151
|
Robles-Vera I, Toral M, de la Visitación N, Sánchez M, Romero M, Olivares M, Jiménez R, Duarte J. The Probiotic Lactobacillus fermentum
Prevents Dysbiosis and Vascular Oxidative Stress in Rats with Hypertension Induced by Chronic Nitric Oxide Blockade. Mol Nutr Food Res 2018; 62:e1800298. [DOI: 10.1002/mnfr.201800298] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Iñaki Robles-Vera
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
| | - Marta Toral
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
| | | | - Manuel Sánchez
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
- Instituto de Investigación Biosanitaria de Granada; 18012 Granada Spain
| | - Miguel Romero
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
- Instituto de Investigación Biosanitaria de Granada; 18012 Granada Spain
| | - Mónica Olivares
- Laboratorio de Descubrimiento y Preclínica; Departamento de Investigación BIOSEARCH S.A.; 18004 Granada Spain
| | - Rosario Jiménez
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
- Instituto de Investigación Biosanitaria de Granada; 18012 Granada Spain
- CIBERCV; 18071 Granada Spain
| | - Juan Duarte
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
- Instituto de Investigación Biosanitaria de Granada; 18012 Granada Spain
- Centro de Investigaciones Biomedicas (CIBM); 18100 Granada Spain
| |
Collapse
|
152
|
Don-Doncow N, Zhang Y, Matuskova H, Meissner A. The emerging alliance of sphingosine-1-phosphate signalling and immune cells: from basic mechanisms to implications in hypertension. Br J Pharmacol 2018; 176:1989-2001. [PMID: 29856066 DOI: 10.1111/bph.14381] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 01/19/2023] Open
Abstract
The immune system plays a considerable role in hypertension. In particular, T-lymphocytes are recognized as important players in its pathogenesis. Despite substantial experimental efforts, the molecular mechanisms underlying the nature of T-cell activation contributing to an onset of hypertension or disease perpetuation are still elusive. Amongst other cell types, lymphocytes express distinct profiles of GPCRs for sphingosine-1-phosphate (S1P) - a bioactive phospholipid that is involved in many critical cell processes and most importantly majorly regulates T-cell development, lymphocyte recirculation, tissue-homing patterns and chemotactic responses. Recent findings have revealed a key role for S1P chemotaxis and T-cell mobilization for the onset of experimental hypertension, and elevated circulating S1P levels have been linked to several inflammation-associated diseases including hypertension in patients. In this article, we review the recent progress towards understanding how S1P and its receptors regulate immune cell trafficking and function and its potential relevance for the pathophysiology of hypertension. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
| | - Yun Zhang
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Hana Matuskova
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Anja Meissner
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
153
|
Toral M, Romero M, Rodríguez-Nogales A, Jiménez R, Robles-Vera I, Algieri F, Chueca-Porcuna N, Sánchez M, de la Visitación N, Olivares M, García F, Pérez-Vizcaíno F, Gálvez J, Duarte J. Lactobacillus fermentum Improves Tacrolimus-Induced Hypertension by Restoring Vascular Redox State and Improving eNOS Coupling. Mol Nutr Food Res 2018; 62:e1800033. [PMID: 29851248 DOI: 10.1002/mnfr.201800033] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/12/2018] [Indexed: 01/24/2023]
Abstract
SCOPE The aim is to analyze whether the probiotic Lactobacillus fermentum CECT5716 (LC40) can prevent endothelial dysfunction and hypertension induced by tacrolimus in mice. METHODS AND RESULTS Tacrolimus increases systolic blood pressure (SBP) and impairs endothelium-dependent relaxation to acetylcholine and these effects are partially prevented by LC40. Endothelial dysfunction induced by tacrolimus is related to both increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2) and uncoupled endothelial nitric oxide synthase (eNOS)-driven superoxide production and Rho-kinase-mediated eNOS inhibition. LC40 treatment prevents all the aortic changes induced by tacrolimus. LC40 restores the imbalance between T-helper 17 (Th17)/regulatory T (Treg) cells induced by tacrolimus in mesenteric lymph nodes and the spleen. Tacrolimus-induced gut dysbiosis, that is, it decreases microbial diversity, increases the Firmicutes/Bacteroidetes (F/B) ratio and decreases acetate- and butyrate-producing bacteria, and these effects are prevented by LC40. Fecal microbiota transplantation (FMT) from LC40-treated mice to control mice prevents the increase in SBP and the impaired relaxation to acetylcholine induced by tacrolimus. CONCLUSION LC40 treatment prevents hypertension and endothelial dysfunction induced by tacrolimus by inhibiting gut dysbiosis. These effects are associated with a reduction in vascular oxidative stress, mainly through NOX2 downregulation and prevention of eNOS uncoupling, and inflammation possibly because of decreased Th17 and increased Treg cells polarization in mesenteric lymph nodes.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,CIBER-ehd, Center for Biomedical Research (CIBM), 18100, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,CIBER-Enfermedades Cardiovasculares (CiberCV), 18071, Granada, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Francesca Algieri
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,CIBER-ehd, Center for Biomedical Research (CIBM), 18100, Granada, Spain
| | - Natalia Chueca-Porcuna
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,Department of Microbiology, Complejo Hospitalario Universitario de Granada, 18100, Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Mónica Olivares
- Laboratorio de Descubrimiento y Preclínica, Departamento de Investigación BIOSEARCH S.A., 18004, Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,Department of Microbiology, Complejo Hospitalario Universitario de Granada, 18100, Granada, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, Complutense University of Madrid, 28040, Spain.,Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), 28007, Madrid, Spain
| | - Julio Gálvez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,CIBER-ehd, Center for Biomedical Research (CIBM), 18100, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,CIBER-Enfermedades Cardiovasculares (CiberCV), 18071, Granada, Spain
| |
Collapse
|
154
|
Balasubbramanian D, Lopez Gelston CA, Rutkowski JM, Mitchell BM. Immune cell trafficking, lymphatics and hypertension. Br J Pharmacol 2018; 176:1978-1988. [PMID: 29797446 DOI: 10.1111/bph.14370] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Activated immune cell infiltration into organs contributes to the development and maintenance of hypertension. Studies targeting specific immune cell populations or reducing their inflammatory signalling have demonstrated a reduction in BP. Lymphatic vessels play a key role in immune cell trafficking and in resolving inflammation, but little is known about their role in hypertension. Studies from our laboratory and others suggest that inflammation-associated or induction of lymphangiogenesis is organ protective and anti-hypertensive. This review provides the basis for hypertension as a disease of chronic inflammation in various tissues and highlights how renal lymphangiogenesis is a novel regulator of kidney health and BP. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
| | | | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX, USA
| |
Collapse
|
155
|
Barbaro NR, Foss JD, Kryshtal DO, Tsyba N, Kumaresan S, Xiao L, Mernaugh RL, Itani HA, Loperena R, Chen W, Dikalov S, Titze JM, Knollmann BC, Harrison DG, Kirabo A. Dendritic Cell Amiloride-Sensitive Channels Mediate Sodium-Induced Inflammation and Hypertension. Cell Rep 2018; 21:1009-1020. [PMID: 29069584 PMCID: PMC5674815 DOI: 10.1016/j.celrep.2017.10.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/07/2017] [Accepted: 09/29/2017] [Indexed: 02/02/2023] Open
Abstract
Sodium accumulates in the interstitium and promotes inflammation through poorly defined mechanisms. We describe a pathway by which sodium enters dendritic cells (DCs) through amiloride-sensitive channels including the alpha and gamma subunits of the epithelial sodium channel and the sodium hydrogen exchanger 1. This leads to calcium influx via the sodium calcium exchanger, activation of protein kinase C (PKC), phosphorylation of p47phox, and association of p47phox with gp91phox. The assembled NADPH oxidase produces superoxide with subsequent formation of immunogenic isolevuglandin (IsoLG)-protein adducts. DCs activated by excess sodium produce increased interleukin-1β (IL-1β) and promote T cell production of cytokines IL-17A and interferon gamma (IFN-γ). When adoptively transferred into naive mice, these DCs prime hypertension in response to a sub-pressor dose of angiotensin II. These findings provide a mechanistic link between salt, inflammation, and hypertension involving increased oxidative stress and IsoLG production in DCs.
Collapse
Affiliation(s)
- Natalia R Barbaro
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason D Foss
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dmytro O Kryshtal
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nikita Tsyba
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shivani Kumaresan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liang Xiao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Hana A Itani
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roxana Loperena
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Wei Chen
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sergey Dikalov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jens M Titze
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
156
|
Rakic M, Persic V, Kehler T, Bastiancic AL, Rosovic I, Laskarin G, Sotosek Tokmadzic V. Possible role of circulating endothelial cells in patients after acute myocardial infarction. Med Hypotheses 2018; 117:42-46. [PMID: 30077195 DOI: 10.1016/j.mehy.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023]
Abstract
Acute myocardial infarction (AMI) occurs as a result of insufficient myocardial perfusion leading to cell necrosis. This is most commonly due to the obstruction of the coronary artery by ruptured atherosclerotic plaque and thrombosis. Damaged ischemic and necrotic myocardial cells release pro-inflammatory substances in tissue and plasma, leading to a systemic inflammatory response. Profound systemic inflammatory response during ischemia/reperfusion injury causes disruption of endothelial glycocalyx and detachment of endothelial cells that express von Willebrant factor (vWF). We hypothesize that circulating vWF+ endothelial cells could act as antigen presenting cells which interact with T and NK cells directly, by cell to cell contact and indirectly by cytokine and chemokine secretion, leading to the immune response towards inflammation. Analyzing the frequency, phenotype and pro-inflammatory substances produced in circulating vWF positive (+) cells in patients with AMI could be beneficial to determine the severity of the pro-inflammatory response, according to the level of endothelial dysfunction in the early period of AMI. To evaluate these hypotheses, we suggest to determine frequency, phenotype, and ability of cytokine/chemokine production in circulating vWF+ endothelial cells by simultaneous surface and intracellular cell staining, and flow cytometry analysis. Secretion of pro-inflammatory cytokines and chemokines, pro-atherogenic substances and the components of glycocalyx might be measured in supernatants of magnetically separated or sorted vWF+ endothelial cells, as well as in the serum of a patient with acute AMI by enzyme linked-immunoassay tests. The interaction of increasing concentrations of isolated circulating vWF+ endothelial cells and cognate T and NK cells might be investigated by lymphocyte proliferation rate, cytotoxic mediators' expression, and cytokine production. If our hypothesis is correct, characterization of circulating vWF+ endothelial cells could grant us greater insight into their role in pathophysiology of AMI and the degree of myocardial damage.
Collapse
Affiliation(s)
- Marijana Rakic
- Division of Cardiology, Hospital for Medical Rehabilitation of the Hearth and Lung Diseases and Rheumatism "Thalassotherapia" Opatija, 51410 Opatija, M. Tita 188, Croatia
| | - Viktor Persic
- Division of Cardiology, Hospital for Medical Rehabilitation of the Hearth and Lung Diseases and Rheumatism "Thalassotherapia" Opatija, 51410 Opatija, M. Tita 188, Croatia; Department of Medical Rehabilitation, Medical Faculty, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia
| | - Tatjana Kehler
- Department of Rheumatology, Rehabilitation, and Physical Medicine, Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", 51410 Opatija, M. Tita 188, Croatia
| | - Ana Lanca Bastiancic
- Division of Cardiology, Hospital for Medical Rehabilitation of the Hearth and Lung Diseases and Rheumatism "Thalassotherapia" Opatija, 51410 Opatija, M. Tita 188, Croatia
| | - Ivan Rosovic
- Division of Cardiology, Hospital for Medical Rehabilitation of the Hearth and Lung Diseases and Rheumatism "Thalassotherapia" Opatija, 51410 Opatija, M. Tita 188, Croatia
| | - Gordana Laskarin
- Department of Rheumatology, Rehabilitation, and Physical Medicine, Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", 51410 Opatija, M. Tita 188, Croatia; Department of Physiology and Immunology, Medical Faculty University of Rijeka, B.Branchetta 20, 51000 Rijeka, Croatia
| | - Vlatka Sotosek Tokmadzic
- Department of Anesthesiology, Reanimatology and Intensive Care Medicine, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia.
| |
Collapse
|
157
|
Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res 2018; 113:1009-1023. [PMID: 28838042 PMCID: PMC5852626 DOI: 10.1093/cvr/cvx108] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/05/2017] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue (AT) dysfunction, characterized by loss of its homeostatic functions, is a hallmark of non-communicable diseases. It is characterized by chronic low-grade inflammation and is observed in obesity, metabolic disorders such as insulin resistance and diabetes. While classically it has been identified by increased cytokine or chemokine expression, such as increased MCP-1, RANTES, IL-6, interferon (IFN) gamma or TNFα, mechanistically, immune cell infiltration is a prominent feature of the dysfunctional AT. These immune cells include M1 and M2 macrophages, effector and memory T cells, IL-10 producing FoxP3+ T regulatory cells, natural killer and NKT cells and granulocytes. Immune composition varies, depending on the stage and the type of pathology. Infiltrating immune cells not only produce cytokines but also metalloproteinases, reactive oxygen species, and chemokines that participate in tissue remodelling, cell signalling, and regulation of immunity. The presence of inflammatory cells in AT affects adjacent tissues and organs. In blood vessels, perivascular AT inflammation leads to vascular remodelling, superoxide production, endothelial dysfunction with loss of nitric oxide (NO) bioavailability, contributing to vascular disease, atherosclerosis, and plaque instability. Dysfunctional AT also releases adipokines such as leptin, resistin, and visfatin that promote metabolic dysfunction, alter systemic homeostasis, sympathetic outflow, glucose handling, and insulin sensitivity. Anti-inflammatory and protective adiponectin is reduced. AT may also serve as an important reservoir and possible site of activation in autoimmune-mediated and inflammatory diseases. Thus, reciprocal regulation between immune cell infiltration and AT dysfunction is a promising future therapeutic target.
Collapse
Affiliation(s)
- Tomasz J Guzik
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK.,Translational Medicine Laboratory, Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Dominik S Skiba
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK.,Translational Medicine Laboratory, Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Rhian M Touyz
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - David G Harrison
- British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK.,Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
158
|
Wang Y, Wang BS, Hui X, Qiao J, Li WZ, Sun N. [Role of inducible costimulatory molecule-mediated Th17 cell polarization in renal fibrosis in spontaneously hypertensive rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:534-540. [PMID: 29891448 PMCID: PMC6743898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To explore the role of inducible costimulatory molecule (ICOS) signaling pathway-mediated Th17 cells polarization in renal damage in essential hypertension. METHODS Four-week-old spontaneously hypertensive rats (SHR) were randomly divided into control (SHR-C) group and intervention (SHR-I) group and subjected to intraperitoneal injections of PBS and ICOS monoclonal antibody for 2 weeks, respectively. Blood pressure of the rats was monitored using noninvasive tail artery blood pressure measuring instrument. The percentage of Th17 cells in the splenocytes was analyzed using flow cytometry, and the expression levels of IL-17A mRNA in the rat's kidneys were detected using RT-PCR. The levels of IL-17A and TGF-β1 in the plasma and kidneys were dynamically detected using ELISA and immunohistochemistry, respectively. Renal pathological changes in the rats were detected using Masson staining. RESULTS At the age of 10 and 30 weeks, the rats in SHR-C group had a significantly higher blood pressure than those in SHR-I group (P<0.05 or 0.01). In rats in SHR-C group, Th17 cells percentage in the splenocytes and IL-17A mRNA level in the kidney was significantly higher than those in SHR-I group from the age of 6 weeks (P<0.05). The expressions of IL-17A and TGF-β1 in the plasma and kidney were significantly higher in SHR-C group than that in SHR-I group at 6 weeks (P<0.05). Compared with those in SHR-C group, the rats in SHR-I group showed significant alleviation of renal fibrosis from the age of 30 weeks (P<0.05). CONCLUSION The ICOS signaling pathway-mediated Th17 cells polarization plays an important role in renal fibrosis in hypertensive rats.
Collapse
Affiliation(s)
- Yu Wang
- Department of Basic Medical Sciences, Medical College, Anhui University of Science & Technology, Huainan 232001, China.E-mail:
| | | | | | | | | | | |
Collapse
|
159
|
Wang Y, Wang BS, Hui X, Qiao J, Li WZ, Sun N. [Role of inducible costimulatory molecule-mediated Th17 cell polarization in renal fibrosis in spontaneously hypertensive rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:534-540. [PMID: 29891448 PMCID: PMC6743898 DOI: 10.3969/j.issn.1673-4254.2018.05.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To explore the role of inducible costimulatory molecule (ICOS) signaling pathway-mediated Th17 cells polarization in renal damage in essential hypertension. METHODS Four-week-old spontaneously hypertensive rats (SHR) were randomly divided into control (SHR-C) group and intervention (SHR-I) group and subjected to intraperitoneal injections of PBS and ICOS monoclonal antibody for 2 weeks, respectively. Blood pressure of the rats was monitored using noninvasive tail artery blood pressure measuring instrument. The percentage of Th17 cells in the splenocytes was analyzed using flow cytometry, and the expression levels of IL-17A mRNA in the rat's kidneys were detected using RT-PCR. The levels of IL-17A and TGF-β1 in the plasma and kidneys were dynamically detected using ELISA and immunohistochemistry, respectively. Renal pathological changes in the rats were detected using Masson staining. RESULTS At the age of 10 and 30 weeks, the rats in SHR-C group had a significantly higher blood pressure than those in SHR-I group (P<0.05 or 0.01). In rats in SHR-C group, Th17 cells percentage in the splenocytes and IL-17A mRNA level in the kidney was significantly higher than those in SHR-I group from the age of 6 weeks (P<0.05). The expressions of IL-17A and TGF-β1 in the plasma and kidney were significantly higher in SHR-C group than that in SHR-I group at 6 weeks (P<0.05). Compared with those in SHR-C group, the rats in SHR-I group showed significant alleviation of renal fibrosis from the age of 30 weeks (P<0.05). CONCLUSION The ICOS signaling pathway-mediated Th17 cells polarization plays an important role in renal fibrosis in hypertensive rats.
Collapse
Affiliation(s)
- Yu Wang
- Department of Basic Medical Sciences, Medical College, Anhui University of Science & Technology, Huainan 232001, China.E-mail:
| | | | | | | | | | | |
Collapse
|
160
|
Das UN. Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus: A review. J Adv Res 2018; 11:43-55. [PMID: 30034875 PMCID: PMC6052660 DOI: 10.1016/j.jare.2018.01.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid (AA 20:4n-6) is an essential component of cell membranes and modulates cell membrane fluidity. AA is metabolized by cyclo-oxygenase (COX), lipoxygenase (LOX) and cytochrome P450 enzymes to form several metabolites that have important biological actions. Of all the actions, role of AA in the regulation of blood pressure and its ability to prevent both type 1 and type 2 diabetes mellitus seems to be interesting. Studies showed that AA and its metabolites especially, lipoxin A4 (LXA4) and epoxyeicosatrienoic acids (EETs), potent anti-inflammatory metabolites, have a crucial role in the pathobiology of hypertension and diabetes mellitus. AA, LXA4 and EETs regulate smooth muscle function and proliferation, voltage gated ion channels, cell membrane fluidity, membrane receptors, G-coupled receptors, PPARs, free radical generation, nitric oxide formation, inflammation, and immune responses that, in turn, participate in the regulation blood pressure and pathogenesis of diabetes mellitus. In this review, role of AA and its metabolites LXA4 and EETs in the pathobiology of hypertension, pre-eclampsia and diabetes mellitus are discussed. Based on several lines of evidences, it is proposed that a combination of aspirin and AA could be of benefit in the prevention and management of hypertension, pre-eclampsia and diabetes mellitus.
Collapse
|
161
|
Hoh BL, Rojas K, Lin L, Fazal HZ, Hourani S, Nowicki KW, Schneider MB, Hosaka K. Estrogen Deficiency Promotes Cerebral Aneurysm Rupture by Upregulation of Th17 Cells and Interleukin-17A Which Downregulates E-Cadherin. J Am Heart Assoc 2018; 7:JAHA.118.008863. [PMID: 29654199 PMCID: PMC6015422 DOI: 10.1161/jaha.118.008863] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Estrogen deficiency is associated with the development of cerebral aneurysms; however, the mechanism remains unknown. We explored the pathway of cerebral aneurysm development by investigating the potential link between estrogen deficiency and inflammatory factors. METHODS AND RESULTS First, we established the role of interleukin-17 (IL-17)A. We performed a cytokine screen demonstrating that IL-17A is significantly expressed in mouse and human aneurysms (P=0.03). Likewise, IL-17A inhibition was shown to prevent aneurysm formation by 42% (P=0.02) and rupture by 34% (P<0.05). Second, we found that estrogen deficiency upregulates T helper 17 cells and IL-17A and promotes aneurysm rupture. Estrogen-deficient mice had more ruptures than control mice (47% versus 7%; P=0.04). Estradiol supplementation or IL-17A inhibition decreased the number of ruptures in estrogen-deficient mice (estradiol 6% versus 37%; P=0.04; IL-17A inhibition 18% versus 47%; P=0.018). Third, we found that IL-17A-blockade protects against aneurysm formation and rupture by increased E-cadherin expression. IL-17-inhibited mice had increased E-cadherin expression (P=0.003). E-cadherin inhibition reversed the protective effect of IL-17A inhibition and increased the rate of aneurysm formation (65% versus 28%; P=0.04) and rupture (12% versus 0%; P=0.22). However, E-cadherin inhibition alone does not significantly increase aneurysm formation in normal mice or in estrogen-deficient mice. In cell migration assays, E-cadherin inhibition promoted macrophage infiltration across endothelial cells (P<0.05), which may be the mechanism for the estrogen deficiency/IL-17/E-cadherin aneurysm pathway. CONCLUSIONS Our data suggest that estrogen deficiency promotes cerebral aneurysm rupture by upregulating IL-17A, which downregulates E-cadherin, encouraging macrophage infiltration in the aneurysm vessel wall.
Collapse
Affiliation(s)
- Brian L Hoh
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | - Kelley Rojas
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | - Li Lin
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | - Hanain Z Fazal
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | - Siham Hourani
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | - Kamil W Nowicki
- Department of Neurosurgery, University of Florida, Gainesville, FL
| | | | - Koji Hosaka
- Department of Neurosurgery, University of Florida, Gainesville, FL
| |
Collapse
|
162
|
Li JR, Zhao YS, Chang Y, Yang SC, Guo YJ, Ji ES. Fasudil improves endothelial dysfunction in rats exposed to chronic intermittent hypoxia through RhoA/ROCK/NFATc3 pathway. PLoS One 2018; 13:e0195604. [PMID: 29641598 PMCID: PMC5895022 DOI: 10.1371/journal.pone.0195604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
Endothelial dysfunction is one of the main pathological changes in Obstructive sleep apnoea (OSA). The Rho kinase (ROCK) pathway is associated with endothelial dysfunction. However, the interaction between ROCK and nuclear factor of activated T cells isoform c3 (NFATc3) in the development of this pathological response under chronic intermittent hypoxia (CIH) is unclear. To simulate the OSA model, we established a moderate CIH rat model by administering the fraction of inspired O2 (FiO2) from 21% to 9%, 20 times/h, 8 h/day for 3 weeks. Fasudil (ROCK inhibitor, 8 mg/kg/d, i.p.) was administrated in the rats exposed to CIH for 3 weeks. Our results demonstrated that CIH caused significantly endothelial dysfunction, accompanying with increased ET-1 level, decreased eNOS expression and NO production, which reduced ACh-induced vascular relaxation responses. Moreover, RhoA/ROCK-2/NFATc3 expressions were up-regulated. Fasudil significantly improved CIH induced endothelial dysfunction. Data suggested that the ROCK activation is necessary for endothelial dysfunction during CIH.
Collapse
Affiliation(s)
- Jie-Ru Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
| | - Ya-Shuo Zhao
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
| | - Yue Chang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
| | - Sheng-Chang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
| | - Ya-Jing Guo
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
- * E-mail:
| |
Collapse
|
163
|
Wang Q, Wang H, Wang J, Venugopal J, Kleiman K, Guo C, Sun Y, Eitzman DT. Angiotensin II-induced Hypertension is Reduced by Deficiency of P-selectin Glycoprotein Ligand-1. Sci Rep 2018; 8:3223. [PMID: 29459637 PMCID: PMC5818646 DOI: 10.1038/s41598-018-21588-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/07/2018] [Indexed: 12/31/2022] Open
Abstract
Identification of inflammatory mediators that regulate the vascular response to vasopressor molecules may aid in the development of novel therapeutic agents to treat or prevent hypertensive vascular diseases. Leukocytes have recently been shown to be capable of modifying blood pressure responses to vasopressor molecules. The purpose of this study was to test the hypothesis that deficiency of the leukocyte ligand, Psgl-1, would reduce the pressor response to angiotensin II (Ang II). Mice deficient in Psgl-1 (Psgl-1−/−) along with wild-type (WT) controls were treated for 2 weeks with a continuous infusion of Ang II. No differences in blood pressure between the groups were noted at baseline, however after 5 days of Ang II infusion, systolic blood pressures were higher in WT compared to Psgl-1−/− mice. The pressor response to acute administration of high dose Ang II was also attenuated in Psgl-1−/− compared to WT mice. Chimeric mice with hematopoietic deficiency of Psgl-1 similarly showed a reduced pressor response to Ang II. This effect was associated with reduced plasma interleukin-17 (IL-17) levels in Psgl-1−/− mice and the reduced pressor response was restored by administration of recombinant IL-17. In conclusion, hematopoietic deficiency of Psgl-1 attenuates Ang II-induced hypertension, an effect that may be mediated by reduced IL-17.
Collapse
Affiliation(s)
- Qian Wang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| | - Hui Wang
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jintao Wang
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jessica Venugopal
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle Kleiman
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Chiao Guo
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| | - Daniel T Eitzman
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
164
|
Faraco G, Brea D, Garcia-Bonilla L, Wang G, Racchumi G, Chang H, Buendia I, Santisteban MM, Segarra SG, Koizumi K, Sugiyama Y, Murphy M, Voss H, Anrather J, Iadecola C. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat Neurosci 2018; 21:240-249. [PMID: 29335605 DOI: 10.1038/s41593-017-0059-z] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
Abstract
A diet rich in salt is linked to an increased risk of cerebrovascular diseases and dementia, but it remains unclear how dietary salt harms the brain. We report that, in mice, excess dietary salt suppresses resting cerebral blood flow and endothelial function, leading to cognitive impairment. The effect depends on expansion of TH17 cells in the small intestine, resulting in a marked increase in plasma interleukin-17 (IL-17). Circulating IL-17, in turn, promotes endothelial dysfunction and cognitive impairment by the Rho kinase-dependent inhibitory phosphorylation of endothelial nitric oxide synthase and reduced nitric oxide production in cerebral endothelial cells. The findings reveal a new gut-brain axis linking dietary habits to cognitive impairment through a gut-initiated adaptive immune response compromising brain function via circulating IL-17. Thus, the TH17 cell-IL-17 pathway is a putative target to counter the deleterious brain effects induced by dietary salt and other diseases associated with TH17 polarization.
Collapse
Affiliation(s)
- Giuseppe Faraco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - David Brea
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Lidia Garcia-Bonilla
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gianfranco Racchumi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Haejoo Chang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Izaskun Buendia
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Monica M Santisteban
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Steven G Segarra
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Kenzo Koizumi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Yukio Sugiyama
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Michelle Murphy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Henning Voss
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Joseph Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
165
|
Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med 2018; 215:21-33. [PMID: 29247045 PMCID: PMC5748862 DOI: 10.1084/jem.20171773] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022] Open
Abstract
Although systemic hypertension affects a large proportion of the population, its etiology remains poorly defined. Emerging evidence supports the concept that immune cells become activated and enter target organs, including the vasculature and the kidney, in this disease. Mediators released by these cells, including reactive oxygen species, metalloproteinases, cytokines, and antibodies promote dysfunction of the target organs and cause damage. In vessels, these factors enhance constriction, remodeling, and rarefaction. In the kidney, these mediators increase expression and activation of sodium transporters, and cause interstitial fibrosis and glomerular injury. Factors common to hypertension, including oxidative stress, increased interstitial sodium, cytokine production, and inflammasome activation promote immune activation in hypertension. Recent data suggest that isolevuglandin-modified self-proteins in antigen-presenting cells are immunogenic, promoting cytokine production by the cells in which they are formed and T cell activation. Efforts to prevent and reverse immune activation may prove beneficial in preventing the long-term sequelae of hypertension and its related cardiovascular diseases.
Collapse
Affiliation(s)
- Allison E Norlander
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Meena S Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
166
|
Chiasson VL, Bounds KR, Chatterjee P, Manandhar L, Pakanati AR, Hernandez M, Aziz B, Mitchell BM. Myeloid-Derived Suppressor Cells Ameliorate Cyclosporine A-Induced Hypertension in Mice. Hypertension 2018; 71:199-207. [PMID: 29133357 PMCID: PMC5730469 DOI: 10.1161/hypertensionaha.117.10306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/25/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022]
Abstract
The calcineurin inhibitor cyclosporine A (CsA) suppresses the immune system but promotes hypertension, vascular dysfunction, and renal damage. CsA decreases regulatory T cells and this contributes to the development of hypertension. However, CsA's effects on another important regulatory immune cell subset, myeloid-derived suppressor cells (MDSCs), is unknown. We hypothesized that augmenting MDSCs would ameliorate the CsA-induced hypertension and vascular and renal injury and dysfunction and that CsA reduces MDSCs in mice. Daily interleukin-33 treatment, which increased MDSC levels, completely prevented CsA-induced hypertension and vascular and renal toxicity. Adoptive transfer of MDSCs from control mice into CsA-treated mice after hypertension was established dose-dependently reduced blood pressure and vascular and glomerular injury. CsA treatment of aortas and kidneys isolated from control mice for 24 hours decreased relaxation responses and increased inflammation, respectively, and these effects were prevented by the presence of MDSCs. MDSCs also prevented the CsA-induced increase in fibronectin in microvascular and glomerular endothelial cells. Last, CsA dose-dependently reduced the number of MDSCs by inhibiting calcineurin and preventing cell proliferation, as other direct calcineurin signaling pathway inhibitors had the same dose-dependent effect. These data suggest that augmenting MDSCs can reduce the cardiovascular and renal toxicity and hypertension caused by CsA.
Collapse
Affiliation(s)
- Valorie L Chiasson
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple
| | - Kelsey R Bounds
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple
| | - Piyali Chatterjee
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple
| | - Lochana Manandhar
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple
| | - Abhinandan R Pakanati
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple
| | - Marcos Hernandez
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple
| | - Bilal Aziz
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple
| | - Brett M Mitchell
- From the Department of Internal Medicine (V.L.C., K.R.B., P.C., L.M., A.R.P., M.H., B.A., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center College of Medicine/Baylor Scott & White Health, Temple.
| |
Collapse
|
167
|
Abstract
The link between inappropriate salt retention in the kidney and hypertension is well recognized. However, growing evidence suggests that the immune system can play surprising roles in sodium homeostasis, such that the study of inflammatory cells and their secreted effectors has provided important insights into salt sensitivity. As part of the innate immune system, myeloid cells have diverse roles in blood pressure regulation, ranging from prohypertensive actions in the kidney, vasculature, and brain, to effects in the skin that attenuate blood pressure elevation. In parallel, T lymphocyte subsets, as key constituents of the adaptive immune compartment, have variable effects on renal sodium handling and the hypertensive response, accruing from the functions of the cytokines that they produce. Conversely, salt can directly modulate the phenotypes of myeloid and T cells, illustrating bidirectional regulatory mechanisms through which sodium and the immune system coordinately impact blood pressure. This review details the complex interplay between myeloid cells, T cells, and salt in the pathogenesis of essential hypertension.
Collapse
Affiliation(s)
- A Justin Rucker
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Durham Veterans Affairs Medical Center, Durham, North Carolina 27705, USA
| | - Nathan P Rudemiller
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Durham Veterans Affairs Medical Center, Durham, North Carolina 27705, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Durham Veterans Affairs Medical Center, Durham, North Carolina 27705, USA
| |
Collapse
|
168
|
Hao HF, Liu LM, Pan CS, Wang CS, Gao YS, Fan JY, Han JY. Rhynchophylline Ameliorates Endothelial Dysfunction via Src-PI3K/Akt-eNOS Cascade in the Cultured Intrarenal Arteries of Spontaneous Hypertensive Rats. Front Physiol 2017; 8:928. [PMID: 29187825 PMCID: PMC5694770 DOI: 10.3389/fphys.2017.00928] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/01/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives: To examine the protective effect of Rhynchophylline (Rhy) on vascular endothelial function in spontaneous hypertensive rats (SHRs) and the underlying mechanism. Methods: Intrarenal arteries of SHRs and Wistar rats were suspended in myograph for force measurement. Expression and phosphorylation of endothelial nitric oxide (NO) synthase (eNOS), Akt, and Src kinase (Src) were examined by Western blotting. NO production was assayed by ELISA. Results: Rhy time- and concentration-dependently improved endothelium-dependent relaxation in the renal arteries from SHRs, but had no effect on endothelium-independent relaxation in SHR renal arteries. Wortmannin (an inhibitor of phosphatidylinositol 3-kinase) or PP2 (an inhibitor of Src) inhibited the improvement of relaxation in response to acetylcholine by 12 h-incubation with 300 μM Rhy. Western blot analysis revealed that Rhy elevated phosphorylations of eNOS, Akt, and Src in SHR renal arteries. Moreover, wortmannin reversed the increased phosphorylations of Akt and eNOS induced by Rhy, but did not affect the phosphorylation of Src. Furthermore, the enhanced phosphorylations of eNOS, Akt, and Src were blunted by PP2. Importantly, Rhy increased NO production and this effect was blocked by inhibition of Src or PI3K/Akt. Conclusion: The present study provides evidences for the first time that Rhy ameliorates endothelial dysfunction in SHRs through the activation of Src-PI3K/Akt-eNOS signaling pathway.
Collapse
Affiliation(s)
- Hui-Feng Hao
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li-Mei Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Chuan-She Wang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Yuan-Sheng Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| |
Collapse
|
169
|
Chen JY, Ye ZX, Wang XF, Chang J, Yang MW, Zhong HH, Hong FF, Yang SL. Nitric oxide bioavailability dysfunction involves in atherosclerosis. Biomed Pharmacother 2017; 97:423-428. [PMID: 29091892 DOI: 10.1016/j.biopha.2017.10.122] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/22/2017] [Accepted: 10/22/2017] [Indexed: 12/25/2022] Open
Abstract
The pathological characteristics of atherosclerosis (AS) include lipid accumulation, fibrosis formation and atherosclerotic plaque produced in artery intima, which leads to vascular sclerosis, lumen stenosis and irritates the ischemic changes of corresponding organs. Endothelial dysfunction was closely associated with AS. Nitric oxide (NO) is a multifunctional signaling molecule involved in the maintenance of metabolic and cardiovascular homeostasis. NO is also a potent endogenous vasodilator and enters for the key processes that suppresses the formation vascular lesion even AS. NO bioavailability indicates the production and utilization of endothelial NO in organisms, its decrease is related to oxidative stress, lipid infiltration, the expressions of some inflammatory factors and the alteration of vascular tone, which plays an important role in endothelial dysfunction. The enhancement of arginase activity and the increase in asymmetric dimethylarginine and hyperhomocysteinemia levels all contribute to AS by intervening NO bioavailability in human beings. Diabetes mellitus, obesity, chronic kidney disease and smoking, etc., also participate in AS by influencing NO bioavailability and NO level. Here, we reviewed the relationship between NO bioavailability and AS according the newest literatures.
Collapse
Affiliation(s)
- Jing-Yi Chen
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Zi-Xin Ye
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiu-Fen Wang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Jian Chang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Mei-Wen Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Hua-Hua Zhong
- Department of Experimental Teaching Center, Nanchang University, Nanchang 330031, China
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang 330031, China.
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
170
|
Alba BK, Greaney JL, Ferguson SB, Alexander LM. Endothelial function is impaired in the cutaneous microcirculation of adults with psoriasis through reductions in nitric oxide-dependent vasodilation. Am J Physiol Heart Circ Physiol 2017; 314:H343-H349. [PMID: 29054972 DOI: 10.1152/ajpheart.00446.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Psoriasis is an independent risk factor for cardiovascular disease; however, the underlying mechanisms are not fully understood. Deficits in conduit arterial function are evident in patients with psoriasis, but potential impairments in microcirculatory endothelial function remain unclear. We hypothesized that cutaneous microvascular dysfunction would be detectable in otherwise healthy individuals with psoriasis. Two intradermal microdialysis fibers were placed in (nonlesional) forearm skin of nine patients (3 men and 6 women, 39 ± 5 yr) with moderate (16 ± 2% of body surface area) plaque psoriasis and nine healthy (nonpsoriatic) control subjects (3 men and 6 women, 38 ± 5 yr) for local delivery of 1) lactated Ringer solution (control) and 2) 10 mM l-ascorbate (a nonspecific antioxidant). An index of skin blood flow was measured using laser-Doppler flowmetry during local heating (42°C). Nitric oxide (NO)-dependent vasodilation was directly quantified after perfusion of the nonspecific NO synthase inhibitor NG-nitro-l-arginine methyl ester (15 mM). A third fiber was perfused with increasing concentrations (10-10 - 10-2 M) of norepinephrine to elicit adrenoreceptor-mediated cutaneous vasoconstriction. NO-dependent vasodilation was attenuated in patients with psoriasis (57 ± 5% and 39 ± 7% maximum cutaneous vascular conductance in control subjects and adults with psoriasis, respectively, P < 0.01). l-Ascorbate did not improve NO-dependent vasodilation ( P > 0.05). There was no group difference in maximal vasoconstriction or microvascular sensitivity to norepinephrine ( P > 0.05). These data suggest that NO bioavailability is reduced in otherwise healthy individuals with psoriasis, which contributes to systemic microvascular dysfunction. NEW & NOTEWORTHY In adults with psoriasis, reduced nitric oxide bioavailability mediates impaired endothelium-dependent vasodilation, independent of increases in oxidative stress. Furthermore, the degree of psoriatic symptomology is directly related to greater reductions in nitric oxide-dependent vasodilation.
Collapse
Affiliation(s)
- Billie K Alba
- Department of Kinesiology, The Pennsylvania State University, Noll Laboratory , University Park, Pennsylvania
| | - Jody L Greaney
- Department of Kinesiology, The Pennsylvania State University, Noll Laboratory , University Park, Pennsylvania
| | - Sara B Ferguson
- Penn State Hershey Medical Group , State College, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, The Pennsylvania State University, Noll Laboratory , University Park, Pennsylvania
| |
Collapse
|
171
|
Ye J, Ji Q, Liu J, Liu L, Huang Y, Shi Y, Shi L, Wang M, Liu M, Feng Y, Jiang H, Xu Y, Wang Z, Song J, Lin Y, Wan J. Interleukin 22 Promotes Blood Pressure Elevation and Endothelial Dysfunction in Angiotensin II-Treated Mice. J Am Heart Assoc 2017; 6:e005875. [PMID: 28974499 PMCID: PMC5721831 DOI: 10.1161/jaha.117.005875] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND CD4+ T helper (Th) cells, including Th1, Th2, and Th17 cells, play critical roles in angiotensin II-induced hypertension. Th22 cells, a novel subset of Th cells, take part in cardiovascular diseases by producing IL-22 (interleukin 22). This study aimed to investigate whether IL-22 is involved in hypertension. METHODS AND RESULTS Th22 cells and IL-22 levels were detected in angiotensin II-infused mice, and the results showed that Th22 cells and IL-22 levels significantly increased. To determine the effect of Th22/IL-22 on blood pressure regulation, angiotensin II-infused mice were treated with recombinant mouse IL-22, an anti-IL-22 neutralizing monoclonal antibody, or control. Treatment with recombinant IL-22 resulted in increased blood pressure, amplified inflammatory responses, and aggravated endothelial dysfunction, whereas the anti-IL-22 neutralizing monoclonal antibody decreased blood pressure, reduced inflammatory responses, and attenuated endothelial dysfunction. To determine whether the STAT3 (signal transducer and activator of transcription 3) pathway mediates the effect of IL-22 on blood pressure regulation, the special STAT3 pathway inhibitor S31-201 was administered to mice treated with recombinant IL-22. S31-201 treatment significantly ameliorated the IL-22 effects of increased blood pressure and endothelial dysfunction. In addition, serum IL-22 levels were significantly increased in hypertensive patients compared with healthy persons. Correlation analysis showed a positive correlation between IL-22 levels and blood pressure. CONCLUSIONS IL-22 amplifies the inflammatory response, induces endothelial dysfunction and promotes blood pressure elevation in angiotensin II-induced hypertensive mice. The STAT3 pathway mediates the effect of IL-22 on hypertension. Blocking IL-22 may be a novel therapeutic strategy to prevent and treat hypertension.
Collapse
Affiliation(s)
- Jing Ye
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ling Liu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ying Huang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ying Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengling Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ying Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huimin Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junlong Song
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yingzhong Lin
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
172
|
Nevers T, Salvador AM, Velazquez F, Ngwenyama N, Carrillo-Salinas FJ, Aronovitz M, Blanton RM, Alcaide P. Th1 effector T cells selectively orchestrate cardiac fibrosis in nonischemic heart failure. J Exp Med 2017; 214:3311-3329. [PMID: 28970239 PMCID: PMC5679176 DOI: 10.1084/jem.20161791] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/13/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022] Open
Abstract
Despite emerging data indicating a role for T cells in profibrotic cardiac repair and healing after ischemia, little is known about whether T cells directly impact cardiac fibroblasts (CFBs) to promote cardiac fibrosis (CF) in nonischemic heart failure (HF). Recently, we reported increased T cell infiltration in the fibrotic myocardium of nonischemic HF patients, as well as the protection from CF and HF in TCR-α-/- mice. Here, we report that T cells activated in such a context are mainly IFN-γ+, adhere to CFB, and induce their transition into myofibroblasts. Th1 effector cells selectively drive CF both in vitro and in vivo, whereas adoptive transfer of Th1 cells, opposite to activated IFN-γ-/- Th cells, partially reconstituted CF and HF in TCR-α-/- recipient mice. Mechanistically, Th1 cells use integrin α4 to adhere to and induce TGF-β in CFB in an IFN-γ-dependent manner. Our findings identify a previously unrecognized role for Th1 cells as integrators of perivascular CF and cardiac dysfunction in nonischemic HF.
Collapse
Affiliation(s)
- Tania Nevers
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Ane M Salvador
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Francisco Velazquez
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Njabulo Ngwenyama
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | | | - Mark Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Pilar Alcaide
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| |
Collapse
|
173
|
Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol 2017; 174:3496-3513. [PMID: 28063251 PMCID: PMC5610164 DOI: 10.1111/bph.13705] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
Perivascular adipose tissue (PVAT) plays a critical role in the pathogenesis of cardiovascular disease. In vascular pathologies, perivascular adipose tissue increases in volume and becomes dysfunctional, with altered cellular composition and molecular characteristics. PVAT dysfunction is characterized by its inflammatory character, oxidative stress, diminished production of vaso-protective adipocyte-derived relaxing factors and increased production of paracrine factors such as resistin, leptin, cytokines (IL-6 and TNF-α) and chemokines [RANTES (CCL5) and MCP-1 (CCL2)]. These adipocyte-derived factors initiate and orchestrate inflammatory cell infiltration including primarily T cells, macrophages, dendritic cells, B cells and NK cells. Protective factors such as adiponectin can reduce NADPH oxidase superoxide production and increase NO bioavailability in the vessel wall, while inflammation (e.g. IFN-γ or IL-17) induces vascular oxidases and eNOS dysfunction in the endothelium, vascular smooth muscle cells and adventitial fibroblasts. All of these events link the dysfunctional perivascular fat to vascular dysfunction. These mechanisms are important in the context of a number of cardiovascular disorders including atherosclerosis, hypertension, diabetes and obesity. Inflammatory changes in PVAT's molecular and cellular responses are uniquely different from classical visceral or subcutaneous adipose tissue or from adventitia, emphasizing the unique structural and functional features of this adipose tissue compartment. Therefore, it is essential to develop techniques for monitoring the characteristics of PVAT and assessing its inflammation. This will lead to a better understanding of the early stages of vascular pathologies and the development of new therapeutic strategies focusing on perivascular adipose tissue. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- Ryszard Nosalski
- Institute of Cardiovascular and Medical SciencesUniversity of GlasgowScotlandUK
- Department of Internal and Agricultural MedicineJagiellonian University, Collegium MedicumKrakowPoland
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical SciencesUniversity of GlasgowScotlandUK
- Department of Internal and Agricultural MedicineJagiellonian University, Collegium MedicumKrakowPoland
| |
Collapse
|
174
|
Kirabo A. A new paradigm of sodium regulation in inflammation and hypertension. Am J Physiol Regul Integr Comp Physiol 2017; 313:R706-R710. [PMID: 28931546 DOI: 10.1152/ajpregu.00250.2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/28/2017] [Accepted: 09/12/2017] [Indexed: 01/13/2023]
Abstract
Dysregulation of sodium (Na+) balance is a major cause of hypertensive cardiovascular disease. The current dogma is that interstitial Na+ readily equilibrates with plasma and that renal excretion and reabsorption is sufficient to regulate extracellular fluid volume and control blood pressure. These ideas have been recently challenged by the discovery that Na+ accumulates in tissues without commensurate volume retention and activates immune cells, leading to hypertension and autoimmune disease. However, objections have been raised to this new paradigm, with some investigators concerned about where and how salt is stored in tissues. Further concerns also include how Na+ is mobilized from tissue stores and how it interacts with various organ systems to cause hypertension and end-organ damage. This review assesses these two paradigms of Na+ regulation in the context of inflammation-mediated hypertension and cardiovascular disease pathogenesis. Also highlighted are future perspectives and important gaps in our understanding of how Na+ is linked to inflammation and hypertension. Understanding mechanisms of salt and body fluid regulation is the sine qua non of research efforts to identify therapeutic targets for hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville Tennessee
| |
Collapse
|
175
|
Liu C, Kellems RE, Xia Y. Inflammation, Autoimmunity, and Hypertension: The Essential Role of Tissue Transglutaminase. Am J Hypertens 2017; 30:756-764. [PMID: 28338973 PMCID: PMC5861548 DOI: 10.1093/ajh/hpx027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
Inflammatory cytokines cause hypertension when introduced into animals. Additional evidence indicates that cytokines induce the production of autoantibodies that activate the AT1 angiotensin receptor (AT1R). Extensive evidence shows that these autoantibodies, termed AT1-AA, contribute to hypertension. We review here recent studies showing that cytokine-induced hypertension and AT1-AA production require the ubiquitous enzyme, tissue transglutaminase (TG2). We consider 3 mechanisms by which TG2 may contribute to hypertension. (i) One involves the posttranslational modification (PTM) of AT1Rs at a glutamine residue that is present in the epitope sequence (AFHYESQ) recognized by AT1-AA. (ii) Another mechanism by which TG2 may contribute to hypertension is by PTM of AT1Rs at glutamine 315. Modification at this glutamine prevents ubiquitination-dependent proteasome degradation and allows AT1Rs to accumulate. Increased AT1R abundance is likely to account for increased sensitivity to Ang II activation and in this way contribute to hypertension. (iii) The increased TG2 produced as a result of elevated inflammatory cytokines is likely to contribute to vascular stiffness by modification of intracellular contractile proteins or by crosslinking vascular proteins in the extracellular matrix. This process, termed inward remodeling, results in reduced vascular lumen, vascular stiffness, and increased blood pressure. Based on the literature reviewed here, we hypothesize that TG2 is an essential participant in cytokine-induced hypertension. From this perspective, selective TG2 inhibitors have the potential to be pharmacologic weapons in the fight against hypertension.
Collapse
Affiliation(s)
- Chen Liu
- Department of Biochemistry and Molecular Biology, McGovern Medical School of the University of Texas at Houston, Houston, Texas, USA
| | - Rodney E. Kellems
- Department of Biochemistry and Molecular Biology, McGovern Medical School of the University of Texas at Houston, Houston, Texas, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, McGovern Medical School of the University of Texas at Houston, Houston, Texas, USA
| |
Collapse
|
176
|
Robert M, Miossec P. Effects of Interleukin 17 on the cardiovascular system. Autoimmun Rev 2017; 16:984-991. [PMID: 28705781 DOI: 10.1016/j.autrev.2017.07.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/17/2017] [Indexed: 12/25/2022]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide and account for most of the premature mortality observed in chronic inflammatory diseases. Common mechanisms underlie these two types of disorders, where the contribution of Interleukin (IL)-17A, the founding member of the IL-17 family, is highly suspected. While the local effects of IL-17A in inflammatory disorders have been well described, those on the cardiovascular system remain less studied. This review focuses on the effects of IL-17 on the cardiovascular system both on isolated cells and in vivo. IL-17A acts on vessel and cardiac cells, leading to inflammation, coagulation and thrombosis. In vivo and clinical studies have shown its involvement in the pathogenesis of cardiovascular diseases including atherosclerosis and myocardial infarction that occur prematurely in chronic inflammatory disorders. As new therapeutic approaches are targeting the IL-17 pathway, this review should help to better understand their positive and negative outcomes on the cardio-vascular system.
Collapse
Affiliation(s)
- Marie Robert
- Immunogenomics and Inflammation Research Unit, EA 4130, Department of Immunology and Rheumatology, University of Lyon, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit, EA 4130, Department of Immunology and Rheumatology, University of Lyon, Lyon, France.
| |
Collapse
|
177
|
Lopez Gelston CA, Mitchell BM. Recent Advances in Immunity and Hypertension. Am J Hypertens 2017; 30:643-652. [PMID: 28200062 DOI: 10.1093/ajh/hpx011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 01/01/2023] Open
Abstract
Persistent immune system activation plays an important role in the development of various forms of hypertension. Activation of the innate immune system, inflammation, and subsequent adaptive immune system response causing end-organ injury and dysfunction ultimately leads to hypertension and its associated sequelae including coronary artery disease, heart failure, stroke, and chronic kidney disease. In this review, we will provide updates on the innate and adaptive immune cells involved in hypertension, the current understanding of how the immune system gets activated, and examine the recently discovered mechanisms involved in several forms of experimental hypertension.
Collapse
Affiliation(s)
- Catalina A Lopez Gelston
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station, Texas, USA
| |
Collapse
|
178
|
Rodriguez-Iturbe B, Pons H, Johnson RJ. Role of the Immune System in Hypertension. Physiol Rev 2017; 97:1127-1164. [PMID: 28566539 PMCID: PMC6151499 DOI: 10.1152/physrev.00031.2016] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
High blood pressure is present in more than one billion adults worldwide and is the most important modifiable risk factor of death resulting from cardiovascular disease. While many factors contribute to the pathogenesis of hypertension, a role of the immune system has been firmly established by a large number of investigations from many laboratories around the world. Immunosuppressive drugs and inhibition of individual cytokines prevent or ameliorate experimental hypertension, and studies in genetically-modified mouse strains have demonstrated that lymphocytes are necessary participants in the development of hypertension and in hypertensive organ injury. Furthermore, immune reactivity may be the driving force of hypertension in autoimmune diseases. Infiltration of immune cells, oxidative stress, and stimulation of the intrarenal angiotensin system are induced by activation of the innate and adaptive immunity. High blood pressure results from the combined effects of inflammation-induced impairment in the pressure natriuresis relationship, dysfunctional vascular relaxation, and overactivity of the sympathetic nervous system. Imbalances between proinflammatory effector responses and anti-inflammatory responses of regulatory T cells to a large extent determine the severity of inflammation. Experimental and human studies have uncovered autoantigens (isoketal-modified proteins and heat shock protein 70) of potential clinical relevance. Further investigations on the immune reactivity in hypertension may result in the identification of new strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| | - Hector Pons
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| | - Richard J Johnson
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| |
Collapse
|
179
|
Rho-kinase and the nitric oxide pathway modulate basilar arterial reactivity to acetylcholine and angiotensin II in streptozotocin-induced diabetic mice. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:929-938. [DOI: 10.1007/s00210-017-1396-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/16/2017] [Indexed: 12/11/2022]
|
180
|
Chiasson VL, Pakanati AR, Hernandez M, Young KJ, Bounds KR, Mitchell BM. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice. Hypertension 2017; 70:183-191. [PMID: 28584011 DOI: 10.1161/hypertensionaha.117.09374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/22/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022]
Abstract
The immunosuppressive calcineurin inhibitors cyclosporine A and tacrolimus alter T-cell subsets and can cause hypertension, vascular dysfunction, and renal toxicity. We and others have reported that cyclosporine A and tacrolimus decrease anti-inflammatory regulatory T cells and increase proinflammatory interleukin-17-producing T cells; therefore, we hypothesized that inhibition of these effects using noncellular therapies would prevent the hypertension, endothelial dysfunction, and renal glomerular injury induced by calcineurin inhibitor therapy. Daily treatment of mice with cyclosporine A or tacrolimus for 1 week significantly decreased CD4+/FoxP3+ regulatory T cells in the spleen and lymph nodes, as well as induced hypertension, vascular injury and dysfunction, and glomerular mesangial expansion in mice. Daily cotreatment with all-trans retinoic acid reported to increase regulatory T cells and decrease interleukin-17-producing T cells, prevented all of the detrimental effects of cyclosporine A and tacrolimus. All-trans retinoic acid also increased regulatory T cells and prevented the hypertension, endothelial dysfunction, and glomerular injury in genetically modified mice that phenocopy calcineurin inhibitor-treated mice (FKBP12-Tie2 knockout). Treatment with an interleukin-17-neutralizing antibody also increased regulatory T-cell levels and prevented the hypertension, endothelial dysfunction, and glomerular injury in cyclosporine A-treated and tacrolimus-treated mice and FKBP12-Tie2 knockout mice, whereas an isotype control had no effect. Augmenting regulatory T cells and inhibiting interleukin-17 signaling using noncellular therapies prevents the cardiovascular and renal toxicity of calcineurin inhibitors in mice.
Collapse
Affiliation(s)
- Valorie L Chiasson
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple
| | - Abhinandan R Pakanati
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple
| | - Marcos Hernandez
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple
| | - Kristina J Young
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple
| | - Kelsey R Bounds
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple
| | - Brett M Mitchell
- From the Department of Internal Medicine (V.L.C., A.R.P., M.H., K.J.Y., K.R.B., B.M.M.) and Department of Medical Physiology (B.M.M.), Texas A&M University Health Science Center, College of Medicine, Baylor Scott & White Health, Temple.
| |
Collapse
|
181
|
Chen J, Khalil RA. Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:87-165. [PMID: 28662830 PMCID: PMC5548443 DOI: 10.1016/bs.pmbts.2017.04.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Normal pregnancy is associated with marked hemodynamic and uterine changes that allow adequate uteroplacental blood flow and uterine expansion for the growing fetus. These pregnancy-associated changes involve significant uteroplacental and vascular remodeling. Matrix metalloproteinases (MMPs) are important regulators of vascular and uterine remodeling. Increases in MMP-2 and MMP-9 have been implicated in vasodilation, placentation, and uterine expansion during normal pregnancy. The increases in MMPs could be induced by the increased production of estrogen and progesterone during pregnancy. MMP expression/activity may be altered during complications of pregnancy. Decreased vascular MMP-2 and MMP-9 may lead to decreased vasodilation, increased vasoconstriction, hypertensive pregnancy, and preeclampsia. Abnormal expression of uteroplacental integrins, cytokines, and MMPs may lead to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate remodeling of spiral arteries, and reduced uterine perfusion pressure (RUPP). RUPP may cause imbalance between the antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the proangiogenic vascular endothelial growth factor and placental growth factor, or stimulate the release of inflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could target MMPs in the extracellular matrix as well as endothelial and vascular smooth muscle cells, causing generalized vascular dysfunction, increased vasoconstriction and hypertension in pregnancy. MMP activity can also be altered by endogenous tissue inhibitors of metalloproteinases (TIMPs) and changes in the MMP/TIMP ratio. In addition to their vascular effects, decreases in expression/activity of MMP-2 and MMP-9 in the uterus could impede uterine growth and expansion and lead to premature labor. Understanding the role of MMPs in uteroplacental and vascular remodeling and function could help design new approaches for prediction and management of preeclampsia and premature labor.
Collapse
Affiliation(s)
- Juanjuan Chen
- Vascular Surgery Research Laboratories, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
182
|
Simundic T, Jelakovic B, Dzumhur A, Turk T, Sahinovic I, Dobrosevic B, Takac B, Barbic J. Interleukin 17A and Toll-like Receptor 4 in Patients with Arterial Hypertension. Kidney Blood Press Res 2017; 42:99-108. [DOI: 10.1159/000471900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
|
183
|
Interplay of myosin phosphatase and protein phosphatase-2A in the regulation of endothelial nitric-oxide synthase phosphorylation and nitric oxide production. Sci Rep 2017; 7:44698. [PMID: 28300193 PMCID: PMC5353758 DOI: 10.1038/srep44698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/13/2017] [Indexed: 01/07/2023] Open
Abstract
The inhibitory phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) at Thr497 (eNOSpThr497) by protein kinase C or RhoA-activated kinase is a major regulatory determinant of eNOS activity. The signalling mechanisms involved in the dephosphorylation of eNOSpThr497 have not yet been clarified. This study identifies myosin phosphatase (MP) holoenzyme consisting of protein phosphatase-1 catalytic subunit (PP1c) and MP target subunit-1 (MYPT1) as an eNOSpThr497 phosphatase. In support of this finding are: (i) eNOS and MYPT1 interacts in various endothelial cells (ECs) and in in vitro binding assays (ii) MYPT1 targets and stimulates PP1c toward eNOSpThr497 substrate (iii) phosphorylation of MYPT1 at Thr696 (MYPT1pThr696) controls the activity of MP on eNOSpThr497. Phosphatase inhibition suppresses both NO production and transendothelial resistance (TER) of ECs. In contrast, epigallocatechin-3-gallate (EGCG) signals ECs via the 67 kDa laminin-receptor (67LR) resulting in protein kinase A dependent activation of protein phosphatase-2A (PP2A). PP2A dephosphorylates MYPT1pThr696 and thereby stimulates MP activity inducing dephosphorylation of eNOSpThr497 and the 20 kDa myosin II light chains. Thus an interplay of MP and PP2A is involved in the physiological regulation of EC functions implying that an EGCG dependent activation of these phosphatases leads to enhanced NO production and EC barrier improvement.
Collapse
|
184
|
Nosalski R, McGinnigle E, Siedlinski M, Guzik TJ. Novel Immune Mechanisms in Hypertension and Cardiovascular Risk. CURRENT CARDIOVASCULAR RISK REPORTS 2017; 11:12. [PMID: 28360962 PMCID: PMC5339316 DOI: 10.1007/s12170-017-0537-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Hypertension is a common disorder with substantial impact on public health due to highly elevated cardiovascular risk. The mechanisms still remain unclear and treatments are not sufficient to reduce risk in majority of patients. Inflammatory mechanisms may provide an important mechanism linking hypertension and cardiovascular risk. We aim to review newly identified immune and inflammatory mechanisms of hypertension with focus on their potential therapeutic impact. RECENT FINDINGS In addition to the established role of the vasculature, kidneys and central nervous system in pathogenesis of hypertension, low-grade inflammation contributes to this disorder as indicated by experimental models and GWAS studies pointing to SH2B3 immune gene as top key driver of hypertension. Immune responses in hypertension are greatly driven by neoantigens generated by oxidative stress and modulated by chemokines such as RANTES, IP-10 and microRNAs including miR-21 and miR-155 with other molecules under investigation. Cells of both innate and adoptive immune system infiltrate vasculature and kidneys, affecting their function by releasing pro-inflammatory mediators and reactive oxygen species. SUMMARY Immune and inflammatory mechanisms of hypertension provide a link between high blood pressure and increased cardiovascular risk, and reduction of blood pressure without attention to these underlying mechanisms is not sufficient to reduce risk.
Collapse
Affiliation(s)
- Ryszard Nosalski
- BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland UK
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Eilidh McGinnigle
- BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland UK
| | - Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz J. Guzik
- BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland UK
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
185
|
Collett JA, Mehrotra P, Crone A, Shelley WC, Yoder MC, Basile DP. Endothelial colony-forming cells ameliorate endothelial dysfunction via secreted factors following ischemia-reperfusion injury. Am J Physiol Renal Physiol 2017; 312:F897-F907. [PMID: 28228404 DOI: 10.1152/ajprenal.00643.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/07/2023] Open
Abstract
Damage to endothelial cells contributes to acute kidney injury (AKI) by leading to impaired perfusion. Endothelial colony-forming cells (ECFC) are endothelial precursor cells with high proliferative capacity, pro-angiogenic activity, and in vivo vessel forming potential. We hypothesized that ECFC may ameliorate the degree of AKI and/or promote repair of the renal vasculature following ischemia-reperfusion (I/R). Rat pulmonary microvascular endothelial cells (PMVEC) with high proliferative potential were compared with pulmonary artery endothelial cells (PAEC) with low proliferative potential in rats subjected to renal I/R. PMVEC administration reduced renal injury and hastened recovery as indicated by serum creatinine and tubular injury scores, while PAEC did not. Vehicle-treated control animals showed consistent reductions in renal medullary blood flow (MBF) within 2 h of reperfusion, while PMVEC protected against loss in MBF as measured by laser Doppler. Interestingly, PMVEC mediated protection occurred in the absence of homing to the kidney. Conditioned medium (CM) from human cultured cord blood ECFC also conveyed beneficial effects against I/R injury and loss of MBF. Moreover, ECFC-CM significantly reduced the expression of ICAM-1 and decreased the number of differentiated lymphocytes typically recruited into the kidney following renal ischemia. Taken together, these data suggest that ECFC secrete factors that preserve renal function post ischemia, in part, by preserving microvascular function.
Collapse
Affiliation(s)
- Jason A Collett
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana; and
| | - Purvi Mehrotra
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana; and
| | - Allison Crone
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana; and
| | - W Christopher Shelley
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mervin C Yoder
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - David P Basile
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana; and
| |
Collapse
|
186
|
Weber GJ, Pushpakumar SB, Sen U. Hydrogen sulfide alleviates hypertensive kidney dysfunction through an epigenetic mechanism. Am J Physiol Heart Circ Physiol 2017; 312:H874-H885. [PMID: 28213404 DOI: 10.1152/ajpheart.00637.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 02/08/2023]
Abstract
Hypertension is a major risk factor for chronic kidney disease (CKD), and renal inflammation is an integral part in this pathology. Hydrogen sulfide (H2S) has been shown to mitigate renal damage through reduction in blood pressure and ROS; however, the exact mechanisms are not clear. While several studies have underlined the role of epigenetics in renal inflammation and dysfunction, the mechanisms through which epigenetic regulators play a role in hypertension are not well defined. In this study, we sought to identify whether microRNAs are dysregulated in response to angiotensin II (ANG II)-induced hypertension in the kidney and whether a H2S donor, GYY4137, could reverse the microRNA alteration and kidney function. Wild-type (C57BL/6J) mice were treated without or with ANG II and GYY4137 for 4 wk. Blood pressure, renal blood flow, and resistive index (RI) were measured. MicroRNA microarrays were conducted and subsequent target prediction revealed genes associated with a proinflammatory response. ANG II treatment significantly increased blood pressure, decreased blood flow in the renal cortex, increased RI, and reduced renal function. These effects were ameliorated in mice treated with GYY4137. Microarray analysis revealed downregulation of miR-129 in ANG II-treated mice and upregulation after GYY4137 treatment. Quantitation of proteins involved in the inflammatory response and DNA methylation revealed upregulation of IL-17A and DNA methyltransferase 3a, whereas H2S production enzymes and anti-inflammatory IL-10 were reduced. Taken together, our data suggest that downregulation of miR-129 plays a significant role in ANG II-induced renal inflammation and functional outcomes and that GYY4137 improves renal function by reversing miR-129 expression.NEW & NOTEWORTHY We investigated epigenetic changes that occur in the hypertensive kidney and how H2S supplementation reverses adverse effects. Inflammation, aberrant methylation, and dysfunction were observed in the hypertensive kidney, and these effects were alleviated with H2S supplementation. We identify miR-129 as a potential regulator of blood pressure and H2S regulation.
Collapse
Affiliation(s)
- Gregory J Weber
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Sathnur B Pushpakumar
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Utpal Sen
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
187
|
Abnormal CD161 + immune cells and retinoic acid receptor-related orphan receptor γt-mediate enhanced IL-17F expression in the setting of genetic hypertension. J Allergy Clin Immunol 2017; 140:809-821.e3. [PMID: 28093217 DOI: 10.1016/j.jaci.2016.11.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/15/2016] [Accepted: 11/15/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Hypertension is considered an immunologic disorder. However, the role of the IL-17 family in genetic hypertension in the spontaneously hypertensive rat (SHR) has not been investigated. OBJECTIVE We tested the hypothesis that enhanced TH17 programming and IL-17 expression in abundant CD161+ immune cells in SHRs represent an abnormal proinflammatory adaptive immune response. Furthermore, we propose that this response is driven by the master regulator retinoic acid receptor-related orphan receptor γt (RORγt) and a nicotinic proinflammatory innate immune response. METHODS We measured expression of the CD161 surface marker on splenocytes in SHRs and normotensive control Wistar-Kyoto (WKY) rats from birth to adulthood. We compared expression of IL-17A and IL-17F in splenic cells under different conditions. We then determined the functional effect of these cytokines on vascular reactivity. Finally, we tested whether pharmacologic inhibition of RORγt can attenuate hypertension in SHRs. RESULTS SHRs exhibited an abnormally large population of CD161+ cells at birth that increased with age, reaching more than 30% of the splenocyte population at 38 weeks. The SHR splenocytes constitutively expressed more RORγt than those of WKY rats and produced more IL-17F on induction. Exposure of WKY rat aortas to IL-17F impaired endothelium-dependent vascular relaxation, whereas IL-17A did not. Moreover, in vivo inhibition of RORγt by digoxin decreased systolic blood pressure in SHRs. CONCLUSIONS SHRs have a markedly enhanced potential for RORγt-driven expression of proinflammatory and prohypertensive IL-17F in response to innate immune activation. Increased RORγt and IL-17F levels contribute to SHR hypertension and might be therapeutic targets.
Collapse
|
188
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 629] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
189
|
Abstract
It has become clear that reactive oxygen species (ROS) contribute to the development of hypertension via myriad effects. ROS are essential for normal cell function; however, they mediate pathologic changes in the brain, the kidney, and blood vessels that contribute to the genesis of chronic hypertension. There is also emerging evidence that ROS contribute to immune activation in hypertension. This article discusses these events and how they coordinate to contribute to hypertension and its consequent end-organ damage.
Collapse
Affiliation(s)
- Roxana Loperena
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2220 Pierce Drive, Room 536 Robinson Research Building, Nashville, TN 37232, USA
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, 2220 Pierce Drive, Room 536 Robinson Research Building, Nashville, TN 37232, USA.
| |
Collapse
|
190
|
Saleh MA, Norlander AE, Madhur MS. Inhibition of Interleukin 17-A but not Interleukin-17F Signaling Lowers Blood Pressure and Reduces End-organ Inflammation in Angiotensin II-induced Hypertension. ACTA ACUST UNITED AC 2016; 1:606-616. [PMID: 28280792 PMCID: PMC5337944 DOI: 10.1016/j.jacbts.2016.07.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hypertension is associated with an increase in T-cell–derived cytokines such IL-17A and IL-17F. Monoclonal antibodies to IL-17A, IL-17F, IL-17RA, or isotype control antibodies (IgG1) were administered twice weekly during the last 2 weeks of a 4-week angiotensin II infusion protocol in mice. Antibodies to IL-17A or IL-17RA, but not IL-17F, lowered blood pressure by 30 mm Hg, attenuated renal and vascular inflammation, and reduced renal transforming growth factor beta levels (a marker of renal fibrosis) compared with control IgG1 antibodies. All 3 experimental antibodies blunted the progression of albuminuria. Monoclonal antibodies to IL-17A or IL-17RA may be a useful adjunct treatment for hypertension and the associated end-organ dysfunction.
Inflammatory cytokines play a major role in the pathophysiology of hypertension. The authors previously showed that genetic deletion of interleukin (IL)-17A results in blunted hypertension and reduced renal/vascular dysfunction. With the emergence of a new class of monoclonal antibody–based drugs for psoriasis and related autoimmune disorders that target IL-17 signaling, the authors sought to determine whether these antibodies could also reduce blood pressure, renal/vascular inflammation, and renal injury in a mouse model of hypertension. The authors show that antibodies to IL-17A or the IL-17RA receptor subunit, but not IL-17F, may be a novel adjunct treatment for hypertension and the associated end-organ dysfunction.
Collapse
Affiliation(s)
- Mohamed A. Saleh
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Allison E. Norlander
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Reprint requests and correspondence: Dr. Meena S. Madhur, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University, 2215 Garland Avenue, P415D Medical Research Building IV, Nashville, Tennessee 37232.
| |
Collapse
|
191
|
Romero M, Toral M, Gómez-Guzmán M, Jiménez R, Galindo P, Sánchez M, Olivares M, Gálvez J, Duarte J. Antihypertensive effects of oleuropein-enriched olive leaf extract in spontaneously hypertensive rats. Food Funct 2016; 7:584-93. [PMID: 26593388 DOI: 10.1039/c5fo01101a] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of chronic consumption of oleuropein-enriched (15% w/w) olive leaf extract (OLE) on blood pressure, endothelial function, and vascular oxidative and inflammatory status in spontaneously hypertensive rats (SHR) were evaluated. Ten Wistar Kyoto rats (WKY) and twenty SHR were randomly assigned to three groups: a control WKY group, a control SHR group and a SHR group treated with OLE (30 mg kg(-1)) for 5 weeks. Long-term administration of OLE reduced systolic blood pressure, heart rate, and cardiac and renal hypertrophy. OLE treatment reversed the impaired aortic endothelium-dependent relaxation to acetylcholine observed in SHR. OLE restored aortic eNOS phosphorylation at Ser-1177 and Thr-495 and increased eNOS activity. OLE eliminated the increased aortic superoxide levels, and reduced the elevated NADPH oxidase activity, as a result of reduced NOX-1 and NOX-2 mRNA levels in SHR. OLE reduced the enhanced vascular TLR4 expression by inhibition of mitogen-activated protein kinase (MAPK) signaling with the subsequent reduction of proinflammatory cytokines. In conclusion, OLE exerts antihypertensive effects on genetic hypertension related to the improvement of vascular function as a result of reduced pro-oxidative and pro-inflammatory status.
Collapse
Affiliation(s)
- M Romero
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain. and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - M Toral
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain.
| | - M Gómez-Guzmán
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain.
| | - R Jiménez
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain. and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - P Galindo
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain.
| | - M Sánchez
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain.
| | - M Olivares
- Laboratorio de Descubrimiento y Preclínica, Departamento de Investigación BIOSEARCH S.A, Granada, Spain
| | - J Gálvez
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain. and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - J Duarte
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain. and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
192
|
Stephenson E, Savvatis K, Mohiddin SA, Marelli-Berg FM. T-cell immunity in myocardial inflammation: pathogenic role and therapeutic manipulation. Br J Pharmacol 2016; 174:3914-3925. [PMID: 27590129 DOI: 10.1111/bph.13613] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/13/2022] Open
Abstract
T-cell-mediated immunity has been linked not only to a variety of heart diseases, including classic inflammatory diseases such as myocarditis and post-myocardial infarction (Dressler's) syndrome, but also to conditions without an obvious inflammatory component such as idiopathic dilated cardiomyopathy and hypertensive cardiomyopathy. It has been recently proposed that in all these conditions, the heart becomes the focus of T-cell-mediated autoimmune inflammation following ischaemic or infectious injury. For example, in acute myocarditis, an inflammatory disease of heart muscle, T-cell responses are thought to arise as a consequence of a viral infection. In a number of patients, persistent T-cell-mediated responses in acute viral myocarditis can lead to autoimmunity and chronic cardiac inflammation resulting in dilated cardiomyopathy. In spite of the major progress made in understanding the mechanisms of pathogenic T-cell responses, effective and safe therapeutic targeting of the immune system in chronic inflammatory diseases of the heart has not yet been developed due to the lack of specific diagnostic and prognostic biomarkers at an early stage. This has also prevented the identification of targets for patient-tailored immunomodulatory therapies that are both disease- and organ-selective. In this review, we discuss current knowledge of the development and functional characteristics of pathogenic T-cell-mediated immune responses in the heart, and, in particular, in myocarditis, as well as recent advances in experimental models which have the potential to translate into heart-selective immunomodulation. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- E Stephenson
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK
| | - K Savvatis
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK.,Department of Cardiology, Barts Heart Centre, St. Bartholomew NHS Trust, London, UK
| | - S A Mohiddin
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK.,Department of Cardiology, Barts Heart Centre, St. Bartholomew NHS Trust, London, UK
| | - F M Marelli-Berg
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK
| |
Collapse
|
193
|
Yuan Q, Yang J, Santulli G, Reiken SR, Wronska A, Kim MM, Osborne BW, Lacampagne A, Yin Y, Marks AR. Maintenance of normal blood pressure is dependent on IP3R1-mediated regulation of eNOS. Proc Natl Acad Sci U S A 2016; 113:8532-8537. [PMID: 27402766 PMCID: PMC4968706 DOI: 10.1073/pnas.1608859113] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Endothelial cells (ECs) are critical mediators of blood pressure (BP) regulation, primarily via the generation and release of vasorelaxants, including nitric oxide (NO). NO is produced in ECs by endothelial NO synthase (eNOS), which is activated by both calcium (Ca(2+))-dependent and independent pathways. Here, we report that intracellular Ca(2+) release from the endoplasmic reticulum (ER) via inositol 1,4,5-trisphosphate receptor (IP3R) is required for Ca(2+)-dependent eNOS activation. EC-specific type 1 1,4,5-trisphosphate receptor knockout (IP3R1(-/-)) mice are hypertensive and display blunted vasodilation in response to acetylcholine (ACh). Moreover, eNOS activity is reduced in both isolated IP3R1-deficient murine ECs and human ECs following IP3R1 knockdown. IP3R1 is upstream of calcineurin, a Ca(2+)/calmodulin-activated serine/threonine protein phosphatase. We show here that the calcineurin/nuclear factor of activated T cells (NFAT) pathway is less active and eNOS levels are decreased in IP3R1-deficient ECs. Furthermore, the calcineurin inhibitor cyclosporin A, whose use has been associated with the development of hypertension, reduces eNOS activity and vasodilation following ACh stimulation. Our results demonstrate that IP3R1 plays a crucial role in the EC-mediated vasorelaxation and the maintenance of normal BP.
Collapse
Affiliation(s)
- Qi Yuan
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University Medical Center, New York, NY 10032; Wu Center for Molecular Cardiology, College of Physicians and Surgeons of Columbia University Medical Center, New York, NY 10032
| | - Jingyi Yang
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University Medical Center, New York, NY 10032; Wu Center for Molecular Cardiology, College of Physicians and Surgeons of Columbia University Medical Center, New York, NY 10032; Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Gaetano Santulli
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University Medical Center, New York, NY 10032; Wu Center for Molecular Cardiology, College of Physicians and Surgeons of Columbia University Medical Center, New York, NY 10032;
| | - Steven R Reiken
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University Medical Center, New York, NY 10032; Wu Center for Molecular Cardiology, College of Physicians and Surgeons of Columbia University Medical Center, New York, NY 10032
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University Medical Center, New York, NY 10032; Wu Center for Molecular Cardiology, College of Physicians and Surgeons of Columbia University Medical Center, New York, NY 10032
| | - Mindy M Kim
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University Medical Center, New York, NY 10032
| | - Brent W Osborne
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University Medical Center, New York, NY 10032
| | - Alain Lacampagne
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University Medical Center, New York, NY 10032; INSERM U1046, CNRS UMR-9214, Université de Montpellier, 34295 Montpellier, France
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China;
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University Medical Center, New York, NY 10032; Wu Center for Molecular Cardiology, College of Physicians and Surgeons of Columbia University Medical Center, New York, NY 10032; Department of Medicine, Columbia University, New York, NY 10032
| |
Collapse
|
194
|
Caillon A, Schiffrin EL. Role of Inflammation and Immunity in Hypertension: Recent Epidemiological, Laboratory, and Clinical Evidence. Curr Hypertens Rep 2016; 18:21. [PMID: 26846785 DOI: 10.1007/s11906-016-0628-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inflammation has been shown to play an important role in the mechanisms involved in the pathogenesis of hypertension. Accordingly, innate and adaptive immune responses participate in blood pressure elevation. Here, we describe recent immunity studies focusing on novel inflammatory mechanisms during the hypertensive process. Different subpopulations of cells involved in innate and adaptive immune responses, such as monocyte/macrophages and dendritic cells on the one hand and B and T lymphocytes on the other hand, play roles leading to vascular injury in hypertension. Innate lymphoid cells, including natural killer cells and γ/δ T cells, have recently been demonstrated to participate in hypertensive mechanisms triggering vascular inflammation. In summary, we discuss the evidence of interaction of these different inflammatory and immune components in both experimental models and in humans during the development of hypertension.
Collapse
Affiliation(s)
- Antoine Caillon
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd., Montreal, QC, Canada, H3T 1E2.
| | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd., Montreal, QC, Canada, H3T 1E2. .,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, #B-127, 3755 Côte-Ste-Catherine Rd., Montreal, QC, Canada, H3T 1E2.
| |
Collapse
|
195
|
Luo R, Liu C, Elliott SE, Wang W, Parchim N, Iriyama T, Daugherty PS, Tao L, Eltzschig HK, Blackwell SC, Sibai BM, Kellems RE, Xia Y. Transglutaminase is a Critical Link Between Inflammation and Hypertension. J Am Heart Assoc 2016; 5:JAHA.116.003730. [PMID: 27364991 PMCID: PMC5015405 DOI: 10.1161/jaha.116.003730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The pathogenesis of essential hypertension is multifactorial with different underlying mechanisms contributing to disease. We have recently shown that TNF superfamily member 14 LIGHT (an acronym for homologous to lymphotoxins, exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes, also known as TNFSF14) induces hypertension when injected into mice. Research reported here was undertaken to examine the role of transglutaminase (TGase) in LIGHT‐induced hypertension. Methods and Results Initial experiments showed that plasma and kidney TGase activity was induced by LIGHT infusion (13.91±2.92 versus 6.75±1.92 mU/mL and 19.86±3.55 versus 12.00±0.97 mU/10 μg) and was accompanied with hypertension (169±7.16 versus 117.17±11.57 mm Hg at day 14) and renal impairment (proteinuria, 61.33±23.21 versus 20.38±9.01 μg/mg; osmolality, 879.57±93.02 versus 1407.2±308.04 mmol/kg). The increase in renal TGase activity corresponded to an increase in RNA for the tissue TGase isoform, termed TG2. Pharmacologically, we showed that LIGHT‐induced hypertension and renal impairment did not occur in the presence of cystamine, a well‐known competitive inhibitor of TGase activity. Genetically, we showed that LIGHT‐mediated induction of TGase, along with hypertension and renal impairment, was dependent on interleukin‐6 and endothelial hypoxia inducible factor‐1α. We also demonstrated that interleukin‐6, endothelial hypoxia inducible factor‐1α, and TGase are required for LIGHT‐induced production of angiotensin receptor agonistic autoantibodies. Conclusions Thus, LIGHT‐induced hypertension, renal impairment, and production of angiotensin receptor agonistic autoantibodies require TGase, most likely the TG2 isoform. Our findings establish TGase as a critical link between inflammation, hypertension, and autoimmunity.
Collapse
Affiliation(s)
- Renna Luo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, TX Department of Nephrology, The First Xiangya Hospital of Central South University, Changsha, Hunan, PRC Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chen Liu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, TX
| | - Serra E Elliott
- Department of Chemical Engineering, University of California, Santa Barbara, CA
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, TX Department of Nephrology, The First Xiangya Hospital of Central South University, Changsha, Hunan, PRC
| | - Nicholas Parchim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, TX
| | - Takayuki Iriyama
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, TX Department of Obstetrics and Gynecology, University of Tokyo, Japan
| | - Patrick S Daugherty
- Department of Chemical Engineering, University of California, Santa Barbara, CA
| | - Lijian Tao
- Department of Nephrology, The First Xiangya Hospital of Central South University, Changsha, Hunan, PRC
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Colorado-Medical School, Denver, CO
| | - Sean C Blackwell
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Texas Health Science Center at Houston, TX
| | - Baha M Sibai
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Texas Health Science Center at Houston, TX
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, TX The University of Texas Graduate School of Biomedical Sciences at Houston, TX
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, TX The University of Texas Graduate School of Biomedical Sciences at Houston, TX
| |
Collapse
|
196
|
Caillon A, Grenier C, Grimaud L, Vessieres E, Guihot AL, Blanchard S, Lelievre E, Chabbert M, Foucher ED, Jeannin P, Beauvillain C, Abraham P, Loufrani L, Delneste Y, Henrion D. The angiotensin II type 2 receptor activates flow-mediated outward remodelling through T cells-dependent interleukin-17 production. Cardiovasc Res 2016; 112:515-25. [PMID: 27328880 DOI: 10.1093/cvr/cvw172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
AIMS The angiotensin II type 1 receptor (AT1R) through the activation of immune cells plays a key role in arterial inward remodelling and reduced blood flow in cardiovascular disorders. On the other side, flow (shear stress)-mediated outward remodelling (FMR), involved in collateral arteries growth in ischaemic diseases, allows revascularization. We hypothesized that the type 2 receptor (AT2R), described as opposing the effects of AT1R, could be involved in FMR. METHODS AND RESULTS We studied FMR using a model of ligation of feed arteries supplying collateral pathways in the mouse mesenteric arterial bed in vivo. Seven days after ligation, diameter increased by 30% in high flow (HF) arteries compared with normal flow vessels. FMR was absent in mice lacking AT2R. At Day 2, T lymphocytes expressing AT2R were present preferentially around HF arteries. FMR did not occur in athymic (nude) mice lacking T cells and in mice treated with anti-CD3ε antibodies. AT2R activation induced interleukin-17 production by memory T cells. Treatment of nude mice or AT2R-deficient mice with interleukin-17 restored diameter enlargement in HF arteries. Interleukin-17 increased NO-dependent relaxation and matrix metalloproteinases activity, both important in FMR. Remodelling of feeding arteries in the skin flap model of ischaemia was also absent in AT2R-deficient mice and in anti-interleukin-17-treated mice. Finally, remodelling, absent in 12-month-old mice, was restored by a treatment with the AT2R non-peptidic agonist C21. CONCLUSION AT2R-dependent interleukin-17 production by T lymphocyte is necessary for collateral artery growth and could represent a new therapeutic target in ischaemic disorders.
Collapse
Affiliation(s)
- Antoine Caillon
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France
| | - Céline Grenier
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Linda Grimaud
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Emilie Vessieres
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France Cardiovascular Functions In Vitro (CARFI) Facility, Angers University, F-49045 Angers, France
| | - Anne-Laure Guihot
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Simon Blanchard
- UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France Department of Immunology and Allergology, University Hospital, F-49045 Angers, France
| | - Eric Lelievre
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Marie Chabbert
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Etienne D Foucher
- UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France
| | - Pascale Jeannin
- UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France Department of Immunology and Allergology, University Hospital, F-49045 Angers, France
| | - Céline Beauvillain
- UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France Department of Immunology and Allergology, University Hospital, F-49045 Angers, France
| | - Pierre Abraham
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France Department of Vascular Medicine, University Hospital, F-49045 Angers, France
| | - Laurent Loufrani
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Yves Delneste
- UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France Department of Immunology and Allergology, University Hospital, F-49045 Angers, France
| | - Daniel Henrion
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France Cardiovascular Functions In Vitro (CARFI) Facility, Angers University, F-49045 Angers, France Department of Vascular Medicine, University Hospital, F-49045 Angers, France
| |
Collapse
|
197
|
Itani HA, Dikalova AE, McMaster WG, Nazarewicz RR, Bikineyeva AT, Harrison DG, Dikalov SI. Mitochondrial Cyclophilin D in Vascular Oxidative Stress and Hypertension. Hypertension 2016; 67:1218-27. [PMID: 27067720 PMCID: PMC4865418 DOI: 10.1161/hypertensionaha.115.07085] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022]
Abstract
Vascular superoxide (O˙2 (-)) and inflammation contribute to hypertension. The mitochondria are an important source of O˙2 (-); however, the regulation of mitochondrial O˙2 (-) and the antihypertensive potential of targeting the mitochondria remain poorly defined. Angiotensin II and inflammatory cytokines, such as interleukin 17A and tumor necrosis factor-α (TNFα) significantly contribute to hypertension. We hypothesized that angiotensin II and cytokines co-operatively induce cyclophilin D (CypD)-dependent mitochondrial O˙2 (-) production in hypertension. We tested whether CypD inhibition attenuates endothelial oxidative stress and reduces hypertension. CypD depletion in CypD(-/-) mice prevents overproduction of mitochondrial O˙2 (-) in angiotensin II-infused mice, attenuates hypertension by 20 mm Hg, and improves vascular relaxation compared with wild-type C57Bl/6J mice. Treatment of hypertensive mice with the specific CypD inhibitor Sanglifehrin A reduces blood pressure by 28 mm Hg, inhibits production of mitochondrial O˙2 (-) by 40%, and improves vascular relaxation. Angiotensin II-induced hypertension was associated with CypD redox activation by S-glutathionylation, and expression of the mitochondria-targeted H2O2 scavenger, catalase, abolished CypD S-glutathionylation, prevented stimulation mitochondrial O˙2 (-), and attenuated hypertension. The functional role of cytokine-angiotensin II interplay was confirmed by co-operative stimulation of mitochondrial O˙2 (-) by 3-fold in cultured endothelial cells and impairment of aortic relaxation incubated with combination of angiotensin II, interleukin 17A, and tumor necrosis factor-α which was prevented by CypD depletion or expression of mitochondria-targeted SOD2 and catalase. These data support a novel role of CypD in hypertension and demonstrate that targeting CypD decreases mitochondrial O˙2 (-), improves vascular relaxation, and reduces hypertension.
Collapse
Affiliation(s)
- Hana A Itani
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Anna E Dikalova
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - William G McMaster
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Rafal R Nazarewicz
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Alfiya T Bikineyeva
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - David G Harrison
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Sergey I Dikalov
- From the Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
198
|
Dendritic Cells and Their Role in Cardiovascular Diseases: A View on Human Studies. J Immunol Res 2016; 2016:5946807. [PMID: 27088098 PMCID: PMC4818818 DOI: 10.1155/2016/5946807] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/22/2016] [Accepted: 02/22/2016] [Indexed: 02/07/2023] Open
Abstract
The antigen-presenting dendritic cells (DCs) are key to the immunological response, with different functions ascribed ranging from cellular immune activation to induction of tolerance. Such immunological responses are involved in the pathophysiological mechanisms of cardiovascular diseases, with DCs shown to play a role in atherosclerosis, hypertension, and heart failure and most notably following heart transplantation. A better understanding of the interplay between the immune system and cardiovascular diseases will therefore be critical for developing novel therapeutic treatments as well as innovative monitoring tools for disease progression. As such, the present review will provide an overview of DCs involvement in the pathophysiology of cardiovascular diseases and how targeting these cells may have beneficial effects for the prognosis of patients.
Collapse
|
199
|
Itani HA, Xiao L, Saleh MA, Wu J, Pilkinton MA, Dale BL, Barbaro NR, Foss JD, Kirabo A, Montaniel KR, Norlander AE, Chen W, Sato R, Navar LG, Mallal SA, Madhur MS, Bernstein KE, Harrison DG. CD70 Exacerbates Blood Pressure Elevation and Renal Damage in Response to Repeated Hypertensive Stimuli. Circ Res 2016; 118:1233-43. [PMID: 26988069 DOI: 10.1161/circresaha.115.308111] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/17/2016] [Indexed: 01/11/2023]
Abstract
RATIONALE Accumulating evidence supports a role of adaptive immunity and particularly T cells in the pathogenesis of hypertension. Formation of memory T cells, which requires the costimulatory molecule CD70 on antigen-presenting cells, is a cardinal feature of adaptive immunity. OBJECTIVE To test the hypothesis that CD70 and immunologic memory contribute to the blood pressure elevation and renal dysfunction mediated by repeated hypertensive challenges. METHODS AND RESULTS We imposed repeated hypertensive challenges using either N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME)/high salt or repeated angiotensin II stimulation in mice. During these challenges effector memory T cells (T(EM)) accumulated in the kidney and bone marrow. In the L-NAME/high-salt model, memory T cells of the kidney were predominant sources of interferon-γ and interleukin-17A, known to contribute to hypertension. L-NAME/high salt increased macrophage and dendritic cell surface expression of CD70 by 3- to 5-fold. Mice lacking CD70 did not accumulate T(EM) cells and did not develop hypertension to either high salt or the second angiotensin II challenge and were protected against renal damage. Bone marrow-residing T(EM) cells proliferated and redistributed to the kidney in response to repeated salt feeding. Adoptively transferred T(EM) cells from hypertensive mice homed to the bone marrow and spleen and expanded on salt feeding of the recipient mice. CONCLUSIONS Our findings illustrate a previously undefined role of CD70 and long-lived T(EM) cells in the development of blood pressure elevation and end-organ damage that occur on delayed exposure to mild hypertensive stimuli. Interventions to prevent repeated hypertensive surges could attenuate formation of hypertension-specific T(EM) cells.
Collapse
Affiliation(s)
- Hana A Itani
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Liang Xiao
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mohamed A Saleh
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jing Wu
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mark A Pilkinton
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Bethany L Dale
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Natalia R Barbaro
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jason D Foss
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Annet Kirabo
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Kim R Montaniel
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Allison E Norlander
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Wei Chen
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ryosuke Sato
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - L Gabriel Navar
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Simon A Mallal
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Meena S Madhur
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Kenneth E Bernstein
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - David G Harrison
- From the Division of Clinical Pharmacology, Department of Medicine (H.A.I., L.X., M.A.S., J.W., B.L.D., J.D.F., A.K., K.R.M., A.E.N., W.C., M.S.M., D.G.H.) and Division of Infectious Diseases (M.A.P., S.A.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt (M.A.S.); Laboratory of Cardiovascular Pharmacology, Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil (N.R.B.); Department of Physiology and Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, LA (R.S., L.G.N.); and Departments of Biomedical Sciences (K.E.B.) and Pathology and Laboratory Medicine (K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA.
| |
Collapse
|
200
|
Chen S, Agrawal DK. Dysregulation of T cell subsets in the pathogenesis of hypertension. Curr Hypertens Rep 2016; 17:8. [PMID: 25633669 DOI: 10.1007/s11906-014-0521-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Essential hypertension (EH) and its complications have had a severe impact on public health. However, the underlying mechanisms of the pathogenesis of EH remain largely unknown. Recent investigations, predominantly in rats and mice, have provided evidence that dysregulation of distinct functions of T lymphocyte subsets is a potentially important mechanism in the pathogenesis of hypertension. We critically reviewed recent findings and propose an alternative explanation on the understanding of dysfunctional T lymphocyte subsets in the pathogenesis of hypertension. The hypothesis is that hypertensive stimuli, directly and indirectly, increase local IL-6 levels in the cardiovascular system and kidney, which may promote peripheral imbalance in the differentiation and ratio of Th17 and T regulatory cells. This results in increased IL-17 and decreased IL-10 in perivascular adipose tissue and adventitia contributing to the development of hypertension in experimental animal models. Further investigation in the field is warranted to inform new translational advances that will promote to understand the pathogenesis of EH and develop novel approaches to prevent and treat EH.
Collapse
Affiliation(s)
- Songcang Chen
- Department of Biomedical Sciences and Center for Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA,
| | | |
Collapse
|