151
|
Wu Y, Agarwal S, Jones CK, Webb AG, van Zijl PCM, Hua J, Pillai JJ. Measurement of arteriolar blood volume in brain tumors using MRI without exogenous contrast agent administration at 7T. J Magn Reson Imaging 2016; 44:1244-1255. [PMID: 27028493 PMCID: PMC5045323 DOI: 10.1002/jmri.25248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/04/2016] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Arteriolar cerebral-blood-volume (CBVa) is an important perfusion parameter that can be measured using inflow-based vascular-space-occupancy (iVASO) MRI without exogenous contrast agent administration. The purpose of this study is to assess the potential diagnostic value of CBVa in brain tumor patients by comparing it with total-CBV (including arterial, capillary and venous vessels) measured by dynamic-susceptibility-contrast (DSC) MRI. MATERIALS AND METHODS Twelve brain tumor patients were scanned using iVASO (on 7T as part of a research project) and DSC (on 3T as part of routine clinical protocols) MRI. Region-of-interest analysis was performed to compare the resulting perfusion measures between tumoral and contralateral regions, and to evaluate their associations with tumor grades. RESULTS CBVa measured by iVASO MRI significantly correlated with WHO grade (ρ = 0.37, P = 0.04). Total-CBV measured by DSC MRI showed a trend of correlation with WHO grade (ρ = 0.28, P = 0.5). The signal-to-noise ratio was comparable (P > 0.1) between the two methods, while the contrast-to-noise ratio between tumoral and contralateral regions was higher in iVASO-CBVa than DSC-CBV in WHO II/III patients (P < 0.05) but comparable in WHO IV patients (P > 0.1). A trend of positive correlation between DSC-CBV and iVASO-CBVa was observed (R2 = 0.28, P = 0.07). CONCLUSION In this initial patient study, CBVa demonstrated a stronger correlation with WHO grade than total-CBV. Further investigation with a larger cohort is warranted to validate whether CBVa can be a better classifier than total-CBV for the stratification of brain tumors, and whether iVASO MRI can be a useful alternative method for the assessment of tumor perfusion, especially when exogenous contrast agent administration is difficult in certain patient populations. J. Magn. Reson. Imaging 2016;44:1244-1255.
Collapse
Affiliation(s)
- Yuankui Wu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Craig K Jones
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Andrew G Webb
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden, University Medical Center, Leiden, The Netherlands
| | - Peter C M van Zijl
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jun Hua
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.
| | - Jay J Pillai
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
152
|
Liu D, Xu F, Lin DD, van Zijl PCM, Qin Q. Quantitative measurement of cerebral blood volume using velocity-selective pulse trains. Magn Reson Med 2016; 77:92-101. [PMID: 27797101 DOI: 10.1002/mrm.26515] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE To develop a non-contrast-enhanced MRI method for cerebral blood volume (CBV) mapping using velocity-selective (VS) pulse trains. METHODS The new pulse sequence applied velocity-sensitive gradient waveforms in the VS label modules and velocity-compensated ones in the control scans. Sensitivities to the gradient imperfections (e.g., eddy currents) were evaluated through phantom studies. CBV quantification procedures based on simulated labeling efficiencies for arteriolar, capillary, and venular blood as a function of cutoff velocity (Vc) are presented. Experiments were conducted on healthy volunteers at 3T to examine the effects of unbalanced diffusion weighting, cerebrospinal (CSF) contamination and variation of Vc. RESULTS Phantom results of the used VS pulse trains demonstrated robustness to eddy currents. The mean CBV values of gray matter and white matter for the experiments using Vc = 3.5 mm/s and velocity-compensated control with CSF-nulling were 5.1 ± 0.6 mL/100 g and 2.4 ± 0.2 mL/100 g, respectively, which were 23% and 32% lower than results from the experiment with velocity-insensitive control, corresponding to 29% and 25% lower in averaged temporal signal-to-noise ratio values. CONCLUSION A novel technique using VS pulse trains was demonstrated for CBV mapping. The results were both qualitatively and quantitatively close to those from existing methods. Magn Reson Med 77:92-101, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Dexiang Liu
- Department of Radiology, Panyu District Central Hospital, Guangzhou, Guangdong Province, China.,The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Feng Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Doris D Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
153
|
Becker AS, Rossi C. Renal Arterial Spin Labeling Magnetic Resonance Imaging. Nephron Clin Pract 2016; 135:1-5. [PMID: 27760424 DOI: 10.1159/000450797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022] Open
Abstract
Arterial spin labeling (ASL) MRI allows the quantification of tissue perfusion without administration of exogenous contrast agents. Patients with reduced renal function or other contraindications to Gadolinium-based contrast media may benefit from the non-invasive monitoring of tissue microcirculation. So far, only few studies have investigated the sensitivity, the specificity and the reliability of the ASL techniques for the assessment of renal perfusion. Moreover, only little is known about the interplay between ASL markers of perfusion and functional renal filtration parameters. In this editorial, we discuss the main technical issues related to the quantification of renal perfusion by ASL and, in particular, the latest results in patients with kidney disorders.
Collapse
Affiliation(s)
- Anton S Becker
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
154
|
Cerebrovascular reactivity in the caudate nucleus, lentiform nucleus and thalamus in patients with carotid artery disease. J Neuroradiol 2016; 44:143-150. [PMID: 27743788 DOI: 10.1016/j.neurad.2016.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/09/2016] [Accepted: 07/18/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE To assess the effect of unilateral large vessel disease upon the cerebral hemodynamic autoregulatory status in the basal ganglia of patients with steno-occlusive internal carotid artery (ICA) disease. MATERIALS AND METHODS Twenty-five healthy volunteers and 38 patients with a unilateral symptomatic steno-occlusive ICA lesion and were investigated; 20 with a stenosis >50% and 18 with an occlusion. Cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) were assessed with pseudo-continuous arterial spin labeling (ASL) magnetic resonance (MR) imaging before and after administration of acetazolamide. RESULTS When compared to controls, the CVR in patients with ICA stenosis was significantly lower in the middle cerebral artery (MCA) territory (P<0.05), and in the caudate (P<0.05) and lentiform nucleus (P<0.05) of the hemisphere ipsilateral to the stenosis. The CVR in the caudate nucleus contralateral to the stenosis was significantly lower (P<0.05) as well. In patients with ICA occlusion, the CVR in the hemisphere ipsilateral to the occlusion as well as in the contralateral hemisphere was significantly lower in the MCA territory (P<0.05), the caudate (P<0.05) and lentiform nucleus (P<0.05), and in the thalamus (P<0.05). CONCLUSION Perfusion ASL MR imaging shows impaired cerebral hemodynamic autoregulation of the basal ganglia in patients with steno-occlusive ICA disease both in the hemisphere ipsilateral as well as in the hemisphere contralateral to the stenosis or occlusion.
Collapse
|
155
|
Zhang X, Li CX. Arterial spin labeling perfusion magnetic resonance imaging of non-human primates. Quant Imaging Med Surg 2016; 6:573-581. [PMID: 27942478 DOI: 10.21037/qims.2016.10.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-human primates (NHPs) resemble most aspects of humans in brain physiology and anatomy and are excellent animal models for translational research in neuroscience, biomedical research and pharmaceutical development. Cerebral blood flow (CBF) offers essential physiological information of the brain to examine the abnormal functionality in NHP models with cerebral vascular diseases and neurological disorders or dementia. Arterial spin labeling (ASL) perfusion MRI techniques allow for high temporal and spatial CBF measurement and are intensively used in studies of animals and humans. In this article, current high-resolution ASL perfusion MRI techniques for quantitative evaluation of brain physiology and function in NHPs are described and their applications and limitation are discussed as well.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA;; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Chun-Xia Li
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
156
|
Han PK, Choi SH, Park SH. Investigation of control scans in pseudo-continuous arterial spin labeling (pCASL): Strategies for improving sensitivity and reliability of pCASL. Magn Reson Med 2016; 78:917-929. [DOI: 10.1002/mrm.26474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Paul Kyu Han
- Magnetic Resonance Imaging Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology; Daejeon South Korea
| | - Seung Hong Choi
- Department of Radiology; Seoul National University College of Medicine; Seoul South Korea
| | - Sung-Hong Park
- Magnetic Resonance Imaging Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology; Daejeon South Korea
| |
Collapse
|
157
|
Wanibuchi M, Komatsu K, Akiyama Y, Mikami T, Iihoshi S, Miyata K, Mikuni N. Quantitative Assessment of Flow Reduction After Feeder Embolization in Meningioma by Using Pseudocontinuous Arterial Spin Labeling. World Neurosurg 2016; 93:237-45. [DOI: 10.1016/j.wneu.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
|
158
|
Barkeij Wolf JJH, Foster-Dingley JC, Moonen JEF, van Osch MJP, de Craen AJM, de Ruijter W, van der Mast RC, van der Grond J. Unilateral fetal-type circle of Willis anatomy causes right-left asymmetry in cerebral blood flow with pseudo-continuous arterial spin labeling: A limitation of arterial spin labeling-based cerebral blood flow measurements? J Cereb Blood Flow Metab 2016; 36:1570-8. [PMID: 26755444 PMCID: PMC5012520 DOI: 10.1177/0271678x15626155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/12/2015] [Indexed: 11/17/2022]
Abstract
The accuracy of cerebral blood flow measurements using pseudo-continuous arterial spin labeling can be affected by vascular factors other than cerebral blood flow, such as flow velocity and arterial transit time. We aimed to elucidate the effects of common variations in vascular anatomy of the circle of Willis on pseudo-continuous arterial spin labeling signal. In addition, we investigated whether possible differences in pseudo-continuous arterial spin labeling signal could be mediated by differences in flow velocities. Two hundred and three elderly participants underwent magnetic resonance angiography of the circle of Willis and pseudo-continuous arterial spin labeling scans. Mean pseudo-continuous arterial spin labeling-cerebral blood flow signal was calculated for the gray matter of the main cerebral flow territories. Mean cerebellar gray matter pseudo-continuous arterial spin labeling-cerebral blood flow was significantly lower in subjects having a posterior fetal circle of Willis variant with an absent P1 segment. The posterior fetal circle of Willis variants also showed a significantly higher pseudo-continuous arterial spin labeling-cerebral blood flow signal in the ipsilateral flow territory of the posterior cerebral artery. Flow velocity in the basilar artery was significantly lower in these posterior fetal circle of Willis variants. This study indicates that pseudo-continuous arterial spin labeling measurements underestimate cerebral blood flow in the posterior flow territories and cerebellum of subjects with a highly prevalent variation in circle of Willis morphology. Additionally, our data suggest that this effect is mediated by concomitant differences in flow velocity between the supplying arteries.
Collapse
Affiliation(s)
| | | | - Justine E F Moonen
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anton J M de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter de Ruijter
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Roos C van der Mast
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands Department of Psychiatry, CAPRI, University of Antwerp, Belgium
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
159
|
Substantial Reduction of Parenchymal Cerebral Blood Flow in Mice with Bilateral Common Carotid Artery Stenosis. Sci Rep 2016; 6:32179. [PMID: 27535801 PMCID: PMC4989493 DOI: 10.1038/srep32179] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 08/03/2016] [Indexed: 01/06/2023] Open
Abstract
The bilateral common carotid artery stenosis (BCAS) mouse model, which replicates chronic cerebral hypoperfusion and white matter ischemic lesions, is considered to model some aspects of vascular cognitive impairment. Cerebral blood flow (CBF) changes in the brain surface post-BCAS have been demonstrated by laser speckle flowmetry, but CBF levels in the brain parenchyma remain unknown. Adult C57BL/6J male mice were subjected to BCAS using external microcoils. Brain magnetic resonance angiography (MRA) was conducted to visualize the intracranial main arteries while arterial spin labeling (ASL) was used to measure cortical and subcortical parenchymal CBF levels before and after BCAS. Brain MRA showed anterior circulation flow was substantially decreased until 14 days post-BCAS, which gradually but incompletely recovered over the following 14 days, with probable growth of collaterals from the posterior cerebral artery. ASL showed that cortical and subcortical parenchymal CBF remained decreased at approximately 50% of the baseline level during 1 and 14 days post-BCAS, recovering to approximately 70% at day 28. CBF levels in the parenchyma were lower than the cortical superficial region in the BCAS model and remained decreased without recovery during the first 2 weeks post-BCAS. These results suggest that the BCAS model reliably replicates chronic cerebral hypoperfusion.
Collapse
|
160
|
Becker AS, Manoliu A, Wurnig MC, Boss A. Intravoxel incoherent motion imaging measurement of perfusion changes in the parotid gland provoked by gustatory stimulation: A pilot study. J Magn Reson Imaging 2016; 45:570-578. [DOI: 10.1002/jmri.25393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/05/2016] [Indexed: 11/09/2022] Open
Affiliation(s)
- Anton S. Becker
- Department of Diagnostic and Interventional Radiology; University Hospital Zurich; Zurich Switzerland
| | - Andrei Manoliu
- Department of Diagnostic and Interventional Radiology; University Hospital Zurich; Zurich Switzerland
| | - Moritz C. Wurnig
- Department of Diagnostic and Interventional Radiology; University Hospital Zurich; Zurich Switzerland
| | - Andreas Boss
- Department of Diagnostic and Interventional Radiology; University Hospital Zurich; Zurich Switzerland
| |
Collapse
|
161
|
Dai W, Fong T, Jones RN, Marcantonio E, Schmitt E, Inouye SK, Alsop DC. Effects of arterial transit delay on cerebral blood flow quantification using arterial spin labeling in an elderly cohort. J Magn Reson Imaging 2016; 45:472-481. [PMID: 27384230 DOI: 10.1002/jmri.25367] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/16/2016] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To investigate whether measurement of arterial transit time (ATT) can improve the accuracy of arterial spin labeling (ASL) cerebral blood flow (CBF) quantification in an elderly cohort due to the potentially prolonged ATT in the cohort. MATERIALS AND METHODS We employed a 1-minute, low-resolution (12 mm in-plane), sequential multidelay ATT measurement (both with and without vessel suppression) approach to characterize and correct ATT errors in CBF imaging of an elderly, clinical cohort. In all, 140 nondemented subjects greater than 70 years old were imaged at 3T with a single delay, volumetric continuous ASL sequence and also with the fast ATT measurement method. Nine healthy young subjects (28 ± 6 years old) were also imaged. RESULTS ATTs measured without vessel suppression (superior frontal: 1.51 ± 0.27 sec) in the elderly were significantly shorter than those with suppression (P < 0.0001). Correction of CBF for ATT significantly increased average CBF in multiple brain regions where ATT was longer than the postlabeling delay (P < 0.01) and decreased intersubject variability of CBF in frontal, parietal, and occipital regions (P < 10-8 ). Measured ATT with vessel suppression was significantly longer in the elderly subjects (eg, superior frontal: 1.76 ± 0.25 sec) compared to the younger adults (superior frontal: 1.59 ± 0.19 sec) in basal ganglia and frontal cortical regions (P < 0.05). CONCLUSION The ATT measurement is beneficial for imaging of elderly clinical populations. If ATT mapping is not feasible or available, postlabeling delays of 2-2.3 seconds should be used for elderly populations based on longest measured regional ATTs. LEVEL OF EVIDENCE 1 J. Magn. Reson. Imaging 2017;45:472-481.
Collapse
Affiliation(s)
- Weiying Dai
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Computer Science, State University of New York at Binghamton, Binghamton, New York, USA
| | - Tamara Fong
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Richard N Jones
- Department of Psychiatry and Human Behavior and Neurology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Edward Marcantonio
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Eva Schmitt
- Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Sharon K Inouye
- Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA.,Department of Gerontology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
162
|
Noguchi T. A Technical Perspective for Understanding Quantitative Arterial Spin-Labeling MR Imaging Using Continuous ASL. Pol J Radiol 2016; 81:317-21. [PMID: 27471575 PMCID: PMC4939853 DOI: 10.12659/pjr.896795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 12/14/2015] [Indexed: 11/09/2022] Open
Abstract
The current paper describes visually the system of CBF measurement by continuous ASL using schematic illustration. I also discussed the effects of the parameters used in continuous ASL to CBF values as measured with ASL-MRI.
Collapse
Affiliation(s)
- Tomoyuki Noguchi
- Department of Radiology, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
163
|
Chaddock-Heyman L, Erickson KI, Chappell MA, Johnson CL, Kienzler C, Knecht A, Drollette ES, Raine LB, Scudder MR, Kao SC, Hillman CH, Kramer AF. Aerobic fitness is associated with greater hippocampal cerebral blood flow in children. Dev Cogn Neurosci 2016; 20:52-8. [PMID: 27419884 PMCID: PMC6987716 DOI: 10.1016/j.dcn.2016.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/22/2022] Open
Abstract
The present study is the first to investigate whether cerebral blood flow in the hippocampus relates to aerobic fitness in children. In particular, we used arterial spin labeling (ASL) perfusion MRI to provide a quantitative measure of blood flow in the hippocampus in 73 7- to 9-year-old preadolescent children. Indeed, aerobic fitness was found to relate to greater perfusion in the hippocampus, independent of age, sex, and hippocampal volume. Such results suggest improved microcirculation and cerebral vasculature in preadolescent children with higher levels of aerobic fitness. Further, aerobic fitness may influence how the brain regulates its metabolic demands via blood flow in a region of the brain important for learning and memory. To add specificity to the relationship of fitness to the hippocampus, we demonstrate no significant association between aerobic fitness and cerebral blood flow in the brainstem. Our results reinforce the importance of aerobic fitness during a critical period of child development.
Collapse
Affiliation(s)
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael A Chappell
- Institute of Biomedical Engineering and Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Curtis L Johnson
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Caitlin Kienzler
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anya Knecht
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric S Drollette
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lauren B Raine
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mark R Scudder
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shih-Chun Kao
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Charles H Hillman
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Arthur F Kramer
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
164
|
Cardenas DP, Muir ER, Duong TQ. MRI of cerebral blood flow under hyperbaric conditions in rats. NMR IN BIOMEDICINE 2016; 29:961-968. [PMID: 27192391 PMCID: PMC4998963 DOI: 10.1002/nbm.3555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/03/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Hyperbaric oxygen (HBO) therapy has a number of clinical applications. However, the effects of acute HBO on basal cerebral blood flow (CBF) and neurovascular coupling are not well understood. This study explored the use of arterial spin labeling MRI to evaluate changes in baseline and forepaw stimulus-evoked CBF responses in rats (n = 8) during normobaric air (NB), normobaric oxygen (NBO) (100% O2 ), 3 atm absolute (ATA) hyperbaric air (HB) and 3 ATA HBO conditions. T1 was also measured, and the effects of changes in T1 caused by increasing oxygen on the CBF calculation were investigated. The major findings were as follows: (i) increased inhaled oxygen concentrations led to a reduced respiration rate; (ii) increased dissolved paramagnetic oxygen had significant effects on blood and tissue T1 , which affected the CBF calculation using the arterial spin labeling method; (iii) the differences in blood T1 had a larger effect than the differences in tissue T1 on CBF calculation; (iv) if oxygen-induced changes in blood and tissue T1 were not taken into account, CBF was underestimated by 33% at 3 ATA HBO, 10% at NBO and <5% at HB; (v) with correction, CBF values under HBO, HB and NBO were similar (p > 0.05) and all were higher than CBF under NB by ~40% (p < 0.05), indicating that hypercapnia from the reduced respiration rate masks oxygen-induced vasoconstriction, although blood gas was not measured; and (vi) substantial stimulus-evoked CBF increases were detected under HBO, similar to NB, supporting the notion that activation-induced CBF regulation in the brain does not operate through an oxygen-sensing mechanism. CBF MRI provides valuable insights into the effects of oxygen on basal CBF and neurovascular coupling under hyperbaric conditions. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Damon P. Cardenas
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Graduate School of Biomedical Science, University of Texas at San Antonio, San Antonio, TX, USA
| | - Eric R. Muir
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Timothy Q. Duong
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX, USA
- South Texas Veterans Health Care System, Department of Veterans Affairs, San Antonio, TX, USA
| |
Collapse
|
165
|
Dolui S, Wang Z, Wang DJJ, Mattay R, Finkel M, Elliott M, Desiderio L, Inglis B, Mueller B, Stafford RB, Launer LJ, Jacobs DR, Bryan RN, Detre JA. Comparison of non-invasive MRI measurements of cerebral blood flow in a large multisite cohort. J Cereb Blood Flow Metab 2016; 36:1244-56. [PMID: 27142868 PMCID: PMC4929707 DOI: 10.1177/0271678x16646124] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/22/2016] [Indexed: 11/16/2022]
Abstract
UNLABELLED Arterial spin labeling and phase contrast magnetic resonance imaging provide independent non-invasive methods for measuring cerebral blood flow. We compared global cerebral blood flow measurements obtained using pseudo-continuous arterial spin labeling and phase contrast in 436 middle-aged subjects acquired at two sites in the NHLBI CARDIA multisite study. Cerebral blood flow measured by phase contrast (CBFPC: 55.76 ± 12.05 ml/100 g/min) was systematically higher (p < 0.001) and more variable than cerebral blood flow measured by pseudo-continuous arterial spin labeling (CBFPCASL: 47.70 ± 9.75). The correlation between global cerebral blood flow values obtained from the two modalities was 0.59 (p < 0.001), explaining less than half of the observed variance in cerebral blood flow estimates. Well-established correlations of global cerebral blood flow with age and sex were similarly observed in both CBFPCASL and CBFPC CBFPC also demonstrated statistically significant site differences, whereas no such differences were observed in CBFPCASL No consistent velocity-dependent effects on pseudo-continuous arterial spin labeling were observed, suggesting that pseudo-continuous labeling efficiency does not vary substantially across typical adult carotid and vertebral velocities, as has previously been suggested. CONCLUSIONS Although CBFPCASL and CBFPC values show substantial similarity across the entire cohort, these data do not support calibration of CBFPCASL using CBFPC in individual subjects. The wide-ranging cerebral blood flow values obtained by both methods suggest that cerebral blood flow values are highly variable in the general population.
Collapse
Affiliation(s)
- Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, USA
| | - Ze Wang
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China Departments of Psychiatry and Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Danny J J Wang
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Raghav Mattay
- Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mack Finkel
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa Desiderio
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben Inglis
- Henry H. Wheeler Jr. Brain Imaging Center, University of California, Berkeley, CA, USA
| | - Bryon Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Randall B Stafford
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, MD, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - R Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
166
|
Wirestam R, Lind E, Ahlgren A, Ståhlberg F, Knutsson L. Dynamic susceptibility contrast perfusion MRI using phase-based venous output functions: comparison with pseudo-continuous arterial spin labelling and assessment of contrast agent concentration in large veins. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:823-831. [PMID: 27295051 DOI: 10.1007/s10334-016-0567-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Contrast agent (CA) relaxivities are generally not well established in vivo, and the relationship between frequency/phase shift and magnetic susceptibility might be a useful alternative for CA quantification. MATERIALS AND METHODS Twenty volunteers (25-84 years old) were investigated using test-retest pre-bolus dynamic susceptibility-contrast (DSC) magnetic resonance imaging (MRI). The pre-bolus phase-based venous output function (VOF) time integral was used for arterial input function (AIF) rescaling. Resulting cerebral blood flow (CBF) data for grey matter (GM) were compared with pseudo-continuous arterial spin labelling (ASL). During the main bolus CA passage, the apparent spatial shift (pixel shift) of the superior sagittal sinus (seen in single-shot echo-planar imaging (EPI)) was converted to CA concentration and compared with conventional ΔR2*-based data and with a predicted phase-based VOF from the pre-bolus experiment. RESULTS The phase-based pre-bolus VOF resulted in a reasonable inter-individual GM CBF variability (coefficient of variation 28 %). Comparison with ASL CBF values implied a tissue R2*-relaxivity of 32 mM-1 s-1. Pixel-shift data at low concentrations (data not available at peak concentrations) were in reasonable agreement with the predicted phase-based VOF. CONCLUSION Susceptibility-induced phase shifts and pixel shifts are potentially useful for large-vein CA quantification. Previous predictions of a higher R2*-relaxivity in tissue than in blood were supported.
Collapse
Affiliation(s)
- Ronnie Wirestam
- Department of Medical Radiation Physics, University Hospital, Lund University, SE-22185, Lund, Sweden.
| | - Emelie Lind
- Department of Medical Radiation Physics, University Hospital, Lund University, SE-22185, Lund, Sweden
| | - André Ahlgren
- Department of Medical Radiation Physics, University Hospital, Lund University, SE-22185, Lund, Sweden
| | - Freddy Ståhlberg
- Department of Medical Radiation Physics, University Hospital, Lund University, SE-22185, Lund, Sweden.,Department of Diagnostic Radiology, University Hospital, Lund University, SE-22185, Lund, Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, University Hospital, Lund University, SE-22185, Lund, Sweden
| |
Collapse
|
167
|
Tsujikawa T, Kimura H, Matsuda T, Fujiwara Y, Isozaki M, Kikuta KI, Okazawa H. Arterial Transit Time Mapping Obtained by Pulsed Continuous 3D ASL Imaging with Multiple Post-Label Delay Acquisitions: Comparative Study with PET-CBF in Patients with Chronic Occlusive Cerebrovascular Disease. PLoS One 2016; 11:e0156005. [PMID: 27275779 PMCID: PMC4898726 DOI: 10.1371/journal.pone.0156005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 05/06/2016] [Indexed: 11/18/2022] Open
Abstract
Arterial transit time (ATT) is most crucial for measuring absolute cerebral blood flow (CBF) by arterial spin labeling (ASL), a noninvasive magnetic resonance (MR) perfusion assessment technique, in patients with chronic occlusive cerebrovascular disease. We validated ASL-CBF and ASL-ATT maps calculated by pulsed continuous ASL (pCASL) with multiple post-label delay acquisitions in patients with occlusive cerebrovascular disease. Fifteen patients underwent MR scans, including pCASL, and positron emission tomography (PET) scans with 15O-water to obtain PET-CBF. MR acquisitions with different post-label delays (1.0, 1.5, 2.0, 2.5 and 3.0 sec) were also obtained for ATT correction. The theoretical framework of 2-compartmental model (2CM) was also used for the delay compensation. ASL-CBF and ASL-ATT were calculated based on the proposed 2CM, and the effect on the CBF values and the ATT correction characteristics were discussed. Linear regression analyses were performed both on pixel-by-pixel and region-of-interest bases in the middle cerebral artery (MCA) territory. There were significant correlations between ASL-CBF and PET-CBF both for voxel values (r = 0.74 ± 0.08, slope: 0.87 ± 0.22, intercept: 6.1 ± 4.9) and for the MCA territorial comparison in both affected (R2 = 0.67, y = 0.83x + 6.3) and contralateral sides (R2 = 0.66, y = 0.74x + 6.3). ASL-ATTs in the affected side were significantly longer than those in the contralateral side (1.51 ± 0.41 sec and 1.12 ± 0.30 sec, respectively, p <0.0005). CBF measurement using pCASL with delay compensation was feasible and fairly accurate even in altered hemodynamic states.
Collapse
Affiliation(s)
- Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui, Japan
| | - Hirohiko Kimura
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
- * E-mail:
| | | | - Yasuhiro Fujiwara
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
- Department of Medical Imaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Isozaki
- Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Ken-ichiro Kikuta
- Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui, Japan
| |
Collapse
|
168
|
Stafford RB, Woo MK, Oh SH, Dolui S, Zhao T, Kim YB, Detre JA, Cho ZH, Lee J. An Actively Decoupled Dual Transceiver Coil System for Continuous ASL at 7 T. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2016; 26:106-115. [PMID: 27695192 PMCID: PMC5042328 DOI: 10.1002/ima.22165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
7 T arterial spin labeling (ASL) faces major challenges including the increased specific absorption rate (SAR) and increased B0 and B1 inhomogeneity. This work describes the design and implementation of a dual-coil system that allows for continuous ASL (CASL) at 7 T. This system consisted of an actively detunable eight-channel transceiver head coil, and a three-channel transceiver labeling coil. Four experiments were performed in 5 healthy subjects: (i) to demonstrate that active detuning during ASL labeling reduces magnetization transfer; (ii) to measure the B1 profile at the labeling plane; (iii) to quantify B0 off-resonance at the labeling plane; and (iv) to collect in vivo CASL data. The magnetization transfer ratio in the head coil was reduced to 0.0 ± 0.2% by active detuning during labeling. The measured B1 profiles in all 5 subjects were sufficient to satisfy the flow-driven adiabatic inversion necessary for CASL, however the actual labeling efficiency was significantly impacted by B0 off-resonance at the labeling plane. The measured CASL percent signal change in gray matter (0.94% ± 0.10%) corresponds with the low labeling efficiency predicted by the B0 off-resonance. This work demonstrates progress in the technical implementation of 7 T CASL, and reinforces the need for improved B0 homogeneity at the labeling plane.
Collapse
Affiliation(s)
- Randall B Stafford
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, USA; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Myung-Kyun Woo
- Neuroscience Research Institute, Gachon University, Incheon, Korea; Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea; Department of Electrical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Se-Hong Oh
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, USA; Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tiejun Zhao
- Siemens Medical Solutions USA, Inc., Siemens Healthcare, New York, NY, USA
| | - Young-Bo Kim
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - John A Detre
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zang-Hee Cho
- Neuroscience Research Institute, Gachon University, Incheon, Korea; Advanced Institutes of Convergence Technology, Seoul National University, Seoul, Korea
| | - Jongho Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, USA; Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| |
Collapse
|
169
|
Shimizu K, Kosaka N, Fujiwara Y, Matsuda T, Yamamoto T, Tsuchida T, Tsuchiyama K, Oyama N, Kimura H. Arterial Transit Time-corrected Renal Blood Flow Measurement with Pulsed Continuous Arterial Spin Labeling MR Imaging. Magn Reson Med Sci 2016; 16:38-44. [PMID: 27170422 PMCID: PMC5600042 DOI: 10.2463/mrms.mp.2015-0117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose: The importance of arterial transit time (ATT) correction for arterial spin labeling MRI has been well debated in neuroimaging, but it has not been well evaluated in renal imaging. The purpose of this study was to evaluate the feasibility of pulsed continuous arterial spin labeling (pcASL) MRI with multiple post-labeling delay (PLD) acquisition for measuring ATT-corrected renal blood flow (ATC-RBF). Materials and Methods: A total of 14 volunteers were categorized into younger (n = 8; mean age, 27.0 years) and older groups (n = 6; 64.8 years). Images of pcASL were obtained at three different PLDs (0.5, 1.0, and 1.5 s), and ATC-RBF and ATT were calculated using a single-compartment model. To validate ATC-RBF, a comparative study of effective renal plasma flow (ERPF) measured by 99mTc-MAG3 scintigraphy was performed. ATC-RBF was corrected by kidney volume (ATC-cRBF) for comparison with ERPF. Results: The younger group showed significantly higher ATC-RBF (157.68 ± 38.37 mL/min/100 g) and shorter ATT (961.33 ± 260.87 ms) than the older group (117.42 ± 24.03 mL/min/100 g and 1227.94 ± 226.51 ms, respectively; P < 0.05). A significant correlation was evident between ATC-cRBF and ERPF (P < 0.05, r = 0.47). With suboptimal single PLD (1.5 s) settings, there was no significant correlation between ERPF and kidney volume-corrected RBF calculated from single PLD data. Conclusion: Calculation of ATT and ATC-RBF by pcASL with multiple PLD was feasible in healthy volunteers, and differences in ATT and ATC-RBF were seen between the younger and older groups. Although ATT correction by multiple PLD acquisitions may not always be necessary for RBF quantification in the healthy subjects, the effect of ATT should be taken into account in renal ASL–MRI as debated in brain imaging.
Collapse
Affiliation(s)
- Kazuhiro Shimizu
- Department of Radiology, Faculty of Medical Sciences, University of Fukui
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Cerebellar microstructural abnormalities in bipolar depression and unipolar depression: A diffusion kurtosis and perfusion imaging study. J Affect Disord 2016; 195:21-31. [PMID: 26852094 DOI: 10.1016/j.jad.2016.01.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/21/2015] [Accepted: 01/26/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Depression in the context of bipolar disorder (BD) is often misdiagnosed as unipolar depression (UD), leading to mistreatment and poor clinical outcomes. However, little is known about the similarities and differences in cerebellum between BD and UD. METHODS Patients with BD (n=35) and UD (n=30) during a depressive episode as well as 40 healthy controls underwent diffusional kurtosis imaging (DKI) and three dimensional arterial spin labeling (3D ASL). The DKI parameters including mean kurtosis (MK), axial kurtosis (Ka), radial kurtosis (Kr),fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da) and radial diffusivity (Dr) and 3D ASL parameters (i.e. cerebral blood flow) was measured by using regions-of-interest (ROIs) analysis in the superior cerebellar peduncles (SCP), middle cerebellar peduncles (MCP) and dentate nuclei (DN) of cerebellum. RESULTS Patients with UD exhibited significant differences from controls for DKI measures in bilateral SCP and MCP and cerebral blood flow (CBF) in bilateral SCP and left DN. Patients with BD exhibited significant differences from controls for DKI measures in the right MCP and left DN and CBF in the left DN. Patients with UD showed significantly lower MD values compared with patients with BD in the right SCP. Correlation analysis showed there were negative correlations between illness duration and MD and Dr values in the right SCP in UD. LIMITATIONS This study was cross-sectional and the sample size was not large. Parts of the patients included were under medication prior to MRI scanning. CONCLUSIONS Our findings provide new evidence of microstructural changes in cerebellum in BD and UD. The two disorders may have overlaps in microstructural abnormality in MCP and DN during the depressive period. Microstructural abnormality in SCP may be a key neurobiological feature of UD.
Collapse
|
171
|
Dai W, Varma G, Scheidegger R, Alsop DC. Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI. J Cereb Blood Flow Metab 2016; 36:463-73. [PMID: 26661226 PMCID: PMC4794099 DOI: 10.1177/0271678x15615339] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/15/2015] [Indexed: 11/17/2022]
Abstract
Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to investigate spontaneous low-frequency signal fluctuations across brain resting state networks. However, BOLD only provides relative measures of signal fluctuations. Arterial Spin Labeling (ASL) MRI holds great potential for quantitative measurements of resting state network fluctuations. This study systematically quantified signal fluctuations of the large-scale resting state networks using ASL data from 20 healthy volunteers by separating them from global signal fluctuations and fluctuations caused by residual noise. Global ASL signal fluctuation was 7.59% ± 1.47% relative to the ASL baseline perfusion. Fluctuations of seven detected resting state networks vary from 2.96% ± 0.93% to 6.71% ± 2.35%. Fluctuations of networks and residual noise were 6.05% ± 1.18% and 6.78% ± 1.16% using 4-mm resolution ASL data applied with Gaussian smoothing kernel of 6mm. However, network fluctuations were reduced by 7.77% ± 1.56% while residual noise fluctuation was markedly reduced by 39.75% ± 2.90% when smoothing kernel of 12 mm was applied to the ASL data. Therefore, global and network fluctuations are the dominant structured noise sources in ASL data. Quantitative measurements of resting state networks may enable improved noise reduction and provide insights into the function of healthy and diseased brain.
Collapse
Affiliation(s)
- Weiying Dai
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Gopal Varma
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rachel Scheidegger
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
172
|
Viviani R. A Digital Atlas of Middle to Large Brain Vessels and Their Relation to Cortical and Subcortical Structures. Front Neuroanat 2016; 10:12. [PMID: 26924965 PMCID: PMC4756124 DOI: 10.3389/fnana.2016.00012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/02/2016] [Indexed: 11/13/2022] Open
Abstract
While widely distributed, the vascular supply of the brain is particularly prominent in certain anatomical structures because of the high vessel density or their large size. A digital atlas of middle to large vessels in Montreal Neurological Institute (MNI) coordinates is here presented, obtained from a sample of N = 38 healthy participants scanned with the time-of-flight (TOF) magnetic resonance technique, and normalized with procedures analogous to those commonly used in functional neuroimaging studies. Spatial colocalization of brain parenchyma and vessels is shown to affect specific structures such as the anteromedial face of the temporal lobe, the cortex surrounding the Sylvian fissure (Sy), the anterior cingular cortex, and the ventral striatum. The vascular frequency maps presented here provide objective information about the vascularization of the brain, and may assist in the interpretation of data in studies where vessels are a potential confound.
Collapse
Affiliation(s)
- Roberto Viviani
- Institute of Psychology, University of InnsbruckInnsbruck, Austria
- Psychiatry and Psychotherapy Clinic III, University of UlmUlm, Germany
| |
Collapse
|
173
|
Shen N, Zhao L, Jiang J, Jiang R, Su C, Zhang S, Tang X, Zhu W. Intravoxel incoherent motion diffusion-weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion. J Magn Reson Imaging 2016; 44:620-32. [PMID: 26880230 DOI: 10.1002/jmri.25191] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/25/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To determine the utility of intravoxel incoherent motion (IVIM) imaging in grading gliomas and compare IVIM perfusion metrics with arterial spin labeling (ASL)-derived cerebral blood flow (CBF). MATERIALS AND METHODS Fifty-two patients with pathologically confirmed gliomas underwent IVIM and ASL imaging at 3.0T. IVIM perfusion-related diffusivity (D*), perfusion fraction (f), product of f and D*(f×D*), true diffusivity (D), and apparent diffusion coefficient (ADC) were obtained to distinguish glioma grades. The CBF derived from pseudocontinuous ASL within the solid tumor was compared and correlated with IVIM perfusion metrics for grading of gliomas. Values were also normalized to the contralateral normal-appearing white matter. Receiver-operating characteristic was performed to determine diagnostic efficiency. The reliability was estimated with intraclass coefficient, coefficient of variance, and Bland-Altman plots. RESULTS IVIM perfusion metrics and CBF were significantly higher in the high-grade than the low-grade gliomas (P < 0.001), ADC and D were significantly lower in the high-grade than the low-grade gliomas (P < 0.001). f×D* differed significantly between grades II through IV (P < 0.05 for all). The other metrics showed significant difference between grade II and grade III (P < 0.05 for all). Area under the curve (AUC) was largest for f×D* in distinguishing high-grade from low-grade gliomas (AUC = 0.979, P < 0.001) and between grade II and grade III (AUC = 0.957, P < 0.001). f×D* improved diagnostic performance of CBF in grading gliomas and showed strong correlation with CBF (r = 0.696, P < 0.001). CONCLUSION IVIM-derived metrics are promising biomarkers in preoperative grading gliomas. IVIM imaging may be an additive method to ASL and ADC for evaluating tumor perfusion and diffusion. J. Magn. Reson. Imaging 2016;44:620-632.
Collapse
Affiliation(s)
- Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyun Zhao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Jiang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rifeng Jiang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changliang Su
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
174
|
Robson PM, Madhuranthakam AJ, Smith MP, Sun MRM, Dai W, Rofsky NM, Pedrosa I, Alsop DC. Volumetric Arterial Spin-labeled Perfusion Imaging of the Kidneys with a Three-dimensional Fast Spin Echo Acquisition. Acad Radiol 2016; 23:144-54. [PMID: 26521186 DOI: 10.1016/j.acra.2015.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/06/2015] [Accepted: 09/27/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE AND OBJECTIVES Renal perfusion measurements using noninvasive arterial spin-labeled (ASL) magnetic resonance imaging techniques are gaining interest. Currently, focus has been on perfusion in the context of renal transplant. Our objectives were to explore the use of ASL in patients with renal cancer, and to evaluate three-dimensional (3D) fast spin echo (FSE) acquisition, a robust volumetric imaging method for abdominal applications. We evaluate 3D ASL perfusion magnetic resonance imaging in the kidneys compared to two-dimensional (2D) ASL in patients and healthy subjects. MATERIALS AND METHODS Isotropic resolution (2.6 × 2.6 × 2.8 mm(3)) 3D ASL using segmented FSE was compared to 2D single-shot FSE. ASL used pseudo-continuous labeling, suppression of background signal, and synchronized breathing. Quantitative perfusion values and signal-to-noise ratio (SNR) were compared between 3D and 2D ASL in four healthy volunteers and semiquantitative assessments were made by four radiologists in four patients with known renal masses (primary renal cell carcinoma). RESULTS Renal cortex perfusion in healthy subjects was 284 ± 21 mL/100 g/min, with test-retest repeatability of 8.8%. No significant differences were found between the quantitative perfusion value and SNR in volunteers between 3D ASL and 2D ASL, or in 3D ASL with synchronized or free breathing. In patients, semiquantitative assessment by radiologists showed no significant difference in image quality between 2D ASL and 3D ASL. In one case, 2D ASL missed a high perfusion focus in a mass that was seen by 3D ASL. CONCLUSIONS 3D ASL renal perfusion imaging provides isotropic-resolution images, with comparable quantitative perfusion values and image SNR in similar imaging time to single-slice 2D ASL.
Collapse
Affiliation(s)
- Philip M Robson
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, AN-226, Boston, MA 02215.
| | | | - Martin P Smith
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, AN-226, Boston, MA 02215
| | - Maryellen R M Sun
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, AN-226, Boston, MA 02215
| | - Weiying Dai
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, AN-226, Boston, MA 02215
| | - Neil M Rofsky
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ivan Pedrosa
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - David C Alsop
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, AN-226, Boston, MA 02215
| |
Collapse
|
175
|
Khashbat, MD D, Abe, MD T, Ganbold, MD M, Iwamoto, MD S, Uyama, MD N, Irahara, MD S, Otomi, MD, PhD Y, Harada, MD, PhD M, Kageji, MD, PhD T, Nagahiro, MD, PhD S. Correlation of 3D Arterial Spin Labeling and Multi-Parametric Dynamic Susceptibility Contrast Perfusion MRI in Brain Tumors. THE JOURNAL OF MEDICAL INVESTIGATION 2016; 63:175-81. [DOI: 10.2152/jmi.63.175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Delgerdalai Khashbat, MD
- Department of Radiology and Radiation Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Takashi Abe, MD
- Department of Radiology and Radiation Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Mungunbagana Ganbold, MD
- Department of Radiology and Radiation Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Seiji Iwamoto, MD
- Department of Radiology and Radiation Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Naoto Uyama, MD
- Department of Radiology and Radiation Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Saho Irahara, MD
- Department of Radiology and Radiation Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Youichi Otomi, MD, PhD
- Department of Radiology and Radiation Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Masafumi Harada, MD, PhD
- Department of Radiology and Radiation Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | | | - Shinji Nagahiro, MD, PhD
- Department of Neurosurgery, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
176
|
Lai G, Mahadevan A, Hackney D, Warnke PC, Nigim F, Kasper E, Wong ET, Carter BS, Chen CC. Diagnostic Accuracy of PET, SPECT, and Arterial Spin-Labeling in Differentiating Tumor Recurrence from Necrosis in Cerebral Metastasis after Stereotactic Radiosurgery. AJNR Am J Neuroradiol 2015; 36:2250-5. [PMID: 26427832 DOI: 10.3174/ajnr.a4475] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/03/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND PURPOSE Radiographic assessment of cerebral metastasis after stereotactic radiosurgery remains a major challenge in neuro-oncology. It is often difficult to distinguish tumor progression from radiation necrosis in this setting using conventional MR imaging. The objective of this study was to compare the diagnostic sensitivity and specificity of different functional imaging modalities for detecting tumor recurrence after stereotactic radiosurgery. MATERIALS AND METHODS We retrospectively reviewed patients treated between 2007 and 2010 and identified 14 patients with cerebral metastasis who had clinical or radiographic progression following stereotactic radiosurgery and were imaged with arterial spin-labeling, FDG-PET, and thallium SPECT before stereotactic biopsy. Diagnostic accuracy, specificity, sensitivity, positive predictive value, and negative predictive value were calculated for each imaging technique by using the pathologic diagnosis as the criterion standard. RESULTS Six patients (42%) had tumor progression, while 8 (58%) developed radiation necrosis. FDG-PET and arterial spin-labeling were equally sensitive in detecting tumor progression (83%). However, the specificity of arterial spin-labeling was superior to that of the other modalities (100%, 75%, and 50%, respectively). A combination of modalities did not augment the sensitivity, specificity, positive predictive value, or negative predictive value of arterial spin-labeling. CONCLUSIONS In our series, arterial spin-labeling positivity was closely associated with the pathologic diagnosis of tumor progression after stereotactic radiosurgery. Validation of this finding in a large series is warranted.
Collapse
Affiliation(s)
- G Lai
- From the School of Medicine (G.L., B.S.C., C.C.C.), University of California, San Diego, La Jolla, California
| | | | | | - P C Warnke
- Division of Neurosurgery (P.C.W.), University of Chicago, Chicago, Illinois
| | - F Nigim
- Division of Neurosurgery (F.N., E.K.)
| | - E Kasper
- Division of Neurosurgery (F.N., E.K.)
| | - E T Wong
- Department of Neurology (E.T.W.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - B S Carter
- From the School of Medicine (G.L., B.S.C., C.C.C.), University of California, San Diego, La Jolla, California
| | - C C Chen
- From the School of Medicine (G.L., B.S.C., C.C.C.), University of California, San Diego, La Jolla, California
| |
Collapse
|
177
|
Zhang K, Yun SD, Shah NJ. Tripled Readout Slices in Multi Time-Point pCASL Using Multiband Look-Locker EPI. PLoS One 2015; 10:e0141108. [PMID: 26544715 PMCID: PMC4636240 DOI: 10.1371/journal.pone.0141108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/04/2015] [Indexed: 12/25/2022] Open
Abstract
Multi time-point pseudo-continuous arterial spin labelling (pCASL) with a Look-Locker EPI readout can sample the signal curve of blood kinetics at multiple time points after the labelling pulse. However, due to signal relaxation of labelled blood, the number of readout slices is limited. The aim of this study is to employ a multiband excitation technique to triple the number of readout slices in multi time-point pCASL. The multiband technique, along with 2-fold in-plane parallel imaging, was incorporated into the Look-Locker EPI for the multi time-point sampling of blood kinetic behaviour following the pCASL labelling scheme. The performance evaluation of the multiband and the single-band techniques were performed on four healthy subjects using a 32-channel head RF coil at 3T. Quantitative perfusion maps were analysed using a combination of labelling with and without flow suppression gradients. The perfusion maps provided by the multiband accelerated multi time-point pCASL were in good agreement with the conventional single-band technique. Multiband acceleration caused SNR loss but offered quantitative perfusion maps in 6.23 min with 18 slices compared with 6 slices within the same time period for the single-band method. As conclusion, the multiband technique can successfully triple the number of readout slices while achieving comparable perfusion data in the same measurement time as the conventional single-band readout.
Collapse
Affiliation(s)
- Ke Zhang
- Institute of Neuroscience and Medicine– 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - Seong Dae Yun
- Institute of Neuroscience and Medicine– 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine– 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
178
|
Adinoff B, Gu H, Merrick C, McHugh M, Jeon-Slaughter H, Lu H, Yang Y, Stein EA. Basal Hippocampal Activity and Its Functional Connectivity Predicts Cocaine Relapse. Biol Psychiatry 2015; 78:496-504. [PMID: 25749098 PMCID: PMC5671769 DOI: 10.1016/j.biopsych.2014.12.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cocaine-induced neuroplastic changes may result in a heightened propensity for relapse. Using regional cerebral blood flow (rCBF) as a marker of basal neuronal activity, this study assessed alterations in rCBF and related resting state functional connectivity (rsFC) to prospectively predict relapse in patients following treatment for cocaine use disorder (CUD). METHODS Pseudocontinuous arterial spin labeling functional magnetic resonance imaging and resting blood oxygen level-dependent functional magnetic resonance imaging data were acquired in the same scan session in abstinent participants with CUD before residential treatment discharge and in 20 healthy matched control subjects. Substance use was assessed twice weekly following discharge. Relapsed participants were defined as those who used stimulants within 30 days following treatment discharge (n = 22); early remission participants (n = 18) did not. RESULTS Voxel-wise, whole-brain analysis revealed enhanced rCBF only in the left posterior hippocampus (pHp) in the relapsed group compared with the early remission and control groups. Using this pHp as a seed, increased rsFC strength with the posterior cingulate cortex (PCC)/precuneus was seen in the relapsed versus early remission subgroups. Together, both increased pHp rCBF and strengthened pHp-PCC rsFC predicted relapse with 75% accuracy at 30, 60, and 90 days following treatment. CONCLUSIONS In CUD participants at risk of early relapse, increased pHp basal activity and pHp-PCC circuit strength may reflect the propensity for heightened reactivity to cocaine cues and persistent cocaine-related ruminations. Mechanisms to mute hyperactivated brain regions and delink dysregulated neural circuits may prove useful to prevent relapse in patients with CUD.
Collapse
Affiliation(s)
- Bryon Adinoff
- Veterans Affairs North Texas Health Care System, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Hong Gu
- Intramural Research Program-Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, Maryland
| | - Carmen Merrick
- School of Behavior and Brain Sciences, University of Texas at Dallas
| | - Meredith McHugh
- Intramural Research Program-Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, Maryland
| | | | - Hanzhang Lu
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yihong Yang
- Intramural Research Program-Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, Maryland
| | - Elliot A Stein
- Intramural Research Program-Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, Maryland
| |
Collapse
|
179
|
Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion. PLoS One 2015; 10:e0135827. [PMID: 26356576 PMCID: PMC4565711 DOI: 10.1371/journal.pone.0135827] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022] Open
Abstract
Sex differences in the brain appear to play an important role in the prevalence and progression of various neuropsychiatric disorders, but to date little is known about the cerebral mechanisms underlying these differences. One widely reported finding is that women demonstrate higher cerebral perfusion than men, but the underlying cause of this difference in perfusion is not known. This study investigated the putative role of steroid hormones such as oestradiol, testosterone, and dehydroepiandrosterone sulphate (DHEAS) as underlying factors influencing cerebral perfusion. We acquired arterial spin labelling perfusion images of 36 healthy adult subjects (16 men, 20 women). Analyses on average whole brain perfusion levels included a multiple regression analysis to test for the relative impact of each hormone on the global perfusion. Additionally, voxel-based analyses were performed to investigate the sex difference in regional perfusion as well as the correlations between local perfusion and serum oestradiol, testosterone, and DHEAS concentrations. Our results replicated the known sex difference in perfusion, with women showing significantly higher global and regional perfusion. For the global perfusion, DHEAS was the only significant predictor amongst the steroid hormones, showing a strong negative correlation with cerebral perfusion. The voxel-based analyses revealed modest sex-dependent correlations between local perfusion and testosterone, in addition to a strong modulatory effect of DHEAS in cortical, subcortical, and cerebellar regions. We conclude that DHEAS in particular may play an important role as an underlying factor driving the difference in cerebral perfusion between men and women.
Collapse
|
180
|
A neuroradiologist's guide to arterial spin labeling MRI in clinical practice. Neuroradiology 2015; 57:1181-202. [PMID: 26351201 PMCID: PMC4648972 DOI: 10.1007/s00234-015-1571-z] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023]
Abstract
Arterial spin labeling (ASL) is a non-invasive MRI technique to measure cerebral blood flow (CBF). This review provides a practical guide and overview of the clinical applications of ASL of the brain, as well its potential pitfalls. The technical and physiological background is also addressed. At present, main areas of interest are cerebrovascular disease, dementia and neuro-oncology. In cerebrovascular disease, ASL is of particular interest owing to its quantitative nature and its capability to determine cerebral arterial territories. In acute stroke, the source of the collateral blood supply in the penumbra may be visualised. In chronic cerebrovascular disease, the extent and severity of compromised cerebral perfusion can be visualised, which may be used to guide therapeutic or preventative intervention. ASL has potential for the detection and follow-up of arteriovenous malformations. In the workup of dementia patients, ASL is proposed as a diagnostic alternative to PET. It can easily be added to the routinely performed structural MRI examination. In patients with established Alzheimer’s disease and frontotemporal dementia, hypoperfusion patterns are seen that are similar to hypometabolism patterns seen with PET. Studies on ASL in brain tumour imaging indicate a high correlation between areas of increased CBF as measured with ASL and increased cerebral blood volume as measured with dynamic susceptibility contrast-enhanced perfusion imaging. Major advantages of ASL for brain tumour imaging are the fact that CBF measurements are not influenced by breakdown of the blood–brain barrier, as well as its quantitative nature, facilitating multicentre and longitudinal studies.
Collapse
|
181
|
Schmid S, Teeuwisse WM, Lu H, van Osch MJP. Time-efficient determination of spin compartments by time-encoded pCASL T2-relaxation-under-spin-tagging and its application in hemodynamic characterization of the cerebral border zones. Neuroimage 2015; 123:72-9. [PMID: 26297847 DOI: 10.1016/j.neuroimage.2015.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/31/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Information on water-transport across the blood-brain barrier can be determined from the T2 of the arterial spin labeling (ASL) signal. However, the current approach of using separate acquisitions of multiple inversion times is too time-consuming for clinical (research) applications. The aim of this study was to improve the time-efficiency of this method by combining it with time-encoded pseudo-continuous ASL (te-pCASL). Furthermore, the hemodynamic properties of the border zone regions in the brains of healthy, young volunteers were characterized as an example application. The use of te-pCASL instead of multi-TI pCASL significantly reduced the total scan duration, while providing a higher temporal resolution. A significantly lower cerebral blood flow (CBF) was found in the border zone regions compared with the central regions in both the posterior and the middle cerebral artery (MCA) flow territory. The arterial transit time (ATT) was almost two times longer in the border zone regions than in the central regions (p<0.05), with an average delay in ATT of 382ms in the posterior and 539ms in the MCA flow territory. When corrected for the ATT, the change in T2 over time was not significantly different for the border zones as compared to the central regions. In conclusion, te-pCASL-TRUST provided a time-efficient method to distinguish spin compartments based on their T2. The ATT in the border zone is significantly longer than in the central region. However, the exchange of the label from the arterial to the tissue compartment appears to be at a similar rate.
Collapse
Affiliation(s)
- Sophie Schmid
- C.J. Gorter Center for High Field MRI, Dept. of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Wouter M Teeuwisse
- C.J. Gorter Center for High Field MRI, Dept. of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University, Baltimore, United States.
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Dept. of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| |
Collapse
|
182
|
Comparison of velocity- and acceleration-selective arterial spin labeling with [15O]H2O positron emission tomography. J Cereb Blood Flow Metab 2015; 35:1296-303. [PMID: 25785831 PMCID: PMC4528003 DOI: 10.1038/jcbfm.2015.42] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 11/08/2022]
Abstract
In the last decade spatially nonselective arterial spin labeling (SNS-ASL) methods such as velocity-selective ASL (VS-ASL) and acceleration-selective ASL have been introduced, which label spins based on their flow velocity or acceleration rather than spatial localization. Since labeling also occurs within the imaging plane, these methods suffer less from transit delay effects than traditional ASL methods. However, there is a need for validation of these techniques. In this study, a comparison was made between these SNS-ASL techniques with [(15)O]H2O positron emission tomography (PET), which is regarded as gold standard to measure quantitatively cerebral blood flow (CBF) in humans. In addition, the question of whether these techniques suffered from sensitivity to arterial cerebral blood volume (aCBV), as opposed to producing pure CBF contrast, was investigated. The results show high voxelwise intracranial correlation (0.72 to 0.89) between the spatial distribution of the perfusion signal from the SNS-ASL methods and the PET CBF maps. A similar gray matter (GM) CBF was measured by dual VS-ASL compared with PET (46.7 ± 4.1 versus 47.1 ± 6.5 mL/100 g/min, respectively). Finally, only minor contribution of aCBV patterns in GM to all SNS-ASL methods was found compared with pseudo-continuous ASL. In conclusion, VS-ASL provides a similar quantitative CBF, and all SNS-ASL methods provide qualitatively similar CBF maps as [(15)O]H2O PET.
Collapse
|
183
|
Bibic A, Knutsson L, Schmidt A, Henningsson E, Månsson S, Abul-Kasim K, Åkeson J, Gunther M, Ståhlberg F, Wirestam R. Measurement of vascular water transport in human subjects using time-resolved pulsed arterial spin labelling. NMR IN BIOMEDICINE 2015; 28:1059-1068. [PMID: 26147641 DOI: 10.1002/nbm.3344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 04/30/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
Most approaches to arterial spin labelling (ASL) data analysis aim to provide a quantitative measure of the cerebral blood flow (CBF). This study, however, focuses on the measurement of the transfer time of blood water through the capillaries to the parenchyma (referred to as the capillary transfer time, CTT) as an alternative parameter to characterise the haemodynamics of the system. The method employed is based on a non-compartmental model, and no measurements need to be added to a common time-resolved ASL experiment. Brownian motion of labelled spins in a potential was described by a one-dimensional general Langevin equation as the starting point, and as a Fokker-Planck differential equation for the averaged distribution of labelled spins at the end point, which takes into account the effects of flow and dispersion of labelled water by the pseudorandom nature of the microvasculature and the transcapillary permeability. Multi-inversion time (multi-TI) ASL data were acquired in 14 healthy subjects on two occasions in a test-retest design, using a pulsed ASL sequence and three-dimensional gradient and spin echo (3D-GRASE) readout. Based on an error analysis to predict the size of a region of interest (ROI) required to obtain reasonably precise parameter estimates, data were analysed in two relatively large ROIs, i.e. the occipital lobe (OC) and the insular cortex (IC). The average values of CTT in OC were 260 ± 60 ms in the first experiment and 270 ± 60 ms in the second experiment. The corresponding IC values were 460 ± 130 ms and 420 ± 139 ms, respectively. Information related to the water transfer time may be important for diagnostics and follow-up of cerebral conditions or diseases characterised by a disrupted blood-brain barrier or disturbed capillary blood flow.
Collapse
Affiliation(s)
- Adnan Bibic
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Anders Schmidt
- Department of Anaesthesiology and Intensive Care Medicine, Helsingborg Hospital, Helsingborg, Sweden
- Department of Anaesthesiology and Intensive Care Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | - Sven Månsson
- Department of Medical Radiation Physics, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Kasim Abul-Kasim
- Department of Radiology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Jonas Åkeson
- Department of Anaesthesiology and Intensive Care Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | - Freddy Ståhlberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Lund University Bioimaging Centre, Lund University, Lund, Sweden
- Department of Diagnostic Radiology, Lund University, Lund, Sweden
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| |
Collapse
|
184
|
Steketee RME, Mutsaerts HJMM, Bron EE, van Osch MJP, Majoie CBLM, van der Lugt A, Nederveen AJ, Smits M. Quantitative Functional Arterial Spin Labeling (fASL) MRI--Sensitivity and Reproducibility of Regional CBF Changes Using Pseudo-Continuous ASL Product Sequences. PLoS One 2015; 10:e0132929. [PMID: 26172381 PMCID: PMC4501671 DOI: 10.1371/journal.pone.0132929] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 06/21/2015] [Indexed: 11/23/2022] Open
Abstract
Arterial spin labeling (ASL) magnetic resonance imaging is increasingly used to quantify task-related brain activation. This study assessed functional ASL (fASL) using pseudo-continuous ASL (pCASL) product sequences from two vendors. By scanning healthy participants twice with each sequence while they performed a motor task, this study assessed functional ASL for 1) its sensitivity to detect task-related cerebral blood flow (CBF) changes, and 2) its reproducibility of resting CBF and absolute CBF changes (delta CBF) in the motor cortex. Whole-brain voxel-wise analyses showed that sensitivity for motor activation was sufficient with each sequence, and comparable between sequences. Reproducibility was assessed with within-subject coefficients of variation (wsCV) and intraclass correlation coefficients (ICC). Reproducibility of resting CBF was reasonably good within (wsCV: 14.1–15.7%; ICC: 0.69–0.77) and between sequences (wsCV: 15.1%; ICC: 0.69). Reproducibility of delta CBF was relatively low, both within (wsCV: 182–297%; ICC: 0.04–0.32) and between sequences (wsCV: 185%; ICC: 0.45), while inter-session variation was low. This may be due to delta CBF’s small mean effect (0.77–1.32 mL/100g gray matter/min). In conclusion, fASL seems sufficiently sensitive to detect task-related changes on a group level, with acceptable inter-sequence differences. Resting CBF may provide a consistent baseline to compare task-related activation to, but absolute regional CBF changes are more variable, and should be interpreted cautiously when acquired with two pCASL product sequences.
Collapse
Affiliation(s)
- Rebecca M. E. Steketee
- Department of Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Esther E. Bron
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Aad van der Lugt
- Department of Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Aart J. Nederveen
- Department of Radiology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Marion Smits
- Department of Radiology, Erasmus MC–University Medical Center Rotterdam, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
185
|
Zhao L, Fielden SW, Feng X, Wintermark M, Mugler JP, Meyer CH. Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction. Neuroimage 2015; 121:205-16. [PMID: 26169322 DOI: 10.1016/j.neuroimage.2015.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 06/19/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022] Open
Abstract
Dynamic arterial spin labeling (ASL) MRI measures the perfusion bolus at multiple observation times and yields accurate estimates of cerebral blood flow in the presence of variations in arterial transit time. ASL has intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive signal averaging is typically required, leading to long scan times for dynamic ASL. The goal of this study was to develop an accelerated dynamic ASL method with improved SNR and robustness to motion using a model-based image reconstruction that exploits the inherent sparsity of dynamic ASL data. The first component of this method is a single-shot 3D turbo spin echo spiral pulse sequence accelerated using a combination of parallel imaging and compressed sensing. This pulse sequence was then incorporated into a dynamic pseudo continuous ASL acquisition acquired at multiple observation times, and the resulting images were jointly reconstructed enforcing a model of potential perfusion time courses. Performance of the technique was verified using a numerical phantom and it was validated on normal volunteers on a 3-Tesla scanner. In simulation, a spatial sparsity constraint improved SNR and reduced estimation errors. Combined with a model-based sparsity constraint, the proposed method further improved SNR, reduced estimation error and suppressed motion artifacts. Experimentally, the proposed method resulted in significant improvements, with scan times as short as 20s per time point. These results suggest that the model-based image reconstruction enables rapid dynamic ASL with improved accuracy and robustness.
Collapse
Affiliation(s)
- Li Zhao
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Samuel W Fielden
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Xue Feng
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Max Wintermark
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - John P Mugler
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
186
|
Liu HL, Chang TT, Yan FX, Li CH, Lin YS, Wong AM. Assessment of vessel permeability by combining dynamic contrast-enhanced and arterial spin labeling MRI. NMR IN BIOMEDICINE 2015; 28:642-649. [PMID: 25880892 DOI: 10.1002/nbm.3297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
The forward volumetric transfer constant (K(trans)), a physiological parameter extracted from dynamic contrast-enhanced (DCE) MRI, is weighted by vessel permeability and tissue blood flow. The permeability × surface area product per unit mass of tissue (PS) in brain tumors was estimated in this study by combining the blood flow obtained through pseudo-continuous arterial spin labeling (PCASL) and K(trans) obtained through DCE MRI. An analytical analysis and a numerical simulation were conducted to understand how errors in the flow and K(trans) estimates would propagate to the resulting PS. Fourteen pediatric patients with brain tumors were scanned on a clinical 3-T MRI scanner. PCASL perfusion imaging was performed using a three-dimensional (3D) fast-spin-echo readout module to determine blood flow. DCE imaging was performed using a 3D spoiled gradient-echo sequence, and the K(trans) map was obtained with the extended Tofts model. The numerical analysis demonstrated that the uncertainty of PS was predominantly dependent on that of K(trans) and was relatively insensitive to the flow. The average PS values of the whole tumors ranged from 0.006 to 0.217 min(-1), with a mean of 0.050 min(-1) among the patients. The mean K(trans) value was 18% lower than the PS value, with a maximum discrepancy of 25%. When the parametric maps were compared on a voxel-by-voxel basis, the discrepancies between PS and K(trans) appeared to be heterogeneous within the tumors. The PS values could be more than two-fold higher than the K(trans) values for voxels with high K(trans) levels. This study proposes a method that is easy to implement in clinical practice and has the potential to improve the quantification of the microvascular properties of brain tumors.
Collapse
Affiliation(s)
- Ho-Ling Liu
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Imaging Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Ting-Ting Chang
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Feng-Xian Yan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Radiology, Taipei Medical University/Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Cheng-He Li
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Shi Lin
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Alex M Wong
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Keelong, Linkou Medical Center, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
187
|
Johnston ME, Lu K, Maldjian JA, Jung Y. Multi-TI Arterial Spin Labeling MRI with Variable TR and Bolus Duration for Cerebral Blood Flow and Arterial Transit Time Mapping. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1392-1402. [PMID: 25616010 DOI: 10.1109/tmi.2015.2395257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Arterial spin labeling (ASL) is an MRI perfusion imaging method from which quantitative cerebral blood flow (CBF) can be calculated. We present a multi-TI ASL method (multi-TI integrated ASL) in which variable post-labeling delays and variable TRs are used to improve the estimation of arterial transit time (ATT) and CBF while shortening the scan time by 41% compared to the conventional methods. Variable bolus widths allow for T1 and M0 estimation from raw ASL data. Multi-TI integrated pseudo-continuous ASL images were collected at 7 TI times ranging 100-4300 ms. Voxel-wise T1 and M0 maps were estimated, then CBF and ATT maps were created using the estimated T1 tissue map. All maps were consistent with physiological values reported in the literature. Based on simulations and in vivo comparisons, this method demonstrates higher CBF and ATT estimation efficiency than other ATT acquisition methods and better fit to the perfusion model. It produces CBF maps with reduced sensitivity to errors from ATT and tissue T1 variations. The estimated M0, T1, and ATT maps also have potential clinical utility. The method requires a single scan acquired within a clinically acceptable scan time (under 6 minutes) and with low sensitivity to motion.
Collapse
|
188
|
Shin DD, Ozyurt IB, Brown GG, Fennema-Notestine C, Liu TT. The Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN) data repository. Neuroimage 2015; 124:1202-1207. [PMID: 26032887 DOI: 10.1016/j.neuroimage.2015.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/20/2022] Open
Abstract
Arterial spin labeling (ASL) MRI provides an accurate and reliable measure of cerebral blood flow (CBF). A rapidly growing number of CBF measures are being collected both in clinical and research settings around the world, resulting in a large volume of data across a wide spectrum of study populations and health conditions. Here, we describe a central CBF data repository with integrated processing workflows, referred to as the Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN). The CBFBIRN provides an integrated framework for the analysis and comparison of CBF measures across studies and sites. In this work, we introduce the main capabilities of the CBFBIRN (data storage, processing, and sharing), describe what types of data are available, explain how users can contribute to the data repository and access existing data from it, and discuss our long-term plans for the CBFBIRN.
Collapse
Affiliation(s)
- David D Shin
- Center for Functional Magnetic Resonance Imaging, University of California San Diego, La Jolla, CA, USA.
| | - I Burak Ozyurt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Gregory G Brown
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Thomas T Liu
- Center for Functional Magnetic Resonance Imaging, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
189
|
Vas A, Chapman S, Aslan S, Spence J, Keebler M, Rodriguez-Larrain G, Rodgers B, Jantz T, Martinez D, Rakic J, Krawczyk D. Reasoning training in veteran and civilian traumatic brain injury with persistent mild impairment. Neuropsychol Rehabil 2015; 26:502-31. [PMID: 26018041 DOI: 10.1080/09602011.2015.1044013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Traumatic brain injury (TBI) is a chronic health condition. The prevalence of TBI, combined with limited advances in protocols to mitigate persistent TBI-related impairments in higher order cognition, present a significant challenge. In this randomised study (n = 60), we compared the benefits of Strategic Memory Advanced Reasoning Training (SMART, n = 31), a strategy-based programme shown to improve cognitive control, versus an active learning programme called Brain Health Workshop (BHW, n = 29) in individuals with TBI with persistent mild functional deficits. Outcomes were measured on cognitive, psychological health, functional, and imaging measures. Repeated measures analyses of immediate post-training and 3-month post-training demonstrated gains on the cognitive control domain of gist reasoning (ability to abstract big ideas/goals from complex information/tasks) in the SMART group as compared to BHW. Gains following the SMART programme were also evident on improved executive function, memory, and daily function as well as reduced symptoms associated with depression and stress. The SMART group showed an increase in bilateral precuneus cerebral blood flow (CBF). Improvements in gist reasoning in the SMART group were also associated with an increase in CBF in the left inferior frontal region, the left insula and the bilateral anterior cingulate cortex. These results add to prior findings that the SMART programme provides an efficient set of strategies that have the potential to improve cognitive control performance and associated executive functions and daily function, to enhance psychological health, and facilitate positive neural plasticity in adults with persistent mild impairment after TBI.
Collapse
Affiliation(s)
- Asha Vas
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | - Sandra Chapman
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | - Sina Aslan
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA.,b Advance MRI, LLC, Frisco , Texas , TX , USA
| | - Jeffrey Spence
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | - Molly Keebler
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | | | - Barry Rodgers
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | - Tiffani Jantz
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | - David Martinez
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | - Jelena Rakic
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| | - Daniel Krawczyk
- a Center for BrainHealth, University of Texas at Dallas , Dallas , TX , USA
| |
Collapse
|
190
|
“Domain gauges”: A reference system for multivariate profiling of brain fMRI activation patterns induced by psychoactive drugs in rats. Neuroimage 2015. [DOI: 10.1016/j.neuroimage.2015.02.032 [doi]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
191
|
Bruns A, Mueggler T, Künnecke B, Risterucci C, Prinssen EP, Wettstein JG, von Kienlin M. “Domain gauges”: A reference system for multivariate profiling of brain fMRI activation patterns induced by psychoactive drugs in rats. Neuroimage 2015. [DOI: 10.1016/j.neuroimage.2015.02.032 [doi].] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
192
|
Liu P, Dimitrov I, Andrews T, Crane DE, Dariotis JK, Desmond J, Dumas J, Gilbert G, Kumar A, Maclntosh BJ, Tucholka A, Yang S, Xiao G, Lu H. Multisite evaluations of a T2 -relaxation-under-spin-tagging (TRUST) MRI technique to measure brain oxygenation. Magn Reson Med 2015; 75:680-7. [PMID: 25845468 DOI: 10.1002/mrm.25627] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/19/2014] [Accepted: 01/02/2015] [Indexed: 11/11/2022]
Abstract
PURPOSE Venous oxygenation (Yv ) is an important index of brain physiology and may be indicative of brain diseases. A T2 -relaxation-under-spin-tagging (TRUST) MRI technique was recently developed to measure Yv . A multisite evaluation of this technique would be an important step toward broader availability and potential clinical utilizations of Yv measures. METHODS TRUST MRI was performed on a total of 250 healthy subjects, 125 from the developer's site and 25 each from five other sites. All sites were equipped with a 3 Tesla (T) MRI of the same vendor. The estimated Yv and the standard error (SE) of the estimation εYv were compared across sites. RESULTS The averaged Yv and εYv across six sites were 61.1% ± 1.4% and 1.3% ± 0.2%, respectively. Multivariate regression analysis showed that the estimated Yv was dependent on age (P = 0.009) but not on performance site. In contrast, the SE of the Yv estimation was site-dependent (P = 0.024) but was less than 1.5%. Further analysis revealed that εYv was positively associated with the amount of subject motion (P < 0.001) but negatively associated with blood signal intensity (P < 0.001). CONCLUSION This work suggests that TRUST MRI can yield equivalent results of Yv estimation across different sites.
Collapse
Affiliation(s)
- Peiying Liu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ivan Dimitrov
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,MR clinical science, Philips Healthcare, Cleveland, Ohio, USA
| | - Trevor Andrews
- MR clinical science, Philips Healthcare, Cleveland, Ohio, USA.,Department of Radiology, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - David E Crane
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jacinda K Dariotis
- Department of Population, Family and Reproductive Health, Center for Adolescent Health, The Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - John Desmond
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Julie Dumas
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Guillaume Gilbert
- MR clinical science, Philips Healthcare, Cleveland, Ohio, USA.,Department of Radiology, Notre-Dame Hospital, University of Montreal, Montreal, QC, Canada
| | - Anand Kumar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Bradley J Maclntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Alan Tucholka
- Department of Radiology, Notre-Dame Hospital, University of Montreal, Montreal, QC, Canada
| | - Shaolin Yang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Guanghua Xiao
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
193
|
Ivkovic M, Reiss-Zimmermann M, Katzen H, Preuss M, Kovanlikaya I, Heier L, Alperin N, Hoffmann KT, Relkin N. MRI assessment of the effects of acetazolamide and external lumbar drainage in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2015; 12:9. [PMID: 25928394 PMCID: PMC4432506 DOI: 10.1186/s12987-015-0004-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/25/2015] [Indexed: 12/14/2022] Open
Abstract
Background The objective was to identify changes in quantitative MRI measures in patients with idiopathic normal pressure hydrocephalus (iNPH) occurring in common after oral acetazolamide (ACZ) and external lumbar drainage (ELD) interventions. Methods A total of 25 iNPH patients from two clinical sites underwent serial MRIs and clinical assessments. Eight received ACZ (125-375 mg/day) over 3 months and 12 underwent ELD for up to 72 hours. Five clinically-stable iNPH patients who were scanned serially without interventions served as controls for the MRI component of the study. Subjects were divided into responders and non-responders to the intervention based on gait and cognition assessments made by clinicians blinded to MRI results. The MRI modalities analyzed included T1-weighted images, diffusion tensor Imaging (DTI) and arterial spin labelling (ASL) perfusion studies. Automated threshold techniques were used to define regions of T1 hypo-intensities. Results Decreased volume of T1-hypointensities and decreased mean diffusivity (MD) within remaining hypointensities was observed after ACZ and ELD but not in controls. Patients responding positively to these interventions had more extensive decreases in T1-hypointensites than non-responders: ACZ-responders (4,651 ± 2,909 mm3), ELD responders (2,338 ± 1,140 mm3), ELD non-responders (44 ± 1,188 mm3). Changes in DTI MD within T1-hypointensities were greater in ACZ-responders (7.9% ± 2%) and ELD-responders (8.2% ± 3.1%) compared to ELD non-responders (2.1% ± 3%). All the acetazolamide-responders showed increases in whole-brain-average cerebral blood flow (wbCBF) estimated by ASL (18.8% ± 8.7%). The only observed decrease in wbCBF (9.6%) occurred in an acetazolamide-non-responder. A possible association between cerebral atrophy and response was observed, with subjects having the least cortical atrophy (as indicated by a positive z-score on cortical thickness measurements) showing greater clinical improvement after ACZ and ELD. Conclusions T1-hypointensity volume and DTI MD measures decreased in the brains of iNPH patients following oral ACZ and ELD. The magnitude of the decrease was greater in treatment responders than non-responders. Despite having different mechanisms of action, both ELD and ACZ may decrease interstitial brain water and increase cerebral blood flow in patients with iNPH. Quantitative MRI measurements appear useful for objectively monitoring response to acetazolamide, ELD and potentially other therapeutic interventions in patients with iNPH.
Collapse
Affiliation(s)
| | | | | | | | | | - Linda Heier
- Weill Cornell Medical College, New York, NY, USA.
| | - Noam Alperin
- University of Miami School of Medicine, Miami, FL, USA.
| | | | | |
Collapse
|
194
|
Lindemann L, Porter RH, Scharf SH, Kuennecke B, Bruns A, von Kienlin M, Harrison AC, Paehler A, Funk C, Gloge A, Schneider M, Parrott NJ, Polonchuk L, Niederhauser U, Morairty SR, Kilduff TS, Vieira E, Kolczewski S, Wichmann J, Hartung T, Honer M, Borroni E, Moreau JL, Prinssen E, Spooren W, Wettstein JG, Jaeschke G. Pharmacology of basimglurant (RO4917523, RG7090), a unique metabotropic glutamate receptor 5 negative allosteric modulator in clinical development for depression. J Pharmacol Exp Ther 2015; 353:213-33. [PMID: 25665805 DOI: 10.1124/jpet.114.222463] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Major depressive disorder (MDD) is a serious public health burden and a leading cause of disability. Its pharmacotherapy is currently limited to modulators of monoamine neurotransmitters and second-generation antipsychotics. Recently, glutamatergic approaches for the treatment of MDD have increasingly received attention, and preclinical research suggests that metabotropic glutamate receptor 5 (mGlu5) inhibitors have antidepressant-like properties. Basimglurant (2-chloro-4-[1-(4-fluoro-phenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]-pyridine) is a novel mGlu5 negative allosteric modulator currently in phase 2 clinical development for MDD and fragile X syndrome. Here, the comprehensive preclinical pharmacological profile of basimglurant is presented with a focus on its therapeutic potential for MDD and drug-like properties. Basimglurant is a potent, selective, and safe mGlu5 inhibitor with good oral bioavailability and long half-life supportive of once-daily administration, good brain penetration, and high in vivo potency. It has antidepressant properties that are corroborated by its functional magnetic imaging profile as well as anxiolytic-like and antinociceptive features. In electroencephalography recordings, basimglurant shows wake-promoting effects followed by increased delta power during subsequent non-rapid eye movement sleep. In microdialysis studies, basimglurant had no effect on monoamine transmitter levels in the frontal cortex or nucleus accumbens except for a moderate increase of accumbal dopamine, which is in line with its lack of pharmacological activity on monoamine reuptake transporters. These data taken together, basimglurant has favorable drug-like properties, a differentiated molecular mechanism of action, and antidepressant-like features that suggest the possibility of also addressing important comorbidities of MDD including anxiety and pain as well as daytime sleepiness and apathy or lethargy.
Collapse
Affiliation(s)
- Lothar Lindemann
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Richard H Porter
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Sebastian H Scharf
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Basil Kuennecke
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Andreas Bruns
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Markus von Kienlin
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Anthony C Harrison
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Axel Paehler
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Christoph Funk
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Andreas Gloge
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Manfred Schneider
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Neil J Parrott
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Liudmila Polonchuk
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Urs Niederhauser
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Stephen R Morairty
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Thomas S Kilduff
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Eric Vieira
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Sabine Kolczewski
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Juergen Wichmann
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Thomas Hartung
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Michael Honer
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Edilio Borroni
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Jean-Luc Moreau
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Eric Prinssen
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Will Spooren
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Joseph G Wettstein
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| | - Georg Jaeschke
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience, Ophthalmology, and Rare Diseases (L.L., S.H.S., B.K., A.B., M.v.K., M.H., E.B., E.P., W.S., J.G.W.), Discovery Chemistry (E.V., S.K., J.W., G.J.), Operations for Neuroscience, Ophthalmology, and Rare Diseases (R.H.P., J.-L.M.), Pharmaceutical Sciences (A.C.H., A.P., C.F., A.G., M.S., N.J.P., L.P., U.N.), and Small Molecules Process Research and Synthesis (T.H.), Roche Innovation Center Basel, Basel, Switzerland; and Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California (S.R.M., T.S.K.)
| |
Collapse
|
195
|
Bruns A, Mueggler T, Künnecke B, Risterucci C, Prinssen EP, Wettstein JG, von Kienlin M. "Domain gauges": A reference system for multivariate profiling of brain fMRI activation patterns induced by psychoactive drugs in rats. Neuroimage 2015; 112:70-85. [PMID: 25724758 DOI: 10.1016/j.neuroimage.2015.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/06/2015] [Accepted: 02/16/2015] [Indexed: 01/01/2023] Open
Abstract
Pharmacological magnetic resonance imaging (phMRI) of the brain has become a widely used tool in both preclinical and clinical drug research. One of its challenges is to condense the observed complex drug-induced brain-activation patterns into semantically meaningful metrics that can then serve as a basis for informed decision making. To aid interpretation of spatially distributed activation patterns, we propose here a set of multivariate metrics termed "domain gauges", which have been calibrated based on different classes of marketed or validated reference drugs. Each class represents a particular "domain" of interest, i.e., a specific therapeutic indication or mode of action. The drug class is empirically characterized by the unique activation pattern it evokes in the brain-the "domain profile". A domain gauge provides, for any tested intervention, a "classifier" as a measure of response strength with respect to the domain in question, and a "differentiator" as a measure of deviation from the domain profile, both along with error ranges. Capitalizing on our in-house database with an unprecedented wealth of standardized perfusion-based phMRI data obtained from rats subjected to various validated treatments, we exemplarily focused on 3 domains based on therapeutic indications: an antipsychotic, an antidepressant and an anxiolytic domain. The domain profiles identified as part of the gauge definition process, as well as the outputs of the gauges when applied to both reference and validation data, were evaluated for their reconcilability with prior biological knowledge and for their performance in drug characterization. The domain profiles provided quantitative activation patterns with high biological plausibility. The antipsychotic profile, for instance, comprised key areas (e.g., cingulate cortex, nucleus accumbens, ventral tegmental area, substantia nigra) which are believed to be strongly involved in mediating an antipsychotic effect, and which are in line with network-level dysfunctions observed in schizophrenia. The domain gauges plausibly positioned the vast majority of the pharmacological and even non-pharmacological treatments. The results also suggest the segregation of sub-domains based on, e.g., the mode of action. Upon judicious selection of domains and careful calibration of the gauges, our approach represents a valuable analytical tool for biological interpretation and decision making in drug discovery.
Collapse
Affiliation(s)
- Andreas Bruns
- Roche Pharmaceutical Research & Early Development, Neuroscience Discovery, Roche Innovation Center Basel, Switzerland.
| | - Thomas Mueggler
- Roche Pharmaceutical Research & Early Development, Neuroscience Discovery, Roche Innovation Center Basel, Switzerland
| | - Basil Künnecke
- Roche Pharmaceutical Research & Early Development, Neuroscience Discovery, Roche Innovation Center Basel, Switzerland
| | - Céline Risterucci
- Roche Pharmaceutical Research & Early Development, Neuroscience Discovery, Roche Innovation Center Basel, Switzerland
| | - Eric P Prinssen
- Roche Pharmaceutical Research & Early Development, Neuroscience Discovery, Roche Innovation Center Basel, Switzerland
| | - Joseph G Wettstein
- Roche Pharmaceutical Research & Early Development, Neuroscience Discovery, Roche Innovation Center Basel, Switzerland
| | - Markus von Kienlin
- Roche Pharmaceutical Research & Early Development, Neuroscience Discovery, Roche Innovation Center Basel, Switzerland
| |
Collapse
|
196
|
Zhou Y, Rodgers ZB, Kuo AH. Cerebrovascular reactivity measured with arterial spin labeling and blood oxygen level dependent techniques. Magn Reson Imaging 2015; 33:566-76. [PMID: 25708263 DOI: 10.1016/j.mri.2015.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/17/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
PURPOSE To compare cerebrovascular reactivity (CVR) quantified with pseudo-continuous arterial spin labeling (pCASL) and blood oxygen level dependent (BOLD) fMRI techniques. MATERIALS AND METHODS Sixteen healthy volunteers (age: 37.8±14.3years; 6 women and 10 men; education attainment: 17±2.1years) were recruited and completed a 5% CO2 gas-mixture breathing paradigm at 3T field strength. ASL and BOLD images were acquired for CVR determination assuming that mild hypercapnia does not affect the cerebral metabolic rate of oxygen. Both CVR quantifications were derived as the ratio of the fractional cerebral blood flow (CBF) or BOLD signal change over the change in end-tidal CO2 pressure. RESULTS The absolute CBF, BOLD and CVR measures were consistent with literature values. CBF derived CVR was 5.11±0.87%/mmHg in gray matter (GM) and 4.64±0.37%/mmHg in parenchyma. BOLD CVR was 0.23±0.04%/mmHg and 0.22±0.04%/mmHg for GM and parenchyma respectively. The most significant correlations between BOLD and CBF-based CVRs were also in GM structures, with greater vascular response in occipital cortex than in frontal and parietal lobes (6.8%/mmHg versus 4.5%/mmHg, 50% greater). Parenchymal BOLD CVR correlated significantly with the fractional change in CBF in response to hypercapnia (r=0.61, P=0.01), suggesting the BOLD response to be significantly flow driven. GM CBF decreased with age in room air (-5.58mL/100g/min per decade for GM; r=-0.51, P=0.05), but there was no association of CBF with age during hypercapnia. A trend toward increased pCASL CVR with age was observed, scaling as 0.64%/mmHg per decade for GM. CONCLUSION Consistent with previously reported CVR values, our results suggest that BOLD and CBF CVR techniques are complementary to each other in evaluating neuronal and vascular underpinning of hemodynamic processes.
Collapse
Affiliation(s)
- Yongxia Zhou
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104.
| | - Zachary B Rodgers
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Anderson H Kuo
- Department of Radiology, University of Texas South Medical Center, San Antonio, TX
| |
Collapse
|
197
|
Strang NM, Claus ED, Ramchandani VA, Graff-Guerrero A, Boileau I, Hendershot CS. Dose-dependent effects of intravenous alcohol administration on cerebral blood flow in young adults. Psychopharmacology (Berl) 2015; 232:733-44. [PMID: 25110231 DOI: 10.1007/s00213-014-3706-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/31/2014] [Indexed: 11/29/2022]
Abstract
RATIONALE Functional magnetic resonance imaging (fMRI) studies involving alcohol challenge are important for identifying neural correlates of alcohol's psychopharmacological effects. However, evaluating acute alcohol effects on blood oxygen level-dependent (BOLD) signal change is complicated by alcohol-related increases in cerebral blood flow (CBF). OBJECTIVES The present study aimed to further characterize acute alcohol effects on CBF using intravenous alcohol administration to maximize control over brain alcohol exposure. METHODS Twenty heavy-drinking young adults (M = 19.95 years old, SD = 0.76) completed alcohol and placebo imaging sessions in a within-subject, counter-balanced, placebo-controlled design. Arterial spin labeling (ASL) provided estimates of perfusion change at two target blood alcohol concentrations (40 and 80 mg%) relative to baseline and relative to a saline control infusion. RESULTS Voxel-wise analyses showed widespread and dose-dependent effects of alcohol on CBF increase. Region-of-interest analyses confirmed these findings, also indicating regional variation in the magnitude of perfusion change. Additional findings indicated that lower self-reported sensitivity to alcohol corresponded with reduced perfusion change during alcohol administration. CONCLUSIONS This study provides further evidence for widespread effects of acute alcohol on cerebral perfusion, also demonstrating regional, dose-dependent, and inter-individual variation. Further research is needed to evaluate implications of these effects for the design and interpretation of pharmacological fMRI studies involving alcohol challenge.
Collapse
Affiliation(s)
- Nicole M Strang
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | | | | | | | | | | |
Collapse
|
198
|
Zhang L, Wang X, Bullock AJ, Callea M, Shah H, Song J, Moreno K, Visentin B, Deutschman D, Alsop DC, Atkins MB, Mier JW, Signoretti S, Bhasin M, Sabbadini RA, Bhatt RS. Anti-S1P Antibody as a Novel Therapeutic Strategy for VEGFR TKI-Resistant Renal Cancer. Clin Cancer Res 2015; 21:1925-1934. [PMID: 25589614 DOI: 10.1158/1078-0432.ccr-14-2031] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/13/2014] [Indexed: 01/22/2023]
Abstract
PURPOSE VEGFR2 tyrosine kinase inhibition (TKI) is a valuable treatment approach for patients with metastatic renal cell carcinoma (RCC). However, resistance to treatment is inevitable. Identification of novel targets could lead to better treatment for patients with TKI-naïve or -resistant RCC. EXPERIMENTAL DESIGN In this study, we performed transcriptome analysis of VEGFR TKI-resistant tumors in a murine model and discovered that the SPHK-S1P pathway is upregulated at the time of resistance. We tested sphingosine-1-phosphate (S1P) pathway inhibition using an anti-S1P mAb (sphingomab), in two mouse xenograft models of RCC, and assessed tumor SPHK expression and S1P plasma levels in patients with metastatic RCC. RESULTS Resistant tumors expressed several hypoxia-regulated genes. The SPHK1 pathway was among the most highly upregulated pathways that accompanied resistance to VEGFR TKI therapy. SPHK1 was expressed in human RCC, and the product of SPHK1 activity, S1P, was elevated in patients with metastatic RCC, suggesting that human RCC behavior could, in part, be due to overproduction of S1P. Sphingomab neutralization of extracellular S1P slowed tumor growth in both mouse models. Mice bearing tumors that had developed resistance to sunitinib treatment also exhibited tumor growth suppression with sphingomab. Sphingomab treatment led to a reduction in tumor blood flow as measured by MRI. CONCLUSIONS Our findings suggest that S1P inhibition may be a novel therapeutic strategy in patients with treatment-naïve RCC and also in the setting of resistance to VEGFR TKI therapy.
Collapse
Affiliation(s)
- Liang Zhang
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Xiaoen Wang
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America.,Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Andrea J Bullock
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Marcella Callea
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, United States of America
| | - Harleen Shah
- Division of Interdisciplinary Medicine and Biotechnology, and Genomics and Proteomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Jiaxi Song
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, United States of America
| | - Kelli Moreno
- Lpath Inc., 4025 Sorrento Valley Blvd. San Diego, CA, 92121, United States of America
| | - Barbara Visentin
- Lpath Inc., 4025 Sorrento Valley Blvd. San Diego, CA, 92121, United States of America
| | - Douglas Deutschman
- Department of Biology, San Diego State University, 5500 Campanile Dr. San Diego, CA. 92182-4614, United States of America
| | - David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Michael B Atkins
- Departments of Oncology and Medicine, Georgetown-Lombardi Comprehensive Cancer Center, 3970 Reservoir Road, NW, Washington, DC. United States of America
| | - James W Mier
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, United States of America
| | - Manoj Bhasin
- Division of Interdisciplinary Medicine and Biotechnology, and Genomics and Proteomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| | - Roger A Sabbadini
- Lpath Inc., 4025 Sorrento Valley Blvd. San Diego, CA, 92121, United States of America
| | - Rupal S Bhatt
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215, United States of America
| |
Collapse
|
199
|
Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJP, Wang DJJ, Wong EC, Zaharchuk G. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 2015; 73:102-16. [PMID: 24715426 PMCID: PMC4190138 DOI: 10.1002/mrm.25197] [Citation(s) in RCA: 1598] [Impact Index Per Article: 159.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 12/11/2022]
Abstract
This review provides a summary statement of recommended implementations of arterial spin labeling (ASL) for clinical applications. It is a consensus of the ISMRM Perfusion Study Group and the European ASL in Dementia consortium, both of whom met to reach this consensus in October 2012 in Amsterdam. Although ASL continues to undergo rapid technical development, we believe that current ASL methods are robust and ready to provide useful clinical information, and that a consensus statement on recommended implementations will help the clinical community to adopt a standardized approach. In this review, we describe the major considerations and trade-offs in implementing an ASL protocol and provide specific recommendations for a standard approach. Our conclusion is that as an optimal default implementation, we recommend pseudo-continuous labeling, background suppression, a segmented three-dimensional readout without vascular crushing gradients, and calculation and presentation of both label/control difference images and cerebral blood flow in absolute units using a simplified model.
Collapse
Affiliation(s)
- David C. Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - John A. Detre
- Departments of Neurology and Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Matthias Günther
- Fraunhofer MEVIS, Bremen, Germany
- University Bremen, Germany
- Mediri GmbH, Heidelberg, Germany
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Luis Hernandez-Garcia
- FMRI Laboratory, Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Hanzhang Lu
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Bradley J. MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Laura M. Parkes
- Centre for Imaging Science, Institute of Population Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Marion Smits
- Department of Radiology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danny JJ Wang
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
| | - Eric C. Wong
- Departments of Radiology and Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
200
|
Noguchi T, Nishihara M, Hara Y, Hirai T, Egashira Y, Azama S, Irie H. A technical perspective for understanding quantitative arterial spin-labeling MR imaging using Q2TIPS. Magn Reson Med Sci 2014; 14:1-12. [PMID: 25500774 DOI: 10.2463/mrms.2013-0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We illustrate the fundamental theoretical principles of arterial spin-labeling (ASL) magnetic resonance imaging (MRI) and show a system that employs the second version of quantitative imaging of perfusion using a single subtraction (Q2TIPS) to quantify cerebral blood flow (CBF). We also discuss the effects of the parameters used in Q2TIPS on CBF values as measured with ASL-MRI.
Collapse
Affiliation(s)
- Tomoyuki Noguchi
- Department of Radiology, National Center for Global Health and Medicine (NCGM) 1-21-1, Toyama, Shinjuku-Ku, Tokyo 162-8655, Japan; Faculty of Medicine, Saga University.
| | | | | | | | | | | | | |
Collapse
|