151
|
Nasef A, Fouillard L, El-Taguri A, Lopez M. Human bone marrow-derived mesenchymal stem cells. Libyan J Med 2016. [DOI: 10.3402/ljm.v2i4.4729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- A. Nasef
- EA 1638 –Hématologie, Faculté de Médicine Saint-Antoine, Université de Pierre et Marie Curie, Paris VI, 27 Rue de Chaligny, 75012 Paris, France and
| | - L. Fouillard
- EA 1638 –Hématologie, Faculté de Médicine Saint-Antoine, Université de Pierre et Marie Curie, Paris VI, 27 Rue de Chaligny, 75012 Paris, France and
| | | | - M. Lopez
- EA 1638 –Hématologie, Faculté de Médicine Saint-Antoine, Université de Pierre et Marie Curie, Paris VI, 27 Rue de Chaligny, 75012 Paris, France and
| |
Collapse
|
152
|
Kimura K, Kishida T, Wakao J, Tanaka T, Higashi M, Fumino S, Aoi S, Furukawa T, Mazda O, Tajiri T. Tumor-homing effect of human mesenchymal stem cells in a TH-MYCN mouse model of neuroblastoma. J Pediatr Surg 2016; 51:2068-2073. [PMID: 27686479 DOI: 10.1016/j.jpedsurg.2016.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/12/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Human mesenchymal stem cells (hMSCs) are multipotent stem-like cells that are reported to have tumor-suppression effects and migration ability toward damaged tissues or tumors. The aim of this study was to analyze the tumor-homing ability of hMSCs and antitumor potency in a transgenic TH-MYCN mouse model of neuroblastoma (NB). METHODS hMSCs (3×106) labeled with DiR, a lipophilic near-infrared dye, were intraperitoneally (i.p.) or intravenously (i.v.) administered to the TH-MYCN mice. hMSC in vivo kinetics were assayed using the IVIS® imaging system for 24h after injection. Immunohistochemistry using human CD90 antibody was also performed to confirm the location of hMSCs in various organs and tumors. Furthermore, the survival curve of TH-MYCN mice treated with hMSCs was compared to a control group administered PBS. RESULTS i.p. hMSCs were recognized in the tumors of TH-MYCN mice by IVIS. hMSCs were also located inside the tumor tissue. Conversely, most of the i.v. hMSCs were captured by the lungs, and migration into the tumors was not noted. There was no significant difference in the survival between the hMSC and control groups. CONCLUSION The present study suggested that hMSCs may be potential tumor-specific therapeutic delivery vehicles in NB according to their homing potential to tumors.
Collapse
Affiliation(s)
- Koseki Kimura
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junko Wakao
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Tanaka
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mayumi Higashi
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigehisa Fumino
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeyoshi Aoi
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taizo Furukawa
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
153
|
Yang X, Hao J, Mao Y, Jin ZQ, Cao R, Zhu CH, Liu XH, Liu C, Ding XL, Wang XD, Chen D, Wu XZ. bFGF Promotes Migration and Induces Cancer-Associated Fibroblast Differentiation of Mouse Bone Mesenchymal Stem Cells to Promote Tumor Growth. Stem Cells Dev 2016; 25:1629-1639. [PMID: 27484709 DOI: 10.1089/scd.2016.0217] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumors recruit bone mesenchymal stem cells (BMSCs) to localize to tumor sites, which induces their conversion into cancer-associated fibroblasts (CAFs) that facilitate tumor progression. However, this process is poorly understood on the molecular level. In this study, we found that 4T1 breast cancer cells promoted the migration of BMSCs, and bFGF neutralizing antibody inhibited the migration of BMSCs induced by a tumor-conditioned medium. In addition, exogenous bFGF enhanced the migration of BMSCs in a dose-dependent manner in vitro. Furthermore, BMSCs promoted the proliferation of 4T1 tumor cells under BMSC-conditioned medium and in tumor xenograft model. Dramatically, BMSCs expressed CAF markers and produced collagen in the tumor microenvironment, and this transition was blocked by bFGF antibody. In addition, exogenous bFGF induced CAF differentiation of BMSCs. And bFGF increased phosphorylation of Erk1/2 and Smad3 in BMSCs and Erk inhibitor PD98059 was shown to block bFGF-induced Erk and Smad3 phosphorylation, suggesting that Erk/Smad3 signaling pathway involved in BMSC transdifferentiation induced by bFGF. Collectively, our results indicate that bFGF signaling plays indispensable roles in BMSC recruitment and transdifferentiation into CAFs and the consequent protumor effects, and targeting tumor stroma through bFGF inhibition maybe a promising strategy to suppress tumor progression.
Collapse
Affiliation(s)
- Xue Yang
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Jian Hao
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Yu Mao
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Zi-Qi Jin
- 2 Tianjin Medical University , Tianjin, China
| | - Rui Cao
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Cui-Hong Zhu
- 3 Zhong-Shan-Men In-Patient Department, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Xiao-Hui Liu
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Chang Liu
- 3 Zhong-Shan-Men In-Patient Department, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Xiu-Li Ding
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Xiao-Dong Wang
- 4 Tianjin Medical University General Hospital , Tianjin, China
| | - Dan Chen
- 2 Tianjin Medical University , Tianjin, China
| | - Xiong-Zhi Wu
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| |
Collapse
|
154
|
Immobilized phthalocyanines of magnesium, aluminum, and zinc in photodynamic treatment of mesenchymal stromal cells. Russ Chem Bull 2016. [DOI: 10.1007/s11172-016-1297-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
155
|
Bryukhovetskiy IS, Dyuizen IV, Shevchenko VE, Bryukhovetskiy AS, Mischenko PV, Milkina EV, Khotimchenko YS. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep 2016; 14:4511-4520. [PMID: 27748891 PMCID: PMC5101999 DOI: 10.3892/mmr.2016.5852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/29/2016] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma multiforme is an aggressive malignant brain tumor with terminal consequences. A primary reason for its resistance to treatment is associated with cancer stem cells (CSCs), of which there are currently no effective ways to destroy. It remains unclear what cancer cells become a target of stem cell migration, what the role of this process is in oncogenesis and what stem cell lines should be used in developing antitumor technologies. Using modern post‑genome technologies, the present study investigated the migration of human stem cells to cancer cells in vitro, the comparative study of cell proteomes of certain stem cells (including CSCs) was conducted and stem cell migration in vivo was examined. Of all glioblastoma cells, CSCs have the stability to attract normal stem cells. Critical differences in cell proteomes allow the consideration of hematopoietic stem cells (HSCs) as an instrument for interaction with glioblastoma CSCs. Following injection into the bloodstream of animals with glioblastoma, the majority of HSCs migrated to the tumor‑containing brain hemisphere and penetrated the tumor tissue. HSCs therefore are of potential use in the development of methods to target CSCs.
Collapse
Affiliation(s)
| | - Inessa V Dyuizen
- Far Eastern Federal University, School of Biomedicine, Vladivostok 690091, Russia
| | - Valeriy E Shevchenko
- Far Eastern Federal University, School of Biomedicine, Vladivostok 690091, Russia
| | | | - Polina V Mischenko
- Far Eastern Federal University, School of Biomedicine, Vladivostok 690091, Russia
| | - Elena V Milkina
- Far Eastern Federal University, School of Biomedicine, Vladivostok 690091, Russia
| | - Yuri S Khotimchenko
- Far Eastern Federal University, School of Biomedicine, Vladivostok 690091, Russia
| |
Collapse
|
156
|
Dynamic Tracking Human Mesenchymal Stem Cells Tropism following Smoke Inhalation Injury in NOD/SCID Mice. Stem Cells Int 2016; 2016:1691856. [PMID: 27725837 PMCID: PMC5048056 DOI: 10.1155/2016/1691856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
Multiple preclinical evidences have supported the potential value of mesenchymal stem cells (MSCs) for treatment of acute lung injury (ALI). However, few studies focus on the dynamic tropism of MSCs in animals with acute lung injury. In this study, we track systemically transplanted human bone marrow-derived mesenchymal stem cells (hBMSCs) in NOD/SCID mice with smoke inhalation injury (SII) through bioluminescence imaging (BLI). The results showed that hBMSCs systemically delivered into healthy NOD/SCID mouse initially reside in the lungs and then partially translocate to the abdomen after 24 h. Compared with the uninjured control group treated with hBMSCs, higher numbers of hBMSCs were found in the lungs of the SII NOD/SCID mice. In both the uninjured and SII mice, the BLI signals in the lungs steadily decreased over time and disappeared by 5 days after treatment. hBMSCs significantly attenuated lung injury, elevated the levels of KGF, decreased the levels of TNF-α in BALF, and inhibited inflammatory cell infiltration in the mice with SII. In conclusion, our findings demonstrated that more systemically infused hBMSCs localized to the lungs in mice with SII. hBMSC xenografts repaired smoke inhalation-induced lung injury in mice. This repair was maybe due to the effect of anti-inflammatory and secreting KGF of hMSCs but not associated with the differentiation of the hBMSCs into alveolar epithelial cells.
Collapse
|
157
|
Nowakowski A, Drela K, Rozycka J, Janowski M, Lukomska B. Engineered Mesenchymal Stem Cells as an Anti-Cancer Trojan Horse. Stem Cells Dev 2016; 25:1513-1531. [PMID: 27460260 DOI: 10.1089/scd.2016.0120] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cell-based gene therapy holds a great promise for the treatment of human malignancy. Among different cells, mesenchymal stem cells (MSCs) are emerging as valuable anti-cancer agents that have the potential to be used to treat a number of different cancer types. They have inherent migratory properties, which allow them to serve as vehicles for delivering effective therapy to isolated tumors and metastases. MSCs have been engineered to express anti-proliferative, pro-apoptotic, and anti-angiogenic agents that specifically target different cancers. Another field of interest is to modify MSCs with the cytokines that activate pro-tumorigenic immunity or to use them as carriers for the traditional chemical compounds that possess the properties of anti-cancer drugs. Although there is still controversy about the exact function of MSCs in the tumor settings, the encouraging results from the preclinical studies of MSC-based gene therapy for a large number of tumors support the initiation of clinical trials.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Drela
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Rozycka
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland .,2 Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
158
|
Quaranta P, Focosi D, Freer G, Pistello M. Tweaking Mesenchymal Stem/Progenitor Cell Immunomodulatory Properties with Viral Vectors Delivering Cytokines. Stem Cells Dev 2016; 25:1321-41. [PMID: 27476883 DOI: 10.1089/scd.2016.0145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal Stem Cells (MSCs) can be found in various body sites. Their main role is to differentiate into cartilage, bone, muscle, and fat cells to allow tissue maintenance and repair. During inflammation, MSCs exhibit important immunomodulatory properties that are not constitutive, but require activation, upon which they may exert immunosuppressive functions. MSCs are defined as "sensors of inflammation" since they modulate their ability of interfering with the immune system both in vitro and in vivo upon interaction with different factors. MSCs may influence immune responses through different mechanisms, such as direct cell-to-cell contact, release of soluble factors, and through the induction of anergy and apoptosis. Human MSCs are defined as plastic-adherent cells expressing specific surface molecules. Lack of MHC class II antigens makes them appealing as allogeneic tools for the therapy of both autoimmune diseases and cancer. MSC therapeutic potential could be highly enhanced by the expression of exogenous cytokines provided by transduction with viral vectors. In this review, we attempt to summarize the results of a great number of in vitro and in vivo studies aimed at improving the ability of MSCs as immunomodulators in the therapy of autoimmune, degenerative diseases and cancer. We will also compare results obtained with different vectors to deliver heterologous genes to these cells.
Collapse
Affiliation(s)
- Paola Quaranta
- 1 Department of Translational Research and New Technologies in Medicine and Surgery, Virology Section and Retrovirus Center, University of Pisa , Pisa, Italy
| | - Daniele Focosi
- 2 North-Western Tuscany Blood Bank, Pisa University Hospital , Pisa, Italy
| | - Giulia Freer
- 1 Department of Translational Research and New Technologies in Medicine and Surgery, Virology Section and Retrovirus Center, University of Pisa , Pisa, Italy .,3 Virology Unit, Pisa University Hospital , Pisa, Italy
| | - Mauro Pistello
- 1 Department of Translational Research and New Technologies in Medicine and Surgery, Virology Section and Retrovirus Center, University of Pisa , Pisa, Italy .,3 Virology Unit, Pisa University Hospital , Pisa, Italy
| |
Collapse
|
159
|
Tang YM, Bao WM, Yang JH, Ma LK, Yang J, Xu Y, Yang LH, Sha F, Xu ZY, Wu HM, Zhou W, Li Y, Li YH. Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells. Mol Med Rep 2016; 14:2717-24. [PMID: 27485485 DOI: 10.3892/mmr.2016.5537] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 05/23/2016] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma is the fifth most common type of cancer worldwide and remains difficult to treat. The aim of this study was to investigate the effects of mesenchymal stem cells (MSCs) derived from the umbilical cord (UC‑MSCs) on HepG2 hepatocellular carcinoma cells. UC‑MSCs were co‑cultured with HepG2 cells and biomarkers of UC‑MSCs were analyzed by flow cytometry. mRNA and protein expression of genes were determined by reverse transcription‑polymerase chain reaction and flow cytometry, respectively. Passage three and seven UC‑MSCs expressed CD29, CD44, CD90 and CD105, whereas CD34 and CD45 were absent on these cells. Co‑culture with UC‑MSCs inhibited proliferation and promoted apoptosis of HepG2 cells in a time‑dependent manner. The initial seeding density of UC‑MSCs also influenced the proliferation and apoptosis of HepG2 cells, with an increased number of UC‑MSCs causing enhanced proliferation inhibition and cell apoptosis. Co‑culture with UC‑MSCs downregulated mRNA and protein expression of α‑fetoprotein (AFP), Bcl‑2 and Survivin in HepG2 cells. Thus, UC‑MSCs may inhibit growth and promote apoptosis of HepG2 cells through downregulation of AFP, Bcl‑2 and Survivin. US-MSCs may be used as a novel therapy for treating hepatocellular carcinoma in the future.
Collapse
Affiliation(s)
- Ying-Mei Tang
- Department of Gastroenterology, The 2nd Affiliated Hospital of Kunming Medical University, Yunnan Research Center for Liver Diseases, Kunming, Yunnan 650033, P.R. China
| | - Wei-Min Bao
- Department of General Surgery, Yunnan Provincial 1st People's Hospital, Kunming, Yunnan 650032, P.R. China
| | - Jin-Hui Yang
- Department of Gastroenterology, The 2nd Affiliated Hospital of Kunming Medical University, Yunnan Research Center for Liver Diseases, Kunming, Yunnan 650033, P.R. China
| | - Lin-Kun Ma
- Department of Ophthamology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650033, P.R. China
| | - Jing Yang
- Department of Gastroenterology, The 2nd Affiliated Hospital of Kunming Medical University, Yunnan Research Center for Liver Diseases, Kunming, Yunnan 650033, P.R. China
| | - Ying Xu
- Department of Gastroenterology, The 2nd Affiliated Hospital of Kunming Medical University, Yunnan Research Center for Liver Diseases, Kunming, Yunnan 650033, P.R. China
| | - Li-Hong Yang
- Department of Gastroenterology, The 2nd Affiliated Hospital of Kunming Medical University, Yunnan Research Center for Liver Diseases, Kunming, Yunnan 650033, P.R. China
| | - Feng Sha
- Department of Gastroenterology, The 2nd Affiliated Hospital of Kunming Medical University, Yunnan Research Center for Liver Diseases, Kunming, Yunnan 650033, P.R. China
| | - Zhi-Yuan Xu
- Department of Gastroenterology, The 2nd Affiliated Hospital of Kunming Medical University, Yunnan Research Center for Liver Diseases, Kunming, Yunnan 650033, P.R. China
| | - Hua-Mei Wu
- Department of Gastroenterology, The 2nd Affiliated Hospital of Kunming Medical University, Yunnan Research Center for Liver Diseases, Kunming, Yunnan 650033, P.R. China
| | - Wei Zhou
- Department of Gastroenterology, The 2nd Affiliated Hospital of Kunming Medical University, Yunnan Research Center for Liver Diseases, Kunming, Yunnan 650033, P.R. China
| | - Yan Li
- Department of Gastroenterology, The 2nd Affiliated Hospital of Kunming Medical University, Yunnan Research Center for Liver Diseases, Kunming, Yunnan 650033, P.R. China
| | - Yu-Hua Li
- Department of Gastroenterology, The 2nd Affiliated Hospital of Kunming Medical University, Yunnan Research Center for Liver Diseases, Kunming, Yunnan 650033, P.R. China
| |
Collapse
|
160
|
Lamichhane SP, Arya N, Kohler E, Xiang S, Christensen J, Shastri VP. Recapitulating epithelial tumor microenvironment in vitro using three dimensional tri-culture of human epithelial, endothelial, and mesenchymal cells. BMC Cancer 2016; 16:581. [PMID: 27484993 PMCID: PMC4971675 DOI: 10.1186/s12885-016-2634-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/27/2016] [Indexed: 01/01/2023] Open
Abstract
Background Three-dimensional (3-D) cultures of cancer cells can potentially bridge the gap between 2-D drug screening and in vivo xenografts. The objective of this study was to characterize the cellular and extracellular matrix characteristics of spheroids composed of human lung epithelial cells (epi), pulmonary vascular endothelial (endo) cells, and human marrow-derived mesenchymal stems cells (MSCs). Methods Spheroids composed of epi/endo/MSCs, termed herein as synthetic tumor microenvironment mimics (STEMs), were prepared by the hanging drop method. Cellular composition and distribution in the STEMs was characterized using fluorescence microscopy. Induction of reactive oxygen species and upregulation of efflux transporters was quantified using fluorometry and PCR, respectively, and phenotypic markers were qualitatively assessed using immunohistochemistry. Results STEMs exhibited three unique characteristics not captured in other spheroid cultures namely, the presence of a spheroid core devoid of epithelial cells and primarily composed of MSCs, a small viable population of endothelial cells hypothesized to be closely associated with MSCs within the hypoxic core, and discrete regions with high expression for vimentin and cytokeratin-18, whose co-expression is co-related with enhanced metastasis. Although cells within STEMs show elevated levels of reactive oxygen species and mRNA for ABC-B1, an efflux transporter associated with drug resistance, they exhibited only modest resistance to paclitaxel and gemcitabine in comparison to 2-D tri-cultures. Conclusions The epi/endo/MSC spheroid model described herein offers a promising platform for understanding tumor biology and drug testing in vitro. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2634-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Surya P Lamichhane
- Institute for Macromolecular Chemistry, University of Freiburg, Hermann-Staudinger-Haus Stefan-Meier-Straße 31, 79104, Freiburg, Germany
| | - Neha Arya
- Institute for Macromolecular Chemistry, University of Freiburg, Hermann-Staudinger-Haus Stefan-Meier-Straße 31, 79104, Freiburg, Germany.,Helmholtz Virtual Institute on Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513, Teltow, Germany
| | - Esther Kohler
- Institute for Macromolecular Chemistry, University of Freiburg, Hermann-Staudinger-Haus Stefan-Meier-Straße 31, 79104, Freiburg, Germany
| | - Shengnan Xiang
- Institute for Macromolecular Chemistry, University of Freiburg, Hermann-Staudinger-Haus Stefan-Meier-Straße 31, 79104, Freiburg, Germany
| | - Jon Christensen
- Institute for Macromolecular Chemistry, University of Freiburg, Hermann-Staudinger-Haus Stefan-Meier-Straße 31, 79104, Freiburg, Germany.,BIOSS-Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, Hermann-Staudinger-Haus Stefan-Meier-Straße 31, 79104, Freiburg, Germany. .,BIOSS-Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany. .,Helmholtz Virtual Institute on Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513, Teltow, Germany.
| |
Collapse
|
161
|
Gao C, Lin Z, Jurado-Sánchez B, Lin X, Wu Z, He Q. Stem Cell Membrane-Coated Nanogels for Highly Efficient In Vivo Tumor Targeted Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4056-62. [PMID: 27337109 DOI: 10.1002/smll.201600624] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/18/2016] [Indexed: 05/18/2023]
Abstract
Stem cell membrane-coated nanogels can effectively evade clearance of the immune system, enhance the tumor targeting properties and antitumor chemotherapy efficacy of gelatin nanogels loaded doxorubicin in mice.
Collapse
Affiliation(s)
- Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nano Technology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080, China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nano Technology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080, China
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871, Madrid, Spain
| | - Xiankun Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nano Technology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080, China
| | - Zhiguang Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nano Technology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080, China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nano Technology Research Center, Harbin Institute of Technology, Yikuangjie 2, Harbin, 150080, China
| |
Collapse
|
162
|
Norozi F, Ahmadzadeh A, Shahrabi S, Vosoughi T, Saki N. Mesenchymal stem cells as a double-edged sword in suppression or progression of solid tumor cells. Tumour Biol 2016; 37:11679-11689. [PMID: 27440203 DOI: 10.1007/s13277-016-5187-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Tumor cells are able to attract mesenchymal stem cells (MSCs) to primary tumor site. On the other hand, MSCs secrete various factors to attract tumor cells towards BM. In this review, in addition to assessment of MSCs function at tumor sites and their impact on growth and metastasis of tumor cells, the importance of MSC in attraction of malignant cells to BM and their involvement in drug resistance of tumor cells have also been studied. Relevant literature was identified by a PubMed search (2000-2015) of English-language literature using the terms mesenchymal stem cells, cancer cell, metastasis, and tumor microenvironment. MSCs migrate towards tumor microenvironment and are involved in both pro-tumorigenic and antitumorigenic functions. The dual function of MSCs at tumor sites is dependent upon a variety of factors, including the type and origin of MSCs, the cancer cell line under study, in vivo or in vitro conditions, the factors secreted by MSCs and interactions between MSCs, host immune cells and cancer cells. Therefore, MSCs can be regarded both as friends and enemies of cancer cells. Although the role of a number of pathways, including IL-6/STAT3 pathway, has been indicated in controlling the interaction between MSCs and tumor cells, other mechanisms by which MSCs can control the tumor cells are not clear yet. A better understanding of these mechanisms through further studies can determine the exact role of MSCs in cancer progression and identify them as important therapeutic agents or targets.
Collapse
Affiliation(s)
- Fatemeh Norozi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Ahmadzadeh
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of biochemistry and hematology, Faculty of Medicine, Semnan University of medical sciences, Semnan, Iran
| | - Tina Vosoughi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
163
|
Wu J, Liu Y, Tang Y, Wang S, Wang C, Li Y, Su X, Tian J, Tian Y, Pan J, Su Y, Zhu H, Teng Z, Lu G. Synergistic Chemo-Photothermal Therapy of Breast Cancer by Mesenchymal Stem Cell-Encapsulated Yolk-Shell GNR@HPMO-PTX Nanospheres. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17927-17935. [PMID: 27356586 DOI: 10.1021/acsami.6b05677] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mesenchymal stem cells (MSCs) have attracted increasing attention as vehicles for cancer treatment. Herein, MSC-based synergistic oncotherapy strategy is presented for the first time. To achieve this goal, yolk-shell structured gold nanorod embedded hollow periodic mesoporous organosilica nanospheres (GNR@HPMOs) with high paclitaxel (PTX) loading capability and excellent photothermal transfer ability upon near-infrared (NIR) light irradiation are first prepared. Cytotoxicity and migration assays show that the viability and tumor-homing capability of MSCs are well-retained after internalization of high content of PTX loaded GNR@HPMOs (denoted as GNR@HPMOs-PTX). In vitro experiments show the GNR@HPMOs-PTX loaded MSCs (GNR@HPMOs-PTX@MSCs) possess synergistic chemo-photothermal killing effects for breast cancer cells. Also, photoacoustic imaging shows that the MSCs can improve dispersion and distribution in tumor tissue for GNR@HPMOs-PTX after intratumoral injection. In vivo experiments in breast cancer model of nude mice further demonstrate that the GNR@HPMOs-PTX@MSCs significantly inhibit tumor growth, suggesting their great potential for synergistic therapy of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaodan Su
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications , Nanjing 210046, P. R. China
| | - Jihong Tian
- Department of Radiotherapy, the Second Affiliated Hospital of Nanjing Medical University , Nanjing 210011, P. R. China
| | | | | | | | | | - Zhaogang Teng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Guangming Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| |
Collapse
|
164
|
Aggressiveness Niche: Can It Be the Foster Ground for Cancer Metastasis Precursors? Stem Cells Int 2016; 2016:4829106. [PMID: 27493669 PMCID: PMC4963571 DOI: 10.1155/2016/4829106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/15/2016] [Indexed: 12/26/2022] Open
Abstract
The relationship between tumor initiation and tumor progression can follow a linear projection in which all tumor cells are equally endowed with the ability to progress into metastasis. Alternatively, not all tumor cells are equal genetically and/or epigenetically, and only few cells are induced to become metastatic tumor cells. The location of these cells within the tumor can also impact the fate of these cells. The most inner core of a tumor where an elevated pressure of adverse conditions forms, such as necrosis-induced inflammation and hypoxia-induced immunosuppressive environment, seems to be the most fertile ground to generate such tumor cells with metastatic potential. Here we will call this necrotic/hypoxic core the “aggressiveness niche” and will present data to support its involvement in generating these metastatic precursors. Within this niche, interaction of hypoxia-surviving cells with the inflammatory microenvironment influenced by newly recruited mesenchymal stromal cells (MSCs), tumor-associated macrophages (TAMs), and other types of cells and the establishment of bidirectional interactions between them elevate the aggressiveness of these tumor cells. Additionally, immune evasion properties induced in these cells most likely contribute in the formation and maintenance of such aggressiveness niche.
Collapse
|
165
|
Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells enhances the recruitment of CD11b+ myeloid cells to the lungs and facilitates B16-F10 melanoma colonization. Exp Cell Res 2016; 345:141-9. [DOI: 10.1016/j.yexcr.2015.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 01/01/2023]
|
166
|
Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc Natl Acad Sci U S A 2016; 113:7551-6. [PMID: 27317748 DOI: 10.1073/pnas.1600363113] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fibroblasts are common cell types in cancer stroma and lay down collagen required for survival and growth of cancer cells. Although some cancer therapy strategies target tumor fibroblasts, their origin remains controversial. Multiple publications suggest circulating mesenchymal precursors as a source of tumor-associated fibroblasts. However, we show by three independent approaches that tumor fibroblasts derive primarily from local, sessile precursors. First, transplantable tumors developing in a mouse expressing green fluorescent reporter protein (EGFP) under control of the type I collagen (Col-I) promoter (COL-EGFP) had green stroma, whereas we could not find COL-EGFP(+) cells in tumors developing in the parabiotic partner lacking the fluorescent reporter. Lack of incorporation of COL-EGFP(+) cells from the circulation into tumors was confirmed in parabiotic pairs of COL-EGFP mice and transgenic mice developing autochthonous intestinal adenomas. Second, transplantable tumors developing in chimeric mice reconstituted with bone marrow cells from COL-EGFP mice very rarely showed stromal fibroblasts expressing EGFP. Finally, cancer cells injected under full-thickness COL-EGFP skin grafts transplanted in nonreporter mice developed into tumors containing green stromal cells. Using multicolor in vivo confocal microscopy, we found that Col-I-expressing fibroblasts constituted approximately one-third of the stromal mass and formed a continuous sheet wrapping the tumor vessels. In summary, tumors form their fibroblastic stroma predominantly from precursors present in the local tumor microenvironment, whereas the contribution of bone marrow-derived circulating precursors is rare.
Collapse
|
167
|
Hagenhoff A, Bruns CJ, Zhao Y, von Lüttichau I, Niess H, Spitzweg C, Nelson PJ. Harnessing mesenchymal stem cell homing as an anticancer therapy. Expert Opin Biol Ther 2016; 16:1079-92. [PMID: 27270211 DOI: 10.1080/14712598.2016.1196179] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs) are non-hematopoietic progenitor cells that have been exploited as vehicles for cell-based cancer therapy. The general approach is based on the innate potential of adoptively applied MSC to undergo facilitated recruitment to malignant tissue. MSC from different tissue sources have been engineered using a variety of therapy genes that have shown efficacy in solid tumor models. AREAS COVERED In this review we will focus on the current developments of MSC-based gene therapy, in particular the diverse approaches that have been used for MSCs-targeted tumor therapy. We also discuss some outstanding issues and general prospects for their clinical application. EXPERT OPINION The use of modified mesenchymal stem cells as therapy vehicles for the treatment of solid tumors has progressed to the first generation of clinical trials, but the general field is still in its infancy. There are many questions that need to be addressed if this very complex therapy approach is widely applied in clinical settings. More must be understood about the mechanisms underlying tumor tropism and we need to identify the optimal source of the cells used. Outstanding issues also include the therapy transgenes used, and which tumor types represent viable targets for this therapy.
Collapse
Affiliation(s)
- Anna Hagenhoff
- a Department of Pediatrics and Pediatric Oncology Center, Klinikum rechts der Isar , Technical University , Munich , Germany
| | - Christiane J Bruns
- b Department of Surgery , Otto-von-Guericke University , Magdeburg , Germany
| | - Yue Zhao
- b Department of Surgery , Otto-von-Guericke University , Magdeburg , Germany
| | - Irene von Lüttichau
- a Department of Pediatrics and Pediatric Oncology Center, Klinikum rechts der Isar , Technical University , Munich , Germany
| | - Hanno Niess
- c Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery , University of Munich , Munich , Germany
| | - Christine Spitzweg
- d Department of Internal Medicine II , University of Munich , Munich , Germany
| | - Peter J Nelson
- e Clinical Biochemistry Group, Medizinische Klinik und Poliklinik IV , University of Munich , Munich , Germany
| |
Collapse
|
168
|
Bonomi A, Steimberg N, Benetti A, Berenzi A, Alessandri G, Pascucci L, Boniotti J, Coccè V, Sordi V, Pessina A, Mazzoleni G. Paclitaxel-releasing mesenchymal stromal cells inhibit the growth of multiple myeloma cells in a dynamic 3D culture system. Hematol Oncol 2016; 35:693-702. [PMID: 27283119 DOI: 10.1002/hon.2306] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/31/2016] [Accepted: 04/21/2016] [Indexed: 02/03/2023]
Abstract
Multiple myeloma is an aggressive tumour able to suppress osteoblastogenesis probably mediated by bone marrow mesenchymal stromal cells (BM-MSCs) that can also support plasma cell growth/survival. The use of MSCs for multiple myeloma therapy is a controversial topic because of the contradictory results on the capacity of MSCs to inhibit or to promote cancer growth. Our previous studies demonstrated that MSCs could be loaded with Paclitaxel (PTX) and used to deliver the drug in situ in amount affecting tumour growth (in vitro and in vivo). Therefore, independently on the discussed action of MSCs in myeloma, MSCs could represent a 'trojan horse' to vehicle and deliver anti-tumour agents into bone marrow. This study confirms, by an in vitro 3D dynamic culture system, that PTX loaded BM-MSCs (PTXr-MSCs) are active on the proliferation of RPMI 8226, a human myeloma cell line. Our results demonstrated a dramatic suppression of myeloma cell growth by PTXr-MSCs, suggesting that drug loaded MSCs could be a tool to deliver drug into the bone marrow. Drug releasing MSCs provide a therapeutic approach to potentiate the existing treatments against a very aggressive malignancy as multiple myeloma. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Arianna Bonomi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Nathalie Steimberg
- Laboratory of Tissue Engineering, Anatomy and Physiopathology Unit, Department of Clinical and Experimental Sciences, School of Medicine, University of Brescia, Brescia, Italy
| | - Anna Benetti
- Department of Clinical and Experimental Sciences, Institute of Pathological Anatomy, School of Medicine, University of Brescia, Brescia, Italy
| | - Angiola Berenzi
- Department of Clinical and Experimental Sciences, Institute of Pathological Anatomy, School of Medicine, University of Brescia, Brescia, Italy
| | - Giulio Alessandri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Jennifer Boniotti
- Laboratory of Tissue Engineering, Anatomy and Physiopathology Unit, Department of Clinical and Experimental Sciences, School of Medicine, University of Brescia, Brescia, Italy
| | - Valentina Coccè
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS S. Raffaele Scientific Institute, Milan, Italy
| | - Augusto Pessina
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Giovanna Mazzoleni
- Laboratory of Tissue Engineering, Anatomy and Physiopathology Unit, Department of Clinical and Experimental Sciences, School of Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
169
|
Abstract
Stem cell-based drug delivery for cancer therapy has steadily gained momentum in the past decade as several studies have reported stem cells' inherent tropism towards tumors. Since this science is still in its early stages and there are many factors that could significantly impact tumor tropism of stem cells, some contradictory results have been observed. This review starts by examining a number of proof-of-concept studies that demonstrate the potential application of stem cells in cancer therapy. Studies that illustrate stem cells' tumor tropism and discuss the technical difficulties that could impact the therapeutic outcome are also highlighted. The discussion also emphasizes stem cell imaging/tracking, as it plays a crucial role in performing reliable dose-response studies and evaluating the therapeutic outcome of treatment protocols. In each section, the pros and cons associated with each method are highlighted, limitations are underlined, and potential solutions are discussed. The overall intention is to familiarize the reader with important practical issues related to stem cell cancer tropism and in vivo tracking, underline the shortcomings, and emphasize critical factors that need to be considered for effective translation of this science into the clinic.
Collapse
|
170
|
Dehaini D, Fang RH, Zhang L. Biomimetic strategies for targeted nanoparticle delivery. Bioeng Transl Med 2016; 1:30-46. [PMID: 29313005 PMCID: PMC5689512 DOI: 10.1002/btm2.10004] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/02/2023] Open
Abstract
Nanoparticle‐based drug delivery and imaging platforms have become increasingly popular over the past several decades. Among different design parameters that can affect their performance, the incorporation of targeting functionality onto nanoparticle surfaces has been a widely studied subject. Targeted formulations have the ability to improve efficacy and function by positively modulating tissue localization. Many methods exist for creating targeted nanoformulations, including the use of custom biomolecules such as antibodies or aptamers. More recently, a great amount of focus has been placed on biomimetic targeting strategies that leverage targeting interactions found directly in nature. Such strategies, which have been painstakingly selected over time by the process of evolution to maximize functionality, oftentimes enable scientists to forgo the specialized discovery processes associated with many traditional ligands and help to accelerate development of novel nanoparticle formulations. In this review, we categorize and discuss in‐depth recent works in this growing field of bioinspired research.
Collapse
Affiliation(s)
- Diana Dehaini
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| | - Ronnie H Fang
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| | - Liangfang Zhang
- Dept. of NanoEngineering and Moores Cancer Center University of California San Diego, La Jolla CA 92093
| |
Collapse
|
171
|
Kalber TL, Ordidge KL, Southern P, Loebinger MR, Kyrtatos PG, Pankhurst QA, Lythgoe MF, Janes SM. Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2016; 11:1973-83. [PMID: 27274229 PMCID: PMC4869665 DOI: 10.2147/ijn.s94255] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Magnetic hyperthermia – a potential cancer treatment in which superparamagnetic iron oxide nanoparticles (SPIONs) are made to resonantly respond to an alternating magnetic field (AMF) and thereby produce heat – is of significant current interest. We have previously shown that mesenchymal stem cells (MSCs) can be labeled with SPIONs with no effect on cell proliferation or survival and that within an hour of systemic administration, they migrate to and integrate into tumors in vivo. Here, we report on some longer term (up to 3 weeks) post-integration characteristics of magnetically labeled human MSCs in an immunocompromized mouse model. We initially assessed how the size and coating of SPIONs dictated the loading capacity and cellular heating of MSCs. Ferucarbotran® was the best of those tested, having the best like-for-like heating capability and being the only one to retain that capability after cell internalization. A mouse model was created by subcutaneous flank injection of a combination of 0.5 million Ferucarbotran-loaded MSCs and 1.0 million OVCAR-3 ovarian tumor cells. After 2 weeks, the tumors reached ~100 µL in volume and then entered a rapid growth phase over the third week to reach ~300 µL. In the control mice that received no AMF treatment, magnetic resonance imaging (MRI) data showed that the labeled MSCs were both incorporated into and retained within the tumors over the entire 3-week period. In the AMF-treated mice, heat increases of ~4°C were observed during the first application, after which MRI indicated a loss of negative contrast, suggesting that the MSCs had died and been cleared from the tumor. This post-AMF removal of cells was confirmed by histological examination and also by a reduced level of subsequent magnetic heating effect. Despite this evidence for an AMF-elicited response in the SPION-loaded MSCs, and in contrast to previous reports on tumor remission in immunocompetent mouse models, in this case, no significant differences were measured regarding the overall tumor size or growth characteristics. We discuss the implications of these results on the clinical delivery of hyperthermia therapy to tumors and on the possibility that a preferred therapeutic route may involve AMF as an adjuvant to an autologous immune response.
Collapse
Affiliation(s)
- Tammy L Kalber
- Lungs for Living Research Centre, UCL Respiratory, University College London, UK; UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, UK
| | - Katherine L Ordidge
- Lungs for Living Research Centre, UCL Respiratory, University College London, UK; UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, UK
| | - Paul Southern
- Healthcare Biomagnetics Laboratory, University College London, London, UK
| | - Michael R Loebinger
- Lungs for Living Research Centre, UCL Respiratory, University College London, UK
| | - Panagiotis G Kyrtatos
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, UK; Healthcare Biomagnetics Laboratory, University College London, London, UK
| | | | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, UK
| |
Collapse
|
172
|
Vartanian A, Karshieva S, Dombrovsky V, Belyavsky A. Melanoma educates mesenchymal stromal cells towards vasculogenic mimicry. Oncol Lett 2016; 11:4264-4268. [PMID: 27313776 DOI: 10.3892/ol.2016.4523] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 04/08/2016] [Indexed: 01/05/2023] Open
Abstract
Accumulating evidence suggests that mesenchymal stromal cells (MSCs) are recruited to the tumor, and promote tumor development and growth. The present study was performed to investigate the communication between aggressive melanoma and MSCs in vasculogenic mimicry (VM). Normal human MSCs plated on Matrigel were unable to form capillary-like structures (CLSs). By contrast, MSCs co-cultured with aggressive melanoma cell lines, namely, Mel Cher, Mel Kor and Mel P, generated CLSs. Significantly, MSCs co-cultured with poorly aggressive melanoma cells, namely, Mel Me, failed to form CLSs. To identify factors responsible for VM, the effects of vascular endothelial growth factor A (VEGFA), pro-epidermal growth factor, basic fibroblast growth factor and stromal cell-derived factor 1α on the formation of CLSs by MSCs were tested. VM was induced by the addition of VEGFA, whereas other cytokines were inefficient. To confirm the hypothesis that aggressive tumor cells can increase the vasculogenic ability of MSCs, a standard B16/F10 mouse melanoma test system was used. MSCs isolated from the adipose tissues of C57BL/6 mice with melanoma formed a vascular-like network on Matrigel, whereas MSCs from healthy mice failed to form such structures. This study provides the first direct evidence that melanoma tumors educate MSCs to engage in VM. The education may occur distantly. These findings offer promise for novel therapeutic directions in the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Amalia Vartanian
- Department of Experimental Diagnosis and Biotherapy of Tumors, Blokhin Russian Cancer Research Center, Moscow 115478, Russia
| | - Saida Karshieva
- Laboratory of Stem and Progenitor Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Vladislav Dombrovsky
- Department of Experimental Diagnosis and Biotherapy of Tumors, Blokhin Russian Cancer Research Center, Moscow 115478, Russia
| | - Alexander Belyavsky
- Laboratory of Stem and Progenitor Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
173
|
Zhang J, Hou L, Wu X, Zhao D, Wang Z, Hu H, Fu Y, He J. Inhibitory effect of genetically engineered mesenchymal stem cells with Apoptin on hepatoma cells in vitro and in vivo. Mol Cell Biochem 2016; 416:193-203. [PMID: 27142531 DOI: 10.1007/s11010-016-2707-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/19/2016] [Indexed: 01/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumor and has become one of the most frequent causes of cancer death in the world. The rate of post-operative recurrence and metastasis are still high even though after surgical resection. It is a difficult problem with extraordinary importance for the clinical treatment. So stem cell therapy becomes one of the anti-tumor biotherapy methods which is exploring. Due to the feature of homing to tumor site and immunosuppressive, mesenchymal stem cells (MSCs) have the capacity of gene treatment to tumor as a vehicle. Apoptin derived from chicken anemia virus is one kind of protein with an inherent ability to lyse cancer cells while leaving normal cells unharmed. Adenovirus (Ad) vectors can be modified to deliver therapeutic genes with the advantages of low toxicity and high transfer capacity. Now it has not been reported that combining MSCs and Adenovirus with Apoptin are used in HCC treatment. This study intends to construct recombinant adenovirus which expresses Apoptin and then infects human bone marrow MSCs, and explore the migration of MSCs to the hepatoma cells and inhibitory effect of genetically engineered mesenchymal stem cells with Apoptin on hepatoma cells in vitro and in vivo. Our research successfully established the recombinant Ad which was constructed by Ad system, and obtained MSCs which could secrete Apoptin. We found that both the modified MSCs with Apoptin and their conditional medium significantly inhibited the proliferation of liver cancer cells HepG2, which provided a novel means and experimental basis for stem cell treatment for HCC. This study tries to search for a stem cell therapy for cancers, which will provide a new approach and experimental basis for the clinical treatment of cancer. At the same time, this research will also provide experimental basis for a novel in vivo drug delivery system through stem cells as vehicle, which will resolve immune rejection induced by repeated applications of drug directly delivered by Ad vectors and reduce the high cost of a large-scale production and purification of exogenous drugs.
Collapse
Affiliation(s)
- Jingsi Zhang
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Lingling Hou
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Xiaoyan Wu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Diandian Zhao
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Ziling Wang
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Honggang Hu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Yuanhui Fu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Jinsheng He
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| |
Collapse
|
174
|
Cordani M, Pacchiana R, Butera G, D'Orazi G, Scarpa A, Donadelli M. Mutant p53 proteins alter cancer cell secretome and tumour microenvironment: Involvement in cancer invasion and metastasis. Cancer Lett 2016; 376:303-9. [PMID: 27045472 DOI: 10.1016/j.canlet.2016.03.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/06/2023]
Abstract
An ever-increasing number of studies highlight the role of mutant p53 proteins in the alteration of cancer cell secretome and in the modification of tumour microenvironment, sustaining an invasive phenotype of cancer cell. The knowledge of the molecular mechanisms underlying the interplay between mutant p53 proteins and the microenvironment is becoming fundamental for the identification of both efficient anticancer therapeutic strategies and novel serum biomarkers. In this review, we summarize the novel findings concerning the regulation of secreted molecules by cancer cells bearing mutant TP53 gene. In particular, we highlight data from available literature, suggesting that mutant p53 proteins are able to (i) alter the secretion of enzymes involved in the modulation of extracellular matrix components; (ii) alter the secretion of inflammatory cytokines; (iii) increase the extracellular acidification; and (iv) regulate the crosstalk between cancer and stromal cells.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Giovanna Butera
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Gabriella D'Orazi
- Unit of Cellular Networks and Therapeutic Targets, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Aldo Scarpa
- Applied Research on Cancer Centre (ARC-Net) and Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|
175
|
Szade K, Zukowska M, Szade A, Collet G, Kloska D, Kieda C, Jozkowicz A, Dulak J. Spheroid-plug model as a tool to study tumor development, angiogenesis, and heterogeneity in vivo. Tumour Biol 2016; 37:2481-96. [PMID: 26385771 PMCID: PMC4842223 DOI: 10.1007/s13277-015-4065-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/06/2015] [Indexed: 12/12/2022] Open
Abstract
Subcutaneous injection of the tumor cell suspension is a simple and commonly used tool for studying tumor development in vivo. However, subcutaneous models poorly resemble tumor complexity due to the fast growth not reflecting the natural course. Here, we describe an application of the new spheroid-plug model to combine the simplicity of subcutaneous injection with improved resemblance to natural tumor progression. Spheroid-plug model relies on in vitro formation of tumor spheroids, followed by injection of single tumor spheroid subcutaneously in Matrigel matrix. In spheroid-plug model, tumors grow slower in comparison to tumors formed by injection of cell suspension as assessed by 3D ultrasonography (USG) and in vivo bioluminescence measurements. The slower tumor growth rate in spheroid-plug model is accompanied by reduced necrosis. The spheroid-plug model ensures increased and more stable vascularization of tumor than classical subcutaneous tumor model as demonstrated by 3D USG Power Doppler examination. Flow cytometry analysis showed that tumors formed from spheroids have enhanced infiltration of endothelial cells as well as hematopoietic and progenitor cells with stem cell phenotype (c-Kit(+) and Sca-1(+)). They also contain more tumor cells expressing cancer stem cell marker CXCR4. Here, we show that spheroid-plug model allows investigating efficiency of anticancer drugs. Treatment of spheroid-plug tumors with known antiangiogenic agent axitinib decreased their size and viability. The antiangiogenic activity of axitinib was higher in spheroid-plug model than in classical model. Our results indicate that spheroid-plug model imitates natural tumor growth and can become a valuable tool for cancer research.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Axitinib
- Biomarkers, Tumor/metabolism
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Collagen/metabolism
- Drug Combinations
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Imidazoles/pharmacology
- Indazoles/pharmacology
- Injections, Subcutaneous/methods
- Laminin/metabolism
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Proteoglycans/metabolism
- Receptors, CXCR4/metabolism
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, Orleans, France
| | - Monika Zukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Guillaume Collet
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, Orleans, France
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Laboratory of Bioresponsive Materials, University of California, San Diego, CA, USA
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Claudine Kieda
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, Orleans, France
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
- Malopolska Centre of Biotechnology, Krakow, Poland.
| |
Collapse
|
176
|
Yin PT, Han E, Lee KB. Engineering Stem Cells for Biomedical Applications. Adv Healthc Mater 2016; 5:10-55. [PMID: 25772134 PMCID: PMC5810416 DOI: 10.1002/adhm.201400842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/14/2015] [Indexed: 12/19/2022]
Abstract
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.
Collapse
Affiliation(s)
- Perry T Yin
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Edward Han
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
177
|
Baines A, Martin P, Rorie C. Current and Emerging Targeting Strategies for Treatment of Pancreatic Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:277-320. [DOI: 10.1016/bs.pmbts.2016.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
178
|
Rhee KJ, Lee JI, Eom YW. Mesenchymal Stem Cell-Mediated Effects of Tumor Support or Suppression. Int J Mol Sci 2015; 16:30015-33. [PMID: 26694366 PMCID: PMC4691158 DOI: 10.3390/ijms161226215] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can exhibit a marked tropism towards site of tumors. Many studies have reported that tumor progression and metastasis increase by MSCs. In contrast, other studies have shown that MSCs suppress growth of tumors. MSCs contribute to tumor growth promotion by several mechanisms: (1) transition to tumor-associated fibroblasts; (2) suppression of immune response; (3) promotion of angiogenesis; (4) stimulation of epithelial-mesenchymal transition (EMT); (5) contribution to the tumor microenvironment; (6) inhibition of tumor cell apoptosis; and (7) promotion of tumor metastasis. In contrast to the tumor-promoting properties, MSCs inhibit tumor growth by increasing inflammatory infiltration, inhibiting angiogenesis, suppressing Wnt signaling and AKT signaling, and inducing cell cycle arrest and apoptosis. In this review, we will discuss potential mechanisms by which MSC mediates tumor support or suppression and then the possible tumor-specific therapeutic strategies using MSCs as delivery vehicles, based on their homing potential to tumors.
Collapse
Affiliation(s)
- Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju 26493, Korea.
| | - Jong In Lee
- Department of Hematology-Oncology, Wonju College of Medicine, Yonsei University, 20 Ilsan-ro, Wonju 26426, Korea.
| | - Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei University, 20 Ilsan-ro, Wonju 26426, Korea.
| |
Collapse
|
179
|
Kim J, Hall RR, Lesniak MS, Ahmed AU. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions. Viruses 2015; 7:6200-17. [PMID: 26633462 PMCID: PMC4690850 DOI: 10.3390/v7122921] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis—all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting.
Collapse
Affiliation(s)
- Janice Kim
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Robert R Hall
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Maciej S Lesniak
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Atique U Ahmed
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
180
|
Malignant transformation of bone marrow stromal cells induced by the brain glioma niche in rats. Mol Cell Biochem 2015; 412:1-10. [PMID: 26590986 DOI: 10.1007/s11010-015-2602-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/29/2015] [Indexed: 01/10/2023]
Abstract
Normal human embryonic stem cells (hESCs) can develop neoplastic cancer stem cell (CSC) properties after coculture with transformed hESCs in vitro. In the present study, the influence of the tumor microenvironment on malignant transformation of bone marrow stromal cells (BMSCs) was studied after allografting a mixture of enhanced green fluorescent protein (EGFP)-labeled BMSCs and C6 glioma cells into the rat brain to understand the influence of the cellular environment, especially the tumor environment, on the transformation of grafted BMSCs in the rat brain. We performed intracerebral transplantation in the rat brain using EGFP-labeled BMSCs coinjected with C6 tumor cells. After transplantation, the EGFP-labeled cells were isolated from the tumor using fluorescence-activated cell sorting, and the characteristics of the recovered cells were investigated. Glioma-specific biomarkers of the sorted cells and the biological characteristics of the tumors were analyzed. The BMSCs isolated from the cografts were transformed into glioma CSCs, as indicated by the marked expression of the glioma marker GFAP in glioma cells, and of Nestin and CD133 in neural stem cells and CSCs, as well as rapid cell growth, decreased level of the tumor suppressor gene p53, increased level of the oncogene murine double minute gene 2 (MDM2), and recapitulation of glioma tissues in the brain. These data suggest that BMSCs can be transformed into CSCs, which can be further directed toward glioma formation under certain conditions, supporting the notion that the tumor microenvironment is involved in transforming normal BMSCs into glial CSCs.
Collapse
|
181
|
Sinha D, Chong L, George J, Schlüter H, Mönchgesang S, Mills S, Li J, Parish C, Bowtell D, Kaur P. Pericytes Promote Malignant Ovarian Cancer Progression in Mice and Predict Poor Prognosis in Serous Ovarian Cancer Patients. Clin Cancer Res 2015; 22:1813-24. [PMID: 26589433 DOI: 10.1158/1078-0432.ccr-15-1931] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/30/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study was to investigate the role of pericytes in regulating malignant ovarian cancer progression. EXPERIMENTAL DESIGN The pericyte mRNA signature was used to interrogate ovarian cancer patient datasets to determine its prognostic value for recurrence and mortality. Xenograft models of ovarian cancer were used to determine if co-injection with pericytes affected tumor growth rate and metastasis, whereas co-culture models were utilized to investigate the direct effect of pericytes on ovarian cancer cells. Pericyte markers were used to stain patient tissue samples to ascertain their use in prognosis. RESULTS Interrogation of two serous ovarian cancer patient datasets [the Australian Ovarian Cancer Study, n= 215; and the NCI TCGA (The Cancer Genome Atlas), n= 408] showed that a high pericyte score is highly predictive for poor patient prognosis. Co-injection of ovarian cancer (OVCAR-5 & -8) cells with pericytes in a xenograft model resulted in accelerated ovarian tumor growth, and aggressive metastases, without altering tumor vasculature. Pericyte co-culture in vitro promoted ovarian cancer cell proliferation and invasion. High αSMA protein levels in patient tissue microarrays were correlated with more aggressive disease and earlier recurrence. CONCLUSIONS High pericyte score provides the best means to date of identifying patients with ovarian cancer at high risk of rapid relapse and mortality (mean progression-free survival time < 9 months). The stroma contains rare yet extremely potent locally resident mesenchymal stem cells-a subset of "cancer-associated fibroblasts" that promote aggressive tumor growth and metastatic dissemination, underlying the prognostic capacity of a high pericyte score to strongly predict earlier relapse and mortality.
Collapse
Affiliation(s)
- Devbarna Sinha
- Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Lynn Chong
- Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Joshy George
- Cancer Genetics & Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Holger Schlüter
- Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Susann Mönchgesang
- Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Stuart Mills
- Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jason Li
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Christopher Parish
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - David Bowtell
- Cancer Genetics & Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia. Department of Pathology, University of Melbourne, Parkville, Victoria, Australia. Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Pritinder Kaur
- Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia. Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
182
|
Kang S, Bhang SH, Hwang S, Yoon JK, Song J, Jang HK, Kim S, Kim BS. Mesenchymal Stem Cells Aggregate and Deliver Gold Nanoparticles to Tumors for Photothermal Therapy. ACS NANO 2015; 9:9678-9690. [PMID: 26348606 DOI: 10.1021/acsnano.5b02207] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gold nanoparticles (AuNPs) have been extensively studied for photothermal cancer therapy because AuNPs can generate heat upon near-infrared irradiation. However, improving their tumor-targeting efficiency and optimizing the nanoparticle size for maximizing the photothermal effect remain challenging. We demonstrate that mesenchymal stem cells (MSCs) can aggregate pH-sensitive gold nanoparticles (PSAuNPs) in mildly acidic endosomes, target tumors, and be used for photothermal therapy. These aggregated structures had a higher cellular retention in comparison to pH-insensitive, control AuNPs (cAuNPs), which is important for the cell-based delivery process. PSAuNP-laden MSCs (MSC-PSAuNPs) injected intravenously to tumor-bearing mice show a 37-fold higher tumor-targeting efficiency (5.6% of the injected dose) and 8.3 °C higher heat generation compared to injections of cAuNPs after irradiation, which results in a significantly enhanced anticancer effect.
Collapse
Affiliation(s)
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University , Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
183
|
Liu L, Zhang SX, Aeran R, Liao W, Lu M, Polovin G, Pone EJ, Zhao W. Exogenous marker-engineered mesenchymal stem cells detect cancer and metastases in a simple blood assay. Stem Cell Res Ther 2015; 6:181. [PMID: 26391980 PMCID: PMC4578609 DOI: 10.1186/s13287-015-0151-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/05/2015] [Accepted: 08/11/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) are adult multipotent stem cells that possess regenerative and immunomodulatory properties. They have been widely investigated as therapeutic agents for a variety of disease conditions, including tissue repair, inflammation, autoimmunity, and organ transplantation. Importantly, systemically infused MSCs selectively home to primary and metastatic tumors, though the molecular mechanisms of tumor tropism of MSCs remain incompletely understood. We have exploited the active and selective MSCs homing to cancer microenvironments to develop a rapid and selective blood test for the presence of cancer. Methods We tested the concept of using transplanted MSCs as the basis for a simple cancer blood test. MSCs were engineered to express humanized Gaussia luciferase (hGluc). In a minimally invasive fashion, hGluc secreted by MSCs into circulation as a reporter for cancer presence, was assayed to probe whether MSCs co-localize with and persist in cancerous tissue. Results In vitro, hGluc secreted by engineered MSCs was detected stably over a period of days in the presence of serum. In vivo imaging showed that MSCs homed to breast cancer lung metastases and persisted longer in tumor-bearing mice than in tumor-free mice (P < 0.05). hGluc activity in blood of tumor-bearing mice was significantly higher than in their tumor-free counterparts (P < 0.05). Conclusions Both in vitro and in vivo data show that MSCs expressing hGluc can identify and report small tumors or metastases in a simple blood test format. Our novel and simple stem cell-based blood test can potentially be used to screen, detect, and monitor cancer and metastasis at early stages and during treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0151-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linan Liu
- Department of Pharmaceutical Sciences, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Department of Biomedical Engineering, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Chao Family Comprehensive Cancer Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.
| | - Shirley X Zhang
- Department of Pharmaceutical Sciences, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Department of Biomedical Engineering, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Chao Family Comprehensive Cancer Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.
| | - Rangoli Aeran
- Department of Pharmaceutical Sciences, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Department of Biomedical Engineering, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Chao Family Comprehensive Cancer Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.
| | - Wenbin Liao
- Department of Pharmaceutical Sciences, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Department of Biomedical Engineering, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Chao Family Comprehensive Cancer Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.
| | - Mengrou Lu
- Department of Pharmaceutical Sciences, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Department of Biomedical Engineering, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Chao Family Comprehensive Cancer Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.
| | - George Polovin
- Department of Pharmaceutical Sciences, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Department of Biomedical Engineering, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Chao Family Comprehensive Cancer Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840, USA.
| | - Egest J Pone
- Department of Pharmaceutical Sciences, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Department of Biomedical Engineering, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Chao Family Comprehensive Cancer Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.
| | - Weian Zhao
- Department of Pharmaceutical Sciences, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Department of Biomedical Engineering, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Chao Family Comprehensive Cancer Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.
| |
Collapse
|
184
|
Pessina A, Leonetti C, Artuso S, Benetti A, Dessy E, Pascucci L, Passeri D, Orlandi A, Berenzi A, Bonomi A, Coccè V, Ceserani V, Ferri A, Dossena M, Mazzuca P, Ciusani E, Ceccarelli P, Caruso A, Portolani N, Sisto F, Parati E, Alessandri G. Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:82. [PMID: 26264809 PMCID: PMC4534150 DOI: 10.1186/s13046-015-0200-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are considered an important therapeutic tool in cancer therapy. They possess intrinsic therapeutic potential and can also be in vitro manipulated and engineered to produce therapeutic molecules that can be delivered to the site of diseases, through their capacity to home pathological tissues. We have recently demonstrated that MSCs, upon in vitro priming with anti-cancer drug, become drug-releasing mesenchymal cells (Dr-MCs) able to strongly inhibit cancer cells growth. METHODS Murine mesenchymal stromal cells were loaded with Paclitaxel (Dr-MCsPTX) according to a standardized procedure and their ability to inhibit the growth of a murine B16 melanoma was verified by in vitro assays. The anti-metastatic activity of Dr-MCsPTX was then studied in mice injected i.v. with B16 melanoma cells that produced lung metastatic nodules. Lung nodules were counted under a dissecting stereomicroscope and metastasis investigated by histological analysis. RESULTS We found that three i.v. injections of Dr-MCsPTX on day 5, 10 and 15 after tumor injection almost completely abolished B16 lung metastasis. Dr-MCsPTX arrested into lung by interacting with endothelium and migrate toward cancer nodule through a complex mechanism involving primarily mouse lung stromal cells (mL-StCs) and SDF-1/CXCR4/CXCR7 axis. CONCLUSIONS Our results show for the first time that Dr-MCsPTX are very effective to inhibit lung metastasis formation. Actually, a cure for lung metastasis in humans is mostly unlikely and we do not know whether a therapy combining engineered MSCs and Dr-MCs may work synergistically. However, we think that our approach using Dr-MCs loaded with PTX may represent a new valid and additive therapeutic tool to fight lung metastases and, perhaps, primary lung cancers in human.
Collapse
Affiliation(s)
- Augusto Pessina
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, Milan, 20133, Italy.
| | - Carlo Leonetti
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Simona Artuso
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Benetti
- Department of Clinical and Experimental Sciences, Institute of Pathological Anatomy, University of Brescia, Brescia, Italy
| | - Enrico Dessy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Daniela Passeri
- Department of Biopathology and Image Diagnostics, Anatomic Pathology Institute, University of Rome 'Tor Vergata', Rome, Italy
| | - Augusto Orlandi
- Department of Biopathology and Image Diagnostics, Anatomic Pathology Institute, University of Rome 'Tor Vergata', Rome, Italy
| | - Angiola Berenzi
- Department of Clinical and Experimental Sciences, Institute of Pathological Anatomy, University of Brescia, Brescia, Italy
| | - Arianna Bonomi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, Milan, 20133, Italy
| | - Valentina Coccè
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, Milan, 20133, Italy
| | - Valentina Ceserani
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Anna Ferri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Marta Dossena
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Pietro Mazzuca
- Department of Microbiology, Brescia University, Brescia, Italy
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Neurogenetic Medicine, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Piero Ceccarelli
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Arnaldo Caruso
- Department of Microbiology, Brescia University, Brescia, Italy
| | - Nazario Portolani
- Department of Medical and Surgical Sciences, University of Brescia, Brescia, Italy
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, Milan, 20133, Italy
| | - Eugenio Parati
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Giulio Alessandri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan, Italy
| |
Collapse
|
185
|
Wildburger NC, Zhou S, Zacharias LG, Kroes RA, Moskal JR, Schmidt M, Mirzaei P, Gumin J, Lang FF, Mechref Y, Nilsson CL. Integrated Transcriptomic and Glycomic Profiling of Glioma Stem Cell Xenografts. J Proteome Res 2015; 14:3932-9. [PMID: 26185906 DOI: 10.1021/acs.jproteome.5b00549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bone marrow-derived human mesenchymal stem cells (BM-hMSCs) have the innate ability to migrate or home toward and engraft in tumors such as glioblastoma (GBM). Because of this unique property of BM-hMSCs, we have explored their use for cell-mediated therapeutic delivery for the advancement of GBM treatment. Extravasation, the process by which blood-borne cells—such as BM-hMSCs—enter the tissue, is a highly complex process but is heavily dependent upon glycosylation for glycan-glycan and glycan-protein adhesion between the cell and endothelium. However, in a translationally significant preclinical glioma stem cell xenograft (GSCX) model of GBM, BM-hMSCs demonstrate unequal tropism toward these tumors. We hypothesized that there may be differences in the glycan compositions between the GSCXs that elicit homing ("attractors") and those that do not ("non-attractors") that facilitate or impede the engraftment of BM-hMSCs in the tumor. In this study, glycotranscriptomic analysis revealed significant heterogeneity within the attractor phenotype and the enrichment of high mannose type N-glycan biosynthesis in the non-attractor phenotype. Orthogonal validation with topical PNGase F deglycosylation on the tumor regions of xenograft tissue, followed by nLC-ESI-MS, confirmed the presence of increased high mannose type N-glycans in the non-attractors. Additional evidence provided by our glycomic study revealed the prevalence of terminal sialic acid-containing N-glycans in non-attractors and terminal galactose and N-acetyl-glucosamine N-glycans in attractors. Our results provide the first evidence for differential glycomic profiles in attractor and non-attractor GSCXs and extend the scope of molecular determinates in BM-hMSC homing to glioma.
Collapse
Affiliation(s)
| | - Shiyue Zhou
- Department of Chemistry and Biochemistry, Texas Tech University , 2500 Broadway, Lubbock, Texas 79409, United States
| | - Lauren G Zacharias
- Department of Chemistry and Biochemistry, Texas Tech University , 2500 Broadway, Lubbock, Texas 79409, United States
| | - Roger A Kroes
- The Falk Center for Molecular Therapeutics, McCormick School of Engineering and Applied Sciences, Northwestern University , 1801 Maple Street, Evanston, Illinois 60201, United States
| | - Joseph R Moskal
- The Falk Center for Molecular Therapeutics, McCormick School of Engineering and Applied Sciences, Northwestern University , 1801 Maple Street, Evanston, Illinois 60201, United States
| | - Mary Schmidt
- The Falk Center for Molecular Therapeutics, McCormick School of Engineering and Applied Sciences, Northwestern University , 1801 Maple Street, Evanston, Illinois 60201, United States
| | - Parvin Mirzaei
- Department of Chemistry and Biochemistry, Texas Tech University , 2500 Broadway, Lubbock, Texas 79409, United States
| | - Joy Gumin
- Department of Neurosurgery and The Brain Tumor Center, The University of Texas M.D. Anderson Cancer Center , 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Frederick F Lang
- Department of Neurosurgery and The Brain Tumor Center, The University of Texas M.D. Anderson Cancer Center , 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University , 2500 Broadway, Lubbock, Texas 79409, United States
| | | |
Collapse
|
186
|
CHEN HUI, TANG QIULING, WU XIAOYING, XIE LICHUN, LIN LIMIN, HO GUYU, MA LIAN. Differentiation of human umbilical cord mesenchymal stem cells into germ-like cells in mouse seminiferous tubules. Mol Med Rep 2015; 12:819-28. [PMID: 25815600 PMCID: PMC4438948 DOI: 10.3892/mmr.2015.3528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 07/21/2014] [Indexed: 02/05/2023] Open
Abstract
Our previous study demonstrated that human umbilical cord mesenchymal stem cells (HUMSCs) were capable of differentiation into germ cells in vitro. To assess this potential in vivo, HUMSCs were microinjected into the lumen of seminiferous tubules of immunocompetent mice, which were treated with busulfan to destroy endogenous spermatogenesis. Bromodeoxyuridine labeling studies demonstrated that HUMSCs survived in the tubule for at least 120 days, exhibited a round cell shape typical of proliferating or differentiating germ cells, migrated to the basement of the tubule, where proliferating spermatogonia reside and returned to the luminal compartment, where differentiating spermatids and spermatozoa reside. The migration pattern resembled that of germ cell development in vivo. Immunohistochemical and colocalization studies revealed that transplanted HUMSCs expressed the germ cell markers octamer-binding transcription factor 4, α6 integrin, C-kit and VASA, confirming the germ cell differentiation. In addition, it was observed that tubules transplanted with HUMSCs exhibited marked improvement in the histological features damaged by the chemotherapeutic busulfan, as judged by morphology and quantitative histology. Taken together, these data demonstrated the capacity of HUMSCs to form germ cells in the testes and to repair testicular tissue. These findings suggest a potential utility of HUMSCs to treat the infertility and testicular insufficiency caused by cancer therapeutics.
Collapse
Affiliation(s)
- HUI CHEN
- Department of Neurosurgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - QIU-LING TANG
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - XIAO-YING WU
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - LI-CHUN XIE
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - LI-MIN LIN
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - GU-YU HO
- Department of Transformation Medical Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - LIAN MA
- Department of Pediatrics, Shenzhen Pingshan Maternal and Child Health Hospital, Shenzhen, Guangdong 518122, P.R. China
- Correspondence to: Professor Lian Ma, Department of Pediatrics, Shenzhen Pingshan Maternal and Child Health Hospital, 6 Longxing South Road, Shenzhen, Guangdong 518122, P.R. China, E-mail:
| |
Collapse
|
187
|
Sakai Y, Yamanouchi K, Ohashi K, Koike M, Utoh R, Hasegawa H, Muraoka I, Suematsu T, Soyama A, Hidaka M, Takatsuki M, Kuroki T, Eguchi S. Vascularized subcutaneous human liver tissue from engineered hepatocyte/fibroblast sheets in mice. Biomaterials 2015; 65:66-75. [PMID: 26142777 DOI: 10.1016/j.biomaterials.2015.06.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
Abstract
Subcutaneous liver tissue engineering is an attractive and minimally invasive approach used to curative treat hepatic failure and inherited liver diseases. However, graft failure occurs frequently due to insufficient infiltration of blood vessels (neoangiogenesis), while the maintenance of hepatocyte phenotype and function requires in vivo development of the complex cellular organization of the hepatic lobule. Here we describe a subcutaneous human liver construction allowing for rapidly vascularized grafts by transplanting engineered cellular sheets consisting of human primary hepatocytes adhered onto a fibroblast layer. The engineered hepatocyte/fibroblast sheets (EHFSs) showed superior expression levels of vascularization-associated growth factors (vascular endothelial growth factor, transforming growth factor beta 1, and hepatocyte growth factor) in vitro. EHFSs developed into vascularized subcutaneous human liver tissues contained glycogen stores, synthesized coagulation factor IX, and showed significantly higher synthesis rates of liver-specific proteins (albumin and alpha 1 anti-trypsin) in vivo than tissues from hepatocyte-only sheets. The present study describes a new approach for vascularized human liver organogenesis under mouse skin. This approach could prove valuable for establishing novel cell therapies for liver diseases.
Collapse
Affiliation(s)
- Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kosho Yamanouchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Kazuo Ohashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Makiko Koike
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Rie Utoh
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hideko Hasegawa
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Izumi Muraoka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Takashi Suematsu
- Central Electron Microscope Laboratory, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Mitsuhisa Takatsuki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Tamotsu Kuroki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| |
Collapse
|
188
|
Kim SW, Khang D. Multiple cues on the physiochemical, mesenchymal, and intracellular trafficking interactions with nanocarriers to maximize tumor target efficiency. Int J Nanomedicine 2015; 10:3989-4008. [PMID: 26124658 PMCID: PMC4476429 DOI: 10.2147/ijn.s83951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Over the past 60 years, numerous medical strategies have been employed to overcome neoplasms. In fact, with the exception of lung, bronchial, and pancreatic cancers, the 5-year survival rate of most cancers currently exceeds 70%. However, the quality of life of patients during chemotherapy remains unsatisfactory despite the increase in survival rate. The side effects of current chemotherapies stem from poor target efficiency at tumor sites due to the uncontrolled biodistribution of anticancer agents (ie, conventional or current approved nanodrugs). This review discusses the effective physiochemical factors for determining biodistribution of nanocarriers and, ultimately, increasing tumor-targeting probability by avoiding the reticuloendothelial system. Second, stem cell-conjugated nanotherapeutics was addressed to maximize the tumor searching ability and to inhibit tumor growth. Lastly, physicochemical material properties of anticancer nanodrugs were discussed for targeting cellular organelles with modulation of drug-release time. A better understanding of suggested topics will increase the tumor-targeting ability of anticancer drugs and, ultimately, promote the quality of life of cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Sang-Woo Kim
- Nanomedicine Laboratory, Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | - Dongwoo Khang
- Nanomedicine Laboratory, Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
189
|
Abstract
Pancreatic cancer is one of the most lethal malignancies. Significant progresses have been made in understanding of pancreatic cancer pathogenesis, including appreciation of precursor lesions or premalignant pancreatic intraepithelial neoplasia (PanINs), description of sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and identification of major genetic and epigenetic events and the biological impact of those events on malignant behavior. However, the currently used therapeutic strategies targeting tumor epithelial cells, which are potent in cell culture and animal models, have not been successful in the clinic. Presumably, therapeutic resistance of pancreatic cancer is at least in part due to its drastic desmoplasis, which is a defining hallmark for and circumstantially contributes to pancreatic cancer development and progression. Improved understanding of the dynamic interaction between cancer cells and the stroma is important to better understanding pancreatic cancer biology and to designing effective intervention strategies. This review focuses on the origination, evolution and disruption of stromal molecular and cellular components in pancreatic cancer, and their biological effects on pancreatic cancer pathogenesis.
Collapse
Affiliation(s)
- Dacheng Xie
- Department of Medical Oncology and Tumor Institute, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keping Xie
- Department of Medical Oncology and Tumor Institute, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
190
|
Wildburger NC, Wood PL, Gumin J, Lichti CF, Emmett MR, Lang FF, Nilsson CL. ESI-MS/MS and MALDI-IMS Localization Reveal Alterations in Phosphatidic Acid, Diacylglycerol, and DHA in Glioma Stem Cell Xenografts. J Proteome Res 2015; 14:2511-9. [PMID: 25880480 DOI: 10.1021/acs.jproteome.5b00076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Glioblastoma (GBM) is the most common adult primary brain tumor. Despite aggressive multimodal therapy, the survival of patients with GBM remains dismal. However, recent evidence has demonstrated the promise of bone marrow-derived mesenchymal stem cells (BM-hMSCs) as a therapeutic delivery vehicle for anti-glioma agents due to their ability to migrate or home to human gliomas. While several studies have demonstrated the feasibility of harnessing the homing capacity of BM-hMSCs for targeted delivery of cancer therapeutics, it is now also evident, based on clinically relevant glioma stem cell (GSC) models of GBMs, that BM-hMSCs demonstrate variable tropism toward these tumors. In this study, we compared the lipid environment of GSC xenografts that attract BM-hMSCs (N = 9) with those that do not attract (N = 9) to identify lipid modalities that are conducive to homing of BM-hMSC to GBMs. We identified lipids directly from tissue by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) and electrospray ionization-tandem mass spectrometry (ESI-MS/MS) of lipid extracts. Several species of signaling lipids, including phosphatidic acid (PA 36:2, PA 40:5, PA 42:5, and PA 42:7) and diacylglycerol (DAG 34:0, DAG 34:1, DAG 36:1, DAG 38:4, DAG 38:6, and DAG 40:6), were lower in attracting xenografts. Molecular lipid images showed that PA (36:2), DAG (40:6), and docosahexaenoic acid (DHA) were decreased within tumor regions of attracting xenografts. Our results provide the first evidence for lipid signaling pathways and lipid-mediated tumor inflammatory responses in the homing of BM-hMSCs to GSC xenografts. Our studies provide new fundamental knowledge on the molecular correlates of the differential homing capacity of BM-hMSCs toward GSC xenografts.
Collapse
Affiliation(s)
| | - Paul L Wood
- ∥Department of Physiology and Pharmacology, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, Tennessee 37752, United States
| | | | - Cheryl F Lichti
- §UTMB Cancer Center, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-1074, United States
| | - Mark R Emmett
- §UTMB Cancer Center, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-1074, United States
| | | | - Carol L Nilsson
- §UTMB Cancer Center, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-1074, United States
| |
Collapse
|
191
|
The role of adipose-derived stem cells in breast cancer progression and metastasis. Stem Cells Int 2015; 2015:120949. [PMID: 26000019 PMCID: PMC4427098 DOI: 10.1155/2015/120949] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/26/2014] [Indexed: 12/15/2022] Open
Abstract
Conventional breast cancer extirpation involves resection of parts of or the whole gland, resulting in asymmetry and disfiguration. Given the unsatisfactory aesthetic outcomes, patients often desire postmastectomy reconstructive procedures. Autologous fat grafting has been proposed for reconstructive purposes for decades to restore form and anatomy after mastectomy. Fat has the inherent advantage of being autologous tissue and the most natural-appearing filler, but given its inconsistent engraftment and retention rates, it lacks reliability. Implementation of autologous fat grafts with cellular adjuncts, such as multipotent adipose-derived stem cells (ADSCs), has shown promising results. However, it is pertinent and critical to question whether these cells could promote any residual tumor cells to proliferate, differentiate, or metastasize or even induce de novo carcinogenesis. Thus far, preclinical and clinical study findings are discordant. A trend towards potential promotion of both breast cancer growth and invasion by ADSCs found in basic science studies was indeed not confirmed in clinical trials. Whether experimental findings eventually correlate with or will be predictive of clinical outcomes remains unclear. Herein, we aimed to concisely review current experimental findings on the interaction of mesenchymal stem cells and breast cancer, mainly focusing on ADSCs as a promising tool for regenerative medicine, and discuss the implications in clinical translation.
Collapse
|
192
|
Li L, Wang D, Zhou J, Cheng Y, Liang T, Zhang G. Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer. PLoS One 2015; 10:e0123350. [PMID: 25880317 PMCID: PMC4400015 DOI: 10.1371/journal.pone.0123350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 03/02/2015] [Indexed: 01/14/2023] Open
Abstract
The mesenchymal stem cells (MSCs) derived from amniotic fluid (AF) have become an attractive stem cells source for cell-based therapy because they can be harvested at low cost and avoid ethical disputes. In human research, stem cells derived from AF gradually became a hot research direction for disease treatment, specifically for their plasticity, their reduced immunogenicity and their tumor tropism regardless of the tumor size, location and source. Our work aimed to obtain and characterize human amniotic fluid mesenchymal stem cells (AFMSCs) and detect their ovarian cancer tropsim in nude mice model. Ten milliliters of twenty independent amniotic fluid samples were collected from 16-20 week pregnant women who underwent amniocentesis for fetal genetic determination in routine prenatal diagnosis in the first affiliated hospital of Harbin medical university. We successfully isolated the AFMSCs from thirteen of twenty amniotic fluid samples. AFMSCs presented a fibroblastic-like morphology during the culture. Flow cytometry analyses showed that the cells were positive for specific stem cell markers CD73,CD90, CD105, CD166 and HLA-ABC (MHC class I), but negative for CD 45,CD40, CD34, CD14 and HLA-DR (MHC class II). RT-PCR results showed that the AFMSCs expressed stem cell marker OCT4. AFMSCs could differentiate into bone cells, fat cells and chondrocytes under certain conditions. AFMSCs had the high motility to migrate to ovarian cancer site but didn't have the tumorigenicity. This study enhances the possibility of AFMSCs as drug carrier in human cell-based therapy. Meanwhile, the research emphasis in the future can also put in targeting therapy of ovarian cancer.
Collapse
Affiliation(s)
- Liru Li
- Department of Genecology and Obstetrics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Dejun Wang
- Department of Genecology and Obstetrics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jun Zhou
- Department of Genecology and Obstetrics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Cheng
- Department of Genecology and Obstetrics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tian Liang
- Department of Genecology and Obstetrics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guangmei Zhang
- Department of Genecology and Obstetrics, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
193
|
Yuan Z, Kolluri KK, Sage EK, Gowers KHC, Janes SM. Mesenchymal stromal cell delivery of full-length tumor necrosis factor-related apoptosis-inducing ligand is superior to soluble type for cancer therapy. Cytotherapy 2015; 17:885-96. [PMID: 25888191 PMCID: PMC4503823 DOI: 10.1016/j.jcyt.2015.03.603] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/02/2015] [Indexed: 12/18/2022]
Abstract
Background aims Mesenchymal stromal cell (MSC) delivery of pro-apoptotic tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is an attractive strategy for anticancer therapy. MSCs expressing full-length human TRAIL (flT) or its soluble form (sT) have previously been shown to be effective for cancer killing. However, a comparison between the two forms has never been performed, leaving it unclear which approach is most effective. This study addresses the issue for the possible clinical application of TRAIL-expressing MSCs in the future. Methods MSCs were transduced with lentiviruses expressing flT or an isoleucine zipper-fused sT. TRAIL expression was examined and cancer cell apoptosis was measured after treatment with transduced MSCs or with MSC-derived soluble TRAIL. Results The transduction does not adversely affect cell phenotype. The sT-transduced MSCs (MSC-sT) secrete abundant levels of soluble TRAIL but do not present the protein on the cell surface. Interestingly, the flT-transduced MSCs (MSC-flT) not only express cell-surface TRAIL but also release flT into medium. These cells were examined for inducing apoptosis in 20 cancer cell lines. MSC-sT cells showed very limited effects. By contrast, MSC-flT cells demonstrated high cancer cell-killing efficiency. More importantly, MSC-flT cells can overcome some cancer cell resistance to recombinant TRAIL. In addition, both cell surface flT and secreted flT are functional for inducing apoptosis. The secreted flT was found to have higher cancer cell-killing capacity than either recombinant TRAIL or MSC-secreted sT. Conclusions These observations demonstrate that MSC delivery of flT is superior to MSC delivery of sT for cancer therapy.
Collapse
Affiliation(s)
- ZhengQiang Yuan
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Krishna K Kolluri
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Elizabeth K Sage
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Kate H C Gowers
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom.
| |
Collapse
|
194
|
Su Y, Xie Z, Kim GB, Dong C, Yang J. Design strategies and applications of circulating cell-mediated drug delivery systems. ACS Biomater Sci Eng 2015; 1:201-217. [PMID: 25984572 PMCID: PMC4428174 DOI: 10.1021/ab500179h] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Drug delivery systems, particularly nanomaterial-based drug delivery systems, possess a tremendous amount of potential to improve diagnostic and therapeutic effects of drugs. Controlled drug delivery targeted to a specific disease is designed to significantly improve the pharmaceutical effects of drugs and reduce their side effects. Unfortunately, only a few targeted drug delivery systems can achieve high targeting efficiency after intravenous injection, even with the development of numerous surface markers and targeting modalities. Thus, alternative drug and nanomedicine targeting approaches are desired. Circulating cells, such as erythrocytes, leukocytes, and stem cells, present innate disease sensing and homing properties. Hence, using living cells as drug delivery carriers has gained increasing interest in recent years. This review highlights the recent advances in the design of cell-mediated drug delivery systems and targeting mechanisms. The approaches of drug encapsulation/conjugation to cell-carriers, cell-mediated targeting mechanisms, and the methods of controlled drug release are elaborated here. Cell-based "live" targeting and delivery could be used to facilitate a more specific, robust, and smart payload distribution for the next-generation drug delivery systems.
Collapse
Affiliation(s)
- Yixue Su
- Department of Biomedical Engineering, Materials Research Institutes, the Huck Institutes of Life Sciences, The Pennsylvania State University, W340 Millennium Science Complex, University Park, PA 16802
| | - Zhiwei Xie
- Department of Biomedical Engineering, Materials Research Institutes, the Huck Institutes of Life Sciences, The Pennsylvania State University, W340 Millennium Science Complex, University Park, PA 16802
| | - Gloria B. Kim
- Department of Biomedical Engineering, Materials Research Institutes, the Huck Institutes of Life Sciences, The Pennsylvania State University, W340 Millennium Science Complex, University Park, PA 16802
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institutes, the Huck Institutes of Life Sciences, The Pennsylvania State University, W340 Millennium Science Complex, University Park, PA 16802
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institutes, the Huck Institutes of Life Sciences, The Pennsylvania State University, W340 Millennium Science Complex, University Park, PA 16802
| |
Collapse
|
195
|
Human CD14+ cells loaded with Paclitaxel inhibit in vitro cell proliferation of glioblastoma. Cytotherapy 2015; 17:310-9. [DOI: 10.1016/j.jcyt.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/08/2014] [Accepted: 09/13/2014] [Indexed: 11/22/2022]
|
196
|
Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol 2015; 11:140-50. [PMID: 25560703 PMCID: PMC4338988 DOI: 10.1038/nrendo.2014.234] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stem-cell-mediated bone repair has been used in clinical trials for the regeneration of large craniomaxillofacial defects, to slow the process of bone degeneration in patients with osteonecrosis of the femoral head and for prophylactic treatment of distal tibial fractures. Successful regenerative outcomes in these investigations have provided a solid foundation for wider use of stromal cells in skeletal repair therapy. However, employing stromal cells to facilitate or enhance bone repair is far from being adopted into clinical practice. Scientific, technical, practical and regulatory obstacles prevent the widespread therapeutic use of stromal cells. Ironically, one of the major challenges lies in the limited understanding of the mechanisms via which transplanted cells mediate regeneration. Animal models have been used to provide insight, but these models largely fail to reproduce the nuances of human diseases and bone defects. Consequently, the development of targeted approaches to optimize cell-mediated outcomes is difficult. In this Review, we highlight the successes and challenges reported in several clinical trials that involved the use of bone-marrow-derived mesenchymal or adipose-tissue-derived stromal cells. We identify several obstacles blocking the mainstream use of stromal cells to enhance skeletal repair and highlight technological innovations or areas in which novel techniques might be particularly fruitful in continuing to advance the field of skeletal regenerative medicine.
Collapse
Affiliation(s)
- Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Baltimore, MD 21205, USA
| | - Bruce A Bunnell
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Elizabeth Martin
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Trivia Frazier
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Ben P Hung
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Baltimore, MD 21205, USA
| | - Jeffrey M Gimble
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| |
Collapse
|
197
|
Suma GN, Arora MP, Lakhanpal M. Stem cell therapy: A novel treatment approach for oral mucosal lesions. J Pharm Bioallied Sci 2015; 7:2-8. [PMID: 25709329 PMCID: PMC4333622 DOI: 10.4103/0975-7406.149809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/09/2014] [Accepted: 10/01/2014] [Indexed: 12/29/2022] Open
Abstract
Stem cells have enormous potential to alleviate sufferings of many diseases that currently have no effective therapy. The research in this field is growing at an exponential rate. Stem cells are master cells that have specialized capability for self-renewal, potency and capability to differentiate to many cell types. At present, the adult mesenchymal stem cells are being used in the head and neck region for orofacial regeneration (including enamel, dentin, pulp and alveolar bone) in lieu of their proliferative and regenerative properties, their use in the treatment of oral mucosal lesions is still in budding stages. Moreover, there is scanty literature available regarding role of stem cell therapy in the treatment of commonly seen oral mucosal lesions like oral submucous fibrosis, oral lichen planus, oral ulcers and oral mucositis. The present review will focus on the current knowledge about the role of stem cell therapies in oral mucosal lesions and could facilitate new advancements in this area (articles were obtained from electronic media like PubMed, EBSCO, Cochrane and Medline etc., from year 2000 to 2014 to review the role of stem cell therapy in oral mucosal lesions).
Collapse
Affiliation(s)
- G N Suma
- Department of Oral Medicine and Radiology, ITS CDSR, Dental College and Hospital, Muradnagar, Ghaziabad, Uttar Pradesh, India
| | - Madhu Pruthi Arora
- Department of Oral Medicine and Radiology, ITS CDSR, Dental College and Hospital, Muradnagar, Ghaziabad, Uttar Pradesh, India
| | - Manisha Lakhanpal
- Department of Oral Medicine and Radiology, ITS CDSR, Dental College and Hospital, Muradnagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
198
|
Adjei IM, Blanka S. Modulation of the tumor microenvironment for cancer treatment: a biomaterials approach. J Funct Biomater 2015; 6:81-103. [PMID: 25695337 PMCID: PMC4384103 DOI: 10.3390/jfb6010081] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/07/2014] [Accepted: 02/12/2015] [Indexed: 12/26/2022] Open
Abstract
Tumors are complex tissues that consist of stromal cells, such as fibroblasts, immune cells and mesenchymal stem cells, as well as non-cellular components, in addition to neoplastic cells. Increasingly, there is evidence to suggest that these non-neoplastic cell components support cancer initiation, progression and metastasis and that their ablation or reprogramming can inhibit tumor growth. Our understanding of the activities of different parts of the tumor stroma in advancing cancer has been improved by the use of scaffold and matrix-based 3D systems originally developed for regenerative medicine. Additionally, drug delivery systems made from synthetic and natural biomaterials deliver drugs to kill stromal cells or reprogram the microenvironment for tumor inhibition. In this article, we review the impact of 3D tumor models in increasing our understanding of tumorigenesis. We also discuss how different drug delivery systems aid in the reprogramming of tumor stroma for cancer treatment.
Collapse
Affiliation(s)
- Isaac M Adjei
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Sharma Blanka
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
199
|
Katona RL. De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications. Chromosome Res 2015; 23:143-57. [DOI: 10.1007/s10577-014-9458-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
200
|
Madjd Z, Gheytanchi E, Erfani E, Asadi-Lari M. Application of stem cells in targeted therapy of breast cancer: a systematic review. Asian Pac J Cancer Prev 2015; 14:2789-800. [PMID: 23803033 DOI: 10.7314/apjcp.2013.14.5.2789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this systematic review was to investigate whether stem cells could be effectively applied in targeted therapy of breast cancer. MATERIAL AND METHOD A systematic literature search was performed for original articles published from January 2007 until May 2012. RESULTS Nine studies met the inclusion criteria for phase I or II clinical trials, of which three used stem cells as vehicles, two trials used autologous hematopoetic stem cells and in four trials cancer stem cells were targeted. Mesenchymal stem cells (MSCs) were applied as cellular vehicles to transfer therapeutic agents. Cell therapy with MSC can successfully target resistant cancers. Cancer stem cells were selectively targeted via a proteasome-dependent suicide gene leading to tumor regression. Wnt/β-catenin signaling pathway has been also evidenced to be an attractive CSC-target. CONCLUSIONS This systematic review focused on two different concepts of stem cells and breast cancer marking a turning point in the trials that applied stem cells as cellular vehicles for targeted delivery therapy as well as CSC-targeted therapies. Applying stem cells as targeted therapy could be an effective therapeutic approach for treatment of breast cancer in the clinic and in therapeutic marketing; however this needs to be confirmed with further clinical investigations.
Collapse
Affiliation(s)
- Zahra Madjd
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran.
| | | | | | | |
Collapse
|