151
|
Chen J, Cheong HH, Siu SWI. xDeep-AcPEP: Deep Learning Method for Anticancer Peptide Activity Prediction Based on Convolutional Neural Network and Multitask Learning. J Chem Inf Model 2021; 61:3789-3803. [PMID: 34327990 DOI: 10.1021/acs.jcim.1c00181] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer is one of the leading causes of death worldwide. Conventional cancer treatment relies on radiotherapy and chemotherapy, but both methods bring severe side effects to patients, as these therapies not only attack cancer cells but also damage normal cells. Anticancer peptides (ACPs) are a promising alternative as therapeutic agents that are efficient and selective against tumor cells. Here, we propose a deep learning method based on convolutional neural networks to predict biological activity (EC50, LC50, IC50, and LD50) against six tumor cells, including breast, colon, cervix, lung, skin, and prostate. We show that models derived with multitask learning achieve better performance than conventional single-task models. In repeated 5-fold cross validation using the CancerPPD data set, the best models with the applicability domain defined obtain an average mean squared error of 0.1758, Pearson's correlation coefficient of 0.8086, and Kendall's correlation coefficient of 0.6156. As a step toward model interpretability, we infer the contribution of each residue in the sequence to the predicted activity by means of feature importance weights derived from the convolutional layers of the model. The present method, referred to as xDeep-AcPEP, will help to identify effective ACPs in rational peptide design for therapeutic purposes. The data, script files for reproducing the experiments, and the final prediction models can be downloaded from http://github.com/chen709847237/xDeep-AcPEP. The web server to directly access this prediction method is at https://app.cbbio.online/acpep/home.
Collapse
Affiliation(s)
- Jiarui Chen
- Department of Computer and Information Science, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Hong Hin Cheong
- Department of Computer and Information Science, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Shirley W I Siu
- Department of Computer and Information Science, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.,School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| |
Collapse
|
152
|
Islam N, Park J. bCNN-Methylpred: Feature-Based Prediction of RNA Sequence Modification Using Branch Convolutional Neural Network. Genes (Basel) 2021; 12:genes12081155. [PMID: 34440330 PMCID: PMC8392086 DOI: 10.3390/genes12081155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
RNA modification is vital to various cellular and biological processes. Among the existing RNA modifications, N6-methyladenosine (m6A) is considered the most important modification owing to its involvement in many biological processes. The prediction of m6A sites is crucial because it can provide a better understanding of their functional mechanisms. In this regard, although experimental methods are useful, they are time consuming. Previously, researchers have attempted to predict m6A sites using computational methods to overcome the limitations of experimental methods. Some of these approaches are based on classical machine-learning techniques that rely on handcrafted features and require domain knowledge, whereas other methods are based on deep learning. However, both methods lack robustness and yield low accuracy. Hence, we develop a branch-based convolutional neural network and a novel RNA sequence representation. The proposed network automatically extracts features from each branch of the designated inputs. Subsequently, these features are concatenated in the feature space to predict the m6A sites. Finally, we conduct experiments using four different species. The proposed approach outperforms existing state-of-the-art methods, achieving accuracies of 94.91%, 94.28%, 88.46%, and 94.8% for the H. sapiens, M. musculus, S. cerevisiae, and A. thaliana datasets, respectively.
Collapse
Affiliation(s)
- Naeem Islam
- Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju 54896, Korea;
- College of Electrical & Mechanical Engineering, NUST, Islamabad 44000, Pakistan
| | - Jaebyung Park
- Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju 54896, Korea;
- Division of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: ; Tel.: +82-63-270-4283
| |
Collapse
|
153
|
Liang X, Li F, Chen J, Li J, Wu H, Li S, Song J, Liu Q. Large-scale comparative review and assessment of computational methods for anti-cancer peptide identification. Brief Bioinform 2021; 22:bbaa312. [PMID: 33316035 PMCID: PMC8294543 DOI: 10.1093/bib/bbaa312] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/30/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Anti-cancer peptides (ACPs) are known as potential therapeutics for cancer. Due to their unique ability to target cancer cells without affecting healthy cells directly, they have been extensively studied. Many peptide-based drugs are currently evaluated in the preclinical and clinical trials. Accurate identification of ACPs has received considerable attention in recent years; as such, a number of machine learning-based methods for in silico identification of ACPs have been developed. These methods promote the research on the mechanism of ACPs therapeutics against cancer to some extent. There is a vast difference in these methods in terms of their training/testing datasets, machine learning algorithms, feature encoding schemes, feature selection methods and evaluation strategies used. Therefore, it is desirable to summarize the advantages and disadvantages of the existing methods, provide useful insights and suggestions for the development and improvement of novel computational tools to characterize and identify ACPs. With this in mind, we firstly comprehensively investigate 16 state-of-the-art predictors for ACPs in terms of their core algorithms, feature encoding schemes, performance evaluation metrics and webserver/software usability. Then, comprehensive performance assessment is conducted to evaluate the robustness and scalability of the existing predictors using a well-prepared benchmark dataset. We provide potential strategies for the model performance improvement. Moreover, we propose a novel ensemble learning framework, termed ACPredStackL, for the accurate identification of ACPs. ACPredStackL is developed based on the stacking ensemble strategy combined with SVM, Naïve Bayesian, lightGBM and KNN. Empirical benchmarking experiments against the state-of-the-art methods demonstrate that ACPredStackL achieves a comparative performance for predicting ACPs. The webserver and source code of ACPredStackL is freely available at http://bigdata.biocie.cn/ACPredStackL/ and https://github.com/liangxiaoq/ACPredStackL, respectively.
Collapse
Affiliation(s)
- Xiao Liang
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
- Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China
| | - Fuyi Li
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Centre for Data Science, Monash University, Melbourne, VIC 3800, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jinxiang Chen
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Junlong Li
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Hao Wu
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Shuqin Li
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
- Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Centre for Data Science, Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| | - Quanzhong Liu
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
- Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China
| |
Collapse
|
154
|
Chen Z, Zhao P, Li C, Li F, Xiang D, Chen YZ, Akutsu T, Daly RJ, Webb GI, Zhao Q, Kurgan L, Song J. iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization. Nucleic Acids Res 2021; 49:e60. [PMID: 33660783 PMCID: PMC8191785 DOI: 10.1093/nar/gkab122] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Sequence-based analysis and prediction are fundamental bioinformatic tasks that facilitate understanding of the sequence(-structure)-function paradigm for DNAs, RNAs and proteins. Rapid accumulation of sequences requires equally pervasive development of new predictive models, which depends on the availability of effective tools that support these efforts. We introduce iLearnPlus, the first machine-learning platform with graphical- and web-based interfaces for the construction of machine-learning pipelines for analysis and predictions using nucleic acid and protein sequences. iLearnPlus provides a comprehensive set of algorithms and automates sequence-based feature extraction and analysis, construction and deployment of models, assessment of predictive performance, statistical analysis, and data visualization; all without programming. iLearnPlus includes a wide range of feature sets which encode information from the input sequences and over twenty machine-learning algorithms that cover several deep-learning approaches, outnumbering the current solutions by a wide margin. Our solution caters to experienced bioinformaticians, given the broad range of options, and biologists with no programming background, given the point-and-click interface and easy-to-follow design process. We showcase iLearnPlus with two case studies concerning prediction of long noncoding RNAs (lncRNAs) from RNA transcripts and prediction of crotonylation sites in protein chains. iLearnPlus is an open-source platform available at https://github.com/Superzchen/iLearnPlus/ with the webserver at http://ilearnplus.erc.monash.edu/.
Collapse
Affiliation(s)
- Zhen Chen
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
| | - Chen Li
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Fuyi Li
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia.,Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Dongxu Xiang
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Yong-Zi Chen
- Laboratory of Tumor Cell Biology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Roger J Daly
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Geoffrey I Webb
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China.,Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
155
|
Chen XG, Zhang W, Yang X, Li C, Chen H. ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation. Front Genet 2021; 12:698477. [PMID: 34276801 PMCID: PMC8279753 DOI: 10.3389/fgene.2021.698477] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/07/2021] [Indexed: 12/09/2022] Open
Abstract
Anticancer peptides (ACPs) have provided a promising perspective for cancer treatment, and the prediction of ACPs is very important for the discovery of new cancer treatment drugs. It is time consuming and expensive to use experimental methods to identify ACPs, so computational methods for ACP identification are urgently needed. There have been many effective computational methods, especially machine learning-based methods, proposed for such predictions. Most of the current machine learning methods try to find suitable features or design effective feature learning techniques to accurately represent ACPs. However, the performance of these methods can be further improved for cases with insufficient numbers of samples. In this article, we propose an ACP prediction model called ACP-DA (Data Augmentation), which uses data augmentation for insufficient samples to improve the prediction performance. In our method, to better exploit the information of peptide sequences, peptide sequences are represented by integrating binary profile features and AAindex features, and then the samples in the training set are augmented in the feature space. After data augmentation, the samples are used to train the machine learning model, which is used to predict ACPs. The performance of ACP-DA exceeds that of existing methods, and ACP-DA achieves better performance in the prediction of ACPs compared with a method without data augmentation. The proposed method is available at http://github.com/chenxgscuec/ACPDA.
Collapse
Affiliation(s)
- Xian-Gan Chen
- School of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China.,Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-Central University for Nationalities, Wuhan, China.,Key Laboratory of Cognitive Science (South-Central University for Nationalities), State Ethnic Affairs Commission, Wuhan, China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, China.,Hubei Engineering Technology Research Center of Agricultural Big Data, Wuhan, China
| | - Xiaofei Yang
- School of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China.,Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-Central University for Nationalities, Wuhan, China.,Key Laboratory of Cognitive Science (South-Central University for Nationalities), State Ethnic Affairs Commission, Wuhan, China
| | - Chenhong Li
- School of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China.,Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-Central University for Nationalities, Wuhan, China.,Key Laboratory of Cognitive Science (South-Central University for Nationalities), State Ethnic Affairs Commission, Wuhan, China
| | - Hengling Chen
- School of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China.,Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-Central University for Nationalities, Wuhan, China.,Key Laboratory of Cognitive Science (South-Central University for Nationalities), State Ethnic Affairs Commission, Wuhan, China
| |
Collapse
|
156
|
Huang KY, Tseng YJ, Kao HJ, Chen CH, Yang HH, Weng SL. Identification of subtypes of anticancer peptides based on sequential features and physicochemical properties. Sci Rep 2021; 11:13594. [PMID: 34193950 PMCID: PMC8245499 DOI: 10.1038/s41598-021-93124-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
Anticancer peptides (ACPs) are a kind of bioactive peptides which could be used as a novel type of anticancer drug that has several advantages over chemistry-based drug, including high specificity, strong tumor penetration capacity, and low toxicity to normal cells. As the number of experimentally verified bioactive peptides has increased significantly, various of in silico approaches are imperative for investigating the characteristics of ACPs. However, the lack of methods for investigating the differences in physicochemical properties of ACPs. In this study, we compared the N- and C-terminal amino acid composition for each peptide, there are three major subtypes of ACPs that are defined based on the distribution of positively charged residues. For the first time, we were motivated to develop a two-step machine learning model for identification of the subtypes of ACPs, which classify the input data into the corresponding group before applying the classifier. Further, to improve the predictive power, the hybrid feature sets were considered for prediction. Evaluation by five-fold cross-validation showed that the two-step model trained with sequence-based features and physicochemical properties was most effective in discriminating between ACPs and non-ACPs. The two-step model trained with the hybrid features performed well, with a sensitivity of 86.75%, a specificity of 85.75%, an accuracy of 86.08%, and a Matthews Correlation Coefficient value of 0.703. Furthermore, the model also consistently provides the effective performance in independent testing set, with sensitivity of 77.6%, specificity of 94.74%, accuracy of 88.99% and the MCC value reached 0.75. Finally, the two-step model has been implemented as a web-based tool, namely iDACP, which is now freely available at http://mer.hc.mmh.org.tw/iDACP/ .
Collapse
Affiliation(s)
- Kai-Yao Huang
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu City, 300, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Yi-Jhan Tseng
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu City, 300, Taiwan
| | - Hui-Ju Kao
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu City, 300, Taiwan
| | - Chia-Hung Chen
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu City, 300, Taiwan
| | - Hsiao-Hsiang Yang
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu City, 300, Taiwan
| | - Shun-Long Weng
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu City, 300, Taiwan.
- Mackay Junior College of Medicine, Medicine, Nursing and Management College, Taipei City, 112, Taiwan.
| |
Collapse
|
157
|
Hunt C, Montgomery S, Berkenpas JW, Sigafoos N, Oakley JC, Espinosa J, Justice N, Kishaba K, Hippe K, Si D, Hou J, Ding H, Cao R. Recent Progress of Machine Learning in Gene Therapy. Curr Gene Ther 2021; 22:132-143. [PMID: 34161210 DOI: 10.2174/1566523221666210622164133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
With new developments in biomedical technology, it is now a viable therapeutic treatment to alter genes with techniques like CRISPR. At the same time, it is increasingly cheaper to do whole genome sequencing, resulting in rapid advancement in gene therapy and editing in precision medicine. Thus, understanding the current industry and academic applications of gene therapy provides an important backdrop to future scientific developments. Additionally, machine learning and artificial intelligence techniques allow for the reduction of time and money spent in the development of new gene therapy products and techniques. In this paper, we survey the current progress of gene therapy treatments for several diseases and explore machine learning applications in gene therapy. We also discuss the ethical implications of gene therapy and the use of machine learning in precision medicine. Machine learning and gene therapy are both topics gaining popularity in various publications, and we conclude that there is still room for continued research and application of machine learning techniques in the gene therapy field.
Collapse
Affiliation(s)
- Cassandra Hunt
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, United States
| | - Sandra Montgomery
- Department of Physics, Pacific Lutheran University, Tacoma, WA, United States
| | | | - Noel Sigafoos
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, United States
| | - John Christian Oakley
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, United States
| | - Jacob Espinosa
- Department of Mathematics, Pacific Lutheran University, Tacoma, WA, United States
| | - Nicola Justice
- Department of Mathematics, Pacific Lutheran University, Tacoma, WA, United States
| | - Kiyomi Kishaba
- Department of Humanities, Pacific Lutheran University, Tacoma, WA, United States
| | - Kyle Hippe
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, United States
| | - Dong Si
- Division of Computing Software Systems, University of Washington-Bothell, Bothell, WA, United States
| | - Jie Hou
- Department of Computer Science, Saint Louis University, St. Louis, MO, United States
| | - Hui Ding
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, United States
| |
Collapse
|
158
|
Chen CZ, Wu Q, Li ZY, Xiao L, Hu ZY. Diagnosis of Alzheimer's Disease Based on Deeply-Fused Nets. Comb Chem High Throughput Screen 2021; 24:781-789. [DOI: 10.2174/1386207323666200825092649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/02/2020] [Accepted: 07/14/2020] [Indexed: 11/22/2022]
Abstract
Aim and Objective:
Fast and accurate diagnosis of Alzheimer's disease is very important
for the care and further treatment of patients. Along with the development of deep learning, impressive
progress has also been made in the automatic diagnosis of AD. Most existing studies on automatic
diagnosis are concerned with a single base network, whose accuracy for disease diagnosis
still needs to be improved. This study was undertaken to propose a method to improve the accuracy
of the automatic diagnosis of AD.
Materials and Methods:
MRI image data from the Alzheimer’s Disease Neuroimaging Initiative were used
to train a deep learning model to achieve computer-aided diagnosis of Alzheimer's disease. The data consisted
of 138 with AD, 280 with mild cognitive impairment, and 138 normal controls. Here, a new deeply-fused net
is proposed, which combines several deep convolutional neural networks, thereby avoiding the error of a single base network and increasing the classification accuracy and generalization capacity.
Results:
Experiments show that when differentiating between patients with AD, mild cognitive impairment,
and normal controls on a subset of the ADNI database without data leakage, the new architecture improves
the accuracy by about 4 percentage points as compared to a single standard base network.
Conclusion:
This new approach exhibits better performance, but there is still much to be done before its clinical application. In the future, greater research effort will be devoted to improving the performance of the
deeply-fused net.
Collapse
Affiliation(s)
- Chang Zu Chen
- Intelligent Information Systems Institute, Department of Computer and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
| | - Qi Wu
- Intelligent Information Systems Institute, Department of Computer and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
| | - Zuo Yong Li
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou 350121, China
| | - Lei Xiao
- Intelligent Information Systems Institute, Department of Computer and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
| | - Zhong Yi Hu
- Intelligent Information Systems Institute, Department of Computer and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
159
|
Wan Y, Wang Z, Lee TY. Incorporating support vector machine with sequential minimal optimization to identify anticancer peptides. BMC Bioinformatics 2021; 22:286. [PMID: 34051755 PMCID: PMC8164238 DOI: 10.1186/s12859-021-03965-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/08/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Cancer is one of the major causes of death worldwide. To treat cancer, the use of anticancer peptides (ACPs) has attracted increased attention in recent years. ACPs are a unique group of small molecules that can target and kill cancer cells fast and directly. However, identifying ACPs by wet-lab experiments is time-consuming and labor-intensive. Therefore, it is significant to develop computational tools for ACPs prediction. Though some ACP prediction tools have been developed recently, their performances are not well enough and most of them do not offer a function to distinguish ACPs from antimicrobial peptides (AMPs). Considering the fact that a growing number of studies have shown that some AMPs exhibit anticancer function, this work tries to build a model for distinguishing AMPs from ACPs in addition to a model that predicts ACPs from whole peptides. RESULTS This study chooses amino acid composition, N5C5, k-space, position-specific scoring matrix (PSSM) as features, and analyzes them by machine learning methods, including support vector machine (SVM) and sequential minimal optimization (SMO) to build a model (model 2) for distinguishing ACPs from whole peptides. Another model (model 1) that distinguishes ACPs from AMPs is also developed. Comparing to previous models, models developed in this research show better performance (accuracy: 85.5% for model 1 and 95.2% for model 2). CONCLUSIONS This work utilizes a new feature, PSSM, which contributes to better performance than other features. In addition to SVM, SMO is used in this research for optimizing SVM and the SMO-optimized models show better performance than non-optimized models. Last but not least, this work provides two different functions, including distinguishing ACPs from AMPs and distinguishing ACPs from all peptides. The second SMO-optimized model, which utilizes PSSM as a feature, performs better than all other existing tools.
Collapse
Affiliation(s)
- Yu Wan
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, People's Republic of China
| | - Zhuo Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, People's Republic of China
| | - Tzong-Yi Lee
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, People's Republic of China.
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, People's Republic of China.
| |
Collapse
|
160
|
Zhao Y, Wang S, Fei W, Feng Y, Shen L, Yang X, Wang M, Wu M. Prediction of Anticancer Peptides with High Efficacy and Low Toxicity by Hybrid Model Based on 3D Structure of Peptides. Int J Mol Sci 2021; 22:5630. [PMID: 34073203 PMCID: PMC8198792 DOI: 10.3390/ijms22115630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, anticancer peptides (ACPs) have emerged as unique and promising therapeutic agents for cancer treatment compared with antibody and small molecule drugs. In addition to experimental methods of ACPs discovery, it is also necessary to develop accurate machine learning models for ACP prediction. In this study, features were extracted from the three-dimensional (3D) structure of peptides to develop the model, compared to most of the previous computational models, which are based on sequence information. In order to develop ACPs with more potency, more selectivity and less toxicity, the model for predicting ACPs, hemolytic peptides and toxic peptides were established by peptides 3D structure separately. Multiple datasets were collected according to whether the peptide sequence was chemically modified. After feature extraction and screening, diverse algorithms were used to build the model. Twelve models with excellent performance (Acc > 90%) in the ACPs mixed datasets were used to form a hybrid model to predict the candidate ACPs, and then the optimal model of hemolytic peptides (Acc = 73.68%) and toxic peptides (Acc = 85.5%) was used for safety prediction. Novel ACPs were found by using those models, and five peptides were randomly selected to determine their anticancer activity and toxic side effects in vitro experiments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (S.W.); (W.F.); (Y.F.); (L.S.); (X.Y.)
| | - Min Wu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (S.W.); (W.F.); (Y.F.); (L.S.); (X.Y.)
| |
Collapse
|
161
|
|
162
|
Zeng R, Cheng S, Liao M. 4mCPred-MTL: Accurate Identification of DNA 4mC Sites in Multiple Species Using Multi-Task Deep Learning Based on Multi-Head Attention Mechanism. Front Cell Dev Biol 2021; 9:664669. [PMID: 34041243 PMCID: PMC8141656 DOI: 10.3389/fcell.2021.664669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
DNA methylation is one of the most extensive epigenetic modifications. DNA 4mC modification plays a key role in regulating chromatin structure and gene expression. In this study, we proposed a generic 4mC computational predictor, namely, 4mCPred-MTL using multi-task learning coupled with Transformer to predict 4mC sites in multiple species. In this predictor, we utilize a multi-task learning framework, in which each task is to train species-specific data based on Transformer. Extensive experimental results show that our multi-task predictive model can significantly improve the performance of the model based on single task and outperform existing methods on benchmarking comparison. Moreover, we found that our model can sufficiently capture better characteristics of 4mC sites as compared to existing commonly used feature descriptors, demonstrating the strong feature learning ability of our model. Therefore, based on the above results, it can be expected that our 4mCPred-MTL can be a useful tool for research communities of interest.
Collapse
Affiliation(s)
- Rao Zeng
- Department of Software Engineering, School of Informatics, Xiamen University, Xiamen, China
| | - Song Cheng
- Department of Thoracic Surgery, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Minghong Liao
- Department of Software Engineering, School of Informatics, Xiamen University, Xiamen, China
| |
Collapse
|
163
|
Abstract
Background:
Bioluminescence is a unique and significant phenomenon in nature.
Bioluminescence is important for the lifecycle of some organisms and is valuable in biomedical
research, including for gene expression analysis and bioluminescence imaging technology. In recent
years, researchers have identified a number of methods for predicting bioluminescent proteins
(BLPs), which have increased in accuracy, but could be further improved.
Method:
In this study, a new bioluminescent proteins prediction method, based on a voting
algorithm, is proposed. Four methods of feature extraction based on the amino acid sequence were
used. 314 dimensional features in total were extracted from amino acid composition,
physicochemical properties and k-spacer amino acid pair composition. In order to obtain the highest
MCC value to establish the optimal prediction model, a voting algorithm was then used to build the
model. To create the best performing model, the selection of base classifiers and vote counting rules
are discussed.
Results:
The proposed model achieved 93.4% accuracy, 93.4% sensitivity and
91.7% specificity in the test set, which was better than any other method. A previous prediction of
bioluminescent proteins in three lineages was also improved using the model building method,
resulting in greatly improved accuracy.
Collapse
Affiliation(s)
- Shulin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba Science City, Japan
| | - Jun Zhang
- Rehabilitation Department, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Shuguang Han
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
164
|
Yang X, Ye X, Li X, Wei L. iDNA-MT: Identification DNA Modification Sites in Multiple Species by Using Multi-Task Learning Based a Neural Network Tool. Front Genet 2021; 12:663572. [PMID: 33868390 PMCID: PMC8044371 DOI: 10.3389/fgene.2021.663572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023] Open
Abstract
Motivation DNA N4-methylcytosine (4mC) and N6-methyladenine (6mA) are two important DNA modifications and play crucial roles in a variety of biological processes. Accurate identification of the modifications is essential to better understand their biological functions and mechanisms. However, existing methods to identify 4mA or 6mC sites are all single tasks, which demonstrates that they can identify only a certain modification in one species. Therefore, it is desirable to develop a novel computational method to identify the modification sites in multiple species simultaneously. Results In this study, we proposed a computational method, called iDNA-MT, to identify 4mC sites and 6mA sites in multiple species, respectively. The proposed iDNA-MT mainly employed multi-task learning coupled with the bidirectional gated recurrent units (BGRU) to capture the sharing information among different species directly from DNA primary sequences. Experimental comparative results on two benchmark datasets, containing different species respectively, show that either for identifying 4mA or for 6mC site in multiple species, the proposed iDNA-MT outperforms other state-of-the-art single-task methods. The promising results have demonstrated that iDNA-MT has great potential to be a powerful and practically useful tool to accurately identify DNA modifications.
Collapse
Affiliation(s)
- Xiao Yang
- School of Software, Shandong University, Jinan, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| | - Xuehong Li
- Department of Rehabilitation, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Lesong Wei
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
165
|
Lv Y, Huang S, Zhang T, Gao B. Application of Multilayer Network Models in Bioinformatics. Front Genet 2021; 12:664860. [PMID: 33868392 PMCID: PMC8044439 DOI: 10.3389/fgene.2021.664860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 11/24/2022] Open
Abstract
Multilayer networks provide an efficient tool for studying complex systems, and with current, dramatic development of bioinformatics tools and accumulation of data, researchers have applied network concepts to all aspects of research problems in the field of biology. Addressing the combination of multilayer networks and bioinformatics, through summarizing the applications of multilayer network models in bioinformatics, this review classifies applications and presents a summary of the latest results. Among them, we classify the applications of multilayer networks according to the object of study. Furthermore, because of the systemic nature of biology, we classify the subjects into several hierarchical categories, such as cells, tissues, organs, and groups, according to the hierarchical nature of biological composition. On the basis of the complexity of biological systems, we selected brain research for a detailed explanation. We describe the application of multilayer networks and chronological networks in brain research to demonstrate the primary ideas associated with the application of multilayer networks in biological studies. Finally, we mention a quality assessment method focusing on multilayer and single-layer networks as an evaluation method emphasizing network studies.
Collapse
Affiliation(s)
- Yuanyuan Lv
- Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou, China
- Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Quzhou, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
166
|
Chen Z, Shen Z, Zhang Z, Zhao D, Xu L, Zhang L. RNA-Associated Co-expression Network Identifies Novel Biomarkers for Digestive System Cancer. Front Genet 2021; 12:659788. [PMID: 33841514 PMCID: PMC8033200 DOI: 10.3389/fgene.2021.659788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 01/04/2023] Open
Abstract
Cancers of the digestive system are malignant diseases. Our study focused on colon cancer, esophageal cancer (ESCC), rectal cancer, gastric cancer (GC), and rectosigmoid junction cancer to identify possible biomarkers for these diseases. The transcriptome data were downloaded from the TCGA database (The Cancer Genome Atlas Program), and a network was constructed using the WGCNA algorithm. Two significant modules were found, and coexpression networks were constructed. CytoHubba was used to identify hub genes of the two networks. GO analysis suggested that the network genes were involved in metabolic processes, biological regulation, and membrane and protein binding. KEGG analysis indicated that the significant pathways were the calcium signaling pathway, fatty acid biosynthesis, and pathways in cancer and insulin resistance. Some of the most significant hub genes were hsa-let-7b-3p, hsa-miR-378a-5p, hsa-miR-26a-5p, hsa-miR-382-5p, and hsa-miR-29b-2-5p and SECISBP2 L, NCOA1, HERC1, HIPK3, and MBNL1, respectively. These genes were predicted to be associated with the tumor prognostic reference for this patient population.
Collapse
Affiliation(s)
- Zheng Chen
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Zijie Shen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Zilong Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Da Zhao
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Lijun Zhang
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
167
|
Niu M, Lin Y, Zou Q. sgRNACNN: identifying sgRNA on-target activity in four crops using ensembles of convolutional neural networks. PLANT MOLECULAR BIOLOGY 2021; 105:483-495. [PMID: 33385273 DOI: 10.1007/s11103-020-01102-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE We proposed an ensemble convolutional neural network model to identify sgRNA high on-target activity in four crops and we used one-hot encoding and k-mers for sequence encoding. As an important component of the CRISPR/Cas9 system, single-guide RNA (sgRNA) plays an important role in gene redirection and editing. sgRNA has played an important role in the improvement of agronomic species, but there is a lack of effective bioinformatics tools to identify the activity of sgRNA in agronomic species. Therefore, it is necessary to develop a method based on machine learning to identify sgRNA high on-target activity. In this work, we proposed a simple convolutional neural network method to identify sgRNA high on-target activity. Our study used one-hot encoding and k-mers for sequence data conversion and a voting algorithm for constructing the convolutional neural network ensemble model sgRNACNN for the prediction of sgRNA activity. The ensemble model sgRNACNN was used for predictions in four crops: Glycine max, Zea mays, Sorghum bicolor and Triticum aestivum. The accuracy rates of the four crops in the sgRNACNN model were 82.43%, 80.33%, 78.25% and 87.49%, respectively. The experimental results showed that sgRNACNN realizes the identification of high on-target activity sgRNA of agronomic data and can meet the demands of sgRNA activity prediction in agronomy to a certain extent. These results have certain significance for guiding crop gene editing and academic research. The source code and relevant dataset can be found in the following link: https://github.com/nmt315320/sgRNACNN.git .
Collapse
Affiliation(s)
- Mengting Niu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Lin
- Department of System Integration, Sparebanken Vest, Bergen, Norway.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
168
|
Huang Q, Zhou W, Guo F, Xu L, Zhang L. 6mA-Pred: identifying DNA N6-methyladenine sites based on deep learning. PeerJ 2021; 9:e10813. [PMID: 33604189 PMCID: PMC7866889 DOI: 10.7717/peerj.10813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023] Open
Abstract
With the accumulation of data on 6mA modification sites, an increasing number of scholars have begun to focus on the identification of 6mA sites. Despite the recognized importance of 6mA sites, methods for their identification remain lacking, with most existing methods being aimed at their identification in individual species. In the present study, we aimed to develop an identification method suitable for multiple species. Based on previous research, we propose a method for 6mA site recognition. Our experiments prove that the proposed 6mA-Pred method is effective for identifying 6mA sites in genes from taxa such as rice, Mus musculus, and human. A series of experimental results show that 6mA-Pred is an excellent method. We provide the source code used in the study, which can be obtained from http://39.100.246.211:5004/6mA_Pred/.
Collapse
Affiliation(s)
- Qianfei Huang
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| |
Collapse
|
169
|
Recent Advances in Predicting Protein S-Nitrosylation Sites. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5542224. [PMID: 33628788 PMCID: PMC7892234 DOI: 10.1155/2021/5542224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023]
Abstract
Protein S-nitrosylation (SNO) is a process of covalent modification of nitric oxide (NO) and its derivatives and cysteine residues. SNO plays an essential role in reversible posttranslational modifications of proteins. The accurate prediction of SNO sites is crucial in revealing a certain biological mechanism of NO regulation and related drug development. Identification of the sites of SNO in proteins is currently a very hot topic. In this review, we briefly summarize recent advances in computationally identifying SNO sites. The challenges and future perspectives for identifying SNO sites are also discussed. We anticipate that this review will provide insights into research on SNO site prediction.
Collapse
|
170
|
Assessing Dry Weight of Hemodialysis Patients via Sparse Laplacian Regularized RVFL Neural Network with L 2,1-Norm. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6627650. [PMID: 33628794 PMCID: PMC7880720 DOI: 10.1155/2021/6627650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/28/2022]
Abstract
Dry weight is the normal weight of hemodialysis patients after hemodialysis. If the amount of water in diabetes is too much (during hemodialysis), the patient will experience hypotension and shock symptoms. Therefore, the correct assessment of the patient's dry weight is clinically important. These methods all rely on professional instruments and technicians, which are time-consuming and labor-intensive. To avoid this limitation, we hope to use machine learning methods on patients. This study collected demographic and anthropometric data of 476 hemodialysis patients, including age, gender, blood pressure (BP), body mass index (BMI), years of dialysis (YD), and heart rate (HR). We propose a Sparse Laplacian regularized Random Vector Functional Link (SLapRVFL) neural network model on the basis of predecessors. When we evaluate the prediction performance of the model, we fully compare SLapRVFL with the Body Composition Monitor (BCM) instrument and other models. The Root Mean Square Error (RMSE) of SLapRVFL is 1.3136, which is better than other methods. The SLapRVFL neural network model could be a viable alternative of dry weight assessment.
Collapse
|
171
|
Charoenkwan P, Chiangjong W, Lee VS, Nantasenamat C, Hasan MM, Shoombuatong W. Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method. Sci Rep 2021; 11:3017. [PMID: 33542286 PMCID: PMC7862624 DOI: 10.1038/s41598-021-82513-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
As anticancer peptides (ACPs) have attracted great interest for cancer treatment, several approaches based on machine learning have been proposed for ACP identification. Although existing methods have afforded high prediction accuracies, however such models are using a large number of descriptors together with complex ensemble approaches that consequently leads to low interpretability and thus poses a challenge for biologists and biochemists. Therefore, it is desirable to develop a simple, interpretable and efficient predictor for accurate ACP identification as well as providing the means for the rational design of new anticancer peptides with promising potential for clinical application. Herein, we propose a novel flexible scoring card method (FSCM) making use of propensity scores of local and global sequential information for the development of a sequence-based ACP predictor (named iACP-FSCM) for improving the prediction accuracy and model interpretability. To the best of our knowledge, iACP-FSCM represents the first sequence-based ACP predictor for rationalizing an in-depth understanding into the molecular basis for the enhancement of anticancer activities of peptides via the use of FSCM-derived propensity scores. The independent testing results showed that the iACP-FSCM provided accuracies of 0.825 and 0.910 as evaluated on the main and alternative datasets, respectively. Results from comparative benchmarking demonstrated that iACP-FSCM could outperform seven other existing ACP predictors with marked improvements of 7% and 17% for accuracy and MCC, respectively, on the main dataset. Furthermore, the iACP-FSCM (0.910) achieved very comparable results to that of the state-of-the-art ensemble model AntiCP2.0 (0.920) as evaluated on the alternative dataset. Comparative results demonstrated that iACP-FSCM was the most suitable choice for ACP identification and characterization considering its simplicity, interpretability and generalizability. It is highly anticipated that the iACP-FSCM may be a robust tool for the rapid screening and identification of promising ACPs for clinical use.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Centre of Theoretical and Computational Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
172
|
Liang G, Wu J, Xu L. A prognosis-related based method for miRNA selection on liver hepatocellular carcinoma prediction. Comput Biol Chem 2021; 91:107433. [PMID: 33540232 DOI: 10.1016/j.compbiolchem.2020.107433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is considered as the sixth most common cancer in the world, and it is also considered as one of the causes of death. Moreover, the poor prognosis of recurrence of HCC after surgery and metastasis is also a big problem for human health. If the disease can be diagnosed earlier, the survival rate of the patients will be improved significantly. In the early stage of hepatocellular carcinoma, the expression of miRNAs is likely to become abnormal. In our work, the expression profile of miRNAs of human HCC in cancer tissue is compared with their adjacent tissue samples collected from tumor cancer genomic Atlas (TCGA) platform, then the genes with significant difference are selected by Limma test. Selected genes are referred to predict miRNAs related to the prognosis of HCC patients. Finally, miRNAs regulated by target genes are selected by our method, and the experimental results demonstrated that our method is more efficient than biology wet experimental method with lower cost.
Collapse
Affiliation(s)
- Guangmin Liang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, 518000, China
| | - Jin Wu
- School of Management, Shenzhen Polytechnic, Shenzhen, 518000, China.
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, 518000, China.
| |
Collapse
|
173
|
Screening of Prospective Plant Compounds as H1R and CL1R Inhibitors and Its Antiallergic Efficacy through Molecular Docking Approach. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021. [DOI: 10.1155/2021/6683407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Allergens have the ability to enter the body and cause illness. Leukotriene is the widespread allergen which could stimulate mast cells to discharge histamine which causes allergy symptoms. An effective strategy for treating leukotriene-induced allergy is to find the inhibitors of leukotriene or histamine activity from phytochemicals. For this purpose, a library of 8,500 phytochemicals was generated using MOE software. The structures of histamine-1 receptor and cysteinyl leukotriene receptor-1 were predicted by the homology modeling method through the SWISS model. The phytochemicals were docked with predicted structures of histamine-1 and cysteinyl leukotriene receptor-1 in MOE software to determine the binding affinity of the phytochemicals against the targets. Moreover, chemoinformatics properties and ADMET of phytochemicals were assessed to find the drug likeness behavior of compounds. Compound ID 10054216 has the lowest
-score value for H-1 receptor that is -18.9186 kcal/mol which is lower than the value of standard -15.167 kcal/mol. The other compounds 393471, 71448939, 10722577, and 442614 also showed good
-score values than the standard. Moreover, compound ID 11843082 has the lowest
-score value for CL1R that is -15.481 kcal/mol which is lower than the value of standard -12.453 kcal/mol. The other compounds 72284, 5282102, 66559251, and 102506430 also showed good
-score values than the standard. In this research article, we performed molecular docking to find the best inhibitors against H1R and CL1R and their antiallergic efficacy. This in silico knowledge will be helpful in near future for the design of novel, safe, and less costing H-1 receptor and CL1R inhibitors with the aim to improve human life quality.
Collapse
|
174
|
Dai R, Zhang W, Tang W, Wynendaele E, Zhu Q, Bin Y, De Spiegeleer B, Xia J. BBPpred: Sequence-Based Prediction of Blood-Brain Barrier Peptides with Feature Representation Learning and Logistic Regression. J Chem Inf Model 2021; 61:525-534. [PMID: 33426873 DOI: 10.1021/acs.jcim.0c01115] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood-brain barrier peptides (BBPs) have a large range of biomedical applications since they can cross the blood-brain barrier based on different mechanisms. As experimental methods for the identification of BBPs are laborious and expensive, computational approaches are necessary to be developed for predicting BBPs. In this work, we describe a computational method, BBPpred (blood-brain barrier peptides prediction), that can efficiently identify BBPs using logistic regression. We investigate a wide variety of features from amino acid sequence information, and then a feature learning method is adopted to represent the informative features. To improve the prediction performance, seven informative features are selected for classification by eliminating redundant and irrelevant features. In addition, we specifically create two benchmark data sets (training and independent test), which contain a total of 119 BBPs from public databases and the literature. On the training data set, BBPpred shows promising performances with an AUC score of 0.8764 and an AUPR score of 0.8757 using the 10-fold cross-validation. We also test our new method on the independent test data set and obtain a favorable performance. We envision that BBPpred will be a useful tool for identifying, annotating, and characterizing BBPs. BBPpred is freely available at http://BBPpred.xialab.info.
Collapse
Affiliation(s)
- Ruyu Dai
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wei Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wending Tang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Qizhi Zhu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Yannan Bin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Junfeng Xia
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
175
|
Wahab A, Tayara H, Xuan Z, Chong KT. DNA sequences performs as natural language processing by exploiting deep learning algorithm for the identification of N4-methylcytosine. Sci Rep 2021; 11:212. [PMID: 33420191 PMCID: PMC7794489 DOI: 10.1038/s41598-020-80430-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
N4-methylcytosine is a biochemical alteration of DNA that affects the genetic operations without modifying the DNA nucleotides such as gene expression, genomic imprinting, chromosome stability, and the development of the cell. In the proposed work, a computational model, 4mCNLP-Deep, used the word embedding approach as a vector formulation by exploiting deep learning based CNN algorithm to predict 4mC and non-4mC sites on the C.elegans genome dataset. Diversity of ranges employed for the experimental such as corpus k-mer and k-fold cross-validation to obtain the prevailing capabilities. The 4mCNLP-Deep outperform from the state-of-the-art predictor by achieving the results in five evaluation metrics by following; Accuracy (ACC) as 0.9354, Mathew’s correlation coefficient (MCC) as 0.8608, Specificity (Sp) as 0.89.96, Sensitivity (Sn) as 0.9563, and Area under curve (AUC) as 0.9731 by using 3-mer corpus word2vec and 3-fold cross-validation and attained the increment of 1.1%, 0.6%, 0.58%, 0.77%, and 4.89%, respectively. At last, we developed the online webserver http://nsclbio.jbnu.ac.kr/tools/4mCNLP-Deep/, for the experimental researchers to get the results easily.
Collapse
Affiliation(s)
- Abdul Wahab
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Zhenyu Xuan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, 75080, USA.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea. .,Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
176
|
Li K, Zhong Y, Lin X, Quan Z. Predicting the Disease Risk of Protein Mutation Sequences With Pre-training Model. Front Genet 2020; 11:605620. [PMID: 33408741 PMCID: PMC7780924 DOI: 10.3389/fgene.2020.605620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/11/2020] [Indexed: 12/05/2022] Open
Abstract
Accurately identifying the missense mutations is of great help to alleviate the loss of protein function and structural changes, which might greatly reduce the risk of disease for tumor suppressor genes (e.g., BRCA1 and PTEN). In this paper, we propose a hybrid framework, called BertVS, that predicts the disease risk for the missense mutation of proteins. Our framework is able to learn sequence representations from the protein domain through pre-training BERT models, and also integrates with the hydrophilic properties of amino acids to obtain the sequence representations of biochemical characteristics. The concatenation of two learned representations are then sent to the classifier to predict the missense mutations of protein sequences. Specifically, we use the protein family database (Pfam) as a corpus to train the BERT model to learn the contextual information of protein sequences, and our pre-training BERT model achieves a value of 0.984 on accuracy in the masked language model prediction task. We conduct extensive experiments on BRCA1 and PTEN datasets. With comparison to the baselines, results show that BertVS achieves higher performance of 0.920 on AUROC and 0.915 on AUPR in the functionally critical domain of the BRCA1 gene. Additionally, the extended experiment on the ClinVar dataset can illustrate that gene variants with known clinical significance can also be efficiently classified by our method. Therefore, BertVS can learn the functional information of the protein sequences and effectively predict the disease risk of variants with an uncertain clinical significance.
Collapse
Affiliation(s)
- Kuan Li
- School of Cyberspace Security, Dongguan University of Technology, Guangdong, China
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen, China
| | - Yue Zhong
- Department of Computer Science, Xiamen University, Xiamen, China
| | - Xuan Lin
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Zhe Quan
- College of Information Science and Engineering, Hunan University, Changsha, China
| |
Collapse
|
177
|
Li Y, Zhang Z, Teng Z, Liu X. PredAmyl-MLP: Prediction of Amyloid Proteins Using Multilayer Perceptron. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:8845133. [PMID: 33294004 PMCID: PMC7700051 DOI: 10.1155/2020/8845133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/31/2020] [Indexed: 01/20/2023]
Abstract
Amyloid is generally an aggregate of insoluble fibrin; its abnormal deposition is the pathogenic mechanism of various diseases, such as Alzheimer's disease and type II diabetes. Therefore, accurately identifying amyloid is necessary to understand its role in pathology. We proposed a machine learning-based prediction model called PredAmyl-MLP, which consists of the following three steps: feature extraction, feature selection, and classification. In the step of feature extraction, seven feature extraction algorithms and different combinations of them are investigated, and the combination of SVMProt-188D and tripeptide composition (TPC) is selected according to the experimental results. In the step of feature selection, maximum relevant maximum distance (MRMD) and binomial distribution (BD) are, respectively, used to remove the redundant or noise features, and the appropriate features are selected according to the experimental results. In the step of classification, we employed multilayer perceptron (MLP) to train the prediction model. The 10-fold cross-validation results show that the overall accuracy of PredAmyl-MLP reached 91.59%, and the performance was better than the existing methods.
Collapse
Affiliation(s)
- Yanjuan Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
| | - Zitong Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
| | - Zhixia Teng
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyan Liu
- College of Computer Science and Technology, Harbin Institute of Technology, Harbin 150040, China
| |
Collapse
|
178
|
Charoenkwan P, Yana J, Nantasenamat C, Hasan MM, Shoombuatong W. iUmami-SCM: A Novel Sequence-Based Predictor for Prediction and Analysis of Umami Peptides Using a Scoring Card Method with Propensity Scores of Dipeptides. J Chem Inf Model 2020; 60:6666-6678. [DOI: 10.1021/acs.jcim.0c00707] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Janchai Yana
- Department of Chemistry, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai 50300, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Md. Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
179
|
Guo Z, Wang P, Liu Z, Zhao Y. Discrimination of Thermophilic Proteins and Non-thermophilic Proteins Using Feature Dimension Reduction. Front Bioeng Biotechnol 2020; 8:584807. [PMID: 33195148 PMCID: PMC7642589 DOI: 10.3389/fbioe.2020.584807] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/11/2020] [Indexed: 01/19/2023] Open
Abstract
Thermophilicity is a very important property of proteins, as it sometimes determines denaturation and cell death. Thus, methods for predicting thermophilic proteins and non-thermophilic proteins are of interest and can contribute to the design and engineering of proteins. In this article, we describe the use of feature dimension reduction technology and LIBSVM to identify thermophilic proteins. The highest accuracy obtained by cross-validation was 96.02% with 119 parameters. When using only 16 features, we obtained an accuracy of 93.33%. We discuss the importance of the different characteristics in identification and report a comparison of the performance of support vector machine to that of other methods.
Collapse
Affiliation(s)
- Zifan Guo
- School of Aeronautics and Astronautic, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhendong Liu
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
| | - Yuming Zhao
- Information and Computer Engineering College, Northeast Forestry University, Harbin, China
| |
Collapse
|
180
|
Wang C, Zhang H, Li Z, Zhou X, Cheng Y, Chen R. White Blood Cell Image Segmentation Based on Color Component Combination and Contour Fitting. Curr Bioinform 2020. [DOI: 10.2174/1574893614666191017102310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
White Blood Cell (WBC) image segmentation plays a key role in cell
morphology analysis. However, WBC segmentation is still a challenging task due to the diversity
of WBCs under different staining conditions.
Objective:
In this paper, we propose a novel WBC segmentation method based on color component
combination and contour fitting to segment WBC images accurately.
Methods:
Specifically, the proposed method first uses color component combination and image
thresholding to achieve nucleus segmentation, then uses a color prior to remove image background,
and extracts the initial WBC contour via Canny edge detection, and finally judges and
closes the unclosed WBC contour by contour fitting. Accordingly, cytoplasm segmentation is
achieved by subtracting the nucleus region from the WBC region.
Results:
Experimental results on 100 WBC images under rapid staining condition and 50 WBC
images under standard staining condition showed that the proposed method improved segmentation
accuracy of white blood cells under rapid and standard staining conditions.
Conclusion:
The proposed color component combination and contour fitting is effective in WBC
segmentation task.
Collapse
Affiliation(s)
- Chuansheng Wang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Hong Zhang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Zuoyong Li
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou, China
| | - Xiaogen Zhou
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
| | - Yong Cheng
- School of Information Mechanical & Electrical Engineering, Jiangsu Open University, Nanjing, China
| | - Rongyan Chen
- Department of Clinical Laboratory, the People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
181
|
Yu L, Jing R, Liu F, Luo J, Li Y. DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:862-870. [PMID: 33230481 PMCID: PMC7658571 DOI: 10.1016/j.omtn.2020.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most dangerous diseases to human health. The accurate prediction of anticancer peptides (ACPs) would be valuable for the development and design of novel anticancer agents. Current deep neural network models have obtained state-of-the-art prediction accuracy for the ACP classification task. However, based on existing studies, it remains unclear which deep learning architecture achieves the best performance. Thus, in this study, we first present a systematic exploration of three important deep learning architectures: convolutional, recurrent, and convolutional-recurrent networks for distinguishing ACPs from non-ACPs. We find that the recurrent neural network with bidirectional long short-term memory cells is superior to other architectures. By utilizing the proposed model, we implement a sequence-based deep learning tool (DeepACP) to accurately predict the likelihood of a peptide exhibiting anticancer activity. The results indicate that DeepACP outperforms several existing methods and can be used as an effective tool for the prediction of anticancer peptides. Furthermore, we visualize and understand the deep learning model. We hope that our strategy can be extended to identify other types of peptides and may provide more assistance to the development of proteomics and new drugs.
Collapse
Affiliation(s)
- Lezheng Yu
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
- Corresponding author: Lezheng Yu, School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China.
| | - Runyu Jing
- College of Cybersecurity, Sichuan University, Chengdu 610065, China
| | - Fengjuan Liu
- School of Geography and Resources, Guizhou Education University, Guiyang 550018, China
| | - Jiesi Luo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
- Corresponding author: Jiesi Luo, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yizhou Li
- College of Cybersecurity, Sichuan University, Chengdu 610065, China
| |
Collapse
|
182
|
Manavalan B, Hasan MM, Basith S, Gosu V, Shin TH, Lee G. Empirical Comparison and Analysis of Web-Based DNA N 4-Methylcytosine Site Prediction Tools. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:406-420. [PMID: 33230445 PMCID: PMC7533314 DOI: 10.1016/j.omtn.2020.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
DNA N4-methylcytosine (4mC) is a crucial epigenetic modification involved in various biological processes. Accurate genome-wide identification of these sites is critical for improving our understanding of their biological functions and mechanisms. As experimental methods for 4mC identification are tedious, expensive, and labor-intensive, several machine learning-based approaches have been developed for genome-wide detection of such sites in multiple species. However, the predictions projected by these tools are difficult to quantify and compare. To date, no systematic performance comparison of 4mC tools has been reported. The aim of this study was to compare and critically evaluate 12 publicly available 4mC site prediction tools according to species specificity, based on a huge independent validation dataset. The tools 4mCCNN (Escherichia coli), DNA4mC-LIP (Arabidopsis thaliana), iDNA-MS (Fragaria vesca), DNA4mC-LIP and 4mCCNN (Drosophila melanogaster), and four tools for Caenorhabditis elegans achieved excellent overall performance compared with their counterparts. However, none of the existing methods was suitable for Geoalkalibacter subterraneus, Geobacter pickeringii, and Mus musculus, thereby limiting their practical applicability. Model transferability to five species and non-transferability to three species are also discussed. The presented evaluation will assist researchers in selecting appropriate prediction tools that best suit their purpose and provide useful guidelines for the development of improved 4mC predictors in the future.
Collapse
Affiliation(s)
- Balachandran Manavalan
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Tae-Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
183
|
Liscano Y, Oñate-Garzón J, Delgado JP. Peptides with Dual Antimicrobial-Anticancer Activity: Strategies to Overcome Peptide Limitations and Rational Design of Anticancer Peptides. Molecules 2020; 25:E4245. [PMID: 32947811 PMCID: PMC7570524 DOI: 10.3390/molecules25184245] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
Peptides are naturally produced by all organisms and exhibit a wide range of physiological, immunomodulatory, and wound healing functions. Furthermore, they can provide with protection against microorganisms and tumor cells. Their multifaceted performance, high selectivity, and reduced toxicity have positioned them as effective therapeutic agents, representing a positive economic impact for pharmaceutical companies. Currently, efforts have been made to invest in the development of new peptides with antimicrobial and anticancer properties, but the poor stability of these molecules in physiological environments has triggered a bottleneck. Therefore, some tools, such as nanotechnology and in silico approaches can be applied as alternatives to try to overcome these obstacles. In silico studies provide a priori knowledge that can lead to the development of new anticancer peptides with enhanced biological activity and improved stability. This review focuses on the current status of research in peptides with dual antimicrobial-anticancer activity, including advances in computational biology using in silico analyses as a powerful tool for the study and rational design of these types of peptides.
Collapse
Affiliation(s)
- Yamil Liscano
- Research Group of Chemical and Biotechnology, Faculty of Basic Sciences, Universidad Santiago de Cali, 760035 Cali, Colombia;
- Research Group of Genetics, Regeneration and Cancer, Institute of Biology, Universidad de Antioquia, 050010 Medellin, Colombia;
| | - Jose Oñate-Garzón
- Research Group of Chemical and Biotechnology, Faculty of Basic Sciences, Universidad Santiago de Cali, 760035 Cali, Colombia;
| | - Jean Paul Delgado
- Research Group of Genetics, Regeneration and Cancer, Institute of Biology, Universidad de Antioquia, 050010 Medellin, Colombia;
| |
Collapse
|
184
|
Li Q, Zhou W, Wang D, Wang S, Li Q. Prediction of Anticancer Peptides Using a Low-Dimensional Feature Model. Front Bioeng Biotechnol 2020; 8:892. [PMID: 32903381 PMCID: PMC7434836 DOI: 10.3389/fbioe.2020.00892] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023] Open
Abstract
Cancer is still a severe health problem globally. The therapy of cancer traditionally involves the use of radiotherapy or anticancer drugs to kill cancer cells, but these methods are quite expensive and have side effects, which will cause great harm to patients. With the find of anticancer peptides (ACPs), significant progress has been achieved in the therapy of tumors. Therefore, it is invaluable to accurately identify anticancer peptides. Although biochemical experiments can solve this work, this method is expensive and time-consuming. To promote the application of anticancer peptides in cancer therapy, machine learning can be used to recognize anticancer peptides by extracting the feature vectors of anticancer peptides. Nevertheless, poor performance usually be found in training the machine learning model to utilizing high-dimensional features in practice. In order to solve the above job, this paper put forward a 19-dimensional feature model based on anticancer peptide sequences, which has lower dimensionality and better performance than some existing methods. In addition, this paper also separated a model with a low number of dimensions and acceptable performance. The few features identified in this study may represent the important features of anticancer peptides.
Collapse
Affiliation(s)
- Qingwen Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wenyang Zhou
- Center for Bioinformatics, School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Donghua Wang
- Department of General Surgery, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Sui Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qingyuan Li
- Forestry and Fruit Tree Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
185
|
Ge R, Feng G, Jing X, Zhang R, Wang P, Wu Q. EnACP: An Ensemble Learning Model for Identification of Anticancer Peptides. Front Genet 2020; 11:760. [PMID: 32903636 PMCID: PMC7438906 DOI: 10.3389/fgene.2020.00760] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
As cancer remains one of the main threats of human life, developing efficient cancer treatments is urgent. Anticancer peptides, which could overcome the significant side effects and poor results of traditional cancer treatments, have become a new potential alternative these years. However, identifying anticancer peptides by experimental methods is time consuming and resource consuming, it is of great significance to develop effective computational tools to quickly and accurately identify potential anticancer peptides from amino acid sequences. For most current computational methods, feature representation plays a key role in their final successes. This study proposes a novel fast and accurate approach to identify anticancer peptides using diversified feature representations and ensemble learning method. For the feature representations, the information is encoded from multidimensional feature spaces, including sequence composition, sequence-order, physicochemical properties, etc. In order to better model the potential relationships of peptides, multiple ensemble classifiers, LightGBMs, are applied to detect the different feature sets at first. Then the obtained multiple outputs are used as inputs of the support vector machine classifier, which effectively identifies anticancer peptides. Experimental results on cross validation and independent test sets demonstrate that our method can achieve better or comparable performances compared with other state-of-the-art methods.
Collapse
Affiliation(s)
- Ruiquan Ge
- Key Laboratory of Complex Systems Modeling and Simulation, School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China
| | - Guanwen Feng
- Xi'an Key Laboratory of Big Data and Intelligent Vision, School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Xiaoyang Jing
- Toyota Technological Institute at Chicago, Chicago, IL, United States
| | - Renfeng Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pu Wang
- Computer School, Hubei University of Arts and Science, Xiangyang, China
| | - Qing Wu
- Key Laboratory of Complex Systems Modeling and Simulation, School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
186
|
Liu Z, Chen Q, Lan W, Liang J, Chen YPP, Chen B. A Survey of Network Embedding for Drug Analysis and Prediction. Curr Protein Pept Sci 2020; 22:CPPS-EPUB-107859. [PMID: 32614745 DOI: 10.2174/1389203721666200702145701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/05/2020] [Accepted: 05/21/2020] [Indexed: 11/22/2022]
Abstract
Traditional network-based computational methods have shown good results in drug analysis and prediction. However, these methods are time consuming and lack universality, and it is difficult to exploit the auxiliary information of nodes and edges. Network embedding provides a promising way for alleviating the above problems by transforming network into a low-dimensional space while preserving network structure and auxiliary information. This thus facilitates the application of machine learning algorithms for subsequent processing. Network embedding has been introduced into drug analysis and prediction in the last few years, and has shown superior performance over traditional methods. However, there is no systematic review of this issue. This article offers a comprehensive survey of the primary network embedding methods and their applications in drug analysis and prediction. The network embedding technologies applied in homogeneous network and heterogeneous network are investigated and compared, including matrix decomposition, random walk, and deep learning. Especially, the Graph neural network (GNN) methods in deep learning are highlighted. Further, the applications of network embedding in drug similarity estimation, drug-target interaction prediction, adverse drug reactions prediction, protein function and therapeutic peptides prediction are discussed. Several future potential research directions are also discussed.
Collapse
Affiliation(s)
- Zhixian Liu
- School of Medical, Guangxi University, Nanning. China
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning. China
| | - Wei Lan
- School of Computer, Electronic and Information, Guangxi University, Nanning. China
| | - Jiahai Liang
- School of Electronics and Information Engineering, Beibu Gulf University, Qinzhou. China
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne. Australia
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning. China
| |
Collapse
|
187
|
Xie R, Li J, Wang J, Dai W, Leier A, Marquez-Lago TT, Akutsu T, Lithgow T, Song J, Zhang Y. DeepVF: a deep learning-based hybrid framework for identifying virulence factors using the stacking strategy. Brief Bioinform 2020; 22:5864586. [PMID: 32599617 DOI: 10.1093/bib/bbaa125] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Virulence factors (VFs) enable pathogens to infect their hosts. A wealth of individual, disease-focused studies has identified a wide variety of VFs, and the growing mass of bacterial genome sequence data provides an opportunity for computational methods aimed at predicting VFs. Despite their attractive advantages and performance improvements, the existing methods have some limitations and drawbacks. Firstly, as the characteristics and mechanisms of VFs are continually evolving with the emergence of antibiotic resistance, it is more and more difficult to identify novel VFs using existing tools that were previously developed based on the outdated data sets; secondly, few systematic feature engineering efforts have been made to examine the utility of different types of features for model performances, as the majority of tools only focused on extracting very few types of features. By addressing the aforementioned issues, the accuracy of VF predictors can likely be significantly improved. This, in turn, would be particularly useful in the context of genome wide predictions of VFs. In this work, we present a deep learning (DL)-based hybrid framework (termed DeepVF) that is utilizing the stacking strategy to achieve more accurate identification of VFs. Using an enlarged, up-to-date dataset, DeepVF comprehensively explores a wide range of heterogeneous features with popular machine learning algorithms. Specifically, four classical algorithms, including random forest, support vector machines, extreme gradient boosting and multilayer perceptron, and three DL algorithms, including convolutional neural networks, long short-term memory networks and deep neural networks are employed to train 62 baseline models using these features. In order to integrate their individual strengths, DeepVF effectively combines these baseline models to construct the final meta model using the stacking strategy. Extensive benchmarking experiments demonstrate the effectiveness of DeepVF: it achieves a more accurate and stable performance compared with baseline models on the benchmark dataset and clearly outperforms state-of-the-art VF predictors on the independent test. Using the proposed hybrid ensemble model, a user-friendly online predictor of DeepVF (http://deepvf.erc.monash.edu/) is implemented. Furthermore, its utility, from the user's viewpoint, is compared with that of existing toolkits. We believe that DeepVF will be exploited as a useful tool for screening and identifying potential VFs from protein-coding gene sequences in bacterial genomes.
Collapse
Affiliation(s)
- Ruopeng Xie
- Bioinformatics Lab at Guilin University of Electronic Technology
| | - Jiahui Li
- Bioinformatics Lab at Guilin University of Electronic Technology
| | - Jiawei Wang
- Biomedicine Discovery Institute and the Department of Microbiology at Monash University, Australia
| | - Wei Dai
- School of Computer Science and Information Security, Guilin University of Electronic Technology, China
| | - André Leier
- Department of Genetics and the Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham (UAB) School of Medicine, USA
| | - Tatiana T Marquez-Lago
- Department of Genetics and the Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham (UAB) School of Medicine, USA
| | | | - Trevor Lithgow
- Biomedicine Discovery Institute and the Director of the Centre to Impact AMR at Monash University, Australia
| | - Jiangning Song
- Group Leader in the Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Yanju Zhang
- Leiden Institute of Advanced Computer Science, Leiden University
| |
Collapse
|
188
|
Maurya NS, Kushwaha S, Mani A. Recent Advances and Computational Approaches in Peptide Drug Discovery. Curr Pharm Des 2020; 25:3358-3366. [PMID: 31544714 DOI: 10.2174/1381612825666190911161106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Drug design and development is a vast field that requires huge investment along with a long duration for providing approval to suitable drug candidates. With the advancement in the field of genomics, the information about druggable targets is being updated at a fast rate which is helpful in finding a cure for various diseases. METHODS There are certain biochemicals as well as physiological advantages of using peptide-based therapeutics. Additionally, the limitations of peptide-based drugs can be overcome by modulating the properties of peptide molecules through various biomolecular engineering techniques. Recent advances in computational approaches have been helpful in studying the effect of peptide drugs on the biomolecular targets. Receptor - ligand-based molecular docking studies have made it easy to screen compatible inhibitors against a target.Furthermore, there are simulation tools available to evaluate stability of complexes at the molecular level. Machine learning methods have added a new edge by enabling accurate prediction of therapeutic peptides. RESULTS Peptide-based drugs are expected to take over many popular drugs in the near future due to their biosafety, lower off-target binding chances and multifunctional properties. CONCLUSION This article summarises the latest developments in the field of peptide-based therapeutics related to their usage, tools, and databases.
Collapse
Affiliation(s)
- Neha S Maurya
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sandeep Kushwaha
- Department of Plant Breeding, Sveriges lantbruksuniversitet, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
189
|
Wang C, Zhang Y, Han S. Its2vec: Fungal Species Identification Using Sequence Embedding and Random Forest Classification. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2468789. [PMID: 32566672 PMCID: PMC7275950 DOI: 10.1155/2020/2468789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Abstract
Fungi play essential roles in many ecological processes, and taxonomic classification is fundamental for microbial community characterization and vital for the study and preservation of fungal biodiversity. To cope with massive fungal barcode data, tools that can implement extensive volumes of barcode sequences, especially the internal transcribed spacer (ITS) region, are necessary. However, high variation in the ITS region and computational requirements for processing high-dimensional features remain challenging for existing predictors. In this study, we developed Its2vec, a bioinformatics tool for the classification of fungal ITS barcodes to the species level. An ITS database covering more than 25,000 species in a broad range of fungal taxa was assembled. For dimensionality reduction, a word embedding algorithm was used to represent an ITS sequence as a dense low-dimensional vector. A random forest-based classifier was built for species identification. Benchmarking results showed that our model achieved an accuracy comparable to that of several state-of-the-art predictors, and more importantly, it could implement large datasets and greatly reduce dimensionality. We expect the Its2vec model to be helpful for fungal species identification and, thus, for revealing microbial community structures and in deepening our understanding of their functional mechanisms.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ying Zhang
- Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin 150088, China
| | - Shuguang Han
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 60054, China
| |
Collapse
|
190
|
López-Cortés A, Cabrera-Andrade A, Vázquez-Naya JM, Pazos A, Gonzáles-Díaz H, Paz-Y-Miño C, Guerrero S, Pérez-Castillo Y, Tejera E, Munteanu CR. Prediction of breast cancer proteins involved in immunotherapy, metastasis, and RNA-binding using molecular descriptors and artificial neural networks. Sci Rep 2020; 10:8515. [PMID: 32444848 PMCID: PMC7244564 DOI: 10.1038/s41598-020-65584-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is a heterogeneous disease where genomic alterations, protein expression deregulation, signaling pathway alterations, hormone disruption, ethnicity and environmental determinants are involved. Due to the complexity of BC, the prediction of proteins involved in this disease is a trending topic in drug design. This work is proposing accurate prediction classifier for BC proteins using six sets of protein sequence descriptors and 13 machine-learning methods. After using a univariate feature selection for the mix of five descriptor families, the best classifier was obtained using multilayer perceptron method (artificial neural network) and 300 features. The performance of the model is demonstrated by the area under the receiver operating characteristics (AUROC) of 0.980 ± 0.0037, and accuracy of 0.936 ± 0.0056 (3-fold cross-validation). Regarding the prediction of 4,504 cancer-associated proteins using this model, the best ranked cancer immunotherapy proteins related to BC were RPS27, SUPT4H1, CLPSL2, POLR2K, RPL38, AKT3, CDK3, RPS20, RASL11A and UBTD1; the best ranked metastasis driver proteins related to BC were S100A9, DDA1, TXN, PRNP, RPS27, S100A14, S100A7, MAPK1, AGR3 and NDUFA13; and the best ranked RNA-binding proteins related to BC were S100A9, TXN, RPS27L, RPS27, RPS27A, RPL38, MRPL54, PPAN, RPS20 and CSRP1. This powerful model predicts several BC-related proteins that should be deeply studied to find new biomarkers and better therapeutic targets. Scripts can be downloaded at https://github.com/muntisa/neural-networks-for-breast-cancer-proteins.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariscal Sucre Avenue, Quito, 170129, Ecuador.
- RNASA-IMEDIR, Computer Science Faculty, University of Coruna, Coruna, 15071, Spain.
- Red Latinoamericana de Implementación y Validación de Guías Clínicas Farmacogenómicas (RELIVAF-CYTED), Quito, Ecuador.
| | - Alejandro Cabrera-Andrade
- RNASA-IMEDIR, Computer Science Faculty, University of Coruna, Coruna, 15071, Spain
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador
- Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador
| | - José M Vázquez-Naya
- RNASA-IMEDIR, Computer Science Faculty, University of Coruna, Coruna, 15071, Spain
- Centro de Investigación en Tecnologías de la Información y las Comunicaciones (CITIC), Campus de Elviña s/n 15071, A Coruña, Spain
- Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), 15006, A Coruña, Spain
| | - Alejandro Pazos
- RNASA-IMEDIR, Computer Science Faculty, University of Coruna, Coruna, 15071, Spain
- Centro de Investigación en Tecnologías de la Información y las Comunicaciones (CITIC), Campus de Elviña s/n 15071, A Coruña, Spain
- Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), 15006, A Coruña, Spain
| | - Humberto Gonzáles-Díaz
- Department of Organic Chemistry II, University of the Basque Country UPV/EHU, Leioa 48940, Biscay, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Biscay, Spain
| | - César Paz-Y-Miño
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariscal Sucre Avenue, Quito, 170129, Ecuador
| | - Santiago Guerrero
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariscal Sucre Avenue, Quito, 170129, Ecuador
| | - Yunierkis Pérez-Castillo
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador
- Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador
| | - Eduardo Tejera
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador
- Facultad de Ingeniería y Ciencias Agropecuarias, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of Coruna, Coruna, 15071, Spain
- Centro de Investigación en Tecnologías de la Información y las Comunicaciones (CITIC), Campus de Elviña s/n 15071, A Coruña, Spain
- Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), 15006, A Coruña, Spain
| |
Collapse
|
191
|
Yan J, Bhadra P, Li A, Sethiya P, Qin L, Tai HK, Wong KH, Siu SWI. Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:882-894. [PMID: 32464552 PMCID: PMC7256447 DOI: 10.1016/j.omtn.2020.05.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/08/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) are a valuable source of antimicrobial agents and a potential solution to the multi-drug resistance problem. In particular, short-length AMPs have been shown to have enhanced antimicrobial activities, higher stability, and lower toxicity to human cells. We present a short-length (≤30 aa) AMP prediction method, Deep-AmPEP30, developed based on an optimal feature set of PseKRAAC reduced amino acids composition and convolutional neural network. On a balanced benchmark dataset of 188 samples, Deep-AmPEP30 yields an improved performance of 77% in accuracy, 85% in the area under the receiver operating characteristic curve (AUC-ROC), and 85% in area under the precision-recall curve (AUC-PR) over existing machine learning-based methods. To demonstrate its power, we screened the genome sequence of Candida glabrata—a gut commensal fungus expected to interact with and/or inhibit other microbes in the gut—for potential AMPs and identified a peptide of 20 aa (P3, FWELWKFLKSLWSIFPRRRP) with strong anti-bacteria activity against Bacillus subtilis and Vibrio parahaemolyticus. The potency of the peptide is remarkably comparable to that of ampicillin. Therefore, Deep-AmPEP30 is a promising prediction tool to identify short-length AMPs from genomic sequences for drug discovery. Our method is available at https://cbbio.cis.um.edu.mo/AxPEP for both individual sequence prediction and genome screening for AMPs.
Collapse
Affiliation(s)
- Jielu Yan
- Department of Computer and Information Science, University of Macau, Macau, China
| | - Pratiti Bhadra
- Department of Computer and Information Science, University of Macau, Macau, China
| | - Ang Li
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Pooja Sethiya
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Longguang Qin
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Hio Kuan Tai
- Department of Computer and Information Science, University of Macau, Macau, China
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau, China; Institute of Translational Medicines, University of Macau, Macau, China
| | - Shirley W I Siu
- Department of Computer and Information Science, University of Macau, Macau, China.
| |
Collapse
|
192
|
Feng C, Ma Z, Yang D, Li X, Zhang J, Li Y. A Method for Prediction of Thermophilic Protein Based on Reduced Amino Acids and Mixed Features. Front Bioeng Biotechnol 2020; 8:285. [PMID: 32432088 PMCID: PMC7214540 DOI: 10.3389/fbioe.2020.00285] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Abstract
The thermostability of proteins is a key factor considered during enzyme engineering, and finding a method that can identify thermophilic and non-thermophilic proteins will be helpful for enzyme design. In this study, we established a novel method combining mixed features and machine learning to achieve this recognition task. In this method, an amino acid reduction scheme was adopted to recode the amino acid sequence. Then, the physicochemical characteristics, auto-cross covariance (ACC), and reduced dipeptides were calculated and integrated to form a mixed feature set, which was processed using correlation analysis, feature selection, and principal component analysis (PCA) to remove redundant information. Finally, four machine learning methods and a dataset containing 500 random observations out of 915 thermophilic proteins and 500 random samples out of 793 non-thermophilic proteins were used to train and predict the data. The experimental results showed that 98.2% of thermophilic and non-thermophilic proteins were correctly identified using 10-fold cross-validation. Moreover, our analysis of the final reserved features and removed features yielded information about the crucial, unimportant and insensitive elements, it also provided essential information for enzyme design.
Collapse
Affiliation(s)
- Changli Feng
- College of Information Science and Technology, Taishan University, Tai’an, China
| | - Zhaogui Ma
- College of Information Science and Technology, Taishan University, Tai’an, China
| | - Deyun Yang
- College of Information Science and Technology, Taishan University, Tai’an, China
| | - Xin Li
- College of Information Science and Technology, Taishan University, Tai’an, China
| | - Jun Zhang
- Department of Rehabilitation, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Yanjuan Li
- Information and Computer Engineering College, Northeast Forestry University, Harbin, China
| |
Collapse
|
193
|
Zeng R, Liao M. Developing a Multi-Layer Deep Learning Based Predictive Model to Identify DNA N4-Methylcytosine Modifications. Front Bioeng Biotechnol 2020; 8:274. [PMID: 32373597 PMCID: PMC7186498 DOI: 10.3389/fbioe.2020.00274] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
DNA N4-methylcytosine modification (4mC) plays an essential role in a variety of biological processes. Therefore, accurate identification the 4mC distribution in genome-scale is important for systematically understanding its biological functions. In this study, we present Deep4mcPred, a multi-layer deep learning based predictive model to identify DNA N4-methylcytosine modifications. In this predictor, we for the first time integrate residual network and recurrent neural network to build a multi-layer deep learning predictive system. As compared to existing predictors using traditional machine learning, our proposed method has two advantages. First, our deep learning framework does not need to specify the features when training the predictive model. It can automatically learn the high-level features and capture the characteristic specificity of 4mC sites, benefiting to distinguish true 4mC sites from non-4mC sites. On the other hand, our deep learning method outperforms the traditional machine learning predictors in performance by benchmarking comparison, demonstrating that the proposed Deep4mcPred is more effective in the DNA 4mC site prediction. Moreover, via experimental comparison, we found that attention mechanism introduced into the deep learning framework is useful to capture the critical features. Additionally, we develop a webserver implementing the proposed method for the academic use of research community, which is now available at http://server.malab.cn/Deep4mcPred.
Collapse
Affiliation(s)
- Rao Zeng
- Department of Software Engineering, School of Informatics, Xiamen University, Xiamen, China
| | - Minghong Liao
- Department of Software Engineering, School of Informatics, Xiamen University, Xiamen, China
| |
Collapse
|
194
|
Bi XA, Liu Y, Xie Y, Hu X, Jiang Q. Morbigenous brain region and gene detection with a genetically evolved random neural network cluster approach in late mild cognitive impairment. Bioinformatics 2020; 36:2561-2568. [PMID: 31971559 PMCID: PMC7178433 DOI: 10.1093/bioinformatics/btz967] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/12/2019] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION The multimodal data fusion analysis becomes another important field for brain disease detection and increasing researches concentrate on using neural network algorithms to solve a range of problems. However, most current neural network optimizing strategies focus on internal nodes or hidden layer numbers, while ignoring the advantages of external optimization. Additionally, in the multimodal data fusion analysis of brain science, the problems of small sample size and high-dimensional data are often encountered due to the difficulty of data collection and the specialization of brain science data, which may result in the lower generalization performance of neural network. RESULTS We propose a genetically evolved random neural network cluster (GERNNC) model. Specifically, the fusion characteristics are first constructed to be taken as the input and the best type of neural network is selected as the base classifier to form the initial random neural network cluster. Second, the cluster is adaptively genetically evolved. Based on the GERNNC model, we further construct a multi-tasking framework for the classification of patients with brain disease and the extraction of significant characteristics. In a study of genetic data and functional magnetic resonance imaging data from the Alzheimer's Disease Neuroimaging Initiative, the framework exhibits great classification performance and strong morbigenous factor detection ability. This work demonstrates that how to effectively detect pathogenic components of the brain disease on the high-dimensional medical data and small samples. AVAILABILITY AND IMPLEMENTATION The Matlab code is available at https://github.com/lizi1234560/GERNNC.git.
Collapse
Affiliation(s)
- Xia-an Bi
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Yingchao Liu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Yiming Xie
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Xi Hu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Qinghua Jiang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
195
|
Fallah Atanaki F, Behrouzi S, Ariaeenejad S, Boroomand A, Kavousi K. BIPEP: Sequence-based Prediction of Biofilm Inhibitory Peptides Using a Combination of NMR and Physicochemical Descriptors. ACS OMEGA 2020; 5:7290-7297. [PMID: 32280870 PMCID: PMC7144140 DOI: 10.1021/acsomega.9b04119] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 05/26/2023]
Abstract
Biofilms are biological systems that are formed by a community of microorganisms in which microbial cells are connected on a surface within a self-produced matrix of an extracellular polymeric substance. On some occasions, microorganisms use biofilms to protect themselves against the harmful effects of the host body immune system and the surrounding environment, hence increasing their chances of survival against the various anti-microbial agents. Biofilms play a crucial role in medicine and industry because of the problems they cause. Designing agents that inhibit bacterial biofilm formation is very costly and takes too much time in the laboratory to be discovered and validated. Therefore, developing computational tools for the prediction of biofilm inhibitor peptides is inevitable and important. Here, we present a computational prediction tool to screen the vast number of peptide sequences and select potential candidate peptides for further lab experiments and validation. In this learning model, different feature vectors, extracted from the peptide primary structure, are exploited to learn patterns from the sequence of biofilm inhibitory peptides. Various classification algorithms including SVM, random forest, and k-nearest neighbor have been examined to evaluate their performance. Overall, our approach showed better prediction in comparison with other prediction methods. In this study, for the first time, we applied features extracted from NMR spectra of amino acids along with physicochemical features. Although each group of features showed good discrimination potential alone, we used a combination of features to enhance the performance of our method. Our prediction tool is freely available.
Collapse
Affiliation(s)
- Fereshteh Fallah Atanaki
- Laboratory
of Complex Biological Systems and Bioinformatics (CBB), Department
of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417466191, Iran
| | - Saman Behrouzi
- Laboratory
of Complex Biological Systems and Bioinformatics (CBB), Department
of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417466191, Iran
| | - Shohreh Ariaeenejad
- Department
of Systems and Synthetic Biology, Agricultural
Biotechnology Research Institute of Iran (ABRII), Agricultural Research,
Education, and Extension Organization (AREEO), Karaj 31535-1897, Iran
| | - Amin Boroomand
- School
of Natural Sciences, University of California
Merced, Merced 95343-5001, California, United States of America
| | - Kaveh Kavousi
- Laboratory
of Complex Biological Systems and Bioinformatics (CBB), Department
of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417466191, Iran
| |
Collapse
|
196
|
Govindaraj RG, Subramaniyam S, Manavalan B. Extremely-randomized-tree-based Prediction of N 6-Methyladenosine Sites in Saccharomyces cerevisiae. Curr Genomics 2020; 21:26-33. [PMID: 32655295 PMCID: PMC7324895 DOI: 10.2174/1389202921666200219125625] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/28/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction N6-methyladenosine (m6A) is one of the most common post-transcriptional modifications in RNA, which has been related to several biological processes. The accurate prediction of m6A sites from RNA sequences is one of the challenging tasks in computational biology. Several computational methods utilizing machine-learning algorithms have been proposed that accelerate in silico screening of m6A sites, thereby drastically reducing the experimental time and labor costs involved. Methodology In this study, we proposed a novel computational predictor termed ERT-m6Apred, for the accurate prediction of m6A sites. To identify the feature encodings with more discriminative capability, we applied a two-step feature selection technique on seven different feature encodings and identified the corresponding optimal feature set. Results Subsequently, performance comparison of the corresponding optimal feature set-based extremely randomized tree model revealed that Pseudo k-tuple composition encoding, which includes 14 physicochemical properties significantly outperformed other encodings. Moreover, ERT-m6Apred achieved an accuracy of 78.84% during cross-validation analysis, which is comparatively better than recently reported predictors. Conclusion In summary, ERT-m6Apred predicts Saccharomyces cerevisiae m6A sites with higher accuracy, thus facilitating biological hypothesis generation and experimental validations.
Collapse
Affiliation(s)
- Rajiv G Govindaraj
- 1HotSpot Therapeutics, 50 Milk Street, 16 Floor, Boston, MA02109, USA; 2Research and Development Center, In-silicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea; 3Department of Biotechnology, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu641048, India; 4Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sathiyamoorthy Subramaniyam
- 1HotSpot Therapeutics, 50 Milk Street, 16 Floor, Boston, MA02109, USA; 2Research and Development Center, In-silicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea; 3Department of Biotechnology, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu641048, India; 4Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Balachandran Manavalan
- 1HotSpot Therapeutics, 50 Milk Street, 16 Floor, Boston, MA02109, USA; 2Research and Development Center, In-silicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea; 3Department of Biotechnology, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu641048, India; 4Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
197
|
Hou R, Wang L, Wu YJ. Predicting ATP-Binding Cassette Transporters Using the Random Forest Method. Front Genet 2020; 11:156. [PMID: 32269586 PMCID: PMC7109328 DOI: 10.3389/fgene.2020.00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) proteins play important roles in a wide variety of species. These proteins are involved in absorbing nutrients, exporting toxic substances, and regulating potassium channels, and they contribute to drug resistance in cancer cells. Therefore, the identification of ABC transporters is an urgent task. The present study used 188D as the feature extraction method, which is based on sequence information and physicochemical properties. We also visualized the feature extracted by t-Distributed Stochastic Neighbor Embedding (t-SNE). The sample based on the features extracted by 188D may be separated. Further, random forest (RF) is an efficient classifier to identify proteins. Under the 10-fold cross-validation of the model proposed here for a training set, the average accuracy rate of 10 training sets was 89.54%. We obtained values of 0.87 for specificity, 0.92 for sensitivity, and 0.79 for MCC. In the testing set, the accuracy achieved was 89%. These results suggest that the model combining 188D with RF is an optimal tool to identify ABC transporters.
Collapse
Affiliation(s)
- Ruiyan Hou
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lida Wang
- Department of Scientific Research, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
198
|
Li HF, Wang XF, Tang H. Predicting Bacteriophage Enzymes and Hydrolases by Using Combined Features. Front Bioeng Biotechnol 2020; 8:183. [PMID: 32266225 PMCID: PMC7105632 DOI: 10.3389/fbioe.2020.00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
Bacteriophage is a type of virus that could infect the host bacteria. They have been applied in the treatment of pathogenic bacterial infection. Phage enzymes and hydrolases play the most important role in the destruction of bacterial cells. Correctly identifying the hydrolases coded by phage is not only beneficial to their function study, but also conducive to antibacteria drug discovery. Thus, this work aims to recognize the enzymes and hydrolases in phage. A combination of different features was used to represent samples of phage and hydrolase. A feature selection technique called analysis of variance was developed to optimize features. The classification was performed by using support vector machine (SVM). The prediction process includes two steps. The first step is to identify phage enzymes. The second step is to determine whether a phage enzyme is hydrolase or not. The jackknife cross-validated results showed that our method could produce overall accuracies of 85.1 and 94.3%, respectively, for the two predictions, demonstrating that the proposed method is promising.
Collapse
Affiliation(s)
- Hong-Fei Li
- Department of Pathophysiology, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, China.,School of Computer and Information Engineering, Henan Normal University, Henan, China
| | - Xian-Fang Wang
- School of Computer and Information Engineering, Henan Normal University, Henan, China
| | - Hua Tang
- Department of Pathophysiology, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, China
| |
Collapse
|
199
|
Cai J, Wang D, Chen R, Niu Y, Ye X, Su R, Xiao G, Wei L. A Bioinformatics Tool for the Prediction of DNA N6-Methyladenine Modifications Based on Feature Fusion and Optimization Protocol. Front Bioeng Biotechnol 2020; 8:502. [PMID: 32582654 PMCID: PMC7287168 DOI: 10.3389/fbioe.2020.00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/29/2020] [Indexed: 01/04/2023] Open
Abstract
DNA N6-methyladenine (6mA) is closely involved with various biological processes. Identifying the distributions of 6mA modifications in genome-scale is of great significance to in-depth understand the functions. In recent years, various experimental and computational methods have been proposed for this purpose. Unfortunately, existing methods cannot provide accurate and fast 6mA prediction. In this study, we present 6mAPred-FO, a bioinformatics tool that enables researchers to make predictions based on sequences only. To sufficiently capture the characteristics of 6mA sites, we integrate the sequence-order information with nucleotide positional specificity information for feature encoding, and further improve the feature representation capacity by analysis of variance-based feature optimization protocol. The experimental results show that using this feature protocol, we can significantly improve the predictive performance. Via further feature analysis, we found that the sequence-order information and positional specificity information are complementary to each other, contributing to the performance improvement. On the other hand, the improvement is also due to the use of the feature optimization protocol, which is capable of effectively capturing the most informative features from the original feature space. Moreover, benchmarking comparison results demonstrate that our 6mAPred-FO outperforms several existing predictors. Finally, we establish a web-server that implements the proposed method for convenience of researchers' use, which is currently available at http://server.malab.cn/6mAPred-FO.
Collapse
Affiliation(s)
- Jianhua Cai
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
| | - Donghua Wang
- Department of General Surgery, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Riqing Chen
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Niu
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| | - Ran Su
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Guobao Xiao
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China
- *Correspondence: Guobao Xiao
| | - Leyi Wei
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China
- School of Software, Shandong University, Jinan, China
- Leyi Wei
| |
Collapse
|
200
|
Li Z, Teng S, Cheng Y, Liu GH. Craniomaxillofacial Deformity Correction via Sparse Representation in Coherent Space. IEEE ACCESS 2020; 8:24896-24903. [DOI: 10.1109/access.2020.2970449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|