151
|
Luo T, Xu P, Zhang Y, Porter JL, Ghanem M, Liu Q, Jiang Y, Li J, Miao Q, Hu B, Howden BP, Fyfe JAM, Globan M, He W, He P, Wang Y, Liu H, Takiff HE, Zhao Y, Chen X, Pan Q, Behr MA, Stinear TP, Gao Q. Population genomics provides insights into the evolution and adaptation to humans of the waterborne pathogen Mycobacterium kansasii. Nat Commun 2021; 12:2491. [PMID: 33941780 PMCID: PMC8093194 DOI: 10.1038/s41467-021-22760-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Mycobacterium kansasii can cause serious pulmonary disease. It belongs to a group of closely-related species of non-tuberculous mycobacteria known as the M. kansasii complex (MKC). Here, we report a population genomics analysis of 358 MKC isolates from worldwide water and clinical sources. We find that recombination, likely mediated by distributive conjugative transfer, has contributed to speciation and on-going diversification of the MKC. Our analyses support municipal water as a main source of MKC infections. Furthermore, nearly 80% of the MKC infections are due to closely-related M. kansasii strains, forming a main cluster that apparently originated in the 1900s and subsequently expanded globally. Bioinformatic analyses indicate that several genes involved in metabolism (e.g., maintenance of the methylcitrate cycle), ESX-I secretion, metal ion homeostasis and cell surface remodelling may have contributed to M. kansasii's success and its ongoing adaptation to the human host.
Collapse
Affiliation(s)
- Tao Luo
- grid.13291.380000 0001 0807 1581Department of Pathogen Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China ,grid.8547.e0000 0001 0125 2443Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Medical College and School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Peng Xu
- grid.8547.e0000 0001 0125 2443Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Medical College and School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China ,grid.417409.f0000 0001 0240 6969Key Laboratory of Characteristic Infectious Disease & Bio-safety Development of Guizhou Province Education Department, Institute of Life Sciences, Zunyi Medical University, Zunyi, China
| | - Yangyi Zhang
- Department of Tuberculosis Control, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Jessica L. Porter
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic Australia ,grid.1008.90000 0001 2179 088XDoherty Applied Microbial Genomics, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic Australia
| | - Marwan Ghanem
- grid.14709.3b0000 0004 1936 8649Department of Microbiology and Immunology, McGill University and McGill International TB Centre, Montreal, Quebec Canada
| | - Qingyun Liu
- grid.8547.e0000 0001 0125 2443Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Medical College and School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuan Jiang
- Department of Tuberculosis Control, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Jing Li
- Department of Tuberculosis Control, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Qing Miao
- grid.8547.e0000 0001 0125 2443Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bijie Hu
- grid.8547.e0000 0001 0125 2443Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Benjamin P. Howden
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic Australia ,grid.1008.90000 0001 2179 088XDoherty Applied Microbial Genomics, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic Australia ,grid.1008.90000 0001 2179 088XMicrobiological Diagnostic Unit Public Health Laboratory, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000 Australia
| | - Janet A. M. Fyfe
- grid.429299.d0000 0004 0452 651XVictorian Infectious Diseases Reference Laboratory, Doherty Institute for Infection and Immunity, Melbourne Health, Melbourne, Vic Australia
| | - Maria Globan
- grid.429299.d0000 0004 0452 651XVictorian Infectious Diseases Reference Laboratory, Doherty Institute for Infection and Immunity, Melbourne Health, Melbourne, Vic Australia
| | - Wencong He
- grid.198530.60000 0000 8803 2373Chinese Center for Disease Control and Prevention and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ping He
- grid.198530.60000 0000 8803 2373Chinese Center for Disease Control and Prevention and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yiting Wang
- grid.198530.60000 0000 8803 2373Chinese Center for Disease Control and Prevention and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Houming Liu
- grid.263817.9Department of Clinical Laboratory, The Third People’s Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Howard E. Takiff
- grid.428999.70000 0001 2353 6535Unité de Pathogenetique Integrée Mycobacterienne, Institut Pasteur, Paris, France ,grid.418243.80000 0001 2181 3287Laboratorio de Genética Molecular, CMBC, IVIC, Caracas, Venezuela ,Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Yanlin Zhao
- grid.198530.60000 0000 8803 2373Chinese Center for Disease Control and Prevention and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xinchun Chen
- grid.263488.30000 0001 0472 9649Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qichao Pan
- Department of Tuberculosis Control, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Marcel A. Behr
- grid.14709.3b0000 0004 1936 8649Department of Microbiology and Immunology, McGill University and McGill International TB Centre, Montreal, Quebec Canada
| | - Timothy P. Stinear
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic Australia ,grid.1008.90000 0001 2179 088XDoherty Applied Microbial Genomics, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic Australia
| | - Qian Gao
- grid.8547.e0000 0001 0125 2443Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Medical College and School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
152
|
Felczak MM, Bowers RM, Woyke T, TerAvest MA. Zymomonas diversity and potential for biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:112. [PMID: 33933155 PMCID: PMC8088579 DOI: 10.1186/s13068-021-01958-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Zymomonas mobilis is an aerotolerant α-proteobacterium, which has been genetically engineered for industrial purposes for decades. However, a comprehensive comparison of existing strains on the genomic level in conjunction with phenotype analysis has yet to be carried out. We here performed whole-genome comparison of 17 strains including nine that were sequenced in this study. We then compared 15 available Zymomonas strains for their natural abilities to perform under conditions relevant to biofuel synthesis. We tested their growth in anaerobic rich media, as well as growth, ethanol production and xylose utilization in lignocellulosic hydrolysate. We additionally compared their tolerance to isobutanol, flocculation characteristics, and ability to uptake foreign DNA by electroporation and conjugation. RESULTS Using clustering based on 99% average nucleotide identity (ANI), we classified 12 strains into four clusters based on sequence similarity, while five strains did not cluster with any other strain. Strains belonging to the same 99% ANI cluster showed similar performance while significant variation was observed between the clusters. Overall, conjugation and electroporation efficiencies were poor across all strains, which was consistent with our finding of coding potential for several DNA defense mechanisms, such as CRISPR and restriction-modification systems, across all genomes. We found that strain ATCC31821 (ZM4) had a more diverse plasmid profile than other strains, possibly leading to the unique phenotypes observed for this strain. ZM4 also showed the highest growth of any strain in both laboratory media and lignocellulosic hydrolysate and was among the top 3 strains for isobutanol tolerance and electroporation and conjugation efficiency. CONCLUSIONS Our findings suggest that strain ZM4 has a unique combination of genetic and phenotypic traits that are beneficial for biofuel production and propose investing future efforts in further engineering of ZM4 for industrial purposes rather than exploring new Zymomonas isolates.
Collapse
Affiliation(s)
- Magdalena M Felczak
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Robert M Bowers
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tanja Woyke
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Michaela A TerAvest
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
153
|
Norte AC, Boyer PH, Castillo-Ramirez S, Chvostáč M, Brahami MO, Rollins RE, Woudenberg T, Didyk YM, Derdakova M, Núncio MS, de Carvalho IL, Margos G, Fingerle V. The Population Structure of Borrelia lusitaniae Is Reflected by a Population Division of Its Ixodes Vector. Microorganisms 2021; 9:microorganisms9050933. [PMID: 33925391 PMCID: PMC8145215 DOI: 10.3390/microorganisms9050933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 01/29/2023] Open
Abstract
Populations of vector-borne pathogens are shaped by the distribution and movement of vector and reservoir hosts. To study what impact host and vector association have on tick-borne pathogens, we investigated the population structure of Borrelia lusitaniae using multilocus sequence typing (MLST). Novel sequences were acquired from questing ticks collected in multiple North African and European locations and were supplemented by publicly available sequences at the Borrelia Pubmlst database (accessed on 11 February 2020). Population structure of B. lusitaniae was inferred using clustering and network analyses. Maximum likelihood phylogenies for two molecular tick markers (the mitochondrial 16S rRNA locus and a nuclear locus, Tick-receptor of outer surface protein A, trospA) were used to confirm the morphological species identification of collected ticks. Our results confirmed that B. lusitaniae does indeed form two distinguishable populations: one containing mostly European samples and the other mostly Portuguese and North African samples. Of interest, Portuguese samples clustered largely based on being from north (European) or south (North African) of the river Targus. As two different Ixodes species (i.e., I. ricinus and I. inopinatus) may vector Borrelia in these regions, reference samples were included for I. inopinatus but did not form monophyletic clades in either tree, suggesting some misidentification. Even so, the trospA phylogeny showed a monophyletic clade containing tick samples from Northern Africa and Portugal south of the river Tagus suggesting a population division in Ixodes on this locus. The pattern mirrored the clustering of B. lusitaniae samples, suggesting a potential co-evolution between tick and Borrelia populations that deserve further investigation.
Collapse
Affiliation(s)
- Ana Cláudia Norte
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal;
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Águas de Moura, 2965-575 Setúbal, Portugal; (M.S.N.); (I.L.d.C.)
| | - Pierre H. Boyer
- CHRU Strasbourg, UR7290 Lyme Borreliosis Group, ITI InnoVec, Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, University of Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France;
| | - Santiago Castillo-Ramirez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, CP 62210, Mexico;
| | - Michal Chvostáč
- Institute of Zoology, Slovak Academy of Sciences, 84506 Bratislava, Slovakia; (M.C.); (Y.M.D.); (M.D.)
| | - Mohand O. Brahami
- Laboratory of Ecology and Biology of Terrestrial Ecosystems, Faculty Biological and Agronomic Sciences, University Mouloud Mammeri, 15000 Tizi-Ouzou, Algeria;
| | - Robert E. Rollins
- Division of Evolutionary Biology, LMU Munich, Faculty of Biology, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany;
| | - Tom Woudenberg
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (T.W.); (V.F.)
| | - Yuliya M. Didyk
- Institute of Zoology, Slovak Academy of Sciences, 84506 Bratislava, Slovakia; (M.C.); (Y.M.D.); (M.D.)
- Department of Acarology, I. I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, B. Khmelnytskogo 15, 01030 Kyiv, Ukraine
| | - Marketa Derdakova
- Institute of Zoology, Slovak Academy of Sciences, 84506 Bratislava, Slovakia; (M.C.); (Y.M.D.); (M.D.)
| | - Maria Sofia Núncio
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Águas de Moura, 2965-575 Setúbal, Portugal; (M.S.N.); (I.L.d.C.)
- Environmental Health Institute, Medicine Faculty, University of Lisbon, 1649-026 Lisbon, Portugal
| | - Isabel Lopes de Carvalho
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Águas de Moura, 2965-575 Setúbal, Portugal; (M.S.N.); (I.L.d.C.)
- Environmental Health Institute, Medicine Faculty, University of Lisbon, 1649-026 Lisbon, Portugal
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (T.W.); (V.F.)
- Correspondence: or ; Tel.: +49-9131-6808-5883
| | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (T.W.); (V.F.)
| |
Collapse
|
154
|
Occurrence and Transmission of bla NDM-Carrying Enterobacteriaceae from Geese and the Surrounding Environment on a Commercial Goose Farm. Appl Environ Microbiol 2021; 87:AEM.00087-21. [PMID: 33674440 DOI: 10.1128/aem.00087-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
We investigated the prevalence and transmission of NDM-producing Enterobacteriaceae in fecal samples of geese and environmental samples from a goose farm in southern China. The samples were cultivated on MacConkey agar plates supplemented with meropenem. Individual colonies were examined for bla NDM, and bla NDM-positive bacteria were characterized based on whole-genome sequencing (WGS) data from the Illumina and Oxford Nanopore Technologies (ONT) platforms. Of 117 samples analyzed, the carriage rates for New Delhi metallo-β-lactamase (NDM)-positive Enterobacteriaceae were 47.1, 18, and 50% in geese, inanimate environments (sewage, soil, fodder, and dust), and mouse samples, respectively. Two variants (bla NDM-1 and bla NDM-5, in 4 and 40 isolates, respectively) were found among 44 bla NDM-positive Enterobacteriaceae; these variants belonged to eight species, and Escherichia coli was the most prevalent (50%). WGS analysis revealed that bla NDM coexisted with diverse antibiotic resistance genes (ARGs). Population structure analysis showed that most E. coli and Enterobacter sp. isolates were highly heterogeneous, while most Citrobacter sp. and P. stuartii isolates possessed extremely high genetic similarities. In addition, bla NDM-5-positive ST4358/ST48 E. coli isolates were found to be clonally spread between geese and the environment and were highly genetically similar to those reported from ducks, farm environments, and humans in China. Plasmid analysis indicated that IncX3 pHNYX644-1-like (n = 40) and untypeable pM2-1-like plasmids (n = 4) mediated bla NDM spread. pM2-1-like plasmids possessed diverse ARGs, including bla NDM-1, the arsenical and mercury resistance operons, and the maltose operon. Our findings revealed that the goose farm is a reservoir for NDM-positive Enterobacteriaceae The bla NDM contamination of wild mice and the novel pM2-1-like plasmid described here likely adds to the risk for dissemination of bla NDM and associated resistance genes.IMPORTANCE Carbapenem-resistant bacteria, in particular NDM-producing Enterobacteriaceae, have become a great threat to global public. These bacteria have been found not only in hospital and community environments but also among food animal production chains, which are recognized as reservoirs for NDM-producing Enterobacteriaceae However, the dissemination of NDM-producing bacteria in waterfowl farms has been less well explored. Our study demonstrates that the horizontal spread of bla NDM-carrying plasmids and the partial clonal spread of bla NDM-positive Enterobacteriaceae contribute to the widespread contamination of bla NDM in the goose farm ecosystem, including mice. Furthermore, we found a novel and transferable bla NDM-1-carrying multidrug resistance (MDR) plasmid that possessed multiple environmental adaptation-related genes. The outcomes of this study contribute to a better understanding of the prevalence and transmission of bla NDM-carrying Enterobacteriaceae among diverse niches in the farm ecosystem.
Collapse
|
155
|
Giallongo G, Douek J, Harbuzov Z, Galil BS, Rinkevich B. Long-term changes in population genetic features of a rapidly expanding marine invader: implication for invasion success. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02521-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
156
|
Du Z, Wu Y, Chen Z, Cao L, Ishikawa T, Kamitani S, Sota T, Song F, Tian L, Cai W, Li H. Global phylogeography and invasion history of the spotted lanternfly revealed by mitochondrial phylogenomics. Evol Appl 2021; 14:915-930. [PMID: 33897812 PMCID: PMC8061274 DOI: 10.1111/eva.13170] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biological invasion has been a serious global threat due to increasing international trade and population movements. Tracking the source and route of invasive species and evaluating the genetic differences in their native regions have great significance for the effective monitoring and management, and further resolving the invasive mechanism. The spotted lanternfly Lycorma delicatula is native to China and invaded South Korea, Japan, and the United States during the last decade, causing severe damages to the fruits and timber industries. However, its global phylogeographic pattern and invasion history are not clearly understood. We applied high-throughput sequencing to obtain 392 whole mitochondrial genome sequences from four countries to ascertain the origin, dispersal, and invasion history of the spotted lanternfly. Phylogenomic analyses revealed that the spotted lanternfly originated from southwestern China, diverged into six phylogeographic lineages, and experienced northward expansion across the Yangtze River in the late Pleistocene. South Korea populations were derived from multiple invasions from eastern China and Japan with two different genetic sources of northwestern (Loess Plateau) and eastern (East Plain) lineages in China, whereas the each of Japan and the United States had only one. The United States populations originated through single invasive event from South Korea, which served as a bridgehead of invasion. The environmental conditions, especially the distribution of host Ailanthus trees, and adaptability possibly account for the rapid spread of the spotted lanternfly in the native and introduced regions.
Collapse
Affiliation(s)
- Zhenyong Du
- Department of EntomologyMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Yunfei Wu
- Department of EntomologyMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Zhuo Chen
- Department of EntomologyMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Liangming Cao
- The Key Laboratory of Forest ProtectionNational Forestry and Grassland AdministrationResearch Institute of Forest Ecology, Environment and ProtectionChinese Academy of ForestryBeijingChina
| | - Tadashi Ishikawa
- Laboratory of EntomologyFaculty of AgricultureTokyo University of AgricultureAtsugiJapan
| | - Satoshi Kamitani
- Entomological LaboratoryGraduate School of Bioresource and Bioenvironmental SciencesKyushu UniversityFukuokaJapan
| | - Teiji Sota
- Department of ZoologyGraduate School of ScienceKyoto UniversitySakyoJapan
| | - Fan Song
- Department of EntomologyMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Li Tian
- Department of EntomologyMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Wanzhi Cai
- Department of EntomologyMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Hu Li
- Department of EntomologyMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
157
|
van Hal SJ, Willems RJL, Gouliouris T, Ballard SA, Coque TM, Hammerum AM, Hegstad K, Westh HT, Howden BP, Malhotra-Kumar S, Werner G, Yanagihara K, Earl AM, Raven KE, Corander J, Bowden R. The global dissemination of hospital clones of Enterococcus faecium. Genome Med 2021; 13:52. [PMID: 33785076 PMCID: PMC8008517 DOI: 10.1186/s13073-021-00868-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The hospital-adapted A1 group of Enterococcus faecium remains an organism of significant concern in the context of drug-resistant hospital-associated infections. How this pathogen evolves and disseminates remains poorly understood. METHODS A large, globally representative collection of short-read genomic data from the hospital-associated A1 group of Enterococcus faecium was assembled (n = 973). We analysed, using a novel analysis approach, global diversity in terms of both the dynamics of the accessory genome and homologous recombination among conserved genes. RESULTS Two main modes of genomic evolution continue to shape E. faecium: the acquisition and loss of genes, including antimicrobial resistance genes, through mobile genetic elements including plasmids, and homologous recombination of the core genome. These events lead to new clones emerging at the local level, followed by the erosion of signals of clonality through recombination, and in some identifiable cases producing new clonal clusters. These patterns lead to new, emerging lineages which are able to spread globally over relatively short timeframes. CONCLUSIONS The ability of A1 E. faecium to continually present new combinations of genes for potential selection suggests that controlling this pathogen will remain challenging but establishing a framework for understanding genomic evolution is likely to aid in tracking the threats posed by newly emerging lineages.
Collapse
Affiliation(s)
- Sebastiaan J. van Hal
- Department of Infectious Disesase and Microbiology, Royal Prince Alfred Hospital, Sydney, NSW Australia
- University of Sydney, Sydney, NSW Australia
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrech, Utrecht, The Netherlands
| | | | - Susan A. Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Teresa M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Network Research Centre for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - Kristin Hegstad
- Department of Microbiology and Infection Control, Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North-Norway, Tromsø, Norway
- Research Group for Host-Microbe Interactions, UiT – the Arctic University of Norway, Tromsø, Norway
| | - Hendrik T. Westh
- MRSA Knowledge Center, Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
| | - Benjamin P. Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Wilrijk, Belgium
| | - Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ashlee M. Earl
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA USA
| | | | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Rory Bowden
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052 Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Melbourne, Victoria Australia
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| |
Collapse
|
158
|
Evolutionary genomic and bacteria GWAS analysis of Mycobacterium avium subsp. paratuberculosis and dairy cattle Johne's disease phenotypes. Appl Environ Microbiol 2021; 87:AEM.02570-20. [PMID: 33547057 PMCID: PMC8091108 DOI: 10.1128/aem.02570-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease in ruminants, which has important health consequences for dairy cattle. The Regional Dairy Quality Management Alliance (RDQMA) project is a multistate research program involving MAP isolates taken from three intensively studied commercial dairy farms in the northeastern United States, which emphasized longitudinal data collection of both MAP isolates and animal health in three regional dairy herds for a period of about 7 years. This paper reports the results of a pan-GWAS analysis involving 318 MAP isolates and dairy cow Johne's disease phenotypes, taken from these three farms. Based on our highly curated accessory gene count the pan-GWAS analysis identified several MAP genes associated with bovine Johne's disease phenotypes scored from these three farms, with some of the genes having functions suggestive of possible cause/effect relationships to these phenotypes. This paper reports a pan-genomic comparative analysis between MAP and Mycobacterium tuberculosis, assessing functional Gene Ontology category enrichments between these taxa. Finally, we also provide a population genomic perspective on the effectiveness of herd isolation, involving closed dairy farms, in preventing MAP inter-farm cross infection on a micro-geographic scale.IMPORTANCE Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease in ruminants, which has important health consequences for dairy cattle, and enormous economic consequences for the dairy industry. Understanding which genes in this bacterium are correlated with key disease phenotypes can lead to functional experiments targeting these genes and ultimately lead to improved control strategies. This study represents a rare example of a prolonged longitudinal study of dairy cattle where the disease was measured and the bacteria were isolated from the same cows. The genome sequences of over 300 MAP isolates were analyzed for genes that were correlated with a wide range of Johne's disease phenotypes. A number of genes were identified that were significantly associated with several aspects of the disease and suggestive of further experimental follow-up.
Collapse
|
159
|
Evolutionary Dynamics Based on Comparative Genomics of Pathogenic Escherichia coli Lineages Harboring Polyketide Synthase ( pks) Island. mBio 2021; 12:mBio.03634-20. [PMID: 33653937 PMCID: PMC8545132 DOI: 10.1128/mbio.03634-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The genotoxin colibactin is a secondary metabolite produced by the polyketide synthase (pks) island harbored by extraintestinal pathogenic E. coli (ExPEC) and other members of the Enterobacteriaceae that has been increasingly reported to have critical implications in human health. The present study entails a high-throughput whole-genome comparison and phylogenetic analysis of such pathogenic E. coli isolates to gain insights into the patterns of distribution, horizontal transmission, and evolution of the island. For the current study, 23 pks-positive ExPEC genomes were newly sequenced, and their virulome and resistome profiles indicated a preponderance of virulence encoding genes and a reduced number of genes for antimicrobial resistance. In addition, 4,090 E. coli genomes from the public domain were also analyzed for large-scale screening for pks-positive genomes, out of which a total of 530 pks-positive genomes were studied to understand the subtype-based distribution pattern(s). The pks island showed a significant association with the B2 phylogroup (82.2%) and a high prevalence in sequence type 73 (ST73; n = 179) and ST95 (n = 110) and the O6:H1 (n = 110) serotype. Maximum-likelihood (ML) phylogeny of the core genome and intergenic regions (IGRs) of the ST95 model data set, which was selected because it had both pks-positive and pks-negative genomes, displayed clustering in relation to their carriage of the pks island. Prevalence patterns of genes encoding RM systems in the pks-positive and pks-negative genomes were also analyzed to determine their potential role in pks island acquisition and the maintenance capability of the genomes. Further, the maximum-likelihood phylogeny based on the core genome and pks island sequences from 247 genomes with an intact pks island demonstrated horizontal gene transfer of the island across sequence types and serotypes, with few exceptions. This study vitally contributes to understanding of the lineages and subtypes that have a higher propensity to harbor the pks island-encoded genotoxin with possible clinical implications.
Collapse
|
160
|
Zhang X, Li F, Awan F, Jiang H, Zeng Z, Lv W. Molecular Epidemiology and Clone Transmission of Carbapenem-Resistant Acinetobacter baumannii in ICU Rooms. Front Cell Infect Microbiol 2021; 11:633817. [PMID: 33718283 PMCID: PMC7952536 DOI: 10.3389/fcimb.2021.633817] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is a major cause of nosocomial infections and hospital outbreaks worldwide, remaining a critical clinical concern. Here we characterized and investigated the phylogenetic relationships of 105 CRAB isolates from an intensive care unit from one hospital in China collected over six years. All strains carried blaOXA-23, blaOXA-66 genes for carbapenem resistance, also had high resistance gene, virulence factor, and insertion sequence burdens. Whole-genome sequencing revealed all strains belonged to ST2, the global clone CC2. The phylogenetic analysis based on the core genome showed all isolates were dominated by a single lineage of three clusters and eight different clones. Two clones were popular during the collection time. Using chi-square test to identify the epidemiologically meaningful groupings, we found the significant difference in community structure only existed in strains from separation time. The haplotype and median-joining network analysis revealed genetic differences appeared among clusters and changes occurred overtime in the dominating cluster. Our results highlighted substantial multidrug-resistant CRAB burden in the hospital ICU environment demonstrating potential clone outbreak in the hospital.
Collapse
Affiliation(s)
- Xiufeng Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Fangping Li
- Department of Biomedical Engineering, College of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Furqan Awan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China
| | - Hongye Jiang
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Zhenling Zeng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China
| | - Weibiao Lv
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| |
Collapse
|
161
|
Weber RE, Fuchs S, Layer F, Sommer A, Bender JK, Thürmer A, Werner G, Strommenger B. Genome-Wide Association Studies for the Detection of Genetic Variants Associated With Daptomycin and Ceftaroline Resistance in Staphylococcus aureus. Front Microbiol 2021; 12:639660. [PMID: 33658988 PMCID: PMC7917082 DOI: 10.3389/fmicb.2021.639660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background As next generation sequencing (NGS) technologies have experienced a rapid development over the last decade, the investigation of the bacterial genetic architecture reveals a high potential to dissect causal loci of antibiotic resistance phenotypes. Although genome-wide association studies (GWAS) have been successfully applied for investigating the basis of resistance traits, complex resistance phenotypes have been omitted so far. For S. aureus this especially refers to antibiotics of last resort like daptomycin and ceftaroline. Therefore, we aimed to perform GWAS for the identification of genetic variants associated with DAP and CPT resistance in clinical S. aureus isolates. Materials/methods To conduct microbial GWAS, we selected cases and controls according to their clonal background, date of isolation, and geographical origin. Association testing was performed with PLINK and SEER analysis. By using in silico analysis, we also searched for rare genetic variants in candidate loci that have previously been described to be involved in the development of corresponding resistance phenotypes. Results GWAS revealed MprF P314L and L826F to be significantly associated with DAP resistance. These mutations were found to be homogenously distributed among clonal lineages suggesting convergent evolution. Additionally, rare and yet undescribed single nucleotide polymorphisms could be identified within mprF and putative candidate genes. Finally, we could show that each DAP resistant isolate exhibited at least one amino acid substitution within the open reading frame of mprF. Due to the presence of strong population stratification, no genetic variants could be associated with CPT resistance. However, the investigation of the staphylococcal cassette chromosome mec (SCCmec) revealed various mecA SNPs to be putatively linked with CPT resistance. Additionally, some CPT resistant isolates revealed no mecA mutations, supporting the hypothesis that further and still unknown resistance determinants are crucial for the development of CPT resistance in S. aureus. Conclusion We hereby confirmed the potential of GWAS to identify genetic variants that are associated with antibiotic resistance traits in S. aureus. However, precautions need to be taken to prevent the detection of spurious associations. In addition, the implementation of different approaches is still essential to detect multiple forms of variations and mutations that occur with a low frequency.
Collapse
Affiliation(s)
- Robert E Weber
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| | - Stephan Fuchs
- Methodology and Research Infrastructure, Bioinformatics, Robert Koch-Institute, Berlin, Germany
| | - Franziska Layer
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| | - Anna Sommer
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| | - Jennifer K Bender
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| | - Andrea Thürmer
- Methodology and Research Infrastructure, Bioinformatics, Robert Koch-Institute, Berlin, Germany
| | - Guido Werner
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| | - Birgit Strommenger
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany.,Methodology and Research Infrastructure, Genome Sequencing, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
162
|
Sucháčková Bartoňová A, Konvička M, Marešová J, Wiemers M, Ignatev N, Wahlberg N, Schmitt T, Faltýnek Fric Z. Wolbachia affects mitochondrial population structure in two systems of closely related Palaearctic blue butterflies. Sci Rep 2021; 11:3019. [PMID: 33542272 PMCID: PMC7862691 DOI: 10.1038/s41598-021-82433-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
The bacterium Wolbachia infects many insect species and spreads by diverse vertical and horizontal means. As co-inherited organisms, these bacteria often cause problems in mitochondrial phylogeny inference. The phylogenetic relationships of many closely related Palaearctic blue butterflies (Lepidoptera: Lycaenidae: Polyommatinae) are ambiguous. We considered the patterns of Wolbachia infection and mitochondrial diversity in two systems: Aricia agestis/Aricia artaxerxes and the Pseudophilotes baton species complex. We sampled butterflies across their distribution ranges and sequenced one butterfly mitochondrial gene and two Wolbachia genes. Both butterfly systems had uninfected and infected populations, and harboured several Wolbachia strains. Wolbachia was highly prevalent in A. artaxerxes and the host's mitochondrial structure was shallow, in contrast to A. agestis. Similar bacterial alleles infected both Aricia species from nearby sites, pointing to a possible horizontal transfer. Mitochondrial history of the P. baton species complex mirrored its Wolbachia infection and not the taxonomical division. Pseudophilotes baton and P. vicrama formed a hybrid zone in Europe. Wolbachia could obscure mitochondrial history, but knowledge on the infection helps us to understand the observed patterns. Testing for Wolbachia should be routine in mitochondrial DNA studies.
Collapse
Affiliation(s)
- Alena Sucháčková Bartoňová
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Martin Konvička
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jana Marešová
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Martin Wiemers
- Senckenberg German Entomological Institute, Müncheberg, Germany
| | - Nikolai Ignatev
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | - Thomas Schmitt
- Senckenberg German Entomological Institute, Müncheberg, Germany
- Faculty of Natural Sciences I, Institute of Biology, Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | |
Collapse
|
163
|
Ghazi MG, Sharma SP, Tuboi C, Angom S, Gurumayum T, Nigam P, Hussain SA. Population genetics and evolutionary history of the endangered Eld's deer (Rucervus eldii) with implications for planning species recovery. Sci Rep 2021; 11:2564. [PMID: 33510319 PMCID: PMC7844053 DOI: 10.1038/s41598-021-82183-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Eld's deer (Rucervus eldii) with three recognised subspecies (R. e. eldii, R. e. thamin, and R. e. siamensis) represents one of the most threatened cervids found in Southeast Asia. The species has experienced considerable range contractions and local extinctions owing to habitat loss and fragmentation, hunting, and illegal trade across its distribution range over the last century. Understanding the patterns of genetic variation is crucial for planning effective conservation strategies. This study investigated the phylogeography, divergence events and systematics of Eld's deer subspecies using the largest mtDNA dataset compiled to date. We also analysed the genetic structure and demographic history of R. e. eldii using 19 microsatellite markers. Our results showed that R. e. siamensis exhibits two divergent mtDNA lineages (mainland and Hainan Island), which diverged around 0.2 Mya (95% HPD 0.1-0.2), possibly driven by the fluctuating sea levels of the Early Holocene period. The divergence between R. e. eldii and R. e. siamensis occurred around 0.4 Mya (95% HPD 0.3-0.5), potentially associated with the adaptations to warm and humid climate with open grassland vegetation that predominated the region. Furthermore, R. e. eldii exhibits low levels of genetic diversity and small contemporary effective population size (median = 7, 4.7-10.8 at 95% CI) with widespread historical genetic bottlenecks which accentuates its vulnerability to inbreeding and extinction. Based on the observed significant evolutionary and systematic distance between Eld's deer and other species of the genus Rucervus, we propose to classify Eld's deer (Cervus eldii) in the genus Cervus, which is in congruent with previous phylogenetic studies. This study provides important conservation implications required to direct the ongoing population recovery programs and planning future conservation strategies.
Collapse
Affiliation(s)
| | - Surya Prasad Sharma
- Wildlife Institute of India, Chandrabani, Post Box #18, Dehra Dun, Uttarakhand, 248002, India
| | - Chongpi Tuboi
- Wildlife Institute of India, Chandrabani, Post Box #18, Dehra Dun, Uttarakhand, 248002, India
| | - Sangeeta Angom
- Wildlife Institute of India, Chandrabani, Post Box #18, Dehra Dun, Uttarakhand, 248002, India
| | - Tennison Gurumayum
- Wildlife Institute of India, Chandrabani, Post Box #18, Dehra Dun, Uttarakhand, 248002, India
| | - Parag Nigam
- Wildlife Institute of India, Chandrabani, Post Box #18, Dehra Dun, Uttarakhand, 248002, India
| | - Syed Ainul Hussain
- Wildlife Institute of India, Chandrabani, Post Box #18, Dehra Dun, Uttarakhand, 248002, India.
| |
Collapse
|
164
|
Arredondo-Alonso S, Top J, Corander J, Willems RJL, Schürch AC. Mode and dynamics of vanA-type vancomycin resistance dissemination in Dutch hospitals. Genome Med 2021; 13:9. [PMID: 33472670 PMCID: PMC7816424 DOI: 10.1186/s13073-020-00825-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Enterococcus faecium is a commensal of the gastrointestinal tract of animals and humans but also a causative agent of hospital-acquired infections. Resistance against glycopeptides and to vancomycin has motivated the inclusion of E. faecium in the WHO global priority list. Vancomycin resistance can be conferred by the vanA gene cluster on the transposon Tn1546, which is frequently present in plasmids. The vanA gene cluster can be disseminated clonally but also horizontally either by plasmid dissemination or by Tn1546 transposition between different genomic locations. METHODS We performed a retrospective study of the genomic epidemiology of 309 vancomycin-resistant E. faecium (VRE) isolates across 32 Dutch hospitals (2012-2015). Genomic information regarding clonality and Tn1546 characterization was extracted using hierBAPS sequence clusters (SC) and TETyper, respectively. Plasmids were predicted using gplas in combination with a network approach based on shared k-mer content. Next, we conducted a pairwise comparison between isolates sharing a potential epidemiological link to elucidate whether clonal, plasmid, or Tn1546 spread accounted for vanA-type resistance dissemination. RESULTS On average, we estimated that 59% of VRE cases with a potential epidemiological link were unrelated which was defined as VRE pairs with a distinct Tn1546 variant. Clonal dissemination accounted for 32% cases in which the same SC and Tn1546 variants were identified. Horizontal plasmid dissemination accounted for 7% of VRE cases, in which we observed VRE pairs belonging to a distinct SC but carrying an identical plasmid and Tn1546 variant. In 2% of cases, we observed the same Tn1546 variant in distinct SC and plasmid types which could be explained by mixed and consecutive events of clonal and plasmid dissemination. CONCLUSIONS In related VRE cases, the dissemination of the vanA gene cluster in Dutch hospitals between 2012 and 2015 was dominated by clonal spread. However, we also identified outbreak settings with high frequencies of plasmid dissemination in which the spread of resistance was mainly driven by horizontal gene transfer (HGT). This study demonstrates the feasibility of distinguishing between modes of dissemination with short-read data and provides a novel assessment to estimate the relative contribution of nested genomic elements in the dissemination of vanA-type resistance.
Collapse
Affiliation(s)
- Sergio Arredondo-Alonso
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway.,Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK.,Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Helsinki, Finland
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anita C Schürch
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
165
|
Duarte ASR, Röder T, Van Gompel L, Petersen TN, Hansen RB, Hansen IM, Bossers A, Aarestrup FM, Wagenaar JA, Hald T. Metagenomics-Based Approach to Source-Attribution of Antimicrobial Resistance Determinants - Identification of Reservoir Resistome Signatures. Front Microbiol 2021; 11:601407. [PMID: 33519742 PMCID: PMC7843941 DOI: 10.3389/fmicb.2020.601407] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Metagenomics can unveil the genetic content of the total microbiota in different environments, such as food products and the guts of humans and livestock. It is therefore considered of great potential to investigate the transmission of foodborne hazards as part of source-attribution studies. Source-attribution of antimicrobial resistance (AMR) has traditionally relied on pathogen isolation, while metagenomics allows investigating the full span of AMR determinants. In this study, we hypothesized that the relative abundance of fecal resistome components can be associated with specific reservoirs, and that resistomes can be used for AMR source-attribution. We used shotgun-sequences from fecal samples of pigs, broilers, turkeys- and veal calves collected across Europe, and fecal samples from humans occupationally exposed to livestock in one country (pig slaughterhouse workers, pig and broiler farmers). We applied both hierarchical and flat forms of the supervised classification ensemble algorithm Random Forests to classify resistomes into corresponding reservoir classes. We identified country-specific and -independent AMR determinants, and assessed the impact of country-specific determinants when attributing AMR resistance in humans. Additionally, we performed a similarity percentage analysis with the full spectrum of AMR determinants to identify resistome signatures for the different reservoirs. We showed that the number of AMR determinants necessary to attribute a resistome into the correct reservoir increases with a larger reservoir heterogeneity, and that the impact of country-specific resistome signatures on prediction varies between countries. We predicted a higher occupational exposure to AMR determinants among workers exposed to pigs than among those exposed to broilers. Additionally, results suggested that AMR exposure on pig farms was higher than in pig slaughterhouses. Human resistomes were more similar to pig and veal calves’ resistomes than to those of broilers and turkeys, and the majority of these resistome dissimilarities can be explained by a small set of AMR determinants. We identified resistome signatures for each individual reservoir, which include AMR determinants significantly associated with on-farm antimicrobial use. We attributed human resistomes to different livestock reservoirs using Random Forests, which allowed identifying pigs as a potential source of AMR in humans. This study thus demonstrates that it is possible to apply metagenomics in AMR source-attribution.
Collapse
Affiliation(s)
- Ana Sofia Ribeiro Duarte
- Division of Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Timo Röder
- Division of Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Liese Van Gompel
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Thomas Nordahl Petersen
- Division of Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Inge Marianne Hansen
- Division of Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Alex Bossers
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Frank M Aarestrup
- Division of Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Jaap A Wagenaar
- Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Tine Hald
- Division of Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
166
|
Chaguza C, Heinsbroek E, Gladstone RA, Tafatatha T, Alaerts M, Peno C, Cornick JE, Musicha P, Bar-Zeev N, Kamng'ona A, Kadioglu A, McGee L, Hanage WP, Breiman RF, Heyderman RS, French N, Everett DB, Bentley SD. Early Signals of Vaccine-driven Perturbation Seen in Pneumococcal Carriage Population Genomic Data. Clin Infect Dis 2021; 70:1294-1303. [PMID: 31094423 PMCID: PMC7768739 DOI: 10.1093/cid/ciz404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/15/2019] [Indexed: 11/14/2022] Open
Abstract
Background Pneumococcal conjugate vaccines (PCVs) have reduced pneumococcal diseases globally. Pneumococcal genomic surveys elucidate PCV effects on population structure but are rarely conducted in low-income settings despite the high disease burden. Methods We undertook whole-genome sequencing (WGS) of 660 pneumococcal isolates collected through surveys from healthy carriers 2 years from 13-valent PCV (PCV13) introduction and 1 year after rollout in northern Malawi. We investigated changes in population structure, within-lineage serotype dynamics, serotype diversity, and frequency of antibiotic resistance (ABR) and accessory genes. Results In children <5 years of age, frequency and diversity of vaccine serotypes (VTs) decreased significantly post-PCV, but no significant changes occurred in persons ≥5 years of age. Clearance of VT serotypes was consistent across different genetic backgrounds (lineages). There was an increase of nonvaccine serotypes (NVTs)—namely 7C, 15B/C, and 23A—in children <5 years of age, but 28F increased in both age groups. While carriage rates have been recently shown to remain stable post-PCV due to replacement serotypes, there was no change in diversity of NVTs. Additionally, frequency of intermediate-penicillin-resistant lineages decreased post-PCV. Although frequency of ABR genes remained stable, other accessory genes, especially those associated with mobile genetic element and bacteriocins, showed changes in frequency post-PCV. Conclusions We demonstrate evidence of significant population restructuring post-PCV driven by decreasing frequency of vaccine serotypes and increasing frequency of few NVTs mainly in children under 5. Continued surveillance with WGS remains crucial to fully understand dynamics of the residual VTs and replacement NVT serotypes post-PCV.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre.,Darwin College, University of Cambridge, Silver Street, Cambridge
| | - Ellen Heinsbroek
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,HIV and STI Department, National Infection Service, Public Health England, London, United Kingdom
| | - Rebecca A Gladstone
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge
| | - Terence Tafatatha
- Malawi Epidemiology Intervention Research Unit (formerly KPS), Chilumba
| | - Maaike Alaerts
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre.,Center of Medical Genetics, University of Antwerp, Belgium
| | - Chikondi Peno
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre.,Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, United Kingdom
| | - Jennifer E Cornick
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre
| | - Patrick Musicha
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre.,Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Naor Bar-Zeev
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Arox Kamng'ona
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre.,Department of Biomedical Sciences, University of Malawi, College of Medicine, Blantyre
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Robert F Breiman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Robert S Heyderman
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre.,Division of Infection and Immunity, University College London, United Kingdom
| | - Neil French
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre
| | - Dean B Everett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre.,Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, United Kingdom
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom.,Department of Pathology, University of Cambridge, United Kingdom
| |
Collapse
|
167
|
Molecular epidemiology and mortality of group B streptococcal meningitis and infant sepsis in the Netherlands: a 30-year nationwide surveillance study. LANCET MICROBE 2021; 2:e32-e40. [DOI: 10.1016/s2666-5247(20)30192-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022]
|
168
|
Formiga KM, Batista JDS, Alves-Gomes JA. The most important fishery resource in the Amazon, the migratory catfish Brachyplatystoma vaillantii (Siluriformes: Pimelodidae), is composed by an unique and genetically diverse population in the Solimões-Amazonas River System. NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2020-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT The migratory catfish Brachyplatystoma vaillantii is one of the most important fishery resources in the Amazon. Intense capture occurs associated to its life cycle. In order to know the genetic status, we sequenced the mitochondrial DNA control region from 150 individuals of B. vaillantii, collected in five fishing landing locations, covering the length of the Solimões-Amazonas River in Brazil. Genetic diversity parameters suggest there is no genetic differentiation between the five localities. Population’s expansion indicated by R 2 and Fu’s Fs tests was also confirmed by the high number of unique haplotypes found. The Analyses of molecular variance indicated that nearly all variability was contained within locations (99.86%), and estimates of gene flow among B. vaillantii were high (F ST = 0.0014). These results suggest that Brachyplatystoma vaillantii forms a panmitic population along the Solimões-Amazonas River and, has greater genetic variability than other species of the Brachyplatystoma genus available so far. Although the influence of different tributaries on B. vaillantii migration patterns remains uncertain, a single population in the main channel should be consider in future policies for management of this resource. However, since the species’ life cycle uses habitats in several countries, its management and conservation depend greatly of internationally joined efforts.
Collapse
Affiliation(s)
- Kyara Martins Formiga
- Instituto Nacional de Pesquisas da Amazônia, Brazil; Instituto Nacional de Pesquisas da Amazônia, Brazil; Instituto Nacional de Pesquisas da Amazônia, Brazil
| | - Jacqueline da Silva Batista
- Instituto Nacional de Pesquisas da Amazônia, Brazil; Instituto Nacional de Pesquisas da Amazônia, Brazil; Instituto Nacional de Pesquisas da Amazônia, Brazil
| | - José Antônio Alves-Gomes
- Instituto Nacional de Pesquisas da Amazônia, Brazil; Instituto Nacional de Pesquisas da Amazônia, Brazil; Instituto Nacional de Pesquisas da Amazônia, Brazil
| |
Collapse
|
169
|
Abstract
Population genomics is transforming our understanding of pathogen biology and evolution, and contributing to the prevention and management of disease in diverse crops. We provide an overview of key methods in bacterial population genomics and describe recent work focusing on three topics of critical importance to plant pathology: (i) resolving pathogen origins and transmission pathways during outbreak events, (ii) identifying the genetic basis of host specificity and virulence, and (iii) understanding how pathogens evolve in response to changing agricultural practices.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Christina Straub
- Institute of Environmental Science and Research, Health and Environment, Auckland, New Zealand
- Genomics Aotearoa, New Zealand
| | - Elena Colombi
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Honour C McCann
- New Zealand Institute for Advanced Study, Massey University, Albany, New Zealand
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
170
|
Abstract
The incidence of ciprofloxacin resistance in Salmonella has increased dramatically in the past decade. To track the evolutionary trend of ciprofloxacin resistance-encoding genetic elements during this period, we surveyed the prevalence of Salmonella in food products in Shenzhen, China, during the period of 2012 to 2017 and performed whole-genome sequencing and genetic analysis of 566 ciprofloxacin-resistant clinical Salmonella strains collected during this survey. We observed that target gene mutations have become much less common, with single gyrA mutation currently detectable in Salmonella enterica serovar Typhimurium only. Multiple plasmid-mediated quinolone resistance (PMQR) genes located in the chromosome and plasmids are now frequently detectable in ciprofloxacin-resistant Salmonella strains of various serotypes. Among them, the qnrS1 gene was often harbored by multiple plasmids, with p10k-like plasmids being the most dominant. Importantly, p10k-like plasmids initially were not conjugative but became transmissible with the help of a helper plasmid. Ciprofloxacin resistance due to combined effect of carriage of the qnrS1 gene and other resistance mechanisms is common. In S Typhimurium, carriage of qnrS1 is often associated with a single gyrA mutation; in other serotypes, combination of qnrS1 and other PMQR genes located in the chromosomal fragment or plasmid is observed. Another major mechanism of ciprofloxacin resistance, mainly observable in S Derby, involves a chromosomal fragment harboring the qnrS2-aac(6')lb-cr-oqxAB elements. Intriguingly, this chromosomal fragment, flanked by IS26, could form a circular intermediate and became transferrable. To conclude, the increase in the incidence of various PMQR mobile genetic elements and their interactions with other resistance mechanism contribute to a sharp increase in the prevalence of ciprofloxacin-resistant clinical Salmonella strains in recent years.IMPORTANCE Resistance of nontyphoidal Salmonella to fluoroquinolones such as ciprofloxacin is known to be mediated by target mutations. This study surveyed the prevalence of Salmonella strains recovered from 2,989 food products in Shenzhen, China, during the period 2012 to 2017 and characterized the genetic features of several PMQR gene-bearing plasmids and ciprofloxacin resistance-encoding DNA fragments. The emergence of such genetic elements has caused a shift in the genetic location of ciprofloxacin resistance determinants from the chromosomal mutations to various mobile genetic elements. The distribution of these PMQR plasmids showed that they exhibited high serotype specificity, except for the p10k-like plasmids, which can be widely detected and efficiently transmitted among Salmonella strains of various serotypes by fusing to a new conjugative helper plasmid. The sharp increase in the prevalence of ciprofloxacin resistance in recent years may cause a predisposition to the emergence of multidrug-resistant Salmonella strains and pose huge challenges to public health and infection control efforts.
Collapse
|
171
|
Al Suwayyid BA, Rankine-Wilson L, Speers DJ, Wise MJ, Coombs GW, Kahler CM. Meningococcal Disease-Associated Prophage-Like Elements Are Present in Neisseria gonorrhoeae and Some Commensal Neisseria Species. Genome Biol Evol 2020; 12:3938-3950. [PMID: 32031617 PMCID: PMC7058167 DOI: 10.1093/gbe/evaa023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Neisseria spp. possess four genogroups of filamentous prophages, termed Nf1 to 4. A filamentous bacteriophage from the Nf1 genogroup termed meningococcal disease-associated phage (MDA φ) is associated with clonal complexes of Neisseria meningitidis that cause invasive meningococcal disease. Recently, we recovered an isolate of Neisseria gonorrhoeae (ExNg63) from a rare case of gonococcal meningitis, and found that it possessed a region with 90% similarity to Nf1 prophages, specifically, the meningococcal MDA φ. This led to the hypothesis that the Nf1 prophage may be more widely distributed amongst the genus Neisseria. An analysis of 92 reference genomes revealed the presence of intact Nf1 prophages in the commensal species, Neisseria lactamica and Neisseria cinerea in addition to the pathogen N. gonorrhoeae. In N. gonorrhoeae, Nf1 prophages had a restricted distribution but were present in all representatives of MLST ST1918. Of the 160 phage integration sites identified, only one common insertion site was found between one isolate of N. gonorrhoeae and N. meningitidis. There was an absence of any obvious conservation of the receptor for prophage entry, PilE, suggesting that the phage may have been obtained by natural transformation. An examination of the restriction modification systems and mutated mismatch repair systems with prophage presence suggested that there was no obvious preference for these hosts. A timed phylogeny inferred that N. meningitidis was the donor of the Nf1 prophages in N. lactamica and N. gonorrhoeae. Further work is required to determine whether Nf1 prophages are active and can act as accessory colonization factors in these species.
Collapse
Affiliation(s)
- Barakat A Al Suwayyid
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Crawley, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Ministry of Education, Riyadh, Saudi Arabia
| | - Leah Rankine-Wilson
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Crawley, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, Australia
| | - David J Speers
- Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre, Nedlands, Australia.,School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia
| | - Michael J Wise
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Crawley, Australia.,Computer Science and Software Engineering, The University of Western Australia, Crawley, Australia
| | - Geoffrey W Coombs
- Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Murdoch, Australia.,Antimicrobial Resistance and Infectious Diseases Research Laboratory, School of Veterinary Life Sciences, Murdoch University, Australia
| | - Charlene M Kahler
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Crawley, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, Australia
| |
Collapse
|
172
|
Kay C, Williams TA, Gibson W. Mitochondrial DNAs provide insight into trypanosome phylogeny and molecular evolution. BMC Evol Biol 2020; 20:161. [PMID: 33297939 PMCID: PMC7724854 DOI: 10.1186/s12862-020-01701-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Background Trypanosomes are single-celled eukaryotic parasites characterised by the unique biology of their mitochondrial DNA. African livestock trypanosomes impose a major burden on agriculture across sub-Saharan Africa, but are poorly understood compared to those that cause sleeping sickness and Chagas disease in humans. Here we explore the potential of the maxicircle, a component of trypanosome mitochondrial DNA to study the evolutionary history of trypanosomes. Results We used long-read sequencing to completely assemble maxicircle mitochondrial DNA from four previously uncharacterized African trypanosomes, and leveraged these assemblies to scaffold and assemble a further 103 trypanosome maxicircle gene coding regions from published short-read data. While synteny was largely conserved, there were repeated, independent losses of Complex I genes. Comparison of pre-edited and non-edited genes revealed the impact of RNA editing on nucleotide composition, with non-edited genes approaching the limits of GC loss. African tsetse-transmitted trypanosomes showed high levels of RNA editing compared to other trypanosomes. The gene coding regions of maxicircle mitochondrial DNAs were used to construct time-resolved phylogenetic trees, revealing deep divergence events among isolates of the pathogens Trypanosoma brucei and T. congolense. Conclusions Our data represents a new resource for experimental and evolutionary analyses of trypanosome phylogeny, molecular evolution and function. Molecular clock analyses yielded a timescale for trypanosome evolution congruent with major biogeographical events in Africa and revealed the recent emergence of Trypanosoma brucei gambiense and T. equiperdum, major human and animal pathogens.
Collapse
Affiliation(s)
- C Kay
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - T A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - W Gibson
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
173
|
Unexpected Gene-Flow in Urban Environments: The Example of the European Hedgehog. Animals (Basel) 2020; 10:ani10122315. [PMID: 33297373 PMCID: PMC7762246 DOI: 10.3390/ani10122315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary An urban environment holds many barriers for mammals with limited mobility such as hedgehogs. These barriers appear often unsurmountable (e.g., rivers, highways, fences) and thus hinder contact between hedgehogs, leading to genetic isolation. In our study we tested whether these barriers affect the hedgehog population of urban Berlin, Germany. As Berlin has many of these barriers, we were expecting a strong genetic differentiation among hedgehog populations. However, when we looked at unrelated individuals, we did not see genetic differentiation among populations. The latter was only detected when we included related individuals too, a ‘family clan’ structure that is referred to as gamodemes. We conclude that the high percentage of greenery in Berlin provides sufficient habitat for hedgehogs to maintain connectivity across the city. Abstract We use the European hedgehog (Erinaceus europaeus), a mammal with limited mobility, as a model species to study whether the structural matrix of the urban environment has an influence on population genetic structure of such species in the city of Berlin (Germany). Using ten established microsatellite loci we genotyped 143 hedgehogs from numerous sites throughout Berlin. Inclusion of all individuals in the cluster analysis yielded three genetic clusters, likely reflecting spatial associations of kin (larger family groups, known as gamodemes). To examine the potential bias in the cluster analysis caused by closely related individuals, we determined all pairwise relationships and excluded close relatives before repeating the cluster analysis. For this data subset (N = 65) both clustering algorithms applied (Structure, Baps) indicated the presence of a single genetic cluster. These results suggest that the high proportion of green patches in the city of Berlin provides numerous steppingstone habitats potentially linking local subpopulations. Alternatively, translocation of individuals across the city by hedgehog rescue facilities may also explain the existence of only a single cluster. We therefore propose that information about management activities such as releases by animal rescue centres should include location data (as exactly as possible) regarding both the collection and the release site, which can then be used in population genetic studies.
Collapse
|
174
|
Schwabl P, Maiguashca Sánchez J, Costales JA, Ocaña-Mayorga S, Segovia M, Carrasco HJ, Hernández C, Ramírez JD, Lewis MD, Grijalva MJ, Llewellyn MS. Culture-free genome-wide locus sequence typing (GLST) provides new perspectives on Trypanosoma cruzi dispersal and infection complexity. PLoS Genet 2020; 16:e1009170. [PMID: 33326438 PMCID: PMC7743988 DOI: 10.1371/journal.pgen.1009170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
Analysis of genetic polymorphism is a powerful tool for epidemiological surveillance and research. Powerful inference from pathogen genetic variation, however, is often restrained by limited access to representative target DNA, especially in the study of obligate parasitic species for which ex vivo culture is resource-intensive or bias-prone. Modern sequence capture methods enable pathogen genetic variation to be analyzed directly from host/vector material but are often too complex and expensive for resource-poor settings where infectious diseases prevail. This study proposes a simple, cost-effective 'genome-wide locus sequence typing' (GLST) tool based on massive parallel amplification of information hotspots throughout the target pathogen genome. The multiplexed polymerase chain reaction amplifies hundreds of different, user-defined genetic targets in a single reaction tube, and subsequent agarose gel-based clean-up and barcoding completes library preparation at under 4 USD per sample. Our study generates a flexible GLST primer panel design workflow for Trypanosoma cruzi, the parasitic agent of Chagas disease. We successfully apply our 203-target GLST panel to direct, culture-free metagenomic extracts from triatomine vectors containing a minimum of 3.69 pg/μl T. cruzi DNA and further elaborate on method performance by sequencing GLST libraries from T. cruzi reference clones representing discrete typing units (DTUs) TcI, TcIII, TcIV, TcV and TcVI. The 780 SNP sites we identify in the sample set repeatably distinguish parasites infecting sympatric vectors and detect correlations between genetic and geographic distances at regional (< 150 km) as well as continental scales. The markers also clearly separate TcI, TcIII, TcIV and TcV + TcVI and appear to distinguish multiclonal infections within TcI. We discuss the advantages, limitations and prospects of our method across a spectrum of epidemiological research.
Collapse
Affiliation(s)
- Philipp Schwabl
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jalil Maiguashca Sánchez
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Maikell Segovia
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Hernán J. Carrasco
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Carolina Hernández
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Michael D. Lewis
- London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Infectious and Tropical Disease Institute, Biomedical Sciences Department, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America
| | - Martin S. Llewellyn
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
175
|
Abdel-Glil MY, Hotzel H, Tomaso H, Linde J. Phylogenomic Analysis of Campylobacter fetus Reveals a Clonal Structure of Insertion Element IS Cfe1 Positive Genomes. Front Microbiol 2020; 11:585374. [PMID: 33281781 PMCID: PMC7688749 DOI: 10.3389/fmicb.2020.585374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 01/06/2023] Open
Abstract
Subspecies of the species Campylobacter fetus are associated with specific host niches including mammals and reptiles. Campylobacter fetus subsp. fetus is a zoonotic pathogen infecting humans. Infections can vary from an acute intestinal illness to severe systemic infections, with sheep and cattle as major reservoirs. In contrast, Campylobacter fetus subsp. venerealis causes bovine genital campylobacteriosis, which leads to abortion in cattle and a high economic burden for the farmers. Therefore, high-quality molecular subtyping is indispensable for interventional epidemiology. We used whole-genome sequencing (WGS) data of 283 Campylobacter fetus strains from 18 countries and compared several methods for Campylobacter fetus subtyping, including WGS, multilocus sequence typing, PCR assays, and the presence of the insertion element ISCfe1. We identified a highly clonal clade (designated as clade 1) that harbors the insertion sequence ISCfe1. The presence of this insertion sequence is an essential diagnostic tool for the identification of the subspecies Campylobacter fetus subsp. venerealis, serving as a target for several PCR assays. However, we have found a high sequence variability for the ISCfe1 besides the presence of ISCfe1-paralogues in certain other genomes (n = 7) which may cause incorrect diagnostic results. Clade 1 seems to be the cattle-specific clade of this species. We propose that only this clade might be designated as Campylobacter fetus subsp. venerealis as it harbors the ISCfe1 marker sequence, which is a major target for molecular methods currently used for Campylobacter fetus subspecies identification. Fostering this proposal, we defined eleven stable nucleotide markers specific for this clade. Additionally, we developed a bioinformatics toolbox for the fast identification of this clade based on WGS data. In conclusion, our results demonstrate that WGS can be used for Campylobacter fetus subtyping overcoming limitations of current PCR and MLST protocols.
Collapse
Affiliation(s)
- Mostafa Y Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany.,Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Ash Sharqiyah, Egypt
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
176
|
Prokchorchik M, Pandey A, Moon H, Kim W, Jeon H, Jung G, Jayaraman J, Poole S, Segonzac C, Sohn KH, McCann HC. Host adaptation and microbial competition drive Ralstonia solanacearum phylotype I evolution in the Republic of Korea. Microb Genom 2020; 6:mgen000461. [PMID: 33151139 PMCID: PMC7725338 DOI: 10.1099/mgen.0.000461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) threatens the cultivation of important crops worldwide. We sequenced 30 RSSC phylotype I (R. pseudosolanacearum) strains isolated from pepper (Capsicum annuum) and tomato (Solanum lycopersicum) across the Republic of Korea. These isolates span the diversity of phylotype I, have extensive effector repertoires and are subject to frequent recombination. Recombination hotspots among South Korean phylotype I isolates include multiple predicted contact-dependent inhibition loci, suggesting that microbial competition plays a significant role in Ralstonia evolution. Rapid diversification of secreted effectors presents challenges for the development of disease-resistant plant varieties. We identified potential targets for disease resistance breeding by testing for allele-specific host recognition of T3Es present among South Korean phyloype I isolates. The integration of pathogen population genomics and molecular plant pathology contributes to the development of location-specific disease control and development of plant cultivars with durable resistance to relevant threats.
Collapse
Affiliation(s)
- Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Ankita Pandey
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hayoung Moon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Wanhui Kim
- Department of Plant Science, Plant Genome and Breeding Institute, Agricultural Life Science Research Institute, Seoul National University, Seoul 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyelim Jeon
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Gayoung Jung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jay Jayaraman
- The New Zealand Institute for Plant and Food Research, Auckland, New Zealand
| | - Stephen Poole
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, USA
| | - Cécile Segonzac
- Department of Plant Science, Plant Genome and Breeding Institute, Agricultural Life Science Research Institute, Seoul National University, Seoul 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Honour C. McCann
- New Zealand Institute for Advanced Study, Massey University Albany, New Zealand
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
177
|
Cox K, McKeown N, Vanden Broeck A, Van Breusegem A, Cammaerts R, Thomaes A. Genetic structure of recently fragmented suburban populations of European stag beetle. Ecol Evol 2020; 10:12290-12306. [PMID: 33209288 PMCID: PMC7663065 DOI: 10.1002/ece3.6858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/29/2022] Open
Abstract
Habitat loss and fragmentation due to urbanization can negatively affect metapopulation persistence when gene flow among populations is reduced and population sizes decrease. Inference of patterns and processes of population connectivity derived from spatial genetic analysis has proven invaluable for conservation and management. However, a more complete account of population dynamics may be obtained by combining spatial and temporal sampling. We, therefore, performed a genetic study on European stag beetle (Lucanus cervus L.) populations in a suburban context using samples collected in three locations and during the period 2002-2016. The sampling area has seen recent landscape changes which resulted in population declines. Through the use of a suite of F ST, clustering analysis, individual assignment, and relatedness analysis, we assessed fine scale spatiotemporal genetic variation within and among habitat patches using 283 individuals successfully genotyped at 17 microsatellites. Our findings suggested the three locations to hold demographically independent populations, at least over time scales of relevance to conservation, though with higher levels of gene flow in the past. Contrary to expectation from tagging studies, dispersal appeared to be mainly female-biased. Although the life cycle of stag beetle suggests its generations to be discrete, no clear temporal structure was identified, which could be attributed to the varying duration of larval development. Since population bottlenecks were detected and estimates of effective number of breeders were low, conservation actions are eminent which should include the establishment of suitable dead wood for oviposition on both local and regional scales to increase (re)colonization success and connectivity among current populations.
Collapse
Affiliation(s)
- Karen Cox
- Research Institute for Nature and Forest (INBO)GeraardsbergenBelgium
| | - Niall McKeown
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - An Vanden Broeck
- Research Institute for Nature and Forest (INBO)GeraardsbergenBelgium
| | - An Van Breusegem
- Research Institute for Nature and Forest (INBO)GeraardsbergenBelgium
| | - Roger Cammaerts
- Retired from the Natural and Agricultural Environment Studies Department (DEMNA)Public Service of WalloniaGemblouxBelgium
| | - Arno Thomaes
- Research Institute for Nature and Forest (INBO)BrusselsBelgium
| |
Collapse
|
178
|
Yuan C, Wei Y, Zhang S, Cheng J, Cheng X, Qian C, Wang Y, Zhang Y, Yin Z, Chen H. Comparative Genomic Analysis Reveals Genetic Mechanisms of the Variety of Pathogenicity, Antibiotic Resistance, and Environmental Adaptation of Providencia Genus. Front Microbiol 2020; 11:572642. [PMID: 33193173 PMCID: PMC7652902 DOI: 10.3389/fmicb.2020.572642] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022] Open
Abstract
The bacterial genus Providencia is Gram-negative opportunistic pathogens, which have been isolated from a variety of environments and organisms, ranging from humans to animals. Providencia alcalifaciens, Providencia rettgeri, and Providencia stuartii are the most common clinical isolates, however, these three species differ in their pathogenicity, antibiotic resistance and environmental adaptation. Genomes of 91 isolates of the genus Providencia were investigated to clarify their genetic diversity, focusing on virulence factors, antibiotic resistance genes, and environmental adaptation genes. Our study revealed an open pan-genome for the genus Providencia containing 14,720 gene families. Species of the genus Providencia exhibited different functional constraints, with the core genes, accessory genes, and unique genes. A maximum-likelihood phylogeny reconstructed with concatenated single-copy core genes classified all Providencia isolates into 11 distant groups. Comprehensive and systematic comparative genomic analyses revealed that specific distributions of virulence genes, which were highly homologous to virulence genes of the genus Proteus, contributed to diversity in pathogenicity of Providencia alcalifaciens, Providencia rettgeri, and Providencia stuartii. Furthermore, multidrug resistance (MDR) phenotypes of isolates of Providencia rettgeri and Providencia stuartii were predominantly due to resistance genes from class 1 and 2 integrons. In addition, Providencia rettgeri and Providencia stuartii harbored more genes related to material transport and energy metabolism, which conferred a stronger ability to adapt to diverse environments. Overall, our study provided valuable insights into the genetic diversity and functional features of the genus Providencia, and revealed genetic mechanisms underlying diversity in pathogenicity, antibiotic resistance and environmental adaptation of members of this genus.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Sanitary Toxicology and Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment Nutrition and Public Health, Tianjin Medical University, Tianjin, China.,Center for International Collaborative Research on Environment Nutrition and Public Health, Tianjin Medical University, Tianjin, China
| | - Yi Wei
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Si Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Juan Cheng
- Department of Dermatology, Tianjin Union Medical Center, Tianjin, China
| | - Xiaolei Cheng
- Department of Dermatology, Tianjin Union Medical Center, Tianjin, China
| | - Chengqian Qian
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yuhui Wang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yang Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China.,College of Life Science, Nankai University, Tianjin, China
| | - Zhiqiu Yin
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin Economic-Technological Development Area, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Nankai University, Tianjin, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, China
| | - Hong Chen
- Department of Dermatology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
179
|
Ye Z, Chen D, Yuan J, Zheng C, Yang X, Wang W, Zhang Y, Wang S, Jiang K, Bu W. Are population isolations and declines a threat to island endemic water striders? A lesson from demographic and niche modelling of Metrocoris esakii (Hemiptera: Gerridae). Mol Ecol 2020; 29:4573-4587. [PMID: 33006793 DOI: 10.1111/mec.15669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
Genetic stochasticity and bottlenecking in the course of Pleistocene glaciations have been identified as threatening the survival of local endemics. However, the mechanisms by which local endemic species balance the influences of these two events remain poorly understood. Here, we generated a double-digest restriction site-associated DNA sequencing (ddRAD-seq) data set, mined mitochondrial sequences and constructed ecological niche models for the island endemic water strider Metrocoris esakii (Hemiptera: Gerridae). We found that M. esakii comprised three divergent lineages (i.e., north, central and south) isolated by geographical barriers and generally experienced population declines with the constriction of suitable areas during the Last Glacial Maximum (LGM). Further demographic model testing and stairway plots revealed a history of recent gene flow among the neighbouring lineages and rapid recovery at the end of the LGM, indicating that M. esakii at least had the potential for an adaptive response to population fragmentation and bottlenecking. The northern lineage did not show genetic bottlenecking during the LGM, which was probably due to its large effective population size (Ne ) from migration, which improved its adaptive potential. Relative to the ddRAD-seq data set, the demographic results based on mitochondrial sequences were less conclusive, showing weak differentiation and oversimplified demographic trajectories for the three genetic lineages. Overall, this study provides some degree of optimism for the survival of island endemic water striders from a demographic perspective, but further evaluation of their extinction risk under the impacts of human activities is required.
Collapse
Affiliation(s)
- Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Danyang Chen
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Juanjuan Yuan
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenguang Zheng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xin Yang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenwu Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yaoyao Zhang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Siqi Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Kun Jiang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
180
|
Janowicz A, De Massis F, Zilli K, Ancora M, Tittarelli M, Sacchini F, Di Giannatale E, Sahl JW, Foster JT, Garofolo G. Evolutionary history and current distribution of the West Mediterranean lineage of Brucella melitensis in Italy. Microb Genom 2020; 6. [PMID: 33030422 PMCID: PMC7725330 DOI: 10.1099/mgen.0.000446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ovine and caprine brucellosis, caused by Brucella melitensis, is one of the world’s most widespread zoonoses and is a major cause of economic losses in domestic ruminant production. In Italy, the disease remains endemic in several southern provinces, despite an ongoing brucellosis eradication programme. In this study, we used whole-genome sequencing to detail the genetic diversity of circulating strains, and to examine the origins of the predominant sub-lineages of B. melitensis in Italy. We reconstructed a global phylogeny of B. melitensis, strengthened by 339 new whole-genome sequences, from Italian isolates collected from 2011 to 2018 as part of a national livestock surveillance programme. All Italian strains belonged to the West Mediterranean lineage, which further divided into two major clades that diverged roughly between the 5th and 7th centuries. We observed that Sicily serves as a brucellosis burden hotspot, giving rise to several distinct sub-lineages. More than 20 putative outbreak clusters of ovine and caprine brucellosis were identified, several of which persisted over the 8 year survey period despite an aggressive brucellosis eradication campaign. While the outbreaks in Central and Northern Italy were generally associated with introductions of single clones of B. melitensis and their subsequent dissemination within neighbouring territories, we observed weak geographical segregation of genotypes in the southern regions. Biovar determination, recommended in routine analysis of all Brucella strains by the World Organisation for Animal Health (OIE), could not discriminate among the four main global clades. This demonstrates a need for updating the guidelines used for monitoring B. melitensis transmission and spread, both at the national and international level, and to include whole-genome-based typing as the principal method for identification and tracing of brucellosis outbreaks.
Collapse
Affiliation(s)
- Anna Janowicz
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", via Campo Boario, 64100 Teramo, Italy
| | - Fabrizio De Massis
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", via Campo Boario, 64100 Teramo, Italy
| | - Katiuscia Zilli
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", via Campo Boario, 64100 Teramo, Italy
| | - Massimo Ancora
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", via Campo Boario, 64100 Teramo, Italy
| | - Manuela Tittarelli
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", via Campo Boario, 64100 Teramo, Italy
| | - Flavio Sacchini
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", via Campo Boario, 64100 Teramo, Italy
| | - Elisabetta Di Giannatale
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", via Campo Boario, 64100 Teramo, Italy
| | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Giuliano Garofolo
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", via Campo Boario, 64100 Teramo, Italy
| |
Collapse
|
181
|
Mathiasen P, Venegas-González A, Fresia P, Premoli AC. A relic of the past: current genetic patterns of the palaeoendemic tree Nothofagus macrocarpa were shaped by climatic oscillations in central Chile. ANNALS OF BOTANY 2020; 126:891-904. [PMID: 32578853 PMCID: PMC7539361 DOI: 10.1093/aob/mcaa111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS The Mediterranean-type forest of central Chile is considered a 'biodiversity hotspot' and a relic of a wider ancient distribution produced by past climatic oscillations. Nothofagus macrocarpa, commonly known as 'roble de Santiago', is a threatened palaeoendemic of this forest, poorly represented in the protected area system. This tree has been repeatedly misidentified as the sister species N. obliqua, which has affected its recognition and protection. Only a few populations of N. macrocarpa remain within a matrix of intensive land use that has been affected by recent forest fires. We tested the hypothesis that current populations of N. macrocarpa are a relic state of a previously widespread range, with the aim of contributing to its identification, its biogeographical history and the design of conservation measures using genetic information. METHODS We analysed remnant N. macrocarpa forests using nuclear (nDNA) and chloroplast DNA (cpDNA) sequences, conducted phylogenetic and phylogeographical analyses to reconstruct its biogeographical history, and assessed microsatellites [simple sequence repeats (SSRs)] to determine contemporary patters of diversity within and among all remnant populations. We also examined the degree of past, current and potential future isolation of N. macrocarpa populations using ecological niche models (ENMs). KEY RESULTS The species N. macrocarpa was confirmed by nDNA sequences, as previously suggested by chromosomal analysis. Small isolated populations of N. macrocarpa exhibited moderate to high genetic diversity according to SSRs. cpDNA analysis revealed a marked past latitudinal geographical structure, whereas analysis of SSRs did not find such current structure. ENM analyses revealed local expansion-contraction of the N. macrocarpa range during warmer periods, particularly in the northern and central ranges where basal-most cpDNA haplotypes were detected, and recent expansion to the south of the distribution. CONCLUSIONS Genetic patterns confirm that N. macrocarpa is a distinct species and suggest a marked latitudinal relic structure in at least two evolutionarily significant units, despite contemporary among-population gene flow. This information must be considered when choosing individuals (seeds and/or propagules) for restoration purposes, to avoid the admixture of divergent genetic stocks.
Collapse
Affiliation(s)
- Paula Mathiasen
- Laboratorio Ecotono, Universidad Nacional del Comahue, INIBIOMA-CONICET, Bariloche, Argentina
| | - Alejandro Venegas-González
- Hémera Centro de Observación de la Tierra, Escuela de Ingeniería Forestal, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Pablo Fresia
- Unidad de Biotecnología, INIA Las Brujas, Canelones, Uruguay
- Unidad de Bioinformática, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Andrea C Premoli
- Laboratorio Ecotono, Universidad Nacional del Comahue, INIBIOMA-CONICET, Bariloche, Argentina
| |
Collapse
|
182
|
Garofolo G, Petrella A, Lucifora G, Di Francesco G, Di Guardo G, Pautasso A, Iulini B, Varello K, Giorda F, Goria M, Dondo A, Zoppi S, Di Francesco CE, Giglio S, Ferringo F, Serrecchia L, Ferrantino MAR, Zilli K, Janowicz A, Tittarelli M, Mignone W, Casalone C, Grattarola C. Occurrence of Brucella ceti in striped dolphins from Italian Seas. PLoS One 2020; 15:e0240178. [PMID: 33007030 PMCID: PMC7531818 DOI: 10.1371/journal.pone.0240178] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/21/2020] [Indexed: 01/15/2023] Open
Abstract
Brucella ceti infections have been increasingly reported in cetaceans, although a very limited characterization of Mediterranean Brucella spp. isolates has been previously reported and relatively few data exist about brucellosis among cetaceans in Italy. To address this gap, we studied 8 cases of B. ceti infection in striped dolphins (Stenella coeruleoalba) stranded along the Italian coastline from 2012 to 2018, investigated thanks to the Italian surveillance activity on stranded cetaceans. We focused on cases of stranding in eastern and western Italian seas, occurred along the Apulia (N = 6), Liguria (N = 1) and Calabria (N = 1) coastlines, through the analysis of gross and microscopic findings, the results of microbiological, biomolecular and serological investigations, as well as the detection of other relevant pathogens. The comparative genomic analysis used whole genome sequences of B. ceti from Italy paired with the publicly available complete genomes. Pathological changes consistent with B. ceti infection were detected in the central nervous system of 7 animals, showing non-suppurative meningoencephalitis. In 4 cases severe coinfections were detected, mostly involving Dolphin Morbillivirus (DMV). The severity of B. ceti-associated lesions supports the role of this microbial agent as a primary neurotropic pathogen for striped dolphins. We classified the 8 isolates into the common sequence type 26 (ST-26). Whole genome SNP analysis showed that the strains from Italy clustered into two genetically distinct clades. The first clade comprised exclusively the isolates from Ionian and Adriatic Seas, while the second one included the strain from the Ligurian Sea and those from the Catalonian coast. Plotting these clades onto the geographic map suggests a link between their phylogeny and topographical distribution. These results represent the first extensive characterization of B. ceti isolated from Italian waters reported to date and show the usefulness of WGS for understanding of the evolution of this emerging pathogen.
Collapse
Affiliation(s)
- Giuliano Garofolo
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Antonio Petrella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Vibo Valentia, Italy
| | - Gabriella Di Francesco
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | | | | | - Barbara Iulini
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Katia Varello
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Federica Giorda
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
- Institute for Animal Health and Food Safety (IUSA), Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Maria Goria
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Alessandro Dondo
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Simona Zoppi
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | | | - Stefania Giglio
- M.A.R.E. Calabria Association, Montepaone (Catanzaro), Italy
| | - Furio Ferringo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Luigina Serrecchia
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | | | - Katiuscia Zilli
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Anna Janowicz
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Manuela Tittarelli
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Walter Mignone
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Cristina Casalone
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Carla Grattarola
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
- * E-mail:
| |
Collapse
|
183
|
García-Martínez RM, de Los Angeles Barriga-Sosa I, López B, Mejía O. "Colonization routes and demographic history of Chirostoma humboldtianum in the central Mexican plateau". JOURNAL OF FISH BIOLOGY 2020; 97:1039-1050. [PMID: 32658333 DOI: 10.1111/jfb.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
In the present study we evaluate the population structure and potential colonization routes of the silverside Chirostoma humboldtianum through approximate Bayesian computations. Six microsatellite loci were amplified in a total of 288 individuals from six different locations covering the complete geographic distribution of the species. Additionally, two mitochondrial DNA markers, a D loop control region and cytochrome b were amplified in a subset of 107 individuals. The results found with microsatellites allow recovering well-structured populations that have experienced a drastic reduction in the effective population size. On the other hand, mtDNA sequences showed a moderate phylogeographic structure with shared haplotypes between geographic localities and signalsof a slight increase in the effective population size. Finally, the approximate Bayesian computation analysis performed with both datasets suggested a west-to-east colonization route for the species in Central Mexico.
Collapse
Affiliation(s)
- Rosa María García-Martínez
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Irene de Los Angeles Barriga-Sosa
- Laboratorio de Genética y Biología Molecular de la Planta Experimental de Producción Acuícola, Departamento de Hidrobiología, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Benjamín López
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Omar Mejía
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
184
|
Yi X, Chen J, Zhu H, Li Y, Li X, Li M, Duan Y, Chen L, Wang X. Phylogeography and the population genetic structure of flowering cherry Cerasus serrulata (Rosaceae) in subtropical and temperate China. Ecol Evol 2020; 10:11262-11276. [PMID: 33144963 PMCID: PMC7593168 DOI: 10.1002/ece3.6765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022] Open
Abstract
Cerasus serrulata (Rosaceae) is an important flowering cherry resource which is valuable for developing new cultivars of flowering cherries. It is broadly distributed and possesses abundant variations. In this study, phylogeographic analysis was conducted to reveal the evolutionary history to better understand the genetic diversity and genetic structure of C. serrulata so as to provide more accurate molecular insights into better conservation and utilization of the germplasm resources. A total of 327 individuals from 18 wild populations were collected. Three chloroplast DNA (cpDNA) fragments (matK, trnD-E, and trnS-G) and the nuclear internal transcribed spacer (ITS) were utilized. The results showed a high genetic diversity at both species level and population level of C. serrulata. High genetic differentiation and the existence of the phylogeographic structure were detected. No significant expansion events were discovered. Two geographic lineages were inferred. One was confined to the Qinling Mountains and the Taihang Mountains. The other was from the Wuling Mountains to the Jiangnan Hilly Regions and then went northeast to the coast of Asia. In addition, some taxonomic treatments of the C. serrulata complex are discussed and reconsidered. Conservation and utilization strategies of wild C. serrulata germplasm resources were recommended.
Collapse
Affiliation(s)
- Xian‐Gui Yi
- Co‐Innovation Center for the Sustainable Forestry in Southern China; Cerasus Research CenterCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingJiangsuChina
| | - Jie Chen
- Co‐Innovation Center for the Sustainable Forestry in Southern China; Cerasus Research CenterCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingJiangsuChina
| | - Hong Zhu
- Co‐Innovation Center for the Sustainable Forestry in Southern China; Cerasus Research CenterCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingJiangsuChina
| | - Yong‐Fu Li
- Co‐Innovation Center for the Sustainable Forestry in Southern China; Cerasus Research CenterCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingJiangsuChina
| | - Xue‐Xia Li
- Co‐Innovation Center for the Sustainable Forestry in Southern China; Cerasus Research CenterCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingJiangsuChina
| | - Meng Li
- Co‐Innovation Center for the Sustainable Forestry in Southern China; Cerasus Research CenterCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingJiangsuChina
| | - Yi‐Fan Duan
- Co‐Innovation Center for the Sustainable Forestry in Southern China; Cerasus Research CenterCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingJiangsuChina
| | - Lin Chen
- Co‐Innovation Center for the Sustainable Forestry in Southern China; Cerasus Research CenterCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingJiangsuChina
| | - Xian‐Rong Wang
- Co‐Innovation Center for the Sustainable Forestry in Southern China; Cerasus Research CenterCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingJiangsuChina
| |
Collapse
|
185
|
Azarian T, Martinez PP, Arnold BJ, Qiu X, Grant LR, Corander J, Fraser C, Croucher NJ, Hammitt LL, Reid R, Santosham M, Weatherholtz RC, Bentley SD, O’Brien KL, Lipsitch M, Hanage WP. Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biol 2020; 18:e3000878. [PMID: 33091022 PMCID: PMC7580979 DOI: 10.1371/journal.pbio.3000878] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/18/2020] [Indexed: 11/30/2022] Open
Abstract
Predicting how pathogen populations will change over time is challenging. Such has been the case with Streptococcus pneumoniae, an important human pathogen, and the pneumococcal conjugate vaccines (PCVs), which target only a fraction of the strains in the population. Here, we use the frequencies of accessory genes to predict changes in the pneumococcal population after vaccination, hypothesizing that these frequencies reflect negative frequency-dependent selection (NFDS) on the gene products. We find that the standardized predicted fitness of a strain, estimated by an NFDS-based model at the time the vaccine is introduced, enables us to predict whether the strain increases or decreases in prevalence following vaccination. Further, we are able to forecast the equilibrium post-vaccine population composition and assess the invasion capacity of emerging lineages. Overall, we provide a method for predicting the impact of an intervention on pneumococcal populations with potential application to other bacterial pathogens in which NFDS is a driving force.
Collapse
Affiliation(s)
- Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, United States of America
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Pamela P. Martinez
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Brian J. Arnold
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Xueting Qiu
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Lindsay R. Grant
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jukka Corander
- Helsinki Institute for Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Infection Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Laura L. Hammitt
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Raymond Reid
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Mathuram Santosham
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Robert C. Weatherholtz
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Stephen D. Bentley
- Infection Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | | | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| |
Collapse
|
186
|
Busch A, Homeier-Bachmann T, Abdel-Glil MY, Hackbart A, Hotzel H, Tomaso H. Using affinity propagation clustering for identifying bacterial clades and subclades with whole-genome sequences of Francisella tularensis. PLoS Negl Trop Dis 2020; 14:e0008018. [PMID: 32991594 PMCID: PMC7523947 DOI: 10.1371/journal.pntd.0008018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/27/2019] [Indexed: 12/31/2022] Open
Abstract
By combining a reference-independent SNP analysis and average nucleotide identity (ANI) with affinity propagation clustering (APC), we developed a significantly improved methodology allowing resolving phylogenetic relationships, based on objective criteria. These bioinformatics tools can be used as a general ruler to determine phylogenetic relationships and clustering of bacteria, exemplary done with Francisella (F.) tularensis. Molecular epidemiology of F. tularensis is currently assessed mostly based on laboratory methods and molecular analysis. The high evolutionary stability and the clonal nature makes Francisella ideal for subtyping with single nucleotide polymorphisms (SNPs). Sequencing and real-time PCR can be used to validate the SNP analysis. We investigate whole-genome sequences of 155 F. tularensis subsp. holarctica isolates. Phylogenetic testing was based on SNPs and average nucleotide identity (ANI) as reference independent, alignment-free methods taking small-scale and large-scale differences within the genomes into account. Especially the whole genome SNP analysis with kSNP3.0 allowed deciphering quite subtle signals of systematic differences in molecular variation. Affinity propagation clustering (APC) resulted in three clusters showing the known clades B.4, B.6, and B.12. These data correlated with the results of real-time PCR assays targeting canSNPs loci. Additionally, we detected two subtle sub-clusters. SplitsTree was used with standard-setting using the aligned SNPs from Parsnps. Together APC, HierBAPS, and SplitsTree enabled us to generate hypotheses about epidemiologic relationships between bacterial clusters and describing the distribution of isolates. Our data indicate that the choice of the typing technique can increase our understanding of the pathogenesis and transmission of diseases with the eventual for prevention. This is opening perspectives to be applied to other bacterial species. The data provide evidence that Germany might be the collision zone where the clade B.12, also known as the East European clade, overlaps with the clade B.6, also known as the Iberian clade. Described methods allow generating a new, more detailed perspective for F. tularensis subsp. holarctica phylogeny. These results may encourage to determine phylogenetic relationships and clustering of other bacteria the same way.
Collapse
Affiliation(s)
- Anne Busch
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- * E-mail:
| | - Timo Homeier-Bachmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Mostafa Y. Abdel-Glil
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Anja Hackbart
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
187
|
First Report on the Finding of Listeria mnocytogenes ST121 Strain in a Dolphin Brain. Pathogens 2020; 9:pathogens9100802. [PMID: 32998344 PMCID: PMC7601084 DOI: 10.3390/pathogens9100802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes the foodborne illness, listeriosis. Clonal complexes (CC), such as CC121, are overrepresented in the food production industry, and are rarely reported in animals and the environment. Working within a European-wide project, we investigated the routes by which strains are transmitted from environments and animals to food and the food production environment (FPE). In this context, we report, for the first time, the occurrence of a ST121 (CC121) strain isolated from a dolphin brain. The genome was compared with the genomes of 376 CC121 strains. Genomic comparisons showed that 16 strains isolated from food were the closest to the dolphin strain. Like most of the food strains analyzed here, the dolphin strain included genomic features (transposon Tn6188, plasmid pLM6179), both described as being associated with the strain’s adaptation to the FPE. Like all 376 strains, the dolphin strain contained a truncated actA gene and inlA gene, both described as being associated with attenuated virulence. Despite this fact, the strain was able to cross blood-brain barrier in immunosuppressed dolphin exposed polychlorinated biphenyl and invaded by parasites. Our data suggest that the dolphin was infected by a food-related strain released into the Mediterranean Sea.
Collapse
|
188
|
Ingle DJ, Easton M, Valcanis M, Seemann T, Kwong JC, Stephens N, Carter GP, Gonçalves da Silva A, Adamopoulos J, Baines SL, Holt KE, Chow EPF, Fairley CK, Chen MY, Kirk MD, Howden BP, Williamson DA. Co-circulation of Multidrug-resistant Shigella Among Men Who Have Sex With Men in Australia. Clin Infect Dis 2020; 69:1535-1544. [PMID: 30615105 DOI: 10.1093/cid/ciz005] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In urban Australia, the burden of shigellosis is either in returning travelers from shigellosis-endemic regions or in men who have sex with men (MSM). Here, we combine genomic data with comprehensive epidemiological data on sexual exposure and travel to describe the spread of multidrug-resistant Shigella lineages. METHODS A population-level study of all cultured Shigella isolates in the state of Victoria, Australia, was undertaken from 1 January 2016 through 31 March 2018. Antimicrobial susceptibility testing, whole-genome sequencing, and bioinformatic analyses of 545 Shigella isolates were performed at the Microbiological Diagnostic Unit Public Health Laboratory. Risk factor data on travel and sexual exposure were collected through enhanced surveillance forms or by interviews. RESULTS Rates of antimicrobial resistance were high, with 17.6% (95/541) and 50.6% (274/541) resistance to ciprofloxacin and azithromycin, respectively. There were strong associations between antimicrobial resistance, phylogeny, and epidemiology. Specifically, 2 major MSM-associated lineages were identified: a Shigellasonnei lineage (n = 159) and a Shigella flexneri 2a lineage (n = 105). Of concern, 147/159 (92.4%) of isolates within the S. sonnei MSM-associated lineage harbored mutations associated with reduced susceptibility to recommended oral antimicrobials: namely, azithromycin, trimethoprim-sulfamethoxazole, and ciprofloxacin. Long-read sequencing demonstrated global dissemination of multidrug-resistant plasmids across Shigella species and lineages, but predominantly associated with MSM isolates. CONCLUSIONS Our contemporary data highlight the ongoing public health threat posed by resistant Shigella, both in Australia and globally. Urgent multidisciplinary public health measures are required to interrupt transmission and prevent infection.
Collapse
Affiliation(s)
- Danielle J Ingle
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne.,National Centre for Epidemiology and Population Health, The Australian National University, Canberra
| | - Marion Easton
- Victorian Department of Health and Human Services, Melbourne
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne.,Melbourne Bioinformatics Group, Victoria, Australia.,Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Jason C Kwong
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Nicola Stephens
- Victorian Department of Health and Human Services, Melbourne
| | - Glen P Carter
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne.,Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Anders Gonçalves da Silva
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne
| | | | - Sarah L Baines
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia.,London School of Hygiene and Tropical Medicine, United Kingdom
| | - Eric P F Chow
- Melbourne Sexual Health Centre, Alfred Health, Carlton.,Central Clinical School, Monash University, Melbourne, Australia
| | - Christopher K Fairley
- Melbourne Sexual Health Centre, Alfred Health, Carlton.,Central Clinical School, Monash University, Melbourne, Australia
| | - Marcus Y Chen
- Melbourne Sexual Health Centre, Alfred Health, Carlton.,Central Clinical School, Monash University, Melbourne, Australia
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne.,Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne.,Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| |
Collapse
|
189
|
Carroll LM, Huisman JS, Wiedmann M. Twentieth-century emergence of antimicrobial resistant human- and bovine-associated Salmonella enterica serotype Typhimurium lineages in New York State. Sci Rep 2020; 10:14428. [PMID: 32879348 PMCID: PMC7467927 DOI: 10.1038/s41598-020-71344-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica serotype Typhimurium (S. Typhimurium) boasts a broad host range and can be transmitted between livestock and humans. While members of this serotype can acquire resistance to antimicrobials, the temporal dynamics of this acquisition is not well understood. Using New York State (NYS) and its dairy cattle farms as a model system, 87 S. Typhimurium strains isolated from 1999 to 2016 from either human clinical or bovine-associated sources in NYS were characterized using whole-genome sequencing. More than 91% of isolates were classified into one of four major lineages, two of which were largely susceptible to antimicrobials but showed sporadic antimicrobial resistance (AMR) gene acquisition, and two that were largely multidrug-resistant (MDR). All four lineages clustered by presence and absence of elements in the pan-genome. The two MDR lineages, one of which resembled S. Typhimurium DT104, were predicted to have emerged circa 1960 and 1972. The two largely susceptible lineages emerged earlier, but showcased sporadic AMR determinant acquisition largely after 1960, including acquisition of cephalosporin resistance-conferring genes after 1985. These results confine the majority of AMR acquisition events in NYS S. Typhimurium to the twentieth century, largely within the era of antibiotic usage.
Collapse
Affiliation(s)
- Laura M Carroll
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Jana S Huisman
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
190
|
Kremer PH, Lees JA, Ferwerda B, Bijlsma MW, MacAlasdair N, van der Ende A, Brouwer MC, Bentley SD, van de Beek D. Diversification in immunogenicity genes caused by selective pressures in invasive meningococci. Microb Genom 2020; 6:mgen000422. [PMID: 32776867 PMCID: PMC7643973 DOI: 10.1099/mgen.0.000422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/26/2020] [Indexed: 11/21/2022] Open
Abstract
We studied population genomics of 486 Neisseria meningitidis isolates causing meningitis in the Netherlands during the period 1979-2003 and 2006-2013 using whole-genome sequencing to evaluate the impact of a hyperendemic period of serogroup B invasive disease. The majority of serogroup B isolates belonged to ST-41/44 (41 %) and ST-32 complex (16 %). Comparing the time periods, before and after the decline of serogroup B invasive disease, there was a decrease of ST-41/44 complex sequences (P=0.002). We observed the expansion of a sub-lineage within ST-41/44 complex sequences being associated with isolation from the 1979-2003 time period (P=0.014). Isolates belonging to this sub-lineage expansion within ST-41/44 complex were marked by four antigen allele variants. Presence of these allele variants was associated with isolation from the 1979-2003 time period after correction for multiple testing (Wald test, P=0.0043 for FetA 1-5; P=0.0035 for FHbp 14; P=0.012 for PorA 7-2.4 and P=0.0031 for NHBA two peptide allele). These sequences were associated with 4CMenB vaccine coverage (Fisher's exact test, P<0.001). Outside of the sub-lineage expansion, isolates with markedly lower levels of predicted vaccine coverage clustered in phylogenetic groups showing a trend towards isolation in the 2006-2013 time period (P=0.08). In conclusion, we show the emergence and decline of a sub-lineage expansion within ST-41/44 complex isolates concurrent with a hyperendemic period in meningococcal meningitis. The expansion was marked by specific antigen peptide allele combinations. We observed preliminary evidence for decreasing 4CMenB vaccine coverage in the post-hyperendemic period.
Collapse
Affiliation(s)
- Philip H.C. Kremer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscienc, Amsterdam, The Netherlands
| | - John A. Lees
- Parasites and Microbes, Wellcome Sanger Institute, Hixton, Cambridge, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Bart Ferwerda
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscienc, Amsterdam, The Netherlands
| | - Merijn W. Bijlsma
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscienc, Amsterdam, The Netherlands
| | - Neil MacAlasdair
- Parasites and Microbes, Wellcome Sanger Institute, Hixton, Cambridge, UK
| | - Arie van der Ende
- Amsterdam UMC, Department of Medical Microbiology and the Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, The Netherlands
| | - Matthijs C. Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscienc, Amsterdam, The Netherlands
| | - Stephen D. Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hixton, Cambridge, UK
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscienc, Amsterdam, The Netherlands
| |
Collapse
|
191
|
Seppä P, Bonelli M, Dupont S, Hakala SM, Bagnères AG, Lorenzi MC. Strong Gene Flow Undermines Local Adaptations in a Host Parasite System. INSECTS 2020; 11:insects11090585. [PMID: 32882832 PMCID: PMC7564341 DOI: 10.3390/insects11090585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022]
Abstract
Simple Summary The co-evolution of hosts and parasites depends on their ability to adapt to each other’s defense and counter-defense mechanisms. The strength of selection on those mechanisms may vary among populations, resulting in a geographical mosaic of co-evolution. The boreo-montane paper wasp Polistes biglumis and its parasite Polistes atrimandibularis exemplify this type of co-evolutionary system. Here, we used genetic markers to examine the genetic population structures of these wasps in the western Alps. We found that both host and parasite populations displayed similar levels of genetic variation. In the host species, populations located near to each other were genetically similar; in both the host and the parasite species populations farther apart were significantly different. Thus, apparent dispersal barriers (i.e., high mountains) did not seem to restrict gene flow across populations as expected. Furthermore, there were no major differences in gene flow between the two species, perhaps because P. atrimandibularis parasitizes both alpine and lowland host species and annually migrates between alpine and lowland populations. The presence of strong gene flow in a system where local populations experience variable levels of selection pressure challenges the classical hypothesis that restricted gene flow is required for local adaptations to evolve. Abstract The co-evolutionary pathways followed by hosts and parasites strongly depend on the adaptive potential of antagonists and its underlying genetic architecture. Geographically structured populations of interacting species often experience local differences in the strength of reciprocal selection pressures, which can result in a geographic mosaic of co-evolution. One example of such a system is the boreo-montane social wasp Polistes biglumis and its social parasite Polistes atrimandibularis, which have evolved local defense and counter-defense mechanisms to match their antagonist. In this work, we study spatial genetic structure of P. biglumis and P. atrimandibularis populations at local and regional scales in the Alps, by using nuclear markers (DNA microsatellites, AFLP) and mitochondrial sequences. Both the host and the parasite populations harbored similar amounts of genetic variation. Host populations were not genetically structured at the local scale, but geographic regions were significantly differentiated from each other in both the host and the parasite in all markers. The net dispersal inferred from genetic differentiation was similar in the host and the parasite, which may be due to the annual migration pattern of the parasites between alpine and lowland populations. Thus, the apparent dispersal barriers (i.e., high mountains) do not restrict gene flow as expected and there are no important gene flow differences between the species, which contradict the hypothesis that restricted gene flow is required for local adaptations to evolve.
Collapse
Affiliation(s)
- Perttu Seppä
- Centre of Excellence in Biological Interactions, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland;
- Correspondence:
| | - Mariaelena Bonelli
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (M.B.); (M.C.L.)
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, Avenue Monge, Parc Grandmont, 37200 Tours, France; (S.D.); (A.-G.B.)
| | - Simon Dupont
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, Avenue Monge, Parc Grandmont, 37200 Tours, France; (S.D.); (A.-G.B.)
| | - Sanja Maria Hakala
- Centre of Excellence in Biological Interactions, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland;
| | - Anne-Geneviève Bagnères
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, Avenue Monge, Parc Grandmont, 37200 Tours, France; (S.D.); (A.-G.B.)
- Centre d’Ecologie Fonctionnelle et Evolutive, CNRS UMR5175, Université Montpellier, Université Paul Valery Montpellier 3, EPHE, IRD, 34293 Montpellier, France
| | - Maria Cristina Lorenzi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (M.B.); (M.C.L.)
- Laboratory of Experimental and Comparative Ethology (LEEC), University of Sorbonne Paris Nord, 93430 Villetaneuse, France
| |
Collapse
|
192
|
Gladstone RA, Bojang E, Hart J, Harding-Esch EM, Mabey D, Sillah A, Bailey RL, Burr SE, Roca A, Bentley SD, Holland MJ. Mass drug administration with azithromycin for trachoma elimination and the population structure of Streptococcus pneumoniae in the nasopharynx. Clin Microbiol Infect 2020; 27:864-870. [PMID: 32750538 PMCID: PMC8203556 DOI: 10.1016/j.cmi.2020.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 11/18/2022]
Abstract
Objective Mass drug administration (MDA) with azithromycin for trachoma elimination reduces nasopharyngeal carriage of Streptococcus pneumoniae in the short term. We evaluated S. pneumoniae carried in the nasopharynx before and after a round of azithromycin MDA to determine whether MDA was associated with changes in pneumococcal population structure and resistance. Methods We analysed 514 pneumococcal whole genomes randomly selected from nasopharyngeal samples collected in two Gambian villages that received three annual rounds of MDA for trachoma elimination. The 514 samples represented 293 participants, of which 75% were children aged 0–9 years, isolated during three cross-sectional surveys (CSSs) conducted before the third round of MDA (CSS-1) and at 1 (CSS-2) and 6 (CSS-3) months after MDA. Bayesian Analysis of Population Structure (BAPS) was used to cluster related isolates by capturing variation in the core genome. Serotype and multilocus sequence type were inferred from the genotype. Antimicrobial resistance determinants were identified from assemblies, including known macrolide resistance genes. Results Twenty-seven BAPS clusters were assigned. These consisted of 81 sequence types (STs). Two BAPS clusters not observed in CSS-1 (n = 109) or CSS-2 (n = 69), increased in frequency in CSS-3 (n = 126); BAPS20 (8.73%, p 0.016) and BAPS22 (7.14%, p 0.032) but were not associated with antimicrobial resistance. Macrolide resistance within BAPS17 increased after treatment (CSS-1 n = 0/6, CSS-2/3 n = 5/5, p 0.002) and was carried on a mobile transposable element that also conferred resistance to tetracycline. Discussion Limited changes in pneumococcal population structure were observed after the third round of MDA, suggesting treatment had little effect on the circulating lineages. An increase in macrolide resistance within one BAPS highlights the need for antimicrobial resistance surveillance in treated villages.
Collapse
Affiliation(s)
| | - Ebrima Bojang
- Medical Research Council Unit The Gambia at LSHTM, Fajara, Banjul, Gambia
| | - John Hart
- London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | | | - David Mabey
- London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Ansumana Sillah
- National Eye Health Programme, Ministry of Health and Social Welfare, Kanifing, Gambia
| | - Robin L Bailey
- London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Sarah E Burr
- London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Anna Roca
- Medical Research Council Unit The Gambia at LSHTM, Fajara, Banjul, Gambia; London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | | | - Martin J Holland
- London School of Hygiene & Tropical Medicine, Keppel Street, London, UK.
| |
Collapse
|
193
|
Whole-Genome-Based Survey for Polyphyletic Serovars of Salmonella enterica subsp. enterica Provides New Insights into Public Health Surveillance. Int J Mol Sci 2020; 21:ijms21155226. [PMID: 32718035 PMCID: PMC7432358 DOI: 10.3390/ijms21155226] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Serotyping has traditionally been considered the basis for surveillance of Salmonella, but it cannot distinguish distinct lineages sharing the same serovar that vary in host range, pathogenicity and epidemiology. However, polyphyletic serovars have not been extensively investigated. Public health microbiology is currently being transformed by whole-genome sequencing (WGS) data, which promote the lineage determination using a more powerful and accurate technique than serotyping. The focus in this study is to survey and analyze putative polyphyletic serovars. The multi-locus sequence typing (MLST) phylogenetic analysis identified four putative polyphyletic serovars, namely, Montevideo, Bareilly, Saintpaul, and Muenchen. Whole-genome-based phylogeny and population structure highlighted the polyphyletic nature of Bareilly and Saintpaul and the multi-lineage nature of Montevideo and Muenchen. The population of these serovars was defined by extensive genetic diversity, the open pan genome and the small core genome. Source niche metadata revealed putative existence of lineage-specific niche adaptation (host-preference and environmental-preference), exhibited by lineage-specific genomic contents associated with metabolism and transport. Meanwhile, differences in genetic profiles relating to virulence and antimicrobial resistance within each lineage may contribute to pathogenicity and epidemiology. The results also showed that recombination events occurring at the H1-antigen loci may be an important reason for polyphyly. The results presented here provide the genomic basis of simple, rapid, and accurate identification of phylogenetic lineages of these serovars, which could have important implications for public health.
Collapse
|
194
|
Castro-Jaimes S, Bello-López E, Velázquez-Acosta C, Volkow-Fernández P, Lozano-Zarain P, Castillo-Ramírez S, Cevallos MA. Chromosome Architecture and Gene Content of the Emergent Pathogen Acinetobacter haemolyticus. Front Microbiol 2020; 11:926. [PMID: 32670207 PMCID: PMC7326120 DOI: 10.3389/fmicb.2020.00926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/20/2020] [Indexed: 11/25/2022] Open
Abstract
Acinetobacter haemolyticus is a Gammaproteobacterium that has been involved in serious diseases frequently linked to the nosocomial environment. Most of the strains causing such infections are sensitive to a wide variety of antibiotics, but recent reports indicate that this pathogen is acquiring very efficiently carbapenem-resistance determinants like the blaNDM-1 gene, all over the world. With this work we contribute with a collection set of 31 newly sequenced nosocomial A. haemolyticus isolates. Genome analysis of these sequences and others collected from RefSeq indicates that their chromosomes are organized in 12 syntenic blocks that contain most of the core genome genes. These blocks are separated by hypervariable regions that are rich in unique gene families, but also have signals of horizontal gene transfer. Genes involved in virulence or encoding different secretion systems are located inside syntenic regions and have recombination signals. The relative order of the synthetic blocks along the A. haemolyticus chromosome can change, indicating that they have been subject to several kinds of inversions. Genomes of this microorganism show large differences in gene content even if they are in the same clade. Here we also show that A. haemolyticus has an open pan-genome.
Collapse
Affiliation(s)
- Semiramis Castro-Jaimes
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Elena Bello-López
- Centro de Investigaciones en Ciencias Microbiológicas, Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | - Patricia Lozano-Zarain
- Centro de Investigaciones en Ciencias Microbiológicas, Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Santiago Castillo-Ramírez
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Miguel Angel Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
195
|
Apostolakos I, Feudi C, Eichhorn I, Palmieri N, Fasolato L, Schwarz S, Piccirillo A. High-resolution characterisation of ESBL/pAmpC-producing Escherichia coli isolated from the broiler production pyramid. Sci Rep 2020; 10:11123. [PMID: 32636426 PMCID: PMC7341882 DOI: 10.1038/s41598-020-68036-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
The presence of extended-spectrum β-lactamase (ESBL) or plasmid-mediated AmpC β-lactamase (pAmpC)-producing Escherichia coli (ESBL/pAmpC-EC) in livestock is a public health risk given the likelihood of their transmission to humans via the food chain. We conducted whole genome sequencing on 100 ESBL/pAmpC-EC isolated from the broiler production to explore their resistance and virulence gene repertoire, characterise their plasmids and identify transmission events derived from their phylogeny. Sequenced isolates carried resistance genes to four antimicrobial classes in addition to cephalosporins. Virulence gene analysis assigned the majority of ESBL/pAmpC-EC to defined pathotypes. In the complex genetic background of ESBL/pAmpC-EC, clusters of closely related isolates from various production stages were identified and indicated clonal transmission. Phylogenetic comparison with publicly available genomes suggested that previously uncommon ESBL/pAmpC-EC lineages could emerge in poultry, while others might contribute to the maintenance and dissemination of ESBL/pAmpC genes in broilers. The majority of isolates from diverse E. coli lineages shared four dominant plasmids (IncK2, IncI1, IncX3 and IncFIB/FII) with identical ESBL/pAmpC gene insertion sites. These plasmids have been previously reported in diverse hosts, including humans. Our findings underline the importance of specific plasmid groups in the dissemination of cephalosporin resistance genes within the broiler industry and across different reservoirs.
Collapse
Affiliation(s)
- Ilias Apostolakos
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020, Padua, Italy
| | - Claudia Feudi
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Nicola Palmieri
- Department for Farm Animals and Veterinary Public Health, University Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020, Padua, Italy
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020, Padua, Italy.
| |
Collapse
|
196
|
Phylogeographical Analyses and Antibiotic Resistance Genes of Acinetobacter johnsonii Highlight Its Clinical Relevance. mSphere 2020; 5:5/4/e00581-20. [PMID: 32611704 PMCID: PMC7333577 DOI: 10.1128/msphere.00581-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Acinetobacter johnsonii has been severely understudied and its population structure and the presence of antibiotic resistance genes (ARGs) are very much uncertain. Our phylogeographical analysis shows that intercontinental transmission has occurred frequently and that different lineages are circulating within single countries; notably, clinical and nonclinical strains are not well differentiated from one another. Importantly, in this species recombination is a significant source of single nucleotide polymorphisms. Acinetobacter johnsonii has been severely understudied and its population structure and the presence of antibiotic resistance genes (ARGs) are very much uncertain. Our phylogeographical analysis shows that intercontinental transmission has occurred frequently and that different lineages are circulating within single countries; notably, clinical and nonclinical strains are not well differentiated from one another. Importantly, in this species recombination is a significant source of single nucleotide polymorphisms. Furthermore, our results show this species could be an important reservoir of ARGs since it has a significant amount of ARGs, and many of them show signals of horizontal gene transfer. Thus, this study clearly points out the clinical importance of A. johnsonii and the urgent need to better appreciate its genomic diversity.
Collapse
|
197
|
Weisberg AJ, Davis EW, Tabima J, Belcher MS, Miller M, Kuo CH, Loper JE, Grünwald NJ, Putnam ML, Chang JH. Unexpected conservation and global transmission of agrobacterial virulence plasmids. Science 2020; 368:368/6495/eaba5256. [PMID: 32499412 DOI: 10.1126/science.aba5256] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
The accelerated evolution and spread of pathogens are threats to host species. Agrobacteria require an oncogenic Ti or Ri plasmid to transfer genes into plants and cause disease. We developed a strategy to characterize virulence plasmids and applied it to analyze hundreds of strains collected between 1927 and 2017, on six continents and from more than 50 host species. In consideration of prior evidence for prolific recombination, it was surprising that oncogenic plasmids are descended from a few conserved lineages. Characterization of a hierarchy of features that promote or constrain plasticity allowed inference of the evolutionary history across the plasmid lineages. We uncovered epidemiological patterns that highlight the importance of plasmid transmission in pathogen diversification as well as in long-term persistence and the global spread of disease.
Collapse
Affiliation(s)
- Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Edward W Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
| | - Javier Tabima
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Michael S Belcher
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Marilyn Miller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA.,Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, OR 97331, USA
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, OR 97331, USA
| | - Melodie L Putnam
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA. .,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA.,Center for Genome Research and Biocomputing (CGRB), Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
198
|
Increasing incidence of group B streptococcus neonatal infections in the Netherlands is associated with clonal expansion of CC17 and CC23. Sci Rep 2020; 10:9539. [PMID: 32533007 PMCID: PMC7293262 DOI: 10.1038/s41598-020-66214-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/15/2020] [Indexed: 01/19/2023] Open
Abstract
Group B streptococcus (GBS) is the leading cause of neonatal invasive disease worldwide. In the Netherlands incidence of the disease increased despite implementation of preventive guidelines. We describe a genomic analysis of 1345 GBS isolates from neonatal (age 0–89 days) invasive infections in the Netherlands reported between 1987 and 2016. Most isolates clustered into one of five major lineages: CC17 (39%), CC19 (25%), CC23 (18%), CC10 (9%) and CC1 (7%). There was a significant rise in the number of infections due to isolates from CC17 and CC23. Phylogenetic clustering analysis revealed that this was caused by expansion of specific sub-lineages, designated CC17-A1, CC17-A2 and CC23-A1. Dating of phylogenetic trees estimated that these clones diverged in the 1960s/1970s, representing historical rather than recently emerged clones. For CC17-A1 the expansion correlated with acquisition of a new phage, carrying gene encoding a putative cell-surface protein. Representatives of CC17-A1, CC17-A2 and CC23-A1 clones were identified in datasets from other countries demonstrating their global distribution.
Collapse
|
199
|
Bawn M, Alikhan NF, Thilliez G, Kirkwood M, Wheeler NE, Petrovska L, Dallman TJ, Adriaenssens EM, Hall N, Kingsley RA. Evolution of Salmonella enterica serotype Typhimurium driven by anthropogenic selection and niche adaptation. PLoS Genet 2020; 16:e1008850. [PMID: 32511244 PMCID: PMC7302871 DOI: 10.1371/journal.pgen.1008850] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/18/2020] [Accepted: 05/12/2020] [Indexed: 12/25/2022] Open
Abstract
Salmonella enterica serotype Typhimurium (S. Typhimurium) is a leading cause of gastroenteritis and bacteraemia worldwide, and a model organism for the study of host-pathogen interactions. Two S. Typhimurium strains (SL1344 and ATCC14028) are widely used to study host-pathogen interactions, yet genotypic variation results in strains with diverse host range, pathogenicity and risk to food safety. The population structure of diverse strains of S. Typhimurium revealed a major phylogroup of predominantly sequence type 19 (ST19) and a minor phylogroup of ST36. The major phylogroup had a population structure with two high order clades (α and β) and multiple subclades on extended internal branches, that exhibited distinct signatures of host adaptation and anthropogenic selection. Clade α contained a number of subclades composed of strains from well characterized epidemics in domesticated animals, while clade β contained multiple subclades associated with wild avian species. The contrasting epidemiology of strains in clade α and β was reflected by the distinct distribution of antimicrobial resistance (AMR) genes, accumulation of hypothetically disrupted coding sequences (HDCS), and signatures of functional diversification. These observations were consistent with elevated anthropogenic selection of clade α lineages from adaptation to circulation in populations of domesticated livestock, and the predisposition of clade β lineages to undergo adaptation to an invasive lifestyle by a process of convergent evolution with of host adapted Salmonella serotypes. Gene flux was predominantly driven by acquisition and recombination of prophage and associated cargo genes, with only occasional loss of these elements. The acquisition of large chromosomally-encoded genetic islands was limited, but notably, a feature of two recent pandemic clones (DT104 and monophasic S. Typhimurium ST34) of clade α (SGI-1 and SGI-4).
Collapse
Affiliation(s)
- Matt Bawn
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Gaëtan Thilliez
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Mark Kirkwood
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Nicole E. Wheeler
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Timothy J. Dallman
- Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| | | | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Robert A. Kingsley
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
200
|
Zhai R, Fu B, Shi X, Sun C, Liu Z, Wang S, Shen Z, Walsh TR, Cai C, Wang Y, Wu C. Contaminated in-house environment contributes to the persistence and transmission of NDM-producing bacteria in a Chinese poultry farm. ENVIRONMENT INTERNATIONAL 2020; 139:105715. [PMID: 32315891 DOI: 10.1016/j.envint.2020.105715] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
While carbapenem use is prohibited in the poultry production chain and carbapenem-resistant Enterobacteriaceae (CRE) are absent from hatchery farms, New Delhi metallo-β-lactamase-producing CRE contamination of commercial broiler chicken farms (grow-out farms) can occur via living hosts such as flies. However, it is not known whether the inanimate factors from in-house environment play a role in the persistence of CRE on commercial farms. Herein, we monitored one typical broiler house in Hebei Province, China, from January 2017 to April 2018. We collected 350 cloacal samples from four broiler batches along with 582 environmental samples (194 in the raising period and 388 in the vacancy period) from sites including the surfaces of drooping boards, feeding troughs, nipple drinkers, corridor floors, sewage trenches, and air. All samples were screened for blaNDM and cultured for NDM-producing isolates. The resistance profiles, genotypes, and genetic context of blaNDM in CRE isolates were further characterized. Results showed that 1-day-old broilers, which were transferred from a hatchery farm and negative for CRE, acquired blaNDM within 24 h of transfer (2 days of age), with a detection rate of up to 18.6%. High blaNDM detection rates (26.8%-31.4%) were obtained among all environmental samples except air after standard cleaning and disinfection during the vacancy period. blaNDM carriage rates (52.9%-72.9%) within the flocks remain stable and high across the next three broiler batches. Overall, 279 NDM-producing bacteria, including 259 Enterobacteriaceae (8 species), 14 Morganellaceae (3 species), three Alcaligenes faecalis and three Pseudomonas putida isolates, were recovered from 85 (24.3%) cloacal and 101 (17.4%) environmental samples. Three NDM variants, including NDM-5 (n = 181), NDM-1 (n = 92), and NDM-9 (n = 3), and a novel NDM-like-metallo-β-lactamase (NLM, n = 3) were identified among the samples. The predominant NDM-producing CRE species among the samples were Klebsiella pneumoniae (CRKP; 32.6%, n = 91) and Escherichia coli (CREC; 27.2%, n = 76). Both clonal and horizontal transmission of blaNDM and an overlap of sequence types (STs) were observed in both CREC and CRKP from chicken and environmental samples. Notably, ST6751 CREC and ST37 CRKP persisted throughout the 16-month surveillance period. IncX3 (n = 197, 7 species), IncA/C2 (n = 41, 5 species), and IncFII (n = 8, E. coli) were the three major blaNDM-carrying plasmid types among the isolates. Although routine cleaning and disinfection procedures and "all-in/all-out" management were performed, once introduced to the farm environment, a diverse range of NDM-positive isolates may survive and persist, becoming an important reservoir of NDM-positive CRE for broiler chickens. Therefore, cleaning and disinfection procedures should be improved on poultry farms to avoid cross-contamination of NDM-producing bacteria between different batches of chickens, as well as further downstream in the poultry production chain.
Collapse
Affiliation(s)
- Ruidong Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaomin Shi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chengtao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihai Liu
- Agricultural Bio-pharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shaolin Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Timothy R Walsh
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China; Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Heath Park Hospital, Cardiff, United Kingdom
| | - Chang Cai
- China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China; Research and Innovation Office, Murdoch University, Murdoch, Australia
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|