151
|
Nikolova YS, Hariri AR. Can we observe epigenetic effects on human brain function? Trends Cogn Sci 2015; 19:366-73. [PMID: 26051383 DOI: 10.1016/j.tics.2015.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/12/2022]
Abstract
Imaging genetics has identified many contributions of DNA sequence variation to individual differences in brain function, behavior, and risk for psychopathology. Recent studies have extended this work beyond the genome by mapping epigenetic differences, specifically gene methylation in peripherally assessed DNA, onto variability in behaviorally and clinically relevant brain function. These data have generated understandable enthusiasm for the potential of such research to illuminate biological mechanisms of risk. We use our research on the effects of genetic and epigenetic variation in the human serotonin transporter on brain function to generate a guardedly optimistic opinion that the available data encourage continued research in this direction, and suggest strategies to promote faster progress.
Collapse
Affiliation(s)
- Yuliya S Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
152
|
Peng H, Zhu QS, Zhong S, Levy D. Transcription of the Human Microsomal Epoxide Hydrolase Gene (EPHX1) Is Regulated by PARP-1 and Histone H1.2. Association with Sodium-Dependent Bile Acid Transport. PLoS One 2015; 10:e0125318. [PMID: 25992604 PMCID: PMC4439041 DOI: 10.1371/journal.pone.0125318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/18/2015] [Indexed: 01/06/2023] Open
Abstract
Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in the metabolism of numerous xenobiotics as well as mediating the sodium-dependent transport of bile acids into hepatocytes. These compounds are involved in cholesterol homeostasis, lipid digestion, excretion of xenobiotics and the regulation of several nuclear receptors and signaling transduction pathways. Previous studies have demonstrated the critical role of GATA-4, a C/EBPα-NF/Y complex and an HNF-4α/CAR/RXR/PSF complex in the transcriptional regulation of the mEH gene (EPHX1). Studies also identified heterozygous mutations in human EPHX1 that resulted in a 95% decrease in mEH expression levels which was associated with a decrease in bile acid transport and severe hypercholanemia. In the present investigation we demonstrate that EPHX1 transcription is significantly inhibited by two heterozygous mutations observed in the Old Order Amish population that present numerous hypercholanemic subjects in the absence of liver damage suggesting a defect in bile acid transport into the hepatocyte. The identity of the regulatory proteins binding to these sites, established using biotinylated oligonucleotides in conjunction with mass spectrometry was shown to be poly(ADP-ribose)polymerase-1 (PARP-1) bound to the EPHX1 proximal promoter and a linker histone complex, H1.2/Aly, bound to a regulatory intron 1 site. These sites exhibited 71% homology and may represent potential nucleosome positioning domains. The high frequency of the H1.2 site polymorphism in the Amish population results in a potential genetic predisposition to hypercholanemia and in conjunction with our previous studies, further supports the critical role of mEH in mediating bile acid transport into hepatocytes.
Collapse
Affiliation(s)
- Hui Peng
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
| | - Qin-shi Zhu
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
| | - Shuping Zhong
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
| | - Daniel Levy
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
153
|
Interaction of chromatin with a histone H1 containing swapped N- and C-terminal domains. Biosci Rep 2015; 35:BSR20150087. [PMID: 26182371 PMCID: PMC4613717 DOI: 10.1042/bsr20150087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/27/2015] [Indexed: 12/12/2022] Open
Abstract
The present study was to understand whether the globular or C-terminal linker histone domain is more important for its binding to chromatin. Using histone H1, with swapped domain orientation,
we found that both domains are equally important for nucleosome binding. Although the details of the structural involvement of histone H1 in the organization of the nucleosome are quite well understood, the sequential events involved in the recognition of its binding site are not as well known. We have used a recombinant human histone H1 (H1.1) in which the N- and C-terminal domains (NTD/CTD) have been swapped and we have reconstituted it on to a 208-bp nucleosome. We have shown that the swapped version of the protein is still able to bind to nucleosomes through its structurally folded wing helix domain (WHD); however, analytical ultracentrifuge analysis demonstrates its ability to properly fold the chromatin fibre is impaired. Furthermore, FRAP analysis shows that the highly dynamic binding association of histone H1 with the chromatin fibre is altered, with a severely decreased half time of residence. All of this suggests that proper binding of histone H1 to chromatin is determined by the simultaneous and synergistic binding of its WHD–CTD to the nucleosome.
Collapse
|
154
|
Miller KE, Heald R. Glutamylation of Nap1 modulates histone H1 dynamics and chromosome condensation in Xenopus. ACTA ACUST UNITED AC 2015; 209:211-20. [PMID: 25897082 PMCID: PMC4411273 DOI: 10.1083/jcb.201412097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/25/2015] [Indexed: 01/05/2023]
Abstract
Nap1 is required for linker histone H1M-mediated mitotic chromosome condensation in Xenopus egg extracts, and glutamylation of Nap1 is required for proper deposition and turnover of H1M on chromatin during both interphase and mitosis. Linker histone H1 is required for mitotic chromosome architecture in Xenopus laevis egg extracts and, unlike core histones, exhibits rapid turnover on chromatin. Mechanisms regulating the recruitment, deposition, and dynamics of linker histones in mitosis are largely unknown. We found that the cytoplasmic histone chaperone nucleosome assembly protein 1 (Nap1) associates with the embryonic isoform of linker histone H1 (H1M) in egg extracts. Immunodepletion of Nap1 decreased H1M binding to mitotic chromosomes by nearly 50%, reduced H1M dynamics as measured by fluorescence recovery after photobleaching and caused chromosome decondensation similar to the effects of H1M depletion. Defects in H1M dynamics and chromosome condensation were rescued by adding back wild-type Nap1 but not a mutant lacking sites subject to posttranslational modification by glutamylation. Nap1 glutamylation increased the deposition of H1M on sperm nuclei and chromatin-coated beads, indicating that charge-shifting posttranslational modification of Nap1 contributes to H1M dynamics that are essential for higher order chromosome architecture.
Collapse
Affiliation(s)
- Kelly E Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
155
|
A novel approach for studying histone H1 function in vivo. Genetics 2015; 200:29-33. [PMID: 25805849 DOI: 10.1534/genetics.114.170514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
In this report, we investigate the mechanisms that regulate Drosophila histone H1 expression and its association with chromatin in vivo. We show that histone H1 is subject to negative autoregulation and exploit this result to examine the effects of mutations of the main phosphorylation site of histone H1.
Collapse
|
156
|
Storch TT, Pegoraro C, Finatto T, Quecini V, Rombaldi CV, Girardi CL. Identification of a novel reference gene for apple transcriptional profiling under postharvest conditions. PLoS One 2015; 10:e0120599. [PMID: 25774904 PMCID: PMC4361542 DOI: 10.1371/journal.pone.0120599] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/24/2015] [Indexed: 12/13/2022] Open
Abstract
Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference—ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)—along with two novel candidates—HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest.
Collapse
Affiliation(s)
- Tatiane Timm Storch
- Empresa Brasileira de Pesquisa Agropecuária Uva e Vinho, Bento Gonçalves, Brazil
- Universidade Federal de Pelotas, Pelotas, Brazil
| | - Camila Pegoraro
- Empresa Brasileira de Pesquisa Agropecuária Uva e Vinho, Bento Gonçalves, Brazil
| | - Taciane Finatto
- Empresa Brasileira de Pesquisa Agropecuária Uva e Vinho, Bento Gonçalves, Brazil
| | - Vera Quecini
- Empresa Brasileira de Pesquisa Agropecuária Uva e Vinho, Bento Gonçalves, Brazil
| | | | - César Luis Girardi
- Empresa Brasileira de Pesquisa Agropecuária Uva e Vinho, Bento Gonçalves, Brazil
- * E-mail:
| |
Collapse
|
157
|
Sepsa A, Levidou G, Gargalionis A, Adamopoulos C, Spyropoulou A, Dalagiorgou G, Thymara I, Boviatsis E, Themistocleous MS, Petraki K, Vrettakos G, Samaras V, Zisakis A, Patsouris E, Piperi C, Korkolopoulou P. Emerging role of linker histone variant H1x as a biomarker with prognostic value in astrocytic gliomas. A multivariate analysis including trimethylation of H3K9 and H4K20. PLoS One 2015; 10:e0115101. [PMID: 25602259 PMCID: PMC4300227 DOI: 10.1371/journal.pone.0115101] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/18/2014] [Indexed: 11/26/2022] Open
Abstract
Although epigenetic alterations play an essential role in gliomagenesis, the relevance of aberrant histone modifications and the respective enzymes has not been clarified. Experimental data implicates histone H3 lysine (K) methyltransferases SETDB1 and SUV39H1 into glioma pathobiology, whereas linker histone variant H1.0 and H4K20me3 reportedly affect prognosis. We investigated the expression of H3K9me3 and its methyltransferases along with H4K20me3 and H1x in 101 astrocytic tumors with regard to clinicopathological characteristics and survival. The effect of SUV39H1 inhibition by chaetocin on the proliferation, colony formation and migration of T98G cells was also examined. SETDB1 and cytoplasmic SUV39H1 levels increased from normal brain through low-grade to high-grade tumors, nuclear SUV39H1 correlating inversely with grade. H3K9me3 immunoreactivity was higher in normal brain showing no association with grade, whereas H1x and H4K20me3 expression was higher in grade 2 than in normal brain or high grades. These expression patterns of H1x, H4K20me3 and H3K9me3 were verified by Western immunoblotting. Chaetocin treatment significantly reduced proliferation, clonogenic potential and migratory ability of T98G cells. H1x was an independent favorable prognosticator in glioblastomas, this effect being validated in an independent set of 66 patients. Diminished nuclear SUV39H1 expression adversely affected survival in univariate analysis. In conclusion, H4K20me3 and H3K9 methyltransferases are differentially implicated in astroglial tumor progression. Deregulation of H1x emerges as a prognostic biomarker.
Collapse
Affiliation(s)
- Athanasia Sepsa
- First Department of Pathology, Laikon General Hospital, Athens University Medical School, Athens 115 27, Greece
| | - Georgia Levidou
- First Department of Pathology, Laikon General Hospital, Athens University Medical School, Athens 115 27, Greece
| | - Antonis Gargalionis
- Department of Biological Chemistry, Athens University Medical School, Athens 115 27, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Athens University Medical School, Athens 115 27, Greece
| | - Anastasia Spyropoulou
- Department of Biological Chemistry, Athens University Medical School, Athens 115 27, Greece
| | - Georgia Dalagiorgou
- Department of Biological Chemistry, Athens University Medical School, Athens 115 27, Greece
| | - Irene Thymara
- First Department of Pathology, Laikon General Hospital, Athens University Medical School, Athens 115 27, Greece
| | - Efstathios Boviatsis
- Department of Neurosurgery, Medical School, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens 106 76, Greece
| | - Marios S. Themistocleous
- Department of Neurosurgery, Medical School, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens 106 76, Greece
| | - Kalliopi Petraki
- Department of Pathology, Metropolitan Hospital, Athens 185 47, Greece
| | - George Vrettakos
- Department of Neurosurgery, Metropolitan Hospital, Athens 185 47, Greece
| | - Vassilis Samaras
- Department of Pathology, Red Cross Hospital, Athens 115 26, Greece
| | | | - Efstratios Patsouris
- First Department of Pathology, Laikon General Hospital, Athens University Medical School, Athens 115 27, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Athens University Medical School, Athens 115 27, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Laikon General Hospital, Athens University Medical School, Athens 115 27, Greece
| |
Collapse
|
158
|
Abstract
Follicular lymphoma (FL) is the most common indolent lymphoma. The vast majority of cases are associated with the chromosome translocation t(14;18), a somatic rearrangement that leads to constitutive expression of the anti-apoptotic BCL2 protein. Although t(14;18) clearly represents an important early event in FL pathogenesis, abundant evidence indicates that it is not sufficient. In particular, the recent application of next-generation DNA sequencing technology has uncovered numerous recurrent somatic genomic alterations associated with FL, most of which affect tumor suppressor genes (TSGs). In this article we review the existing literature on TSGs involved in the development and progression of FL. We consider the genes that are most frequently targeted by deleterious mutation, deletion or epigenetic silencing, along with strategies for developing new treatments that exploit the susceptibilities that may be conferred on lymphoma cells by the loss of particular TSGs.
Collapse
|
159
|
Affiliation(s)
- Robert K McGinty
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Song Tan
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
160
|
Wissing ML, Sonne SB, Westergaard D, Nguyen KD, Belling K, Høst T, Mikkelsen AL. The transcriptome of corona radiata cells from individual MІІ oocytes that after ICSI developed to embryos selected for transfer: PCOS women compared to healthy women. J Ovarian Res 2014; 7:110. [PMID: 25432544 PMCID: PMC4302704 DOI: 10.1186/s13048-014-0110-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/11/2014] [Indexed: 01/09/2023] Open
Abstract
Background Corona radiata cells (CRCs) refer to the fraction of cumulus cells just adjacent to the oocyte. The CRCs are closely connected to the oocyte throughout maturation and their gene expression profiles might reflect oocyte quality. Polycystic ovary syndrome (PCOS) is a common cause of infertility. It is controversial whether PCOS associate with diminished oocyte quality. The purpose of this study was to compare individual human CRC samples between PCOS patients and controls. Methods All patients were stimulated by the long gonadotropin-releasing hormone (GnRH) agonist protocol. The CRC samples originated from individual oocytes developing into embryos selected for transfer. CRCs were isolated in a two-step denudation procedure, separating outer cumulus cells from the inner CRCs. Extracted RNA was amplified and transcriptome profiling was performed with Human Agilent® arrays. Results The transcriptomes of CRCs showed no individual genes with significant differential expression between PCOS and controls, but gene set enrichment analysis identified several cell cycle- and DNA replication pathways overexpressed in PCOS CRCs (FDR < 0.05). Five of the genes contributing to the up-regulated cell cycle pathways in the PCOS CRCs were selected for qRT-PCR validation in ten PCOS and ten control CRC samples. qRT-PCR confirmed significant up-regulation in PCOS CRCs of cell cycle progression genes HIST1H4C (FC = 2.7), UBE2C (FC = 2.6) and cell cycle related transcription factor E2F4 (FC = 2.5). Conclusion The overexpression of cell cycle-related genes and cell cycle pathways in PCOS CRCs could indicate a disturbed or delayed final maturation and differentiation of the CRCs in response to the human chorionic gonadotropin (hCG) surge. However, this had no effect on the in vitro development of the corresponding embryos. Future studies are needed to clarify whether the up-regulated cell cycle pathways in PCOS CRCs have any clinical implications. Electronic supplementary material The online version of this article (doi:10.1186/s13048-014-0110-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Louise Wissing
- Department of Gynecology-Obstetrics, Holbaek Fertility Clinic, Holbaek Hospital, Smedelundsgade 60, 4300, Holbaek, Denmark.
| | - Si Brask Sonne
- Institute of Biology, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - David Westergaard
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet building 208, 2800, Lyngby, Denmark.
| | - Kho do Nguyen
- DTU Multi Assay Core, Technical University of Denmark DTU, 2800, Lyngby, Denmark.
| | - Kirstine Belling
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet building 208, 2800, Lyngby, Denmark.
| | - Thomas Høst
- Department of Gynecology-Obstetrics, Holbaek Fertility Clinic, Holbaek Hospital, Smedelundsgade 60, 4300, Holbaek, Denmark.
| | - Anne Lis Mikkelsen
- Department of Gynecology-Obstetrics, Holbaek Fertility Clinic, Holbaek Hospital, Smedelundsgade 60, 4300, Holbaek, Denmark.
| |
Collapse
|
161
|
Song Q, Cannistraro VJ, Taylor JS. Synergistic modulation of cyclobutane pyrimidine dimer photoproduct formation and deamination at a TmCG site over a full helical DNA turn in a nucleosome core particle. Nucleic Acids Res 2014; 42:13122-33. [PMID: 25389265 PMCID: PMC4245940 DOI: 10.1093/nar/gku1049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sunlight-induced C to T mutation hotspots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C or 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by DNA polymerase η and defines a probable mechanism for the origin of UV-induced C to T mutations. We have now determined the photoproduct formation and deamination rates for 10 consecutive T=mCG CPDs over a full helical turn at the dyad axis of a nucleosome and find that whereas photoproduct formation and deamination is greatly inhibited for the CPDs closest to the histone surface, it is greatly enhanced for the outermost CPDs. Replacing the G in a T=mCG CPD with A greatly decreased the deamination rate. These results show that rotational position and flanking sequence in a nucleosome can significantly and synergistically modulate CPD formation and deamination that contribute to C to T mutations associated with skin cancer induction and may have influenced the evolution of the human genome.
Collapse
Affiliation(s)
- Qian Song
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
162
|
Sarg B, Lopez R, Lindner H, Ponte I, Suau P, Roque A. Identification of novel post-translational modifications in linker histones from chicken erythrocytes. J Proteomics 2014; 113:162-77. [PMID: 25452131 DOI: 10.1016/j.jprot.2014.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/10/2014] [Accepted: 10/02/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED Chicken erythrocyte nuclei were digested with micrococcal nuclease and fractionated by centrifugation in low-salt buffer into soluble and insoluble fractions. Post-translational modifications of the purified linker histones of both fractions were analyzed by LC-ESI-MS/MS. All six histone H1 subtypes (H1.01, H1.02, H1.03, H1.10, H1.1L and H1.1R) and histone H5 were identified. Mass spectrometry analysis enabled the identification of a wide range of PTMs, including N(α)-terminal acetylation, acetylation, formylation, phosphorylation and oxidation. A total of nine new modifications in chicken linker histones were mapped, most of them located in the N-terminal and globular domains. Relative quantification of the modified peptides showed that linker histone PTMs were differentially distributed among both chromatin fractions, suggesting their relevance in the regulation of chromatin structure. The analysis of our results combined with previously reported data for chicken and some mammalian species showed that most of the modified positions were conserved throughout evolution, highlighting their importance in specific linker histone functions and epigenetics. BIOLOGICAL SIGNIFICANCE Post-translational modifications of linker histones could have a role in the regulation of gene expression through the modulation of chromatin higher-order structure and chromatin remodeling. Finding new PTMs in linker histones is the first step to elucidate their role in the histone code. In this manuscript we report nine new post-translational modifications of the linker histones from chicken erythrocytes, one in H5 and eight in the H1 subtypes. Chromatin fractionated by centrifugation in low-salt buffer resulted in two fractions with different contents and compositions of linker histones and enriched in specific core histone PTMs. Of particular interest is the fact that linker histone PTMs were differentially distributed in both chromatin fractions, suggesting specific functions. Future studies are needed to establish the interplay between PTMs of linker and core histones in order to fully understand chromatin regulation. A protein sequence alignment summarizing the PTMs found to date in chicken, mouse, rat and humans showed that, while many of the modified positions were conserved between these species, the type of modification often varied depending on the species or the cellular type. This finding suggests an important role for the PTMs in the regulation of linker histone functions.
Collapse
Affiliation(s)
- Bettina Sarg
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Rita Lopez
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Inma Ponte
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Pedro Suau
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
163
|
Iturbide A, García de Herreros A, Peiró S. A new role for LOX and LOXL2 proteins in transcription regulation. FEBS J 2014; 282:1768-73. [DOI: 10.1111/febs.12961] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Ane Iturbide
- Programa de Recerca en Càncer; Institut Hospital del Mar d'Investigacions Mèdiques; Barcelona Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer; Institut Hospital del Mar d'Investigacions Mèdiques; Barcelona Spain
- Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Barcelona Spain
| | - Sandra Peiró
- Programa de Recerca en Càncer; Institut Hospital del Mar d'Investigacions Mèdiques; Barcelona Spain
| |
Collapse
|
164
|
Cherstvy AG, Teif VB. Electrostatic effect of H1-histone protein binding on nucleosome repeat length. Phys Biol 2014; 11:044001. [PMID: 25078656 DOI: 10.1088/1478-3975/11/4/044001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Within a simple biophysical model we describe the effect of electrostatic binding of H1 histone proteins on the nucleosome repeat length in chromatin. The length of wrapped DNA optimizes its binding energy to the histone core and the elastic energy penalty of DNA wrapping. The magnitude of the effect predicted from our model is in agreement with the systematic experimental data on the linear variation of nucleosome repeat lengths with H1/nucleosome ratio (Woodcock C L et al 2006 Chromos. Res. 14 17-25). We compare our model to the data for different cell types and organisms, with a widely varying ratio of bound H1 histones per nucleosome. We underline the importance of this non-specific histone-DNA charge-balance mechanism in regulating the positioning of nucleosomes and the degree of compaction of chromatin fibers in eukaryotic cells.
Collapse
Affiliation(s)
- Andrey G Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
165
|
Beshnova DA, Cherstvy AG, Vainshtein Y, Teif VB. Regulation of the nucleosome repeat length in vivo by the DNA sequence, protein concentrations and long-range interactions. PLoS Comput Biol 2014; 10:e1003698. [PMID: 24992723 PMCID: PMC4081033 DOI: 10.1371/journal.pcbi.1003698] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022] Open
Abstract
The nucleosome repeat length (NRL) is an integral chromatin property important for its biological functions. Recent experiments revealed several conflicting trends of the NRL dependence on the concentrations of histones and other architectural chromatin proteins, both in vitro and in vivo, but a systematic theoretical description of NRL as a function of DNA sequence and epigenetic determinants is currently lacking. To address this problem, we have performed an integrative biophysical and bioinformatics analysis in species ranging from yeast to frog to mouse where NRL was studied as a function of various parameters. We show that in simple eukaryotes such as yeast, a lower limit for the NRL value exists, determined by internucleosome interactions and remodeler action. For higher eukaryotes, also the upper limit exists since NRL is an increasing but saturating function of the linker histone concentration. Counterintuitively, smaller H1 variants or non-histone architectural proteins can initiate larger effects on the NRL due to entropic reasons. Furthermore, we demonstrate that different regimes of the NRL dependence on histone concentrations exist depending on whether DNA sequence-specific effects dominate over boundary effects or vice versa. We consider several classes of genomic regions with apparently different regimes of the NRL variation. As one extreme, our analysis reveals that the period of oscillations of the nucleosome density around bound RNA polymerase coincides with the period of oscillations of positioning sites of the corresponding DNA sequence. At another extreme, we show that although mouse major satellite repeats intrinsically encode well-defined nucleosome preferences, they have no unique nucleosome arrangement and can undergo a switch between two distinct types of nucleosome positioning.
Collapse
Affiliation(s)
- Daria A. Beshnova
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Heidelberg, Germany
| | - Andrey G. Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, Potsdam-Golm, Germany
| | - Yevhen Vainshtein
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Heidelberg, Germany
| | - Vladimir B. Teif
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Heidelberg, Germany
| |
Collapse
|
166
|
The role of H1 linker histone subtypes in preserving the fidelity of elaboration of mesendodermal and neuroectodermal lineages during embryonic development. PLoS One 2014; 9:e96858. [PMID: 24802750 PMCID: PMC4011883 DOI: 10.1371/journal.pone.0096858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
H1 linker histone proteins are essential for the structural and functional integrity of chromatin and for the fidelity of additional epigenetic modifications. Deletion of H1c, H1d and H1e in mice leads to embryonic lethality by mid-gestation with a broad spectrum of developmental alterations. To elucidate the cellular and molecular mechanisms underlying H1 linker histone developmental functions, we analyzed embryonic stem cells (ESCs) depleted of H1c, H1d and H1e subtypes (H1-KO ESCs) by utilizing established ESC differentiation paradigms. Our study revealed that although H1-KO ESCs continued to express core pluripotency genes and the embryonic stem cell markers, alkaline phosphatase and SSEA1, they exhibited enhanced cell death during embryoid body formation and during specification of mesendoderm and neuroectoderm. In addition, we demonstrated deregulation in the developmental programs of cardiomyocyte, hepatic and pancreatic lineage elaboration. Moreover, ectopic neurogenesis and cardiomyogenesis occurred during endoderm-derived pancreatic but not hepatic differentiation. Furthermore, neural differentiation paradigms revealed selective impairments in the specification and maturation of glutamatergic and dopaminergic neurons with accelerated maturation of glial lineages. These impairments were associated with deregulation in the expression profiles of pro-neural genes in dorsal and ventral forebrain-derived neural stem cell species. Taken together, these experimental observations suggest that H1 linker histone proteins are critical for the specification, maturation and fidelity of organ-specific cellular lineages derived from the three cardinal germ layers.
Collapse
|
167
|
Harshman SW, Hoover ME, Huang C, Branson OE, Chaney S, Cheney CM, Rosol TJ, Shapiro CL, Wysocki VH, Huebner K, Freitas MA. Histone H1 phosphorylation in breast cancer. J Proteome Res 2014; 13:2453-67. [PMID: 24601643 PMCID: PMC4012839 DOI: 10.1021/pr401248f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 12/18/2022]
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women. The need for new clinical biomarkers in breast cancer is necessary to further predict prognosis and therapeutic response. In this article, the LC-MS histone H1 phosphorylation profiles were established for three distinct breast cancer cell lines. The results show that the extent of H1 phosphorylation can distinguish between the different cell lines. The histone H1 from the metastatic cell line, MDA-MB-231, was subjected to chemical derivitization and LC-MS/MS analysis. The results suggest that the phosphorylation at threonine 146 is found on both histone H1.2 and histone H1.4. Cell lines were then treated with an extracellular stimulus, estradiol or kinase inhibitor LY294002, to monitor changes in histone H1 phosphorylation. The data show that histone H1 phosphorylation can increase and decrease in response to extracellular stimuli. Finally, primary breast tissues were stained for the histone H1 phosphorylation at threonine 146. Variable staining patterns across tumor grades and subtypes were observed with pT146 labeling correlating with tumor grade. These results establish the potential for histone H1 phosphorylation at threonine 146 as a clinical biomarker in breast cancer.
Collapse
Affiliation(s)
- Sean W. Harshman
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael E. Hoover
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chengsi Huang
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Owen E. Branson
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sarah
B. Chaney
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Carolyn M. Cheney
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas J. Rosol
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Charles L. Shapiro
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Vicki H. Wysocki
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kay Huebner
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael A. Freitas
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
168
|
Biterge B, Schneider R. Histone variants: key players of chromatin. Cell Tissue Res 2014; 356:457-66. [PMID: 24781148 DOI: 10.1007/s00441-014-1862-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/27/2014] [Indexed: 01/01/2023]
Abstract
Histones are fundamental structural components of chromatin. Eukaryotic DNA is wound around an octamer of the core histones H2A, H2B, H3, and H4. Binding of linker histone H1 promotes higher order chromatin organization. In addition to their structural role, histones impact chromatin function and dynamics by, e.g., post-translational histone modifications or the presence of specific histone variants. Histone variants exhibit differential expression timings (DNA replication-independent) and mRNA characteristics compared to canonical histones. Replacement of canonical histones with histone variants can affect nucleosome stability and help to create functionally distinct chromatin domains. In line with this, several histone variants have been implicated in the regulation of cellular processes such as DNA repair and transcriptional activity. In this review, we focus on recent progress in the study of core histone variants H2A.X, H2A.Z, macroH2A, H3.3, and CENP-A, as well as linker histone H1 variants, their functions and their links to development and disease.
Collapse
Affiliation(s)
- Burcu Biterge
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, 67404, Illkirch, France
| | | |
Collapse
|
169
|
Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:627-43. [PMID: 24631868 DOI: 10.1016/j.bbagrm.2014.03.001] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/14/2014] [Accepted: 03/04/2014] [Indexed: 01/10/2023]
Abstract
A major mechanism regulating the accessibility and function of eukaryotic genomes are the covalent modifications to DNA and histone proteins that dependably package our genetic information inside the nucleus of every cell. Formally postulated over a decade ago, it is becoming increasingly clear that post-translational modifications (PTMs) on histones act singly and in combination to form a language or 'code' that is read by specialized proteins to facilitate downstream functions in chromatin. Underappreciated at the time was the level of complexity harbored both within histone PTMs and their combinations, as well as within the proteins that read and interpret the language. In addition to histone PTMs, newly-identified DNA modifications that can recruit specific effector proteins have raised further awareness that histone PTMs operate within a broader language of epigenetic modifications to orchestrate the dynamic functions associated with chromatin. Here, we highlight key recent advances in our understanding of the epigenetic language encompassing histone and DNA modifications and foreshadow challenges that lie ahead as we continue our quest to decipher the fundamental mechanisms of chromatin regulation. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Scott B Rothbart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian D Strahl
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
170
|
González-Romero R, Ausio J. dBigH1, a second histone H1 in Drosophila, and the consequences for histone fold nomenclature. Epigenetics 2014; 9:791-7. [PMID: 24622397 DOI: 10.4161/epi.28427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recently, Pérez-Montero and colleagues (Developmental cell, 26: 578-590, 2013) described the occurrence of a new histone H1 variant (dBigH1) in Drosophila. The presence of unusual acidic amino acid patches at the N-terminal end of dBigH1 is in contrast to the arginine patches that exist at the N- and C-terminal domains of other histone H1-related proteins found in the sperm of some organisms. This departure from the strictly lysine-rich composition of the somatic histone H1 raises a question about the true definition of its protein members. Their minimal essential requirements appear to be the presence of a lysine- and alanine-rich, intrinsically disordered C-terminal domain, with a highly helicogenic potential upon binding to the linker DNA regions of chromatin. In metazoans, specific targeting of these regions is further achieved by a linker histone fold domain (LHFD), distinctively different from the characteristic core histone fold domain (CHFD) of the nucleosome core histones.
Collapse
Affiliation(s)
| | - Juan Ausio
- Department of Biochemistry and Microbiology; University of Victoria; Victoria, BC, Canada
| |
Collapse
|
171
|
Gallenkamp D, Gelato KA, Haendler B, Weinmann H. Bromodomains and their pharmacological inhibitors. ChemMedChem 2014; 9:438-64. [PMID: 24497428 DOI: 10.1002/cmdc.201300434] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/23/2013] [Indexed: 12/15/2022]
Abstract
Over 60 bromodomains belonging to proteins with very different functions have been identified in humans. Several of them interact with acetylated lysine residues, leading to the recruitment and stabilization of protein complexes. The bromodomain and extra-terminal domain (BET) proteins contain tandem bromodomains which bind to acetylated histones and are thereby implicated in a number of DNA-centered processes, including the regulation of gene expression. The recent identification of inhibitors of BET and non-BET bromodomains is one of the few examples in which effective blockade of a protein-protein interaction can be achieved with a small molecule. This has led to major strides in the understanding of the function of bromodomain-containing proteins and their involvement in diseases such as cancer and inflammation. Indeed, BET bromodomain inhibitors are now being clinically evaluated for the treatment of hematological tumors and have also been tested in clinical trials for the relatively rare BRD-NUT midline carcinoma. This review gives an overview of the newest developments in the field, with a focus on the biology of selected bromodomain proteins on the one hand, and on reported pharmacological inhibitors on the other, including recent examples from the patent literature.
Collapse
|
172
|
Zheng W, Huang Y. The chemistry and biology of the α-ketoglutarate-dependent histone Nε-methyl-lysine demethylases. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00325f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This review describes the current knowledge of the chemistry and biology of the physiologically and therapeutically important histone/protein Nε-methyl-lysine demethylation reactions catalyzed by the JMJD2 and JARID1 families of the α-ketoglutarate-dependent demethylases.
Collapse
Affiliation(s)
- Weiping Zheng
- School of Pharmacy
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yajun Huang
- School of Pharmacy
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|