker for glioma. Our prediction models provide standardized, accurate, reproducible and objective classification of gliomas. Our models are not only useful in clinical decision-making, but also able to identify editing events that have the potential to serve as biomarkers and therapeutic targets in glioma management and treatment.
Collapse
Affiliation(s)
- Sean Chun-Chang Chen
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 10675, Taiwan.
| | - Chung-Ming Lo
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 10675, Taiwan
| | - Shih-Hua Wang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 10675, Taiwan
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 10675, Taiwan
| |
Collapse
|
169
|
Weirick T, Militello G, Hosen MR, John D, Moore JB, Uchida S. Investigation of RNA Editing Sites within Bound Regions of RNA-Binding Proteins. High Throughput 2019; 8:ht8040019. [PMID: 31795425 PMCID: PMC6970233 DOI: 10.3390/ht8040019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/08/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Studies in epitranscriptomics indicate that RNA is modified by a variety of enzymes. Among these RNA modifications, adenosine to inosine (A-to-I) RNA editing occurs frequently in the mammalian transcriptome. These RNA editing sites can be detected directly from RNA sequencing (RNA-seq) data by examining nucleotide changes from adenosine (A) to guanine (G), which substitutes for inosine (I). However, a careful investigation of such nucleotide changes must be conducted to distinguish sequencing errors and genomic mutations from the genuine editing sites. Building upon our recent introduction of an easy-to-use bioinformatics tool, RNA Editor, to detect RNA editing events from RNA-seq data, we examined the extent by which RNA editing events affect the binding of RNA-binding proteins (RBP). Through employing bioinformatic techniques, we uncovered that RNA editing sites occur frequently in RBP-bound regions. Moreover, the presence of RNA editing sites are more frequent when RNA editing islands were examined, which are regions in which RNA editing sites are present in clusters. When the binding of one RBP, human antigen R [HuR; encoded by ELAV-like protein 1 (ELAV1)], was quantified experimentally, its binding was reduced upon silencing of the RNA editing enzyme adenosine deaminases acting on RNA (ADAR) compared to the control-suggesting that the presence of RNA editing islands influence HuR binding to its target regions. These data indicate RNA editing as an important mediator of RBP-RNA interactions-a mechanism which likely constitutes an additional mode of post-transcription gene regulation in biological systems.
Collapse
Affiliation(s)
- Tyler Weirick
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Giuseppe Militello
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
- Department of Molecular Cellular and Developmental Biology, Yale University, Yale Science Building-260 Whitney Avenue, New Haven, CT 06511, USA;
| | - Mohammed Rabiul Hosen
- Department of Internal Medicine-II, Molecular Cardiology, Biomedical Center (BMZ), University of Bonn, Sigmund-Freud-Str. 25, Bonn 53127, Germany;
| | - David John
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany;
| | - Joseph B. Moore
- The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | - Shizuka Uchida
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
- The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
- Correspondence: ; Tel.: +1-502-854-0570
| |
Collapse
|
170
|
Roth SH, Levanon EY, Eisenberg E. Genome-wide quantification of ADAR adenosine-to-inosine RNA editing activity. Nat Methods 2019; 16:1131-1138. [PMID: 31636457 DOI: 10.1038/s41592-019-0610-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing by the adenosine deaminase that acts on RNA (ADAR) enzymes is a common RNA modification, preventing false activation of the innate immune system by endogenous double-stranded RNAs. Methods for quantification of ADAR activity are sought after, due to an increasing interest in the role of ADARs in cancer and autoimmune disorders, as well as attempts to harness the ADAR enzymes for RNA engineering. Here, we present the Alu editing index (AEI), a robust and simple-to-use computational tool devised for this purpose. We describe its properties and demonstrate its superiority to current quantification methods of ADAR activity. The AEI is used to map global editing across a large dataset of healthy human samples and identify putative regulators of ADAR, as well as previously unknown factors affecting the observed Alu editing levels. These should be taken into account in future comparative studies of ADAR activity. The AEI tool is available at https://github.com/a2iEditing/RNAEditingIndexer.
Collapse
Affiliation(s)
- Shalom Hillel Roth
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
171
|
Wang X, Wu X, Zhu Z, Li H, Li T, Li Q, Zhang P, Li L, Che D, Xiao X, Liu T, Hua J, Liao M. Landscape of RNA editing reveals new insights into the dynamic gene regulation of spermatogenesis. Cell Cycle 2019; 18:3351-3364. [PMID: 31594448 DOI: 10.1080/15384101.2019.1676584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spermatogenesis is an important physiological process associated with male infertility. As a kind of post-transcriptional regulation, RNA editings (REs) change the genetic information at the mRNA level. But whether there are REs and what's the role of REs during the process are still unclear. In this study, we integrated published RNA-Seq datasets and established a landscape of RNA REs during the development of mouse spermatogenesis. Totally, 7530 editing sites occurred in 2012 genes among all types of male germ cells were found, these sites enrich on some regions of chromosomes, including chromosome 17 and both ends of chromosome Y. We also found about half of the REs in CDSs can cause amino acids changes. Some non-synonymous REs which exist in specific genes may play important roles in spermatogenesis. Finally, we verified a non-synonymous A-to-I RNA editing site in Cog3 and a stoploss editing in Tssk6 during spermatogenesis. In short, we systematically analyzed the dynamic landscape of RNA editing at different stages of spermatogenesis.
Collapse
Affiliation(s)
- Xiaodan Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Zhenshuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Hao Li
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Tongtong Li
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Qun Li
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Peng Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Leijie Li
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Dongxue Che
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xia Xiao
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Tong Liu
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Mingzhi Liao
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
172
|
van de Wouw M, Stilling RM, Peterson VL, Ryan FJ, Hoban AE, Shanahan F, Clarke G, Claesson MJ, Dinan TG, Cryan JF, Schellekens H. Host Microbiota Regulates Central Nervous System Serotonin Receptor 2C Editing in Rodents. ACS Chem Neurosci 2019; 10:3953-3960. [PMID: 31415146 DOI: 10.1021/acschemneuro.9b00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microbial colonization of the gastrointestinal tract plays a crucial role in the development of enteric and central nervous system functionality. The serotonergic system has been heavily implicated in microbiota-gut-brain axis signaling, particularly in proof-of-principle studies in germ-free (GF) animals. One aspect of the serotonergic system that has been left unexplored in relation to the microbiota is the unique ability of the serotonin receptor 2C (5-HT2C) to undergo post-transcriptional editing, which has been implicated in decreased receptor functionality. We investigated whether GF mice, with absent microbiota from birth, have altered 5-HT2C receptor expression and editing in the brain, and if colonization of the microbiota is able to restore editing patterns. Next, we investigated whether microbiota depletion later in life using a chronic antibiotic treatment could affect 5-HT2C receptor editing patterns in rats. We found that GF mice have an increased prevalence of the edited 5-HT2C receptor isoforms in the amygdala, hypothalamus, prefrontal cortex, and striatum, which was partially normalized upon colonization post-weaning. However, no alterations were observed in the hypothalamus after microbiota depletion using an antibiotic treatment in adult rats. This suggests that alterations in the microbiome during development, but not later in life, could influence 5-HT2C receptor editing patterns. Overall, these results demonstrate that the microbiota affects 5-HT2C receptor editing in the brain and may inform novel therapeutic strategies in conditions in which 5-HT2C receptor editing is altered, such as depression.
Collapse
Affiliation(s)
- Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Roman M. Stilling
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Feargal J. Ryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Alan E. Hoban
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Marcus J. Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
173
|
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by rapidly progressive dementia. Sporadic Creutzfeldt–Jakob disease (sCJD) is the most prevalent. We report that, specific gene-expression alterations utilizing a reliable in vivo mouse model (tg340-PRNP129MM) with sCJD MM1 subtype, correlate with human disease manifestations in the brain cortex related to disease progression. RNA-editing functions mediated by the APOBEC and ADAR deaminases possibly affecting protein expression necessary for normal brain function, are altered in disease stages. Our data provide powerful evidence, derived from a humanized sCJD mouse model and human autopsy material, discerning the critical role of gene expression and RNA-editing signatures, introducing disease-associated targets that can be extrapolated in other neurodegenerative disorders with common clinical and molecular features. Prion diseases are fatal neurodegenerative disorders caused by misfolding of the normal prion protein into an infectious cellular pathogen. Clinically characterized by rapidly progressive dementia and accounting for 85% of human prion disease cases, sporadic Creutzfeldt–Jakob disease (sCJD) is the prevalent human prion disease. Although sCJD neuropathological hallmarks are well-known, associated molecular alterations are elusive due to rapid progression and absence of preclinical stages. To investigate transcriptome alterations during disease progression, we utilized tg340-PRNP129MM mice infected with postmortem material from sCJD patients of the most susceptible genotype (MM1 subtype), a sCJD model that faithfully recapitulates the molecular and pathological alterations of the human disease. Here we report that transcriptomic analyses from brain cortex in the context of disease progression, reveal epitranscriptomic alterations (specifically altered RNA edited pathway profiles, eg., ER stress, lysosome) that are characteristic and possibly protective mainly for preclinical and clinical disease stages. Our results implicate regulatory epitranscriptomic mechanisms in prion disease neuropathogenesis, whereby RNA-editing targets in a humanized sCJD mouse model were confirmed in pathological human autopsy material.
Collapse
|
174
|
Diroma MA, Ciaccia L, Pesole G, Picardi E. Elucidating the editome: bioinformatics approaches for RNA editing detection. Brief Bioinform 2019; 20:436-447. [PMID: 29040360 DOI: 10.1093/bib/bbx129] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/07/2017] [Indexed: 12/30/2022] Open
Abstract
RNA editing is a widespread co/posttranscriptional mechanism affecting primary RNAs by specific nucleotide modifications, which plays relevant roles in molecular processes including regulation of gene expression and/or the processing of noncoding RNAs. In recent years, the detection of editing sites has been improved through the availability of high-throughput RNA sequencing (RNA-Seq) technologies. Accurate bioinformatics pipelines are essential for the analysis of next-generation sequencing (NGS) data to ensure the correct identification of edited sites. Several pipelines, using various read mappers and variant callers with a wide range of adjustable parameters, are available for the detection of RNA editing events. In this review, we discuss some of the most recent and popular tools and provide guidelines for RNA-Seq data generation and analysis for the detection of RNA editing in massive transcriptome data. Using simulated and real data sets, we provide an overview of their behavior, emphasizing the fact that the RNA editing detection in NGS data sets remains a challenging task.
Collapse
|
175
|
Chu D, Wei L. The chloroplast and mitochondrial C-to-U RNA editing in Arabidopsis thaliana shows signals of adaptation. PLANT DIRECT 2019; 3:e00169. [PMID: 31517178 PMCID: PMC6732656 DOI: 10.1002/pld3.169] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/18/2019] [Accepted: 08/23/2019] [Indexed: 05/20/2023]
Abstract
C-to-U RNA editing is the conversion from cytidine to uridine at RNA level. In plants, the genes undergo C-to-U RNA modification are mainly chloroplast and mitochondrial genes. Case studies have identified the roles of C-to-U editing in various biological processes, but the functional consequence of the majority of C-to-U editing events is still undiscovered. We retrieved the deep sequenced transcriptome data in roots and shoots of Arabidopsis thaliana and profiled their C-to-U RNA editomes and gene expression patterns. We investigated the editing level and conservation pattern of these C-to-U editing sites. The levels of nonsynonymous C-to-U editing events are higher than levels of synonymous events. The fraction of nonsynonymous editing sites is higher than neutral expectation. Highly edited cytidines are more conserved at DNA level, and the gene expression levels are correlated with C-to-U editing levels. Our results demonstrate that the global C-to-U editome is shaped by natural selection and that many nonsynonymous C-to-U editing events are adaptive. The editing mechanism might be positively selected and maintained and could have profound effects on the modified RNAs.
Collapse
Affiliation(s)
- Duan Chu
- College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Lai Wei
- College of Life SciencesBeijing Normal UniversityBeijingChina
| |
Collapse
|
176
|
Yang Y, Zhu M, Fan X, Yao Y, Yan J, Tang Y, Liu S, Li K, Tang Z. Developmental atlas of the RNA editome in Sus scrofa skeletal muscle. DNA Res 2019; 26:261-272. [PMID: 31231762 PMCID: PMC6589548 DOI: 10.1093/dnares/dsz006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/12/2019] [Indexed: 12/04/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing meditated by adenosine deaminases acting on RNA (ADARs) enzymes is a widespread post-transcriptional event in mammals. However, A-to-I editing in skeletal muscle remains poorly understood. By integrating strand-specific RNA-seq, whole genome bisulphite sequencing, and genome sequencing data, we comprehensively profiled the A-to-I editome in developing skeletal muscles across 27 prenatal and postnatal stages in pig, an important farm animal and biomedical model. We detected 198,892 A-to-I editing sites and found that they occurred more frequently at prenatal stages and showed low conservation among pig, human, and mouse. Both the editing level and frequency decreased during development and were positively correlated with ADAR enzymes expression. The hyper-edited genes were functionally related to the cell cycle and cell division. A co-editing module associated with myogenesis was identified. The developmentally differential editing sites were functionally enriched in genes associated with muscle development, their editing levels were highly correlated with expression of their host mRNAs, and they potentially influenced the gain/loss of miRNA binding sites. Finally, we developed a database to visualize the Sus scrofa RNA editome. Our study presents the first profile of the dynamic A-to-I editome in developing animal skeletal muscle and provides evidences that RNA editing is a vital regulator of myogenesis.
Collapse
Affiliation(s)
- Yalan Yang
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Min Zhu
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinhao Fan
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yilong Yao
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junyu Yan
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yijie Tang
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Siyuan Liu
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonglin Tang
- Research Center for Animal Nutriomics at Shenzhen, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Team of Pig Genome Design and Breeding, Research Centre of Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
177
|
Liu J, Wang D, Su Y, Lang K, Duan R, Wu Y, Ma F, Huang S. FairBase: a comprehensive database of fungal A-to-I RNA editing. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5334633. [PMID: 30788499 PMCID: PMC6379597 DOI: 10.1093/database/baz018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/04/2019] [Accepted: 01/22/2019] [Indexed: 01/27/2023]
Abstract
Frequent A-to-I RNA editing has recently been identified in fungi despite the absence of recognizable homologues of metazoan ADARs ("Adenosine Deaminases Acting on RNA"). In particular, there is emerging evidence showing that A-to-I editing is involved in sexual reproduction of filamentous fungi. Here, we report on the creation of FairBase - a fungal A-to-I RNA editing database that provides a platform for deep exploration of fungal RNA editing to relevant academic communities. This database includes a comprehensive collection of A-to-I editing sites in six filamentous fungal species, together with extensive annotations for each editing site. In FairBase, users can conveniently search editing sites and obtain editing levels for each editing site in various RNA-seq samples. In addition, the pathways involving RNA editing are built in FairBase to help users understand the functions of RNA editing. Furthermore, each fungal species has a genome browser (JBrowse) that allows users to explore A-to-I editing in a genomic context. FairBase is the first fungal RNA editing database.
Collapse
Affiliation(s)
- Jinding Liu
- College of Information Science and Technology, Nanjing Agricultural University, Nanjing, China.,Research Center for Correlation of Domain Knowledge, Nanjing Agricultural University, Nanjing, China.,Bioinformatics center, Nanjing Agricultural University, Nanjing, China
| | - Dongbo Wang
- College of Information Science and Technology, Nanjing Agricultural University, Nanjing, China.,Research Center for Correlation of Domain Knowledge, Nanjing Agricultural University, Nanjing, China
| | - Yinna Su
- Research Center for Correlation of Domain Knowledge, Nanjing Agricultural University, Nanjing, China.,Bioinformatics center, Nanjing Agricultural University, Nanjing, China
| | - Kun Lang
- College of Information Science and Technology, Nanjing Agricultural University, Nanjing, China.,Research Center for Correlation of Domain Knowledge, Nanjing Agricultural University, Nanjing, China
| | - Rongjing Duan
- Research Center for Correlation of Domain Knowledge, Nanjing Agricultural University, Nanjing, China.,Bioinformatics center, Nanjing Agricultural University, Nanjing, China
| | - YuFeng Wu
- Bioinformatics center, Nanjing Agricultural University, Nanjing, China
| | - Fei Ma
- College of Life Science, Nanjing Normal University, Nanjing, China.,Laboratory for Comparative Genomics and Bioinformatics, Nanjing Normal University, Nanjing, China
| | - Shuiqing Huang
- College of Information Science and Technology, Nanjing Agricultural University, Nanjing, China.,Research Center for Correlation of Domain Knowledge, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
178
|
Bioinformatic methods for cancer neoantigen prediction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:25-60. [PMID: 31383407 DOI: 10.1016/bs.pmbts.2019.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor cells accumulate aberrations not present in normal cells, leading to presentation of neoantigens on MHC molecules on their surface. These non-self neoantigens distinguish tumor cells from normal cells to the immune system and are thus targets for cancer immunotherapy. The rapid development of molecular profiling platforms, such as next-generation sequencing, has enabled the generation of large datasets characterizing tumor cells. The simultaneous development of algorithms has enabled rapid and accurate processing of these data. Bioinformatic software tools encoding the algorithms can be strung together in a workflow to identify neoantigens. Here, with a focus on high-throughput sequencing, we review state-of-the art bioinformatic tools along with the steps and challenges involved in neoantigen identification and recognition.
Collapse
|
179
|
Abstract
Modifications of RNA affect its function and stability. RNA editing is unique among these modifications because it not only alters the cellular fate of RNA molecules but also alters their sequence relative to the genome. The most common type of RNA editing is A-to-I editing by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes. Recent transcriptomic studies have identified a number of 'recoding' sites at which A-to-I editing results in non-synonymous substitutions in protein-coding sequences. Many of these recoding sites are conserved within (but not usually across) lineages, are under positive selection and have functional and evolutionary importance. However, systematic mapping of the editome across the animal kingdom has revealed that most A-to-I editing sites are located within mobile elements in non-coding parts of the genome. Editing of these non-coding sites is thought to have a critical role in protecting against activation of innate immunity by self-transcripts. Both recoding and non-coding events have implications for genome evolution and, when deregulated, may lead to disease. Finally, ADARs are now being adapted for RNA engineering purposes.
Collapse
|
180
|
Cesarini V, Silvestris DA, Tassinari V, Tomaselli S, Alon S, Eisenberg E, Locatelli F, Gallo A. ADAR2/miR-589-3p axis controls glioblastoma cell migration/invasion. Nucleic Acids Res 2019; 46:2045-2059. [PMID: 29267965 PMCID: PMC5829642 DOI: 10.1093/nar/gkx1257] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022] Open
Abstract
Recent studies have reported the emerging role of microRNAs (miRNAs) in human cancers. We systematically characterized miRNA expression and editing in the human brain, which displays the highest number of A-to-I RNA editing sites among human tissues, and in de novo glioblastoma brain cancer. We identified 299 miRNAs altered in their expression and 24 miRNAs differently edited in human brain compared to glioblastoma tissues. We focused on the editing site within the miR-589–3p seed. MiR-589–3p is a unique miRNA almost fully edited (∼100%) in normal brain and with a consistent editing decrease in glioblastoma. The edited version of miR-589–3p inhibits glioblastoma cell proliferation, migration and invasion, while the unedited version boosts cell proliferation and motility/invasion, thus being a potential cancer-promoting factor. We demonstrated that the editing of this miRNA is mediated by ADAR2, and retargets miR-589–3p from the tumor-suppressor PCDH9 to ADAM12, which codes for the metalloproteinase 12 promoting glioblastoma invasion. Overall, our study dissects the role of a unique brain-specific editing site within miR-589–3p, with important anticancer features, and highlights the importance of RNA editing as an essential player not only for diversifying the genomic message but also for correcting not-tolerable/critical genomic coding sites.
Collapse
Affiliation(s)
- Valeriana Cesarini
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo, 15, 00146 Rome, Italy
| | - Domenico A Silvestris
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo, 15, 00146 Rome, Italy
| | - Valentina Tassinari
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo, 15, 00146 Rome, Italy
| | - Sara Tomaselli
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo, 15, 00146 Rome, Italy
| | - Shahar Alon
- Media Laboratory and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Franco Locatelli
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo, 15, 00146 Rome, Italy.,Department of Pediatric Science, University of Pavia, 27100 Pavia, Italy
| | - Angela Gallo
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo, 15, 00146 Rome, Italy
| |
Collapse
|
181
|
Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, Ladha A, Joung J, Kirchgatterer P, Cox DBT, Zhang F. A cytosine deaminase for programmable single-base RNA editing. Science 2019; 365:382-386. [PMID: 31296651 DOI: 10.1126/science.aax7063] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/29/2019] [Indexed: 12/16/2022]
Abstract
Programmable RNA editing enables reversible recoding of RNA information for research and disease treatment. Previously, we developed a programmable adenosine-to-inosine (A-to-I) RNA editing approach by fusing catalytically inactivate RNA-targeting CRISPR-Cas13 (dCas13) with the adenine deaminase domain of ADAR2. Here, we report a cytidine-to-uridine (C-to-U) RNA editor, referred to as RNA Editing for Specific C-to-U Exchange (RESCUE), by directly evolving ADAR2 into a cytidine deaminase. RESCUE doubles the number of mutations targetable by RNA editing and enables modulation of phosphosignaling-relevant residues. We apply RESCUE to drive β-catenin activation and cellular growth. Furthermore, RESCUE retains A-to-I editing activity, enabling multiplexed C-to-U and A-to-I editing through the use of tailored guide RNAs.
Collapse
Affiliation(s)
- Omar O Abudayyeh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan S Gootenberg
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian Franklin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeremy Koob
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Max J Kellner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alim Ladha
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julia Joung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - David B T Cox
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. .,McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
182
|
Pinto Y, Buchumenski I, Levanon EY, Eisenberg E. Human cancer tissues exhibit reduced A-to-I editing of miRNAs coupled with elevated editing of their targets. Nucleic Acids Res 2019; 46:71-82. [PMID: 29165639 PMCID: PMC5758889 DOI: 10.1093/nar/gkx1176] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
A-to-I RNA editing is an important post-transcriptional modification, known to be altered in tumors. It targets dozens of sites within miRNAs, some of which impact miRNA biogenesis and function, as well as many miRNA recognition sites. However, the full extent of the effect of editing on regulation by miRNAs and its behavior in human cancers is still unknown. Here we systematically characterized miRNA editing in 10 593 human samples across 32 cancer types and normal controls. We find that the majority of previously reported sites show little to no evidence for editing in this dataset, compile a list of 58 reliable miRNA editing sites, and study them across normal and cancer samples. Edited miRNA versions tend to suppress expression of known oncogenes, and, consistently, we observe a clear global tendency for hypo-editing in tumors, in strike contrast to the behavior for mRNA editing, allowing an accurate classification of normal/tumor samples based on their miRNA editing profile. In many cancers this profile correlates with patients' survival. Finally, thousands of miRNA binding sites are differentially edited in cancer. Our study thus establishes the important effect of RNA editing on miRNA-regulation in the tumor cell, with prospects for diagnostic and prognostic applications.
Collapse
Affiliation(s)
- Yishay Pinto
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Ilana Buchumenski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
183
|
Rollins JA, Shaffer D, Snow SS, Kapahi P, Rogers AN. Dietary restriction induces posttranscriptional regulation of longevity genes. Life Sci Alliance 2019; 2:2/4/e201800281. [PMID: 31253655 PMCID: PMC6600014 DOI: 10.26508/lsa.201800281] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary restriction (DR) increases life span through adaptive changes in gene expression. To understand more about these changes, we analyzed the transcriptome and translatome of Caenorhabditis elegans subjected to DR. Transcription of muscle regulatory and structural genes increased, whereas increased expression of amino acid metabolism and neuropeptide signaling genes was controlled at the level of translation. Evaluation of posttranscriptional regulation identified putative roles for RNA-binding proteins, RNA editing, miRNA, alternative splicing, and nonsense-mediated decay in response to nutrient limitation. Using RNA interference, we discovered several differentially expressed genes that regulate life span. We also found a compensatory role for translational regulation, which offsets dampened expression of a large subset of transcriptionally down-regulated genes. Furthermore, 3' UTR editing and intron retention increase under DR and correlate with diminished translation, whereas trans-spliced genes are refractory to reduced translation efficiency compared with messages with the native 5' UTR. Finally, we find that smg-6 and smg-7, which are genes governing selection and turnover of nonsense-mediated decay targets, are required for increased life span under DR.
Collapse
Affiliation(s)
- Jarod A Rollins
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Dan Shaffer
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Santina S Snow
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Aric N Rogers
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA
| |
Collapse
|
184
|
Hardy MP, Audemard É, Migneault F, Feghaly A, Brochu S, Gendron P, Boilard É, Major F, Dieudé M, Hébert MJ, Perreault C. Apoptotic endothelial cells release small extracellular vesicles loaded with immunostimulatory viral-like RNAs. Sci Rep 2019; 9:7203. [PMID: 31076589 PMCID: PMC6510763 DOI: 10.1038/s41598-019-43591-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells have multifaceted interactions with the immune system, both as initiators and targets of immune responses. In vivo, apoptotic endothelial cells release two types of extracellular vesicles upon caspase-3 activation: apoptotic bodies and exosome-like nanovesicles (ApoExos). Only ApoExos are immunogenic: their injection causes inflammation and autoimmunity in mice. Based on deep sequencing of total RNA, we report that apoptotic bodies and ApoExos are loaded with divergent RNA cargos that are not released by healthy endothelial cells. Apoptotic bodies, like endothelial cells, contain mainly ribosomal RNA whereas ApoExos essentially contain non-ribosomal non-coding RNAs. Endogenous retroelements, bearing viral-like features, represented half of total ApoExos RNA content. ApoExos also contained several copies of unedited Alu repeats and large amounts of non-coding RNAs with a demonstrated role in autoimmunity such as U1 RNA and Y RNA. Moreover, ApoExos RNAs had a unique nucleotide composition and secondary structure characterized by strong enrichment in U-rich motifs and unstably folded RNAs. Globally, ApoExos were therefore loaded with RNAs that can stimulate a variety of RIG-I-like receptors and endosomal TLRs. Hence, apoptotic endothelial cells selectively sort in ApoExos a diversified repertoire of immunostimulatory "self RNAs" that are tailor-made for initiation of innate immune responses and autoimmunity.
Collapse
Affiliation(s)
- Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
| | - Éric Audemard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Francis Migneault
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
| | - Albert Feghaly
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Éric Boilard
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Québec, Québec, Canada
| | - François Major
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Department of Computer Science and Operations Research, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Mélanie Dieudé
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
| | - Marie-Josée Hébert
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
- Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
185
|
Lin CH, Chen SCC. The Cancer Editome Atlas: A Resource for Exploratory Analysis of the Adenosine-to-Inosine RNA Editome in Cancer. Cancer Res 2019; 79:3001-3006. [PMID: 31015229 DOI: 10.1158/0008-5472.can-18-3501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/08/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022]
Abstract
Increasing evidence has suggested a role for adenosine-to-inosine RNA editing in carcinogenesis. However, the clinical utility of RNA editing remains limited because functions of the vast majority of editing events remain largely unexplored. To help the cancer research community investigate functional consequences of individual editing events, we have developed a user-friendly bioinformatic resource, The Cancer Editome Atlas (TCEA; http://tcea.tmu.edu.tw). TCEA characterizes >192 million editing events at >4.6 million editing sites from approximately 11,000 samples across 33 cancer types in The Cancer Genome Atlas. Clinical information, miRNA expression, and alteration in miRNA targeting modulated through RNA editing are also integrated into TCEA. TCEA supports several modules to search, analyze, and visualize the cancer editome, providing a solid basis for investigating the oncogenic mechanisms of RNA editing and expediting the identification of therapeutic targets in cancer. SIGNIFICANCE: This user-friendly bioinformatic resource reduces the barrier to analyzing the huge and complex cancer RNA editome that cancer researchers face and facilitates the identification of novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Chui-Hsien Lin
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sean Chun-Chang Chen
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
186
|
RNA editing is abundant and correlates with task performance in a social bumblebee. Nat Commun 2019; 10:1605. [PMID: 30962428 PMCID: PMC6453909 DOI: 10.1038/s41467-019-09543-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
Colonies of the bumblebee Bombus terrestris are characterized by wide phenotypic variability among genetically similar full-sister workers, suggesting a major role for epigenetic processes. Here, we report a high level of ADAR-mediated RNA editing in the bumblebee, despite the lack of an ADAR1-homolog. We identify 1.15 million unique genomic sites, and 164 recoding sites residing in 100 protein coding genes, including ion channels, transporters, and receptors predicted to affect brain function and behavior. Some edited sites are similarly edited in other insects, cephalopods and even mammals. The global editing level of protein coding and non-coding transcripts weakly correlates with task performance (brood care vs. foraging), but not affected by dominance rank or juvenile hormone known to influence physiology and behavior. Taken together, our findings show that brain editing levels are high in naturally behaving bees, and may be regulated by relatively short-term effects associated with brood care or foraging activities.
Collapse
|
187
|
Lo Giudice C, Hernández I, Ceci LR, Pesole G, Picardi E. RNA editing in plants: A comprehensive survey of bioinformatics tools and databases. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:53-61. [PMID: 30738217 DOI: 10.1016/j.plaphy.2019.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
RNA editing is a widespread epitranscriptomic mechanism by which primary RNAs are specifically modified through insertions/deletions or nucleotide substitutions. In plants, RNA editing occurs in organelles (plastids and mitochondria), involves the cytosine to uridine modification (rarely uridine to cytosine) within protein-coding and non-protein-coding regions of RNAs and affects organelle biogenesis, adaptation to environmental changes and signal transduction. High-throughput sequencing technologies have dramatically improved the detection of RNA editing sites at genomic scale. Consequently, different bioinformatics resources have been released to discovery and/or collect novel events. Here, we review and describe the state-of-the-art bioinformatics tools devoted to the characterization of RNA editing in plant organelles with the aim to improve our knowledge about this fascinating but yet under investigated process.
Collapse
Affiliation(s)
- Claudio Lo Giudice
- IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Italy
| | - Irene Hernández
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Luigi R Ceci
- IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Italy
| | - Graziano Pesole
- IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Italy; Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari A. Moro, Bari, Italy
| | - Ernesto Picardi
- IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Italy; Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari A. Moro, Bari, Italy.
| |
Collapse
|
188
|
Zhang Y, Zhang L, Yue J, Wei X, Wang L, Liu X, Gao H, Hou X, Zhao F, Yan H, Wang L. Genome-wide identification of RNA editing in seven porcine tissues by matched DNA and RNA high-throughput sequencing. J Anim Sci Biotechnol 2019; 10:24. [PMID: 30911384 PMCID: PMC6415349 DOI: 10.1186/s40104-019-0326-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/24/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND RNA editing is a co/posttranscriptional modification mechanism that increases the diversity of transcripts, with potential functional consequences. The advent of next-generation sequencing technologies has enabled the identification of RNA edits at unprecedented throughput and resolution. However, our knowledge of RNA editing in swine is still limited. RESULTS Here, we utilized RES-Scanner to identify RNA editing sites in the brain, subcutaneous fat, heart, liver, muscle, lung and ovary in three 180-day-old Large White gilts based on matched strand-specific RNA sequencing and whole-genome resequencing datasets. In total, we identified 74863 editing sites, and 92.1% of these sites caused adenosine-to-guanosine (A-to-G) conversion. Most A-to-G sites were located in noncoding regions and generally had low editing levels. In total, 151 A-to-G sites were detected in coding regions (CDS), including 94 sites that could lead to nonsynonymous amino acid changes. We provide further evidence supporting a previous observation that pig transcriptomes are highly editable at PRE-1 elements. The number of A-to-G editing sites ranged from 4155 (muscle) to 25001 (brain) across the seven tissues. The expression levels of the ADAR enzymes could explain some but not all of this variation across tissues. The functional analysis of the genes with tissue-specific editing sites in each tissue revealed that RNA editing might play important roles in tissue function. Specifically, more pathways showed significant enrichment in the fat and liver than in other tissues, while no pathway was enriched in the muscle. CONCLUSIONS This study identified a total of 74863 nonredundant RNA editing sites in seven tissues and revealed the potential importance of RNA editing in tissue function. Our findings largely extend the porcine editome and enhance our understanding of RNA editing in swine.
Collapse
Affiliation(s)
- Yuebo Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Longchao Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jingwei Yue
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xia Wei
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Ligang Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xin Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hongmei Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xinhua Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Fuping Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hua Yan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Lixian Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
189
|
Plant-type pentatricopeptide repeat proteins with a DYW domain drive C-to-U RNA editing in Escherichia coli. Commun Biol 2019; 2:85. [PMID: 30854477 PMCID: PMC6397227 DOI: 10.1038/s42003-019-0328-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/18/2019] [Indexed: 11/09/2022] Open
Abstract
RNA editing converting cytidines into uridines is a hallmark of gene expression in land plant chloroplasts and mitochondria. Pentatricopeptide repeat (PPR) proteins have a key role in target recognition, but the functional editosome in the plant organelles has remained elusive. Here we show that individual Physcomitrella patens DYW-type PPR proteins alone can perform efficient C-to-U editing in Escherichia coli reproducing the moss mitochondrial editing. Single amino acid exchanges in the DYW domain abolish RNA editing, confirming it as the functional cytidine deaminase. The modification of RNA targets and the identification of numerous off-targets in the E. coli transcriptome reveal nucleotide identities critical for RNA recognition and cytidine conversion. The straightforward amenability of the new E. coli setup will accelerate future studies on RNA target recognition through PPRs, on the C-to-U editing deamination machinery and towards future establishment of transcript editing in other genetic systems. Bastian Oldenkott et al. show that single moss pentatricopeptide repeat proteins with a DYW domain are sufficient to drive efficient C-to-U RNA editing in Escherichia coli. They demonstrate that the E.coli system is an easy to manipulate platform for future studies on RNA target recognition and C-to-U RNA editing.
Collapse
|
190
|
Abstract
Long double-stranded RNAs (dsRNAs) are abundantly expressed in animals, in which they frequently occur in introns and 3' untranslated regions of mRNAs. Functions of long, cellular dsRNAs are poorly understood, although deficiencies in adenosine deaminases that act on RNA, or ADARs, promote their recognition as viral dsRNA and an aberrant immune response. Diverse dsRNA-binding proteins bind cellular dsRNAs, hinting at additional roles. Understanding these roles is facilitated by mapping the genomic locations that express dsRNA in various tissues and organisms. ADAR editing provides a signature of dsRNA structure in cellular transcripts. In this review, we detail approaches to map ADAR editing sites and dsRNAs genome-wide, with particular focus on high-throughput sequencing methods and considerations for their successful application to the detection of editing sites and dsRNAs.
Collapse
Affiliation(s)
- Daniel P Reich
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
191
|
Guo Y, Yu H, Samuels DC, Yue W, Ness S, Zhao YY. Single-nucleotide variants in human RNA: RNA editing and beyond. Brief Funct Genomics 2019; 18:30-39. [PMID: 30312373 PMCID: PMC7962770 DOI: 10.1093/bfgp/ely032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 08/21/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Through analysis of paired high-throughput DNA-Seq and RNA-Seq data, researchers quickly recognized that RNA-Seq can be used for more than just gene expression quantification. The alternative applications of RNA-Seq data are abundant, and we are particularly interested in its usefulness for detecting single-nucleotide variants, which arise from RNA editing, genomic variants and other RNA modifications. A stunning discovery made from RNA-Seq analyses is the unexpectedly high prevalence of RNA-editing events, many of which cannot be explained by known RNA-editing mechanisms. Over the past 6-7 years, substantial efforts have been made to maximize the potential of RNA-Seq data. In this review we describe the controversial history of mining RNA-editing events from RNA-Seq data and the corresponding development of methodologies to identify, predict, assess the quality of and catalog RNA-editing events as well as genomic variants.
Collapse
Affiliation(s)
- Yan Guo
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Hui Yu
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - David C Samuels
- Vanderbilt Genetics Institute, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN, USA
| | - Wei Yue
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Scott Ness
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Ying-yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University,Xi’an, Shaanxi, China
| |
Collapse
|
192
|
Silvestris DA, Picardi E, Cesarini V, Fosso B, Mangraviti N, Massimi L, Martini M, Pesole G, Locatelli F, Gallo A. Dynamic inosinome profiles reveal novel patient stratification and gender-specific differences in glioblastoma. Genome Biol 2019; 20:33. [PMID: 30760294 PMCID: PMC6373152 DOI: 10.1186/s13059-019-1647-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
Background Adenosine-to-inosine (A-to-I) RNA editing is an essential post-transcriptional mechanism mediated by ADAR enzymes that have been recently associated with cancer. Results Here, we characterize the inosinome signature in normal brain and de novo glioblastoma (GBM) using new metrics that re-stratify GBM patients according to their editing profiles and indicate this post-transcriptional event as a possible molecular mechanism for sexual dimorphism in GBM. We find that over 85% of de novo GBMs carry a deletion involving the genomic locus of ADAR3, which is specifically expressed in the brain. By analyzing RNA editing and patient outcomes, an intriguing gender-dependent link appears, with high editing of Alus shown to be beneficial only in male patients. We propose an inosinome-based molecular stratification of GBM patients that identifies two different GBM subgroups, INO-1 and INO-2, which can identify novel high-risk gender-specific patient groups for which more aggressive treatments may be necessary. Conclusions Our data provide a detailed picture of RNA editing landscape in normal brain and GBM, exploring A-to-I RNA editing regulation, disclosing unexpected editing implications for GBM patient stratification and identification of gender-dependent high-risk patients, and suggesting COG3 I/V as an eligible site for future personalized targeted gene therapy. Electronic supplementary material The online version of this article (10.1186/s13059-019-1647-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Domenico Alessandro Silvestris
- RNA Editing Lab., Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo, 15 00146, Rome, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Valeriana Cesarini
- RNA Editing Lab., Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo, 15 00146, Rome, Italy
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Nicolò Mangraviti
- RNA Editing Lab., Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo, 15 00146, Rome, Italy
| | - Luca Massimi
- Fondazione Policlinico Universitario "A. Gemelli," IRCCS, UOC Neurochirurgia Infantile, Rome, Italy.,Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Martini
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, UOC Anatomia Patologica, Rome, Italy.,Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Franco Locatelli
- RNA Editing Lab., Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo, 15 00146, Rome, Italy.,Department of Pediatrics, "La Sapienza" University, Rome, Italy
| | - Angela Gallo
- RNA Editing Lab., Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo, 15 00146, Rome, Italy.
| |
Collapse
|
193
|
Jiang Q, Isquith J, Zipeto MA, Diep RH, Pham J, Delos Santos N, Reynoso E, Chau J, Leu H, Lazzari E, Melese E, Ma W, Fang R, Minden M, Morris S, Ren B, Pineda G, Holm F, Jamieson C. Hyper-Editing of Cell-Cycle Regulatory and Tumor Suppressor RNA Promotes Malignant Progenitor Propagation. Cancer Cell 2019; 35:81-94.e7. [PMID: 30612940 PMCID: PMC6333511 DOI: 10.1016/j.ccell.2018.11.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 10/20/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022]
Abstract
Adenosine deaminase associated with RNA1 (ADAR1) deregulation contributes to therapeutic resistance in many malignancies. Here we show that ADAR1-induced hyper-editing in normal human hematopoietic progenitors impairs miR-26a maturation, which represses CDKN1A expression indirectly via EZH2, thereby accelerating cell-cycle transit. However, in blast crisis chronic myeloid leukemia progenitors, loss of EZH2 expression and increased CDKN1A oppose cell-cycle transit. Moreover, A-to-I editing of both the MDM2 regulatory microRNA and its binding site within the 3' UTR region stabilizes MDM2 transcripts, thereby enhancing blast crisis progenitor propagation. These data reveal a dual mechanism governing malignant transformation of progenitors that is predicated on hyper-editing of cell-cycle-regulatory miRNAs and the 3' UTR binding site of tumor suppressor miRNAs.
Collapse
Affiliation(s)
- Qingfei Jiang
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| | - Jane Isquith
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Maria Anna Zipeto
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Raymond H Diep
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Jessica Pham
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Nathan Delos Santos
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Eduardo Reynoso
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Julisia Chau
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Heather Leu
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Elisa Lazzari
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Etienne Melese
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Wenxue Ma
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Rongxin Fang
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Minden
- Princess Margaret Hospital, Toronto, ON M5T 2M9, Canada
| | - Sheldon Morris
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Gabriel Pineda
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Health Sciences, School of Health and Human Services, National University, San Diego, CA, USA
| | - Frida Holm
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Catriona Jamieson
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| |
Collapse
|
194
|
Computational approaches for detection and quantification of A-to-I RNA-editing. Methods 2018; 156:25-31. [PMID: 30465820 DOI: 10.1016/j.ymeth.2018.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023] Open
Abstract
Adenosine deaminases that act on RNA (ADARs) catalyze adenosine-to-inosine (A-to-I) RNA editing in double-stranded RNA. Such editing is important for protection against false activation of the immune system, but also confers plasticity on the transcriptome by generating several versions of a transcript from a single genomic locus. Recently, great efforts were made in developing computational methods for detecting editing events directly from RNA-sequencing (RNA-seq) data. These efforts have led to an improved understanding of the makeup of the editome in various genomes. Here we review recent advances in editing detection based on the data available to the researcher, with emphasis on the principles underlying the various methods and the limitations they were designed to overcome. We also discuss the available various methods for analyzing and quantifying editing levels. This review collects and organizes the available approaches for analyzing RNA editing and discuss the current status of the different A-to-I detection methods with possible directions for extending these approaches.
Collapse
|
195
|
Xiang Y, Ye Y, Zhang Z, Han L. Maximizing the Utility of Cancer Transcriptomic Data. Trends Cancer 2018; 4:823-837. [PMID: 30470304 DOI: 10.1016/j.trecan.2018.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022]
Abstract
Transcriptomic profiling has been applied to large numbers of cancer samples, by large-scale consortia, including The Cancer Genome Atlas, International Cancer Genome Consortium, and Cancer Cell Line Encyclopedia. Advances in mining cancer transcriptomic data enable us to understand the endless complexity of the cancer transcriptome and thereby to discover new biomarkers and therapeutic targets. In this paper, we review computational resources for deep mining of transcriptomic data to identify, quantify, and determine the functional effects and clinical utility of transcriptomic events, including noncoding RNAs, post-transcriptional regulation, exogenous RNAs, and transcribed genetic variants. These approaches can be applied to other complex diseases, thereby greatly leveraging the impact of this work.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; These authors contributed equally
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; These authors contributed equally
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Precision Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
196
|
John D, Weirick T, Dimmeler S, Uchida S. RNAEditor: easy detection of RNA editing events and the introduction of editing islands. Brief Bioinform 2018; 18:993-1001. [PMID: 27694136 DOI: 10.1093/bib/bbw087] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Indexed: 12/30/2022] Open
Abstract
RNA editing of adenosine residues to inosine ('A-to-I editing') is the most common RNA modification event detectible with RNA sequencing (RNA-seq). While not directly detectable, inosine is read by next-generation sequencers as guanine. Therefore, mapping RNA-seq reads to their corresponding reference genome can detect potential editing events by identifying 'A-to-G' conversions. However, one must exercise caution when searching for editing sites, as A-to-G conversions also arise from sequencing errors as well as mutations. To address these complexities, several algorithms and software products have been developed to accurately identify editing events. Here, we survey currently available methods to analyze RNA editing events and introduce a new easy-to-use bioinformatics tool 'RNAEditor' for the detection of RNA editing events. During the development of RNAEditor, we noticed editing often happened in clusters, which we named 'editing islands'. We developed a clustering algorithm to find editing islands and included it in RNAEditor. RNAEditor is freely available at http://rnaeditor.uni-frankfurt.de. We anticipate that RNAEditor will provide biologists with an easy-to-use tool for studying RNA editing events and the newly defined editing islands.
Collapse
|
197
|
Zhang F, Lu Y, Yan S, Xing Q, Tian W. SPRINT: an SNP-free toolkit for identifying RNA editing sites. Bioinformatics 2018; 33:3538-3548. [PMID: 29036410 PMCID: PMC5870768 DOI: 10.1093/bioinformatics/btx473] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023] Open
Abstract
Motivation RNA editing generates post-transcriptional sequence alterations. Detection of RNA editing sites (RESs) typically requires the filtering of SNVs called from RNA-seq data using an SNP database, an obstacle that is difficult to overcome for most organisms. Results Here, we present a novel method named SPRINT that identifies RESs without the need to filter out SNPs. SPRINT also integrates the detection of hyper RESs from remapped reads, and has been fully automated to any RNA-seq data with reference genome sequence available. We have rigorously validated SPRINT’s effectiveness in detecting RESs using RNA-seq data of samples in which genes encoding RNA editing enzymes are knock down or over-expressed, and have also demonstrated its superiority over current methods. We have applied SPRINT to investigate RNA editing across tissues and species, and also in the development of mouse embryonic central nervous system. A web resource (http://sprint.tianlab.cn) of RESs identified by SPRINT has been constructed. Availability and implementation The software and related data are available at http://sprint.tianlab.cn. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development.,Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai 200436, China
| | - Yulan Lu
- The Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defect, Translational Medicine Research Center of Children Development and Diseases, Pediatrics Research Institute
| | - Sijia Yan
- Children's Hospital of Fudan University, Shanghai 201102, China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qinghe Xing
- Children's Hospital of Fudan University, Shanghai 201102, China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Weidong Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development.,Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai 200436, China.,Children's Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
198
|
Dhir A, Dhir S, Borowski LS, Jimenez L, Teitell M, Rötig A, Crow YJ, Rice GI, Duffy D, Tamby C, Nojima T, Munnich A, Schiff M, de Almeida CR, Rehwinkel J, Dziembowski A, Szczesny RJ, Proudfoot NJ. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 2018; 560:238-242. [PMID: 30046113 DOI: 10.1038/s41586-018-0363-0] [Citation(s) in RCA: 432] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/06/2018] [Indexed: 11/09/2022]
Abstract
Mitochondria are descendants of endosymbiotic bacteria and retain essential prokaryotic features such as a compact circular genome. Consequently, in mammals, mitochondrial DNA is subjected to bidirectional transcription that generates overlapping transcripts, which are capable of forming long double-stranded RNA structures1,2. However, to our knowledge, mitochondrial double-stranded RNA has not been previously characterized in vivo. Here we describe the presence of a highly unstable native mitochondrial double-stranded RNA species at single-cell level and identify key roles for the degradosome components mitochondrial RNA helicase SUV3 and polynucleotide phosphorylase PNPase in restricting the levels of mitochondrial double-stranded RNA. Loss of either enzyme results in massive accumulation of mitochondrial double-stranded RNA that escapes into the cytoplasm in a PNPase-dependent manner. This process engages an MDA5-driven antiviral signalling pathway that triggers a type I interferon response. Consistent with these data, patients carrying hypomorphic mutations in the gene PNPT1, which encodes PNPase, display mitochondrial double-stranded RNA accumulation coupled with upregulation of interferon-stimulated genes and other markers of immune activation. The localization of PNPase to the mitochondrial inter-membrane space and matrix suggests that it has a dual role in preventing the formation and release of mitochondrial double-stranded RNA into the cytoplasm. This in turn prevents the activation of potent innate immune defence mechanisms that have evolved to protect vertebrates against microbial and viral attack.
Collapse
Affiliation(s)
- Ashish Dhir
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Somdutta Dhir
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lukasz S Borowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Laura Jimenez
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Teitell
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Agnès Rötig
- INSERM UMR1163, Institut Imagine, Paris, France
| | - Yanick J Crow
- INSERM UMR1163, Institut Imagine, Paris, France.,Paris Descartes University, Sorbonne-Paris-Cité, Institut Imagine, Paris, France.,Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Darragh Duffy
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France.,INSERM U1223, Paris, France
| | | | - Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | | | - Jan Rehwinkel
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland. .,Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | |
Collapse
|
199
|
Leong WM, Ripen AM, Mirsafian H, Mohamad SB, Merican AF. Transcriptogenomics identification and characterization of RNA editing sites in human primary monocytes using high-depth next generation sequencing data. Genomics 2018; 111:899-905. [PMID: 29885984 DOI: 10.1016/j.ygeno.2018.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
High-depth next generation sequencing data provide valuable insights into the number and distribution of RNA editing events. Here, we report the RNA editing events at cellular level of human primary monocyte using high-depth whole genomic and transcriptomic sequencing data. We identified over a ten thousand putative RNA editing sites and 69% of the sites were A-to-I editing sites. The sites enriched in repetitive sequences and intronic regions. High-depth sequencing datasets revealed that 90% of the canonical sites were edited at lower frequencies (<0.7). Single and multiple human monocytes and brain tissues samples were analyzed through genome sequence independent approach. The later approach was observed to identify more editing sites. Monocytes was observed to contain more C-to-U editing sites compared to brain tissues. Our results establish comparable pipeline that can address current limitations as well as demonstrate the potential for highly sensitive detection of RNA editing events in single cell type.
Collapse
Affiliation(s)
- Wai-Mun Leong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Adiratna Mat Ripen
- Allergy and Immunology Research Centre, Institute for Medical Research, 50588 Kuala Lumpur, Malaysia
| | - Hoda Mirsafian
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics in Biology, Bio11 Industry, Environment, Agriculture and Healthcare (CRYSTAL), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics in Biology, Bio11 Industry, Environment, Agriculture and Healthcare (CRYSTAL), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Amir Feisal Merican
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics in Biology, Bio11 Industry, Environment, Agriculture and Healthcare (CRYSTAL), University of Malaya, 50603 Kuala Lumpur, Malaysia..
| |
Collapse
|
200
|
Shallev L, Kopel E, Feiglin A, Leichner GS, Avni D, Sidi Y, Eisenberg E, Barzilai A, Levanon EY, Greenberger S. Decreased A-to-I RNA editing as a source of keratinocytes' dsRNA in psoriasis. RNA (NEW YORK, N.Y.) 2018; 24:828-840. [PMID: 29592874 PMCID: PMC5959251 DOI: 10.1261/rna.064659.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/26/2018] [Indexed: 05/30/2023]
Abstract
Recognition of dsRNA molecules activates the MDA5-MAVS pathway and plays a critical role in stimulating type-I interferon responses in psoriasis. However, the source of the dsRNA accumulation in psoriatic keratinocytes remains largely unknown. A-to-I RNA editing is a common co- or post-transcriptional modification that diversifies adenosine in dsRNA, and leads to unwinding of dsRNA structures. Thus, impaired RNA editing activity can result in an increased load of endogenous dsRNAs. Here we provide a transcriptome-wide analysis of RNA editing across dozens of psoriasis patients, and we demonstrate a global editing reduction in psoriatic lesions. In addition to the global alteration, we also detect editing changes in functional recoding sites located in the IGFBP7, COPA, and FLNA genes. Accretion of dsRNA activates autoimmune responses, and therefore the results presented here, linking for the first time an autoimmune disease to reduction in global editing level, are relevant to a wide range of autoimmune diseases.
Collapse
Affiliation(s)
- Lea Shallev
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Eli Kopel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ariel Feiglin
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Gil S Leichner
- The Department of Dermatology, Sheba Medical Center, Tel Hashomer 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dror Avni
- Department of Medicine C, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Yechezkel Sidi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Medicine C, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aviv Barzilai
- The Department of Dermatology, Sheba Medical Center, Tel Hashomer 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Shoshana Greenberger
- The Department of Dermatology, Sheba Medical Center, Tel Hashomer 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Talpiot Medical Leadership Program, Sheba Medical Center, Tel Hashomer 52621, Israel
| |
Collapse
|