151
|
Tavares G, Alves P, Simões P. Recent Advances in Hydrogel-Mediated Nitric Oxide Delivery Systems Targeted for Wound Healing Applications. Pharmaceutics 2022; 14:pharmaceutics14071377. [PMID: 35890273 PMCID: PMC9315818 DOI: 10.3390/pharmaceutics14071377] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the noticeable evolution in wound treatment over the centuries, a functional material that promotes correct and swift wound healing is important, considering the relative weight of chronic wounds in healthcare. Difficult to heal in a fashionable time, chronic wounds are more prone to infections and complications thereof. Nitric oxide (NO) has been explored for wound healing applications due to its appealing properties, which in the wound healing context include vasodilation, angiogenesis promotion, cell proliferation, and antimicrobial activity. NO delivery is facilitated by molecules that release NO when prompted, whose stability is ensured using carriers. Hydrogels, popular materials for wound dressings, have been studied as scaffolds for NO storage and delivery, showing promising results such as enhanced wound healing, controlled and sustained NO release, and bactericidal properties. Systems reported so far regarding NO delivery by hydrogels are reviewed.
Collapse
|
152
|
Proteoglycan 4 (PRG4) treatment enhances wound closure and tissue regeneration. NPJ Regen Med 2022; 7:32. [PMID: 35750773 PMCID: PMC9232611 DOI: 10.1038/s41536-022-00228-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/20/2022] [Indexed: 01/13/2023] Open
Abstract
The wound healing response is one of most primitive and conserved physiological responses in the animal kingdom, as restoring tissue integrity/homeostasis can be the difference between life and death. Wound healing in mammals is mediated by immune cells and inflammatory signaling molecules that regulate tissue resident cells, including local progenitor cells, to mediate closure of the wound through formation of a scar. Proteoglycan 4 (PRG4), a protein found throughout the animal kingdom from fish to elephants, is best known as a glycoprotein that reduces friction between articulating surfaces (e.g. cartilage). Previously, PRG4 was also shown to regulate the inflammatory and fibrotic response. Based on this, we asked whether PRG4 plays a role in the wound healing response. Using an ear wound model, topical application of exogenous recombinant human (rh)PRG4 hastened wound closure and enhanced tissue regeneration. Our results also suggest that rhPRG4 may impact the fibrotic response, angiogenesis/blood flow to the injury site, macrophage inflammatory dynamics, recruitment of immune and increased proliferation of adult mesenchymal progenitor cells (MPCs) and promoting chondrogenic differentiation of MPCs to form the auricular cartilage scaffold of the injured ear. These results suggest that PRG4 has the potential to suppress scar formation while enhancing connective tissue regeneration post-injury by modulating aspects of each wound healing stage (blood clotting, inflammation, tissue generation and tissue remodeling). Therefore, we propose that rhPRG4 may represent a potential therapy to mitigate scar and improve wound healing.
Collapse
|
153
|
Wiśniewska J, Słyszewska M, Kopcewicz M, Walendzik K, Machcińska S, Stałanowska K, Gawrońska-Kozak B. Comparative studies on the effect of pig adipose-derived stem cells (pASCs) preconditioned with hypoxia or normoxia on skin wound healing in mice. Exp Cell Res 2022; 418:113263. [PMID: 35718003 DOI: 10.1016/j.yexcr.2022.113263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/04/2022]
Abstract
Adipose-derived stem cells (ASCs) from human and animal fat have emerged as therapeutic alternatives for damaged tissues. Pre-conditioning of ASCs with hypoxia results in their functional enhancement, which might facilitate the process of healing. However, there is still a critical need for large-scale preclinical studies to reinforce the translation of these findings into clinical practice for humans and in veterinary medicine. Here, we adapted a full-thickness excisional skin wound mouse model to evaluate and compare the effect of pig adipose-derived stem cells (pASCs) cultured under normoxia (pASCs-Nor) or hypoxia (pASCs-Hyp) on the healing process. We show that pASCs-Hyp accelerated re-epithelialization, increased hyaluronic acid (HA) content, and decreased scar elevation index (SEI) during the late stage of healing (day 21). Transplantation of pASCs-Hyp also promoted expression of angiogenic marker VegfA and decreased levels of pro-scarring Tgfβ1. Mice tolerated xenotransplantation of the pASCs with no impact on macrophage (CD68 -positive cell) content. However, wounds treated with pASCs-Hyp exhibited decreased elasticity at the early stage of healing and increased expression of Wnt signaling members including Wnt10a, Wnt11, and β-catenin, which are associated with scar-forming wound repair. In conclusion, pASCs treatment may provide a critical step toward the evaluation of pASCs as therapeutically relevant cells in the context of wound healing.
Collapse
Affiliation(s)
- Joanna Wiśniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Magda Słyszewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Sylwia Machcińska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Karolina Stałanowska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Barbara Gawrońska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| |
Collapse
|
154
|
Guest JF, Deanesi V, Segalla A. Cost-effectiveness of Debrichem in managing hard-to-heal venous leg ulcers in the UK. J Wound Care 2022; 31:480-491. [PMID: 35678784 DOI: 10.12968/jowc.2022.31.6.480] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To estimate whether the topical debriding agent, Debrichem, could potentially afford the UK's National Health Service (NHS) a cost-effective intervention for the management of hard-to-heal venous leg ulcers (VLUs). METHOD A Markov model was constructed depicting the management of hard-to-heal VLUs with Debrichem plus standard care (SC) or SC alone over a period of 12 months. The model was populated with inputs from an indirect comparison of two propensity score-matched cohorts. The model estimated the cost-effectiveness of the two interventions in terms of the incremental cost per quality-adjusted life year (QALY) gained at 2019/20 prices. RESULTS Addition of Debrichem to a SC protocol to treat hard-to-heal VLUs was found to increase the probability of healing by 75% (from 0.35 to 0.61) by 12 months, and to increase health-related quality of life over 12 months from 0.74 to 0.84 QALYs per patient. The 12-month cost of treatment with Debrichem plus SC (£3128 per patient) instead of SC alone (£7195 per patient) has the potential to reduce the total NHS cost of wound management by up to 57%. Hence, Debrichem was estimated to improve health outcomes for less cost. Sensitivity analysis showed that Debrichem plus SC remained a cost-effective (dominant) treatment with plausible variations in costs and effectiveness. CONCLUSION Within the limitations of the study, the addition of Debrichem to a SC protocol potentially affords a cost-effective treatment to the NHS for managing hard-to-heal VLUs.
Collapse
|
155
|
The role of polymeric chains as a protective environment for improving the stability and efficiency of fluorogenic peptide substrates. Sci Rep 2022; 12:8818. [PMID: 35614307 PMCID: PMC9132916 DOI: 10.1038/s41598-022-12848-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
We have faced the preparation of fully water-soluble fluorescent peptide substrate with long-term environmental stability (in solution more than 35 weeks) and, accordingly, with stable results in the use of this probe in determining the activity of enzymes. We have achieved this goal by preparing a co-polymer of the commercial N-vinyl-2-pyrrolidone (99.5% mol) and a fluorescent substrate for trypsin activity determination having a vinylic group (0.5%). The activity of trypsin has been measured in water solutions of this polymer over time, contrasted against the activity of both the commercial substrate Z-L-Arg-7-amido-4-methylcoumarin hydrochloride and its monomeric derivative, prepared ad-hoc. Initially, the activity of the sensory polymer was 74.53 ± 1.72 nmol/min/mg of enzyme, while that of the commercial substrate was 20.44 ± 0.65 nmol/min/mg of enzyme, the former maintained stable along weeks and the latter with a deep decay to zero in three weeks. The ‘protection’ effect exerted by the polymer chain has been studied by solvation studies by UV–Vis spectroscopy, steady-state & time resolved fluorescence, thermogravimetry and isothermal titration calorimetry.
Collapse
|
156
|
Efficacy of Surgical/Wound Washes against Bacteria: Effect of Different In Vitro Models. MATERIALS 2022; 15:ma15103630. [PMID: 35629656 PMCID: PMC9145943 DOI: 10.3390/ma15103630] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 01/03/2023]
Abstract
Topical antiseptics are often used to treat chronic wounds with biofilm infections and during salvage of biofilm contaminated implants, but their antibacterial efficacy is frequently only tested against non-aggregated planktonic or free-swimming organisms. This study evaluated the antibacterial and antibiofilm efficacy of four commercial surgical washes Bactisure, TorrenTX, minimally invasive lavage (MIS), and Betadine against six bacterial species: Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus pyogenes, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli, which are commonly isolated from surgical site infections and chronic wound infections using different in vitro models. We determined minimum planktonic inhibitory and eradication concentration and minimum 1-day-old biofilm inhibition and eradication concentration of antiseptics in 96-well plates format with 24 h contact time. We also tested the efficacy of antiseptics at in-use concentration and contact time in the presence of biological soil against 3-day-old biofilm grown on coupons with shear in a bioreactor, such that the results are more applicable to the clinical biofilm situations. In the 96-well plate model, the minimum concentration required to inhibit or kill planktonic and biofilm bacteria was lower for Bactisure and TorrenTX than for MIS and Betadine. However, Betadine and Bactisure showed better antibiofilm efficacy than TorrenTX and MIS in the 3-day-old biofilm bioreactor model at in-use concentration. The minimal concentration of surgical washes required to inhibit or kill planktonic bacterial cells and biofilms varies, suggesting the need for the development and use of biofilm-based assays to assess antimicrobial therapies, such as topical antiseptics and their effective concentrations. The antibiofilm efficacy of surgical washes against different bacterial species also varies, highlighting the importance of testing against various bacterial species to achieve a thorough understanding of their efficacy.
Collapse
|
157
|
Contardi M, Ayyoub AMM, Summa M, Kossyvaki D, Fadda M, Liessi N, Armirotti A, Fragouli D, Bertorelli R, Athanassiou A. Self-Adhesive and Antioxidant Poly(vinylpyrrolidone)/Alginate-Based Bilayer Films Loaded with Malva sylvestris Extracts as Potential Skin Dressings. ACS APPLIED BIO MATERIALS 2022; 5:2880-2893. [PMID: 35583459 PMCID: PMC9214765 DOI: 10.1021/acsabm.2c00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Malva sylvestris (MS) is a medicinal herb known worldwide for its beneficial effects due to the several active molecules present in its leaves and flowers. These compounds have shown antioxidant and anti-inflammatory properties and thus can be helpful in treatments of burns and chronic wounds, characterized mainly by high levels of free radicals and impairments of the inflammatory response. In this work, we propose bilayer films as wound dressings, based on poly(vinylpyrrolidone) (PVP) and sodium alginate loaded with M. sylvestris extracts from leaves and flowers and fabricated by combining solvent-casting and rod-coating methods. The top layer is produced in two different PVP/alginate ratios and loaded with the MS flowers' extract, while the bottom layer is composed of PVP and MS leaves' extract. The bilayers were characterized morphologically, chemically, and mechanically, while they showed superior self-adhesive properties on human skin compared to a commercial skin patch. The materials showed antioxidant activity, release of the bioactive compounds, and water uptake property. Moreover, the anthocyanin content of the flower extract provided the films with the ability to change color when immersed in buffers of different pH levels. In vitro tests using primary keratinocytes demonstrated the biocompatibility of the MS bilayer materials and their capacity to enhance the proliferation of the cells in a wound scratch model. Finally, the best performing MS bilayer sample with a PVP/alginate ratio of 70:30 was evaluated in mice models, showing suitable resorption properties and the capacity to reduce the level of inflammatory mediators in UVB-induced burns when applied to an open wound. These outcomes suggest that the fabricated bilayer films loaded with M. sylvestris extracts are promising formulations as active and multifunctional dressings for treating skin disorders.
Collapse
Affiliation(s)
- Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Amin Mah'd Moh'd Ayyoub
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.,Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Despoina Kossyvaki
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.,Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Marta Fadda
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.,Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Nara Liessi
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | |
Collapse
|
158
|
Kim KM, An HJ, Kim SH, Kim J, Sim C, Lee J, Park SH, Lee HI, Jang I, Lee S. Therapeutic Effect of Pericytes for Diabetic Wound Healing. Front Cardiovasc Med 2022; 9:868600. [PMID: 35647064 PMCID: PMC9135971 DOI: 10.3389/fcvm.2022.868600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/12/2022] [Indexed: 12/28/2022] Open
Abstract
Objective Numerous attempts have been made to devise treatments for ischemic foot ulcer (IFU), which is one of the most severe and fatal consequences of diabetes mellitus (DM). Pericytes, which are perivascular multipotent cells, are of interest as a treatment option for IFU because they play a critical role in forming and repairing various tissues. In this study, we want to clarify the angiogenic potential of pericytes in DM-induced wounds. Methods We evaluated pericyte stimulation capability for tube formation, angiogenesis, and wound healing (cell migration) in human umbilical vein endothelial cells (HUVECs) with in-vivo and in-vitro models of high glucose conditions. Results When HUVECs were co-cultured with pericytes, their tube-forming capacity and cell migration were enhanced. Our diabetic mouse model showed that pericytes promote wound healing via increased vascularization. Conclusion The findings of this study indicate that pericytes may enhance wound healing in high glucose conditions, consequently making pericyte transplantation suitable for treating IFUs.
Collapse
Affiliation(s)
- Kyeong Mi Kim
- Department of Laboratory Medicine, CHA Ilsan Medical Center, CHA University School of Medicine, Goyang-si, South Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, South Korea
| | - Sang-Hoon Kim
- Department of Cardiology, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-do, South Korea
| | - JuHee Kim
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, South Korea
| | - Changgon Sim
- CHA Graduate School of Medicine, Gyeonggi-do, South Korea
| | - Jaemin Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, South Korea
| | - Sin Hyung Park
- Department of Orthopaedic Surgery, Bucheon Hospital, Soonchunhyang University School of Medicine, Gyeonggi-do, South Korea
| | - Hyun Il Lee
- Department of Orthopedic Surgery, Ilsan Paik Hospital, Inje University, Gyeonggi-do, South Korea
| | - Inseok Jang
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, South Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, South Korea
- *Correspondence: Soonchul Lee
| |
Collapse
|
159
|
Teplyakova O, Vinnik Y, Drobushevskaya A, Malinovskaya N, Kirichenko A, Ponedelnik D. Ozone improved the wound healing in type 2 diabetics via down-regulation of IL- 8, 10 and induction of FGFR expression. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022060. [PMID: 35546010 PMCID: PMC9171882 DOI: 10.23750/abm.v93i2.12291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 01/13/2023]
Abstract
Background and aim: We aimed to investigate the effect of ozonated autohaemotherapy (OA) on the wound healing, serum values of interleukin (IL) - 6, 8, 10, tumor necrosis factor-alpha (TNF-α), basic fibroblast growth factor (bFGF) and local expression of fibroblast growth factor receptors (FGFR) in type 2 diabetics with the acute soft-tissue infections. Methods: Patients in the first cohort (n-30) received a basic comprehensive treatment (BCT-group), and the second (n=28) also received OA (OA-group). Blood samples for ELISA and tissue specimens for the immunohistochemical examinations were collected at admission (day 0) and at the 9th day of inpatient treatment. Results: The additional using of OA has accelerated the timing of a single and the complete wound granulation and the timing to marginal epithelization, compared with the results of the standard treatment. The use of OA has significantly reduced the production of IL-8, 10 at 9th day. OA-group patients were characterized by consistently high levels of bFGF production in contrast to the BCT-group, where the decreasing in the serum bFGF level was observed. The maximum number of bFGFR - immunopositive labels was observed in OA-group out to 9th day (319,45 (249,90-348,43) versus baseline 192,65 (171,93-207,72), versus BCT-group 123,30 (105,23- 141,10), p<0,001). Conclusions: Application of OA in the complex treatment of the acute soft-tissue infections in diabetics makes it possible to achieve the significant reductions in the duration of the wound inflammation and regeneration phases by eliminating of overproduction of IL- 8, 10 and induction of expression of bFGF and its receptors. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Olga Teplyakova
- Department of General Surgery named after Professor M. I. Gulman, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation.
| | - Yurii Vinnik
- Department of General Surgery named after Professor M. I. Gulman, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation.
| | - Anna Drobushevskaya
- Department of General Surgery named after Professor M. I. Gulman, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation; Center for collective use «Molecular & cell technologies», Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation .
| | - Natalia Malinovskaya
- Department of Biological Chemistry with the Course of Medical, Pharmaceutical and Toxicological Chemistry, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation; Research Institute of Molecular Medicine and Pathobiochemistry, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation; Center for collective use «Molecular & cell technologies», Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation.
| | - Andrey Kirichenko
- Department of Pathological Anatomy named after Professor P. G. Podzolkov, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation; Department of Pathological Anatomy, Clinical hospital «RZD-Medicine» city Krasnoyarsk, Krasnoyarsk, Russian Federation.
| | - Darya Ponedelnik
- Department of General Surgery named after Professor M. I. Gulman, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russian Federation.
| |
Collapse
|
160
|
First Report on the Phenotypic and Genotypic Susceptibility Profiles to Silver Nitrate in Bacterial Strains Isolated from Infected Leg Ulcers in Romanian Patients. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Silver-ion-based antiseptics are widely used in treating chronic leg ulcers and, given the emergence of resistance to such compounds, the investigation of silver susceptibility and resistance profiles of pathogenic strains isolated from this type of wound is a topic of great interest. Therefore, in this study, 125 bacterial strains isolated from 103 patients with venous ulcers were investigated to elucidate their susceptibility to silver-nitrate solutions in planktonic and biofilm growth states, and the associated genetic determinants. The isolated strains, both in the planktonic and biofilm growth phases, showed high sensitivity to the standard concentration of 1/6000 silver-nitrate solution. It was noticed that even at concentrations lower than the clinical one (the first 2–3 binary dilutions in the case of planktonic cultures and the first 6–7 binary dilutions in the case of biofilms), the antiseptic solution proved to maintain its antibacterial activity. The phenotypic results were correlated with the genetic analysis, highlighting the presence of silver-resistance genes (sil operon) in only a few of the tested Staphylococcus sp. (especially in S. aureus) strains, Escherichia coli and Pseudomonas aeruginosa strains. These results demonstrate that despite its large use, this antiseptic remains a viable treatment alternative for the management of chronic leg wounds.
Collapse
|
161
|
Solvent Casting and UV Photocuring for Easy and Safe Fabrication of Nanocomposite Film Dressings. Molecules 2022; 27:molecules27092959. [PMID: 35566306 PMCID: PMC9102005 DOI: 10.3390/molecules27092959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to optimize and characterize nanocomposite films based on gellan gum methacrylate (GG-MA) and silver nanoparticles (AgNPs) for application in the field of wound dressing. The films were produced using the solvent casting technique coupled with a photocuring process. The UV irradiation of GG-MA solutions containing glycerol as a plasticizer and different amounts of silver nitrate resulted in the concurrent crosslinking of the photocurable polymer and a reduction of Ag ions with consequent in situ generation of AgNPs. In the first part of the work, the composition of the films was optimized, varying the concentration of the different components, the GG-MA/glycerol and GG-MA/silver nitrate weight ratios as well as the volume of the film-forming mixture. Rheological analyses were performed on the starting solutions, whereas the obtained films were characterized for their mechanical properties. Colorimetric analyses and swelling studies were also performed in order to determine the AgNPs release and the water uptake capacity of the films. Finally, microbiological tests were carried out to evaluate the antimicrobial efficacy of the optimized films, in order to demonstrate their possible application as dressings for the treatment of infected hard-to-heal wounds, which is a demanding task for public healthcare.
Collapse
|
162
|
Scientific and Clinical Abstracts From WOCNext® 2022: Fort Worth, Texas ♦ June 5-8, 2022. J Wound Ostomy Continence Nurs 2022; 49:S1-S99. [PMID: 35639023 DOI: 10.1097/won.0000000000000882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
163
|
Schilrreff P, Alexiev U. Chronic Inflammation in Non-Healing Skin Wounds and Promising Natural Bioactive Compounds Treatment. Int J Mol Sci 2022; 23:ijms23094928. [PMID: 35563319 PMCID: PMC9104327 DOI: 10.3390/ijms23094928] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation is one of the hallmarks of chronic wounds and is tightly coupled to immune regulation. The dysregulation of the immune system leads to continuing inflammation and impaired wound healing and, subsequently, to chronic skin wounds. In this review, we discuss the role of the immune system, the involvement of inflammatory mediators and reactive oxygen species, the complication of bacterial infections in chronic wound healing, and the still-underexplored potential of natural bioactive compounds in wound treatment. We focus on natural compounds with antioxidant, anti-inflammatory, and antibacterial activities and their mechanisms of action, as well as on recent wound treatments and therapeutic advancements capitalizing on nanotechnology or new biomaterial platforms.
Collapse
|
164
|
Wiatrak B, Balon K, Jawień P, Bednarz D, Jęśkowiak I, Szeląg A. The Role of the Microbiota-Gut-Brain Axis in the Development of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23094862. [PMID: 35563253 PMCID: PMC9104401 DOI: 10.3390/ijms23094862] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Along with the increase in life expectancy in the populations of developed and developing countries resulting from better access and improved health care, the number of patients with dementia, including Alzheimer’s disease (AD), is growing. The disease was first diagnosed and described at the beginning of the 20th century. However, to this day, there is no effective causal therapy, and symptomatic treatment often improves patients’ quality of life only for a short time. The current pharmacological therapies are based mainly on the oldest hypotheses of the disease—cholinergic (drugs affecting the cholinergic system are available), the hypothesis of amyloid-β aggregation (an anti-amyloid drug was conditionally approved by the FDA in 2020), and one drug is an N-methyl-D-aspartate receptor (NMDAR) antagonist (memantine). Hypotheses about AD pathogenesis focus on the nervous system and the brain. As research progresses, it has become known that AD can be caused by diseases that have been experienced over the course of a lifetime, which could also affect other organs. In this review, we focus on the potential association of AD with the digestive system, primarily the gut microbiota. The role of diet quality in preventing and alleviating Alzheimer’s disease is also discussed. The problem of neuroinflammation, which may be the result of microbiota disorders, is also described. An important aspect of the work is the chapter on the treatment strategies for changing the microbiota, potentially protecting against the disease and alleviating its course in the initial stages.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (D.B.); (I.J.); (A.S.)
- Correspondence: (B.W.); (P.J.)
| | - Katarzyna Balon
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland
- Correspondence: (B.W.); (P.J.)
| | - Dominika Bednarz
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (D.B.); (I.J.); (A.S.)
| | - Izabela Jęśkowiak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (D.B.); (I.J.); (A.S.)
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (D.B.); (I.J.); (A.S.)
| |
Collapse
|
165
|
Razdan K, Garcia-Lara J, Sinha VR, Singh KK. Pharmaceutical strategies for the treatment of bacterial biofilms in chronic wounds. Drug Discov Today 2022; 27:2137-2150. [PMID: 35489675 DOI: 10.1016/j.drudis.2022.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 01/10/2023]
Abstract
Biofilms are sessile communities of microorganisms, mainly bacteria, that grow on biotic and abiotic surfaces. These microorganisms are embedded within an extracellular polymeric substance that provides enhanced protection from antimicrobials. Chronic wounds provide an ideal habitat for biofilm formation. Bacteria can easily attach to wound debris and can infect the wound due to an impaired host immune response. This review highlights the mechanism of biofilm formation and the role of biofilms in the pathophysiology of chronic wounds. Our major focus is on various formulation strategies and delivery systems that are employed to eradicate or disperse biofilms, thereby effectively managing acute and chronic wounds. We also discuss clinical research that has studied or is studying the treatment of biofilm-infected chronic wounds. Teaser: Innovative pharmaceutical strategies such as hydrogels, nanofibers, films and various nanoscale materials can provide promising approaches for the treatment of biofilm-mediated chronic wound infections, offering the potential to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Karan Razdan
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; Pharmaceutics Division, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160014, India
| | - Jorge Garcia-Lara
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Translational Biosciences and Behavior, University of Central Lancashire, Preston PR1 2HE, UK
| | - V R Sinha
- Pharmaceutics Division, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160014, India.
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Translational Biosciences and Behavior, University of Central Lancashire, Preston PR1 2HE, UK.
| |
Collapse
|
166
|
Patil P, Russo KA, McCune JT, Pollins AC, Cottam MA, Dollinger BR, DeJulius CR, Gupta MK, D'Arcy R, Colazo JM, Yu F, Bezold MG, Martin JR, Cardwell NL, Davidson JM, Thompson CM, Barbul A, Hasty AH, Guelcher SA, Duvall CL. Reactive oxygen species-degradable polythioketal urethane foam dressings to promote porcine skin wound repair. Sci Transl Med 2022; 14:eabm6586. [PMID: 35442705 PMCID: PMC10165619 DOI: 10.1126/scitranslmed.abm6586] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Porous, resorbable biomaterials can serve as temporary scaffolds that support cell infiltration, tissue formation, and remodeling of nonhealing skin wounds. Synthetic biomaterials are less expensive to manufacture than biologic dressings and can achieve a broader range of physiochemical properties, but opportunities remain to tailor these materials for ideal host immune and regenerative responses. Polyesters are a well-established class of synthetic biomaterials; however, acidic degradation products released by their hydrolysis can cause poorly controlled autocatalytic degradation. Here, we systemically explored reactive oxygen species (ROS)-degradable polythioketal (PTK) urethane (UR) foams with varied hydrophilicity for skin wound healing. The most hydrophilic PTK-UR variant, with seven ethylene glycol (EG7) repeats flanking each side of a thioketal bond, exhibited the highest ROS reactivity and promoted optimal tissue infiltration, extracellular matrix (ECM) deposition, and reepithelialization in porcine skin wounds. EG7 induced lower foreign body response, greater recruitment of regenerative immune cell populations, and resolution of type 1 inflammation compared to more hydrophobic PTK-UR scaffolds. Porcine wounds treated with EG7 PTK-UR foams had greater ECM production, vascularization, and resolution of proinflammatory immune cells compared to polyester UR foam-based NovoSorb Biodegradable Temporizing Matrix (BTM)-treated wounds and greater early vascular perfusion and similar wound resurfacing relative to clinical gold standard Integra Bilayer Wound Matrix (BWM). In a porcine ischemic flap excisional wound model, EG7 PTK-UR treatment led to higher wound healing scores driven by lower inflammation and higher reepithelialization compared to NovoSorb BTM. PTK-UR foams warrant further investigation as synthetic biomaterials for wound healing applications.
Collapse
Affiliation(s)
- Prarthana Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Katherine A Russo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Joshua T McCune
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan R Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mukesh K Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Richard D'Arcy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mariah G Bezold
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - John R Martin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Nancy L Cardwell
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Callie M Thompson
- Vanderbilt Burn Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Adrian Barbul
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Department of Surgery, Veterans Administration Medical Center, Nashville, TN 37212, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Scott A Guelcher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
167
|
López JF, Mikkola A, Sarkanen JR, Kaartinen IS, Kuokkanen HO, Ylikomi T. Adipose tissue as a source of growth factors to promote wound healing: a human study of skin graft donor sites. J Wound Care 2022; 31:282-292. [DOI: 10.12968/jowc.2022.31.4.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Objective: In the microenvironment of wound sites, naturally occurring growth factors are crucial for cell migration, opsonisation, chemotaxis, differentiation and angiogenesis. Exogenous growth factors, such as platelet-rich plasma (PRP) and adipose tissue, also improve healing. Method: In the present within-subject study, we described the effects of PRP and adipose tissue extract (ATE) on skin graft donor site wound healing in patients requiring split-thickness skin grafts. Each patient, having at least two donor sites, received both control (no growth factor) and experimental (PRP or ATE) treatments. Wounds were evaluated on days 5, 7, 10, 15, 30 and 60. Digital photography and spectral images were used to analyse haemoglobin and melanin content, and re-epithelialisation area. Pain was assessed by visual analogue scale. Scar characteristics were scored on days 30 and 60. Biomaterial samples were analysed for growth factor and protein content. Results: The study included 24 patients (18 male and six female; mean age: 59.1 years). PRP was topically applied to wounds in 11 patients (13 donor sites) and ATE in 13 patients (15 sites). ATE-treated donor sites exhibited significantly accelerated wound re-epithelialisation on days 5 and 7 compared with control sites (p=0.003 and 0.04, respectively). PRP accelerated healing on day 7 compared with control sites (p=0.001). Additionally, the application of ATE improved scar quality on days 30 and 60 (p=0.0005 and 0.02, respectively). Pain scores did not differ significantly between treatments. Conclusion: In this study, both growth factor sources stimulated wound healing. ATE is an alternative source of growth factors that promote early wound healing and improve scar quality.
Collapse
Affiliation(s)
- Jenny F López
- Department of Cell Biology, School of Medicine (currently Faculty of Medicine and Health Technology), Tampere University, Tampere, Finland
- Department of Plastic Surgery, Unit of Musculoskeletal Diseases, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Antti Mikkola
- Department of Plastic Surgery, Unit of Musculoskeletal Diseases, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Jertta-Riina Sarkanen
- Department of Cell Biology, School of Medicine (currently Faculty of Medicine and Health Technology), Tampere University, Tampere, Finland
- FICAM, Finnish Centre for Alternative Methods, School of Medicine, University of Tampere, Tampere, Finland
- Science Center, Pirkanmaa Hospital District, Finland
| | - Ilkka S Kaartinen
- Department of Plastic Surgery, Unit of Musculoskeletal Diseases, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
- Science Center, Pirkanmaa Hospital District, Finland
| | - Hannu O Kuokkanen
- Department of Plastic Surgery, Unit of Musculoskeletal Diseases, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
- Science Center, Pirkanmaa Hospital District, Finland
| | - Timo Ylikomi
- Department of Cell Biology, School of Medicine (currently Faculty of Medicine and Health Technology), Tampere University, Tampere, Finland
- FICAM, Finnish Centre for Alternative Methods, School of Medicine, University of Tampere, Tampere, Finland
- Science Center, Pirkanmaa Hospital District, Finland
| |
Collapse
|
168
|
Guan T, Li J, Chen C, Liu Y. Self-Assembling Peptide-Based Hydrogels for Wound Tissue Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104165. [PMID: 35142093 PMCID: PMC8981472 DOI: 10.1002/advs.202104165] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Wound healing is a long-term, multistage biological process that includes hemostasis, inflammation, proliferation, and tissue remodeling and requires intelligent designs to provide comprehensive and convenient treatment. The complexity of wounds has led to a lack of adequate wound treatment materials, which must systematically regulate unique wound microenvironments. Hydrogels have significant advantages in wound treatment due to their ability to provide spatiotemporal control over the wound healing process. Self-assembling peptide-based hydrogels are particularly attractive due to their innate biocompatibility and biodegradability along with additional advantages including ligand-receptor recognition, stimulus-responsive self-assembly, and the ability to mimic the extracellular matrix. The ability of peptide-based materials to self-assemble in response to the physiological environment, resulting in functionalized microscopic structures, makes them conducive to wound treatment. This review introduces several self-assembling peptide-based systems with various advantages and emphasizes recent advances in self-assembling peptide-based hydrogels that allow for precise control during different stages of wound healing. Moreover, the development of multifunctional self-assembling peptide-based hydrogels that can regulate and remodel the wound immune microenvironment in wound therapy with spatiotemporal control has also been summarized. Overall, this review sheds light on the future clinical and practical applications of self-assembling peptide-based hydrogels.
Collapse
Affiliation(s)
- Tong Guan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- GBA National Institute for Nanotechnology InnovationGuangdong510700P. R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- GBA National Institute for Nanotechnology InnovationGuangdong510700P. R. China
| |
Collapse
|
169
|
Loo HL, Goh BH, Lee LH, Chuah LH. Application of chitosan nanoparticles in skin wound healing. Asian J Pharm Sci 2022; 17:299-332. [PMID: 35782330 PMCID: PMC9237591 DOI: 10.1016/j.ajps.2022.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
The rising prevalence of impaired wound healing and the consequential healthcare burdens have gained increased attention over recent years. This has prompted research into the development of novel wound dressings with augmented wound healing functions. Nanoparticle (NP)-based delivery systems have become attractive candidates in constructing such wound dressings due to their various favourable attributes. The non-toxicity, biocompatibility and bioactivity of chitosan (CS)-based NPs make them ideal candidates for wound applications. This review focusses on the application of CS-based NP systems for use in wound treatment. An overview of the wound healing process was presented, followed by discussion on the properties and suitability of CS and its NPs in wound healing. The wound healing mechanisms exerted by CS-based NPs were then critically analysed and discussed in sections, namely haemostasis, infection prevention, inflammatory response, oxidative stress, angiogenesis, collagen deposition, and wound closure time. The results of the studies were thoroughly reviewed, and contradicting findings were identified and discussed. Based on the literature, the gap in research and future prospects in this research area were identified and highlighted. Current evidence shows that CS-based NPs possess superior wound healing effects either used on their own, or as drug delivery vehicles to encapsulate wound healing agents. It is concluded that great opportunities and potentials exist surrounding the use of CSNPs in wound healing.
Collapse
|
170
|
Flexible patch with printable and antibacterial conductive hydrogel electrodes for accelerated wound healing. Biomaterials 2022; 285:121479. [DOI: 10.1016/j.biomaterials.2022.121479] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023]
|
171
|
Zaharie RD, Popa C, Schlanger D, Vălean D, Zaharie F. The Role of IL-22 in Wound Healing. Potential Implications in Clinical Practice. Int J Mol Sci 2022; 23:3693. [PMID: 35409053 PMCID: PMC8998254 DOI: 10.3390/ijms23073693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
Wound healing is a complex process that is mediated and influenced by several cytokines, chemokines, and growth factors. Interleukin-22 (IL-22) is a cytokine that plays a critical role in tissue regeneration. Our study is a systematic review that addressed the implications of IL-22 in the healing of wounds caused by external factors. Thirteen studies were included in our review, most of them being experimental studies. Three clinical studies underlined the potential role of IL-22 in day-to-day clinical practice. IL-22 plays a central role in wound healing, stimulating the proliferation, migration, and differentiation of the cells involved in tissue repair. However, overexpression of IL-22 can cause negative effects, such as keloid scars or peritoneal adhesions. The results of the presented studies are promising, but further research that validates the roles of IL-22 in clinical practice and analyzes its potential implication in surgical healing is welcomed.
Collapse
Affiliation(s)
- Roxana Delia Zaharie
- Gastroenterology Department, “Iuliu Haţieganu” University of Medicine and Pharmacy, Street Emil Isac No. 13, 400023 Cluj-Napoca, Romania;
- Gastroenterology Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. O. Fodor”, Street Croitorilor No. 19–21, 400162 Cluj-Napoca, Romania
| | - Călin Popa
- Surgery Department, “Iuliu Haţieganu” University of Medicine and Pharmacy, Street Emil Isac No. 13, 400023 Cluj-Napoca, Romania; (D.V.); (F.Z.)
- Surgery Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. O. Fodor”, Street Croitorilor No. 19–21, 400162 Cluj-Napoca, Romania
| | - Diana Schlanger
- Surgery Department, “Iuliu Haţieganu” University of Medicine and Pharmacy, Street Emil Isac No. 13, 400023 Cluj-Napoca, Romania; (D.V.); (F.Z.)
- Surgery Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. O. Fodor”, Street Croitorilor No. 19–21, 400162 Cluj-Napoca, Romania
| | - Dan Vălean
- Surgery Department, “Iuliu Haţieganu” University of Medicine and Pharmacy, Street Emil Isac No. 13, 400023 Cluj-Napoca, Romania; (D.V.); (F.Z.)
- Surgery Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. O. Fodor”, Street Croitorilor No. 19–21, 400162 Cluj-Napoca, Romania
| | - Florin Zaharie
- Surgery Department, “Iuliu Haţieganu” University of Medicine and Pharmacy, Street Emil Isac No. 13, 400023 Cluj-Napoca, Romania; (D.V.); (F.Z.)
- Surgery Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. O. Fodor”, Street Croitorilor No. 19–21, 400162 Cluj-Napoca, Romania
| |
Collapse
|
172
|
Song Y, Jo Y, Sohn J, Kim R. A Pilot Study to Explore a Correlation between Inflammatory Markers and the Wound Healing Rate in Diabetic Patients. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58030390. [PMID: 35334566 PMCID: PMC8951608 DOI: 10.3390/medicina58030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/08/2023]
Abstract
Background and objectives: We examined whether there is a significant correlation between inflammatory markers and the wound healing rate (WHR) in diabetic patients. Materials and Methods: A total of 60 patients were divided into two groups depending on the completion of wound healing (WH) at 5 weeks: the early WH group (period of WH < 5 weeks; n = 27) and the late WH group (period of WH > 5 weeks; n = 33). The baseline characteristics and wound measurements were compared between the two groups. To identify the correlation between inflammatory markers (e.g., white blood cell counts (WBCs), serum C-reactive protein (CRP) levels and erythrocyte sedimentation rate (ESR)) and WHR, we performed a Pearson correlation analysis. Results: The WHR was 8.06 ± 4.02 mm2/day in the early WH group and 2.71 ± 0.88 mm2/day in the late group. This difference reached statistical significance (p < 0.001). Moreover, WBC counts were significantly higher and serum levels of CRP and ESR were significantly lower in the early WH group than in the late group (p = 0.027, 0.036 and 0.043, respectively). Conclusions: Our results indicate that WBC as well as serum CRP and ESR levels have a significant correlation with WHR in diabetic patients.
Collapse
Affiliation(s)
- Yukwan Song
- Department of Plastic and Reconstructive Surgery, Soonsoo Hospital, Hwaseong-si 18617, Gyeonggi, Korea
- Correspondence: (Y.S.); (J.S.); Tel.: +82-31-319-0119 (Y.S.); +82-64-740-5476 (J.S.); Fax: +82-31-8059-1181 (Y.S.)
| | - Yongkyu Jo
- Department of Anesthesiology and Pain Medicine, Cheju Halla General Hospital, Jeju 63127, Korea;
| | - Jeongeun Sohn
- Department of Anesthesiology and Pain Medicine, Cheju Halla General Hospital, Jeju 63127, Korea;
- Correspondence: (Y.S.); (J.S.); Tel.: +82-31-319-0119 (Y.S.); +82-64-740-5476 (J.S.); Fax: +82-31-8059-1181 (Y.S.)
| | - Robert Kim
- Department of Medical and Pharmaceutical Affairs, Doctor CONSULT, Seoul 06296, Korea;
| |
Collapse
|
173
|
Lalieu R, Raap RB, van Hulst R. Hyperbaric oxygen therapy: when pressure is good for diabetic foot ulcers. Br J Community Nurs 2022; 27:S6-S12. [PMID: 35274985 DOI: 10.12968/bjcn.2022.27.sup3.s6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The diabetic foot ulcer (DFU) as a common complication of diabetes. Even with adequate treatment, up to 35% of these ulcers do not heal. This is due to the effect of aging, repeated ischemia-reperfusion (IR) injury, bacterial colonisation of the wound and chronic hypoxia. All wound-healing processes are highly dependent on oxygen, so hyperbaric oxygen therapy (HBOT) can be employed to improve wound healing and correct the four pathophysiological factors for chronic wounds. It is, in fact, internationally recognised as a treatment option for non-healing DFUs. Several trials and systematic reviews have been performed on its efficacy, which show a positive trend towards increased wound healing and reduced amputation risk. Some controversy exists due to contradictory results in these studies, which may be due to grouping patients with and without peripheral arterial occlusive disease (PAOD) together. Side effects are usually mild and transient, and the treatment is considered safe.
Collapse
Affiliation(s)
- Rutger Lalieu
- Hyperbaar Geneeskundig Centrum, Rijswijk, the Netherlands, and Amsterdam University Medical Centers, location AMC, Department of Anaesthesiology
| | - René Bol Raap
- Hyperbaar Geneeskundig Centrum, Rijswijk, the Netherlands
| | - Rob van Hulst
- Amsterdam University Medical Centers, location AMC, Department of Anaesthesiology and Hyperbaric Department
| |
Collapse
|
174
|
Mallick S, Nag M, Lahiri D, Pandit S, Sarkar T, Pati S, Nirmal NP, Edinur HA, Kari ZA, Ahmad Mohd Zain MR, Ray RR. Engineered Nanotechnology: An Effective Therapeutic Platform for the Chronic Cutaneous Wound. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:778. [PMID: 35269266 PMCID: PMC8911807 DOI: 10.3390/nano12050778] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
Abstract
The healing of chronic wound infections, especially cutaneous wounds, involves a complex cascade of events demanding mutual interaction between immunity and other natural host processes. Wound infections are caused by the consortia of microbial species that keep on proliferating and produce various types of virulence factors that cause the development of chronic infections. The mono- or polymicrobial nature of surface wound infections is best characterized by its ability to form biofilm that renders antimicrobial resistance to commonly administered drugs due to poor biofilm matrix permeability. With an increasing incidence of chronic wound biofilm infections, there is an urgent need for non-conventional antimicrobial approaches, such as developing nanomaterials that have intrinsic antimicrobial-antibiofilm properties modulating the biochemical or biophysical parameters in the wound microenvironment in order to cause disruption and removal of biofilms, such as designing nanomaterials as efficient drug-delivery vehicles carrying antibiotics, bioactive compounds, growth factor antioxidants or stem cells reaching the infection sites and having a distinct mechanism of action in comparison to antibiotics-functionalized nanoparticles (NPs) for better incursion through the biofilm matrix. NPs are thought to act by modulating the microbial colonization and biofilm formation in wounds due to their differential particle size, shape, surface charge and composition through alterations in bacterial cell membrane composition, as well as their conductivity, loss of respiratory activity, generation of reactive oxygen species (ROS), nitrosation of cysteines of proteins, lipid peroxidation, DNA unwinding and modulation of metabolic pathways. For the treatment of chronic wounds, extensive research is ongoing to explore a variety of nanoplatforms, including metallic and nonmetallic NPs, nanofibers and self-accumulating nanocarriers. As the use of the magnetic nanoparticle (MNP)-entrenched pre-designed hydrogel sheet (MPS) is found to enhance wound healing, the bio-nanocomposites consisting of bacterial cellulose and magnetic nanoparticles (magnetite) are now successfully used for the healing of chronic wounds. With the objective of precise targeting, some kinds of "intelligent" nanoparticles are constructed to react according to the required environment, which are later incorporated in the dressings, so that the wound can be treated with nano-impregnated dressing material in situ. For the effective healing of skin wounds, high-expressing, transiently modified stem cells, controlled by nano 3D architectures, have been developed to encourage angiogenesis and tissue regeneration. In order to overcome the challenge of time and dose constraints during drug administration, the approach of combinatorial nano therapy is adopted, whereby AI will help to exploit the full potential of nanomedicine to treat chronic wounds.
Collapse
Affiliation(s)
- Suhasini Mallick
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Soumya Pandit
- Department of Life Sciences, Sharda University, Noida 201310, India;
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda 732102, India;
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore 756001, India;
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation & Research (ABC), Balasore 756001, India
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand;
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
| | | | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| |
Collapse
|
175
|
Advanced drug delivery systems containing herbal components for wound healing. Int J Pharm 2022; 617:121617. [PMID: 35218900 DOI: 10.1016/j.ijpharm.2022.121617] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 12/18/2022]
Abstract
Management of chronic wound has an immense impact on social and economic conditions in the world. Healthcare costs, aging population, physical trauma, and comorbidities of diabetes and obesity seem to be the major factors of this increasing incidence of chronic wounds. Conditions of chronic wound could not restore functional epidermis; thus, delaying the closure of the wound opening in an expected manner. Failures in restoration of skin integrity delay healing due to changes in skin pathology, such as chronic ulceration or nonhealing. The role of different traditional medicines has been explored for use in the healing of cutaneous wounds, where several phytochemicals, such as flavonoids, alkaloids, phenolic acids, tannins are known to provide potential wound healing properties. However, the delivery of plant-based therapeutics could be improved by the novel platform of nanotechnology. Thus, the objectives of novel delivery strategies of principal bioactive from plant sources are to accelerate the wound healing process, avoid wound complications and enhance patient compliance. Therefore, the opportunities of nanotechnology-based drug delivery of natural wound healing therapeutics have been included in the present discussion with special emphasis on nanofibers, vesicular structures, nanoparticles, nanoemulsion, and nanogels.
Collapse
|
176
|
De Francesco F, De Francesco M, Riccio M. Hyaluronic Acid/Collagenase Ointment in the Treatment of Chronic Hard-to-Heal Wounds: An Observational and Retrospective Study. J Clin Med 2022; 11:jcm11030537. [PMID: 35159989 PMCID: PMC8836867 DOI: 10.3390/jcm11030537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Wound bed preparation is an important concept in clinical practice and is related to adequate debridement. The use of proteolytic enzymes is an established method of enzymatic wound debridement, especially in hard-to-heal ulcers that are unresponsive to normal healing procedures and progress. The TIME framework (tissue, inflammation/infection, moisture balance, and edge of wound) offers an appropriate strategy to eliminate resistance to healing, as well as maximizing the healing process. Maintenance debridement, as opposed to sporadic debridement, may be proposed in preserving an adequate wound bed towards complete recovery. Collagenase has been effective in debridement due to its ability to degrade collagen and elastin. In this clinical context, collagenase taken from Vibrio alginolitycus is the most favorably expressed enzymatic debriding agent. Methods: This retrospective observational study evaluates the efficacy of an ointment based on hyaluronic acid and collagenase (Bionect Start®), considering a reduced healing time and greater healing quality. We included 70 patients with chronic wounds of different etiologies, including diabetes mellitus (20), post-traumatic ulcers (35), chronic burns of degrees I and II (10), and pressure ulcers (5). We analyzed wound characteristics using the wound bed score (WBS) concept, healing time, as well as operator and patient satisfaction. Results: Frequency of debridement efficacy in terms of wound bed cleansing varied from 26% after 2 weeks to 93% after 4 weeks. We observed complete healing in 62 patients within an eight-week period. The overall operator and patient satisfaction after 8 weeks were 100% and 90%, respectively. Moreover, all patients reported less pain. Conclusions: A combined action of hyaluronic acid and collagenase ointment demonstrated a reduction in healing time while improving healing quality, with a decrease in pain.
Collapse
Affiliation(s)
- Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy;
- Correspondence: ; Tel.: +39-071-596-3945; Fax: +39-071-596-5297
| | | | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy;
| |
Collapse
|
177
|
Öhnstedt E, Lofton Tomenius H, Frank P, Roos S, Vågesjö E, Phillipson M. Accelerated Wound Healing in Minipigs by On-Site Production and Delivery of CXCL12 by Transformed Lactic Acid Bacteria. Pharmaceutics 2022; 14:pharmaceutics14020229. [PMID: 35213962 PMCID: PMC8876577 DOI: 10.3390/pharmaceutics14020229] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/22/2023] Open
Abstract
Non-healing wounds are a growing medical problem and result in considerable suffering. The lack of pharmaceutical treatment options reflects the multistep wound healing process, and the complexity of both translation and assessment of treatment efficacy. We previously demonstrated accelerated healing of full-thickness wounds in mice following topical application of the probiotic bacteria Limosilactobacillus reuteri R2LC transformed to express CXCL12. In this study, safety and biological effects of a freeze-dried formulation of CXCL12-producing L. reuteri (ILP100) were investigated in induced full-thickness wounds in minipigs, and different wound healing evaluation methods (macroscopic, planimetry, 2D-photographs, 3D-scanning, ultrasound) were compared. We found that treatment with ILP100 was safe and accelerated healing, as granulation tissue filled wound cavities 1 day faster in treated compared to untreated/placebo-treated wounds. Furthermore, evaluation using planimetry resulted in 1.5 days faster healing than using 2D photographs of the same wounds, whereas the areas measured using 2D photographs were smaller compared to those obtained from 3D scans accounting for surface curvatures, whereas ultrasound imaging enabled detailed detection of thin epithelial layers. In conclusion, topical administration of the drug candidate ILP100 warrants further clinical development as it was proven to be safe and to accelerate healing using different evaluation methods in minipigs.
Collapse
Affiliation(s)
- Emelie Öhnstedt
- Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden; (E.Ö.); (H.L.T.); (E.V.)
- Ilya Pharma AB, Dag Hammarskjölds Väg, 752 37 Uppsala, Sweden;
| | - Hava Lofton Tomenius
- Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden; (E.Ö.); (H.L.T.); (E.V.)
- Ilya Pharma AB, Dag Hammarskjölds Väg, 752 37 Uppsala, Sweden;
| | - Peter Frank
- Ilya Pharma AB, Dag Hammarskjölds Väg, 752 37 Uppsala, Sweden;
| | - Stefan Roos
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden;
| | - Evelina Vågesjö
- Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden; (E.Ö.); (H.L.T.); (E.V.)
- Ilya Pharma AB, Dag Hammarskjölds Väg, 752 37 Uppsala, Sweden;
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden; (E.Ö.); (H.L.T.); (E.V.)
- The Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
178
|
Bardill JR, Laughter MR, Stager M, Liechty KW, Krebs MD, Zgheib C. Topical gel-based biomaterials for the treatment of diabetic foot ulcers. Acta Biomater 2022; 138:73-91. [PMID: 34728428 PMCID: PMC8738150 DOI: 10.1016/j.actbio.2021.10.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 01/17/2023]
Abstract
Diabetic foot ulcers (DFUs) are a devastating ailment for many diabetic patients with increasing prevalence and morbidity. The complex pathophysiology of DFU wound environments has made finding effective treatments difficult. Standard wound care treatments have limited efficacy in healing these types of chronic wounds. Topical biomaterial gels have been developed to implement novel treatment approaches to improve therapeutic effects and are advantageous due to their ease of application, tunability, and ability to improve therapeutic release characteristics. Here, we provide an updated, comprehensive review of novel topical biomaterial gels developed for treating chronic DFUs. This review will examine preclinical data for topical gel treatments in diabetic animal models and clinical applications, focusing on gels with protein/peptides, drug, cellular, herbal/antioxidant, and nano/microparticle approaches. STATEMENT OF SIGNIFICANCE: By 2050, 1 in 3 Americans will develop diabetes, and up to 34% of diabetic patients will develop a diabetic foot ulcer (DFU) in their lifetime. Current treatments for DFUs include debridement, infection control, maintaining a moist wound environment, and pressure offloading. Despite these interventions, a large number of DFUs fail to heal and are associated with a cost that exceeds $31 billion annually. Topical biomaterials have been developed to help target specific impairments associated with DFU with the goal to improve healing. A summary of these approaches is needed to help better understand the current state of the research. This review summarizes recent research and advances in topical biomaterials treatments for DFUs.
Collapse
Affiliation(s)
- James R Bardill
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | | | - Michael Stager
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Melissa D Krebs
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
179
|
Eid BG, Alhakamy NA, Fahmy UA, Ahmed OAA, Md S, Abdel-Naim AB, Caruso G, Caraci F. Melittin and diclofenac synergistically promote wound healing in a pathway involving TGF-β1. Pharmacol Res 2022; 175:105993. [PMID: 34801680 DOI: 10.1016/j.phrs.2021.105993] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022]
Abstract
A dysregulation of the wound healing process can lead to the development of various intractable ulcers or excessive scar formation. Therefore it is essential to identify novel pharmacological strategies to promote wound healing and restore the mechanical integrity of injured tissue. The goal of the present study was to formulate a nano-complex containing melittin (MEL) and diclofenac (DCL) with the aim to evaluate their synergism and preclinical efficacy in an in vivo model of acute wound. After its preparation and characterization, the therapeutic potential of the combined nano-complexes was evaluated. MEL-DCL nano-complexes exhibited better regenerated epithelium, keratinization, epidermal proliferation, and granulation tissue formation, which in turn showed better wound healing activity compared to MEL, DCL, or positive control. The nano-complexes also showed significantly enhanced antioxidant activity. Treatment of wounded skin with MEL-DCL nano-complexes showed significant reduction of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) pro-inflammatory markers that was paralleled by a substantial increase in mRNA expression levels of collagen, type I, alpha 1 (Col1A1) and collagen, type IV, alpha 1 (Col4A1), and hydroxyproline content as compared to individual drugs. Additionally, MEL-DCL nano-complexes were able to significantly increase hypoxia-inducible factor 1-alpha (HIF-1α) and transforming growth factor beta 1 (TGF-β1) proteins expression compared to single drugs or negative control group. SB431542, a selective inhibitor of type-1 TGF-β receptor, significantly prevented in our in vitro assay the wound healing process induced by the MEL-DCL nano-complexes, suggesting a key role of TGF-β1 in the wound closure. In conclusion, the nano-complex of MEL-DCL represents a novel pharmacological tool that can be topically applied to improve wound healing.
Collapse
Affiliation(s)
- Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Scientific chair "Mohamed Saeed Tamer Chair for Pharmaceutical industries", King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Scientific chair "Mohamed Saeed Tamer Chair for Pharmaceutical industries", King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; Oasi Research Institute-IRCCS, 94018 Troina, Italy.
| |
Collapse
|
180
|
Badziukh SV. THE ROLE OF THE PLASMINOGEN/PLASMIN SYSTEM IN WOUND HEALING. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-4-167-16-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
181
|
Dubey SK, Parab S, Alexander A, Agrawal M, Achalla VPK, Pal UN, Pandey MM, Kesharwani P. Cold atmospheric plasma therapy in wound healing. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
182
|
Mishra S, Mishra S, Yadav G, Kumar D, Gupta AK. Site-specific bacteriology of tropic ulcers and their antibiotic sensitivity: A cross-sectional study. MEDICAL JOURNAL OF DR. D.Y. PATIL VIDYAPEETH 2022. [DOI: 10.4103/mjdrdypu.mjdrdypu_589_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
183
|
Afshari R, Akhavan O, Hamblin MR, Varma RS. Review of Oxygenation with Nanobubbles: Possible Treatment for Hypoxic COVID-19 Patients. ACS APPLIED NANO MATERIALS 2021; 4:11386-11412. [PMID: 37556289 PMCID: PMC8565459 DOI: 10.1021/acsanm.1c01907] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/12/2021] [Indexed: 05/05/2023]
Abstract
The coronavirus disease (COVID-19) pandemic, which has spread around the world, caused the death of many affected patients, partly because of the lack of oxygen arising from impaired respiration or blood circulation. Thus, maintaining an appropriate level of oxygen in the patients' blood by devising alternatives to ventilator systems is a top priority goal for clinicians. The present review highlights the ever-increasing application of nanobubbles (NBs), miniature gaseous vesicles, for the oxygenation of hypoxic patients. Oxygen-containing NBs can exert a range of beneficial physiologic and pharmacologic effects that include tissue oxygenation, as well as tissue repair mechanisms, antiinflammatory properties, and antibacterial activity. In this review, we provide a comprehensive survey of the application of oxygen-containing NBs, with a primary focus on the development of intravenous platforms. The multimodal functions of oxygen-carrying NBs, including antimicrobial, antiinflammatory, drug carrying, and the promotion of wound healing are discussed, including the benefits and challenges of using NBs as a treatment for patients with acute hypoxemic respiratory failure, particularly due to COVID-19.
Collapse
Affiliation(s)
- Ronak Afshari
- Department of Physics, Sharif University
of Technology, P.O. Box 11155-9161, Tehran 14588-89694,
Iran
| | - Omid Akhavan
- Department of Physics, Sharif University
of Technology, P.O. Box 11155-9161, Tehran 14588-89694,
Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science,
University of Johannesburg, Doornfontein 2028, South
Africa
| | - Rajender S. Varma
- Regional Center of Advanced Technologies and Materials,
Czech Advanced Technology and Research Institute, Palacky
University, Šlechtitelů 27, Olomouc 78371, Czech
Republic
| |
Collapse
|
184
|
Bazaid AS, Aldarhami A, Gattan H, Aljuhani B. Saudi Honey: A Promising Therapeutic Agent for Treating Wound Infections. Cureus 2021; 13:e18882. [PMID: 34804730 PMCID: PMC8599116 DOI: 10.7759/cureus.18882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Treatment of wounds, especially chronic ones, is a major challenge in healthcare, with serious clinical and economic burdens. Multiple treatment approaches, including the usage of silver and iodine, have dramatically improved wound healing and reduced the incidence of infection. However, once infected by drug-resistant bacteria, treatment of wounds becomes a serious complication, with limited availability of effective antibiotic drugs, leading to high morbidity and mortality. Therefore, alternative therapeutic agents are required to address this gap in wound management. The introduction of manuka honey as a therapeutic agent against infected wounds was the result of extensive research about its activity against both planktonic and biofilm bacterial growth. Likewise, several types of Saudi honey (e.g., Sidr and Talh) showed promising in vitro and in vivo antimicrobial activity against wound pathogens. This short review summarizes literature that investigated the activity of common types of Saudi honey in relation to wound infections and explores their clinical utility.
Collapse
Affiliation(s)
- Abdulrahman S Bazaid
- Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, SAU
| | - Abdu Aldarhami
- Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, SAU
| | - Hattan Gattan
- Medical Laboratory Sciences, King Abdulaziz University, Jeddah, SAU
| | | |
Collapse
|
185
|
Cho SK, Mattke S, Sheridan M, Ennis W. Outpatient Wound Clinics During COVID-19 Maintained Quality but Served Fewer Patients. J Am Med Dir Assoc 2021; 23:660-665.e5. [PMID: 34861225 PMCID: PMC8572697 DOI: 10.1016/j.jamda.2021.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022]
Abstract
Objective To evaluate the impact of COVID-19–related disruptions on care continuity and outcomes of chronic wounds. Design Retrospective cohort study. Setting and Participants Electronic medical records for 152,225 chronic wounds from a network of 488 wound care clinics in 45 US states and the District of Columbia. Methods Wound and patient characteristics, the number of chronic wounds newly seen at the clinics, and 12-week healing rates were compared between the first 2 quarters of 2019 and 2020. Multivariable regression models were constructed to evaluate whether the pandemic was associated with a statistically significant change in the probability of 12-week wound healing after risk adjustment. Results During the pandemic, wound and patient characteristics did not change compared to the previous year. Case volume dropped as much as 40% in April 2020 but returned to the previous year's level by June. No systematic changes in measures of care continuity were observed. Unadjusted 12-week healing rates remained stable at 0.502 in 2019 and 0.503 in 2020. Likewise, risk-adjusted 12-week healing rates were 0.504 and 0.505 in 2019 and 2020, respectively, but the difference was not statistically significant. States with stricter lockdowns saw a greater decline in case volume. However, the pandemic was not associated with a statistically significant change in the probability of 12-week wound healing in most states. The percentage of wounds with 1 or more telehealth visits increased from 0.14% in 2019 to 1.04% in 2020. Conclusions and Implications Despite COVID-19–related disruptions, our results suggest that wound care clinics maintained standards of care and outcomes for patients who sought care. This positive result should not detract from the problem that the number of new wounds seen at the clinics dropped sharply. Further research should evaluate outcomes in patients with unattended chronic wounds.
Collapse
Affiliation(s)
- Sang Kyu Cho
- College of Pharmacy, University of Houston, TX, USA
| | - Soeren Mattke
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA, USA.
| | | | - William Ennis
- Healogics Inc, Jacksonville, FL, USA; Wound Healing and Tissue Repair Program, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
186
|
Cheng S, Gu Z, Zhou L, Hao M, An H, Song K, Wu X, Zhang K, Zhao Z, Dong Y, Wen Y. Recent Progress in Intelligent Wearable Sensors for Health Monitoring and Wound Healing Based on Biofluids. Front Bioeng Biotechnol 2021; 9:765987. [PMID: 34790653 PMCID: PMC8591136 DOI: 10.3389/fbioe.2021.765987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
The intelligent wearable sensors promote the transformation of the health care from a traditional hospital-centered model to a personal portable device-centered model. There is an urgent need of real-time, multi-functional, and personalized monitoring of various biochemical target substances and signals based on the intelligent wearable sensors for health monitoring, especially wound healing. Under this background, this review article first reviews the outstanding progress in the development of intelligent, wearable sensors designed for continuous, real-time analysis, and monitoring of sweat, blood, interstitial fluid, tears, wound fluid, etc. Second, this paper reports the advanced status of intelligent wound monitoring sensors designed for wound diagnosis and treatment. The paper highlights some smart sensors to monitor target analytes in various wounds. Finally, this paper makes conservative recommendations regarding future development of intelligent wearable sensors.
Collapse
Affiliation(s)
- Siyang Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mingda Hao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kaiyu Song
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaochao Wu
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Kexin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zeya Zhao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | | | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
187
|
Varma R, Marin‐Araujo AE, Rostami S, Waddell TK, Karoubi G, Haykal S. Short-Term Preclinical Application of Functional Human Induced Pluripotent Stem Cell-Derived Airway Epithelial Patches. Adv Healthc Mater 2021; 10:e2100957. [PMID: 34569180 DOI: 10.1002/adhm.202100957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/15/2021] [Indexed: 12/17/2022]
Abstract
Airway pathologies including cancer, trauma, and stenosis lack effective treatments, meanwhile airway transplantation and available tissue engineering approaches fail due to epithelial dysfunction. Autologous progenitors do not meet the clinical need for regeneration due to their insufficient expansion and differentiation, for which human induced pluripotent stem cells (hiPSCs) are promising alternatives. Airway epithelial patches are engineered by differentiating hiPSC-derived airway progenitors into physiological proportions of ciliated (73.9 ± 5.5%) and goblet (2.1 ± 1.4%) cells on a silk fibroin-collagen vitrigel membrane (SF-CVM) composite biomaterial for transplantation in porcine tracheal defects ex vivo and in vivo. Evaluation of ex vivo tracheal repair using hiPSC-derived SF-CVM patches demonstrate native-like tracheal epithelial metabolism and maintenance of mucociliary epithelium to day 3. In vivo studies demonstrate SF-CVM integration and maintenance of airway patency, showing 80.8 ± 3.6% graft coverage with an hiPSC-derived pseudostratified epithelium and 70.7 ± 2.3% coverage with viable cells, 3 days postoperatively. The utility of bioengineered, hiPSC-derived epithelial patches for airway repair is demonstrated in a short-term preclinical survival model, providing a significant leap for airway reconstruction approaches.
Collapse
Affiliation(s)
- Ratna Varma
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Institute of Biomedical Engineering (BME) University of Toronto 164 College St Toronto ON M5S 3G9 Canada
| | - Alba E. Marin‐Araujo
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
| | - Sara Rostami
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Institute of Biomedical Engineering (BME) University of Toronto 164 College St Toronto ON M5S 3G9 Canada
- Institute of Medical Sciences University of Toronto 27 King's College Cir Toronto ON M5S 1A8 Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Department of Mechanical and Industrial Engineering University of Toronto 5 King's College Circle Toronto ON M5S 3G8 Canada
- Department of Laboratory Medicine and Pathobiology University of Toronto 1 King's College Circle Toronto ON M5S 1A8 Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Institute of Medical Sciences University of Toronto 27 King's College Cir Toronto ON M5S 1A8 Canada
- Division of Plastic and Reconstructive Surgery Department of Surgery University of Toronto 200 Elizabeth Street 8N‐869 Toronto ON M5G2P7 Canada
| |
Collapse
|
188
|
Thapa RK, Winther-Larsen HC, Ovchinnikov K, Carlsen H, Diep DB, Tønnesen HH. Hybrid hydrogels for bacteriocin delivery to infected wounds. Eur J Pharm Sci 2021; 166:105990. [PMID: 34481880 DOI: 10.1016/j.ejps.2021.105990] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 01/30/2023]
Abstract
Superficial infections in chronic wounds can prevent the wound healing process by the development of persistent infections and drug-resistant biofilms. Topically applied antimicrobial formulations with stabilized and controlled release offer significant benefits for the effective treatment of wound infections. Bacteriocins are the antimicrobial peptides (AMPs) produced by bacteria that are viable alternatives to antibiotics owing to their natural origin and low propensity for resistance development. Herein, we developed a hybrid hydrogel composed of Pluronic F127 (PF127), ethylenediaminetetraacetic acid (EDTA) loaded liposomes, glutathione (GSH), and the bacteriocin Garvicin KS (GarKS) referred to as "GarKS gel". The GarKS gel exhibited suitable viscosity and rheological properties along with controlled release behavior (up to 9 days) for effective peptide delivery following topical application. Potent in vitro antibacterial and anti-biofilm effects of GarKS gel were evident against the Gram-positive bacterium Staphylococcus aureus. The in vivo treatment of methicillin resistant S. aureus (MRSA) infected mouse wounds suggested potent antibacterial effects of the GarKS gel following multiple applications of once-a-day application for three consecutive days. Altogether, these results provide proof-of-concept for the successful development of AMP loaded topical formulation for effective treatment of wound infections.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, NO-0316 Oslo, Norway.
| | - Hanne Cecilie Winther-Larsen
- Centre for Integrative Microbial Evolution (CIME) and Department of Pharmacology and Pharmaceutical Biosciences, University of Oslo, Sem Sælands vei 3, NO-0371 Oslo, Norway
| | - Kirill Ovchinnikov
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Hanne Hjorth Tønnesen
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
189
|
Cellular Signalling and Photobiomodulation in Chronic Wound Repair. Int J Mol Sci 2021; 22:ijms222011223. [PMID: 34681882 PMCID: PMC8537491 DOI: 10.3390/ijms222011223] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/29/2022] Open
Abstract
Photobiomodulation (PBM) imparts therapeutically significant benefits in the healing of chronic wounds. Chronic wounds develop when the stages of wound healing fail to progress in a timely and orderly frame, and without an established functional and structural outcome. Therapeutic benefits associated with PBM include augmenting tissue regeneration and repair, mitigating inflammation, relieving pain, and reducing oxidative stress. PBM stimulates the mitochondria, resulting in an increase in adenosine triphosphate (ATP) production and the downstream release of growth factors. The binding of growth factors to cell surface receptors induces signalling pathways that transmit signals to the nucleus for the transcription of genes for increased cellular proliferation, viability, and migration in numerous cell types, including stem cells and fibroblasts. Over the past few years, significant advances have been made in understanding how PBM regulates numerous signalling pathways implicated in chronic wound repair. This review highlights the significant role of PBM in the activation of several cell signalling pathways involved in wound healing.
Collapse
|
190
|
Abstract
Microbes are hardly seen as planktonic species and are most commonly found as biofilm communities in cases of chronic infections. Biofilms are regarded as a biological condition, where a large group of microorganisms gets adhered to a biotic or abiotic surface. In this context, Pseudomonas aeruginosa, a Gram-negative nosocomial pathogen is the main causative organism responsible for life-threatening and persistent infections in individuals affected with cystic fibrosis and other lung ailments. The bacteria can form a strong biofilm structure when it adheres to a surface suitable for the development of a biofilm matrix. These bacterial biofilms pose higher natural resistance to conventional antibiotic therapy due to their multiple tolerance mechanisms. This prevailing condition has led to an increasing rate of treatment failures associated with P. aeruginosa biofilm infections. A better understanding of the effect of a diverse group of antibiotics on established biofilms would be necessary to avoid inappropriate treatment strategies. Hence, the search for other alternative strategies as effective biofilm treatment options has become a growing area of research. The current review aims to give an overview of the mechanisms governing biofilm formation and the different strategies employed so far in the control of biofilm infections caused by P. aeruginosa. Moreover, this review can also help researchers to search for new antibiofilm agents to tackle the effect of biofilm infections that are currently imprudent to conventional antibiotics.
Collapse
|
191
|
Amante C, Esposito T, Del Gaudio P, Di Sarno V, Porta A, Tosco A, Russo P, Nicolais L, Aquino RP. A Novel Three-Polysaccharide Blend In Situ Gelling Powder for Wound Healing Applications. Pharmaceutics 2021; 13:pharmaceutics13101680. [PMID: 34683973 PMCID: PMC8541204 DOI: 10.3390/pharmaceutics13101680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
In this paper, alginate/pectin and alginate/pectin/chitosan blend particles, in the form of an in situ forming hydrogel, intended for wound repair applications, have been successfully developed. Particles have been used to encapsulate doxycycline in order to control the delivery of the drug, enhance its antimicrobial properties, and the ability to inhibit host matrix metalloproteinases. The presence of chitosan in the particles strongly influenced their size, morphology, and fluid uptake properties, as well as drug encapsulation efficiency and release, due to both chemical interactions between the polymers in the blend and interactions with the drug demonstrated by FTIR studies. In vitro antimicrobial studies highlighted an increase in antibacterial activity related to the chitosan amount in the powders. Moreover, in situ gelling powders are able to induce a higher release of IL-8 from the human keratinocytes that could stimulate the wound healing process in difficult-healing. Interestingly, doxycycline-loaded particles are able to increase drug activity against MMPs, with good activity against MMP-9 even at 0.5 μg/mL over 72 h. Such results suggest that such powders rich in chitosan could be a promising dressing for exudating wounds.
Collapse
Affiliation(s)
- Chiara Amante
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
| | - Tiziana Esposito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
- Correspondence: ; Tel.: +39-089-969-247; Fax: +39-089-969-602
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
| | - Paola Russo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
| | - Luigi Nicolais
- Materias s.r.l., University of Naples, “Federico II” Campus San Giovanni a Teduccio, I-80146 Naples, Italy;
| | - Rita P. Aquino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; (C.A.); (T.E.); (V.D.S.); (A.P.); (A.T.); (P.R.); (R.P.A.)
| |
Collapse
|
192
|
Hodge JG, Pistorio AL, Neal CA, Dai H, Nelson-Brantley JG, Steed ME, Korentager RA, Zamierowski DS, Mellott AJ. Novel insights into negative pressure wound healing from an in situ porcine perspective. Wound Repair Regen 2021; 30:64-81. [PMID: 34618990 PMCID: PMC8724420 DOI: 10.1111/wrr.12971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022]
Abstract
Negative pressure wound therapy (NPWT) is used clinically to promote tissue formation and wound closure. In this study, a porcine wound model was used to further investigate the mechanisms as to how NPWT modulates wound healing via utilization of a form of NPWT called the vacuum-assisted closure. To observe the effect of NPWT more accurately, non-NPWT control wounds containing GranuFoam™ dressings, without vacuum exposure, were utilized. In situ histological analysis revealed that NPWT enhanced plasma protein adsorption throughout the GranuFoam™, resulting in increased cellular colonization and tissue ingrowth. Gram staining revealed that NPWT decreased bacterial dissemination to adjacent tissue with greater bacterial localization within the GranuFoam™. Genomic analysis demonstrated the significant changes in gene expression across a number of genes between wounds treated with non-NPWT and NPWT when compared against baseline tissue. However, minimal differences were noted between non-NPWT and NPWT wounds, including no significant differences in expression of collagen, angiogenic, or key inflammatory genes. Similarly, significant increases in immune cell populations were observed from day 0 to day 9 for both non-NPWT and NPWT wounds, though no differences were noted between non-NPWT and NPWT wounds. Furthermore, histological analysis demonstrated the presence of a foreign body response (FBR), with giant cell formation and encapsulation of GranuFoam™ particles. The unique in situ histological evaluation and genomic comparison of non-NPWT and NPWT wounds in this pilot study provided a never-before-shown perspective, offering novel insights into the physiological processes of NPWT and the potential role of a FBR in NPWT clinical outcomes.
Collapse
Affiliation(s)
- Jacob G Hodge
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
| | - Ashley L Pistorio
- Department of Plastic Surgery, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Christopher A Neal
- KIDDRC Imaging Core Facility, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hongyan Dai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Molly E Steed
- Department of Pharmacy Practice, University of Kansas, Lawrence, Kansas, USA
| | - Richard A Korentager
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - David S Zamierowski
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
193
|
Angiogenin and Copper Crossing in Wound Healing. Int J Mol Sci 2021; 22:ijms221910704. [PMID: 34639045 PMCID: PMC8509573 DOI: 10.3390/ijms221910704] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis plays a key role in the wound healing process, involving the migration, growth, and differentiation of endothelial cells. Angiogenesis is controlled by a strict balance of different factors, and among these, the angiogenin protein plays a relevant role. Angiogenin is a secreted protein member of the ribonuclease superfamily that is taken up by cells and translocated to the nucleus when the process of blood vessel formation has to be promoted. However, the chemical signaling that activates the protein, normally present in the plasma, and the transport pathways through which the protein enters the cell are still largely unclear. Copper is also an angiogenic factor that regulates angiogenin expression and participates in the activation of common signaling pathways. The interaction between angiogenin and copper could be a relevant mechanism in regulating the formation of new blood vessel pathways and paving the way to the development of new drugs for chronic non-healing wounds.
Collapse
|
194
|
Ricci E, Pittarello M. Wound bed preparation with hypochlorous acid oxidising solution and standard of care: a prospective case series. J Wound Care 2021; 30:830-838. [PMID: 34644134 DOI: 10.12968/jowc.2021.30.10.830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This prospective case series aims to evaluate the clinical impact of a hypochlorous acid oxidising solution (AOS) in association with usual standard of care (SoC) on wound bed preparation (WBP) in patients with hard-to-heal ulcers of various aetiologies. The AOS (Nexodyn, APR Applied Pharma Research S.A., Switzerland) comprises three main features: highly pure and stabilised hypochlorous acid, acidic pH and high reduction-oxidation potential. METHOD Between February 2015 and February 2017, patients who met the inclusion criteria were treated with AOS and usual SoC. Data collection ran for 70 days: T0-T70. A baseline assessment was undertaken at T0; parameters assessed at fortnightly visits included: WBP score, area and depth of ulcer, duration, pain, Bates-Jensen score and infection status. RESULTS A total of 60 patients took part in the study. By T70, 68.3% of wounds had healed or improved and a significant wound size reduction of 21% was observed (p<0.001), despite a mean wound duration of 20.6 months. All wounds were free of local infection and cellulitis; 10% were colonised. WBP scores improved, while Bates-Jensen and pain scores fell significantly over time. CONCLUSION This evaluation suggests that AOS might represent a valuable therapeutic addition for an optimal WBP in the routine management of hard-to-heal ulcers of different aetiologies. DECLARATION OF INTEREST ER worked as a consultant for APR Applied Pharma Research S.A. The authors have no other conflicts of interest.
Collapse
Affiliation(s)
- Elia Ricci
- St Luca Clinic, Department of Surgery A, Pecetto Torinese (TO), Piedmont, Italy
| | - Monica Pittarello
- St Luca Clinic, Department of Surgery A, Pecetto Torinese (TO), Piedmont, Italy
| |
Collapse
|
195
|
|
196
|
Hendrawan S, Kusnadi Y, Lagonda CA, Fauza D, Lheman J, Budi E, Manurung BS, Baer HU, Tansil Tan S. Wound healing potential of human umbilical cord mesenchymal stem cell conditioned medium: An in vitro and in vivo study in diabetes-induced rats. Vet World 2021; 14:2109-2117. [PMID: 34566328 PMCID: PMC8448625 DOI: 10.14202/vetworld.2021.2109-2117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Aim: Human umbilical cord mesenchymal stem cells (hUC-MSCs) and its conditioned medium (CM) promote wound healing. This study investigated the wound healing potential of hUC-MSC CM in vitro and in vivo using diabetic animal models. Materials and Methods: The CM from hUC-MSC CM prepared under hypoxic conditions (hypoxic hUC-MSC) was evaluated for stimulating rat fibroblast growth, collagen production (in vitro), and wound healing in animal models (in vivo). An excision wound on the dorsal side of the diabetes-induced rats was established, and the rats were randomly divided into non-treatment, antibiotic, and hypoxic hUC-MSC CM groups. The cell number of fibroblasts and collagen secretion was evaluated and compared among the groups in an in vitro study. By contrast, wound size reduction, width of re-epithelialization, and the collagen formation area were assessed and compared among the groups in an in vivo study. Results: CM under hypoxic conditions contained a higher concentration of wound healing-related growth factors. Hypoxic hUC-MSC CM could facilitate fibroblast cell growth and collagen synthesis, although not significant compared with the control group. Re-epithelialization and collagen production were higher in the hUC-MSC CM group than in the antibiotic and non-treatment groups. Conclusion: Hypoxic hUC-MSC CM possessed more positive effects on the wound healing process based on re-epithelialization and collagen formation than antibiotic treatment did.
Collapse
Affiliation(s)
- Siufui Hendrawan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, 11440, Jakarta, Indonesia.,Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Yuyus Kusnadi
- Stem Cell Division, Stem Cell and Cancer Institute, PT. Kalbe Farma, Tbk., 10510, Jakarta, Indonesia
| | - Christine Ayu Lagonda
- Stem Cell Division, Stem Cell and Cancer Institute, PT. Kalbe Farma, Tbk., 10510, Jakarta, Indonesia
| | - Dilafitria Fauza
- Stem Cell Division, Stem Cell and Cancer Institute, PT. Kalbe Farma, Tbk., 10510, Jakarta, Indonesia
| | - Jennifer Lheman
- Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Erwin Budi
- Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Brian Saputra Manurung
- Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Hans Ulrich Baer
- Baermed, Centre of Abdominal Surgery, Hirslanden Clinic, 2501, Zürich, Switzerland.,Department of Visceral and Transplantation Surgery, University of Bern, 3012, Bern, Switzerland
| | - Sukmawati Tansil Tan
- Department of Dermatovenereology, Faculty of Medicine, Tarumanagara University, 11440, Jakarta, Indonesia
| |
Collapse
|
197
|
New Adapted In Vitro Technology to Evaluate Biofilm Formation and Antibiotic Activity Using Live Imaging under Flow Conditions. Diagnostics (Basel) 2021; 11:diagnostics11101746. [PMID: 34679444 PMCID: PMC8535051 DOI: 10.3390/diagnostics11101746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022] Open
Abstract
The polymicrobial nature of biofilms and bacterial interactions inside chronic wounds are keys for the understanding of bacterial cooperation. The aim of this present study was to develop a technique to study and visualize biofilm in live imaging under flow conditions (Bioflux™ 200, Fluxion Biosciences). The BiofluxTM system was adapted using an in vitro chronic wound-like medium (CWM) that mimics the environment encountered in ulcers. Two reference strains of Staphylococcus aureus (Newman) and Pseudomonas aeruginosa (PAO1) were injected in the BiofluxTM during 24 h to 72 h in mono and coculture (ratio 1:1, bacteria added simultaneously) in the CWM vs. a control medium (BHI). The quantification of biofilm formation at each time was evaluated by inverted microscopy. After 72 h, different antibiotics (ceftazidime, imipenem, linezolid, oxacillin and vancomycin) at 1x MIC, 10x MIC and 100x MIC were administrated to the system after an automatic increase of the flow that mimicked a debridement of the wound surface. Biofilm studies highlighted that the two species, alone or associated, constituted a faster and thicker biofilm in the CWM compared to the BHI medium. The effect of antibiotics on mature or “debrided” biofilm indicated that some of the most clinically used antibiotic such as vancomycin or imipenem were not able to disrupt and reduce the biofilm biomass. The use of a life cell imaging with an in vitro CWM represents a promising tool to study bacterial biofilm and investigate microbial cooperation in a chronic wound context.
Collapse
|
198
|
Berni P, Leonardi F, Conti V, Ramoni R, Grolli S, Mattioli G. Case Report: A Novel Ventilated Thermoplastic Mesh Bandage for Post-operative Management of Large Soft Tissue Defects: A Case Series of Three Dogs Treated With Autologous Platelet Concentrates. Front Vet Sci 2021; 8:704567. [PMID: 34540933 PMCID: PMC8440817 DOI: 10.3389/fvets.2021.704567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/12/2021] [Indexed: 11/24/2022] Open
Abstract
A ventilated thermoplastic mesh bandage was used for the post-operative management of large soft tissue defects in three dogs. Once the granulation tissue appeared, the wounds were treated with liquid or jellified autologous platelet concentrates, Platelet Rich Plasma (PRP) and Platelet Lysate (PL), to improve the wound healing process. After cleaning the wound with sterile physiological solution, a dressing was performed with several layers of cotton. A window through the layers of cotton was opened above the wound. Then, the platelet concentrate was topically applied, and the bandage was completed by placing, over the access window, a ventilated thermoplastic mesh modeled according to the size and shape of the wound. After 24 h, it was replaced by a low adhesion bandage. The thermoplastic mesh avoids the direct contact between the wound and the external layers of the bandage, preventing the drainage of the topical agent and the removal of the growing healthy granulation tissue. The bandage proposed in this study is easily applied by the veterinarian and well-tolerated by the animal, ensuring high welfare standards in stressed patients presenting compromised clinical conditions.
Collapse
Affiliation(s)
- Priscilla Berni
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Fabio Leonardi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Virna Conti
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Roberto Ramoni
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Stefano Grolli
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | |
Collapse
|
199
|
Peripheral Immune Dysfunction: A Problem of Central Importance after Spinal Cord Injury. BIOLOGY 2021; 10:biology10090928. [PMID: 34571804 PMCID: PMC8470244 DOI: 10.3390/biology10090928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Spinal cord injury can result in an increased vulnerability to infections, but until recently the biological mechanisms behind this observation were not well defined. Immunosuppression and concurrent sustained peripheral inflammation after spinal cord injury have been observed in preclinical and clinical studies, now termed spinal cord injury-induced immune depression syndrome. Recent research indicates a key instigator of this immune dysfunction is altered sympathetic input to lymphoid organs, such as the spleen, resulting in a wide array of secondary effects that can, in turn, exacerbate immune pathology. In this review, we discuss what we know about immune dysfunction after spinal cord injury, why it occurs, and how we might treat it. Abstract Individuals with spinal cord injuries (SCI) exhibit increased susceptibility to infection, with pneumonia consistently ranking as a leading cause of death. Despite this statistic, chronic inflammation and concurrent immune suppression have only recently begun to be explored mechanistically. Investigators have now identified numerous changes that occur in the peripheral immune system post-SCI, including splenic atrophy, reduced circulating lymphocytes, and impaired lymphocyte function. These effects stem from maladaptive changes in the spinal cord after injury, including plasticity within the spinal sympathetic reflex circuit that results in exaggerated sympathetic output in response to peripheral stimulation below injury level. Such pathological activity is particularly evident after a severe high-level injury above thoracic spinal cord segment 6, greatly increasing the risk of the development of sympathetic hyperreflexia and subsequent disrupted regulation of lymphoid organs. Encouragingly, studies have presented evidence for promising therapies, such as modulation of neuroimmune activity, to improve regulation of peripheral immune function. In this review, we summarize recent publications examining (1) how various immune functions and populations are affected, (2) mechanisms behind SCI-induced immune dysfunction, and (3) potential interventions to improve SCI individuals’ immunological function to strengthen resistance to potentially deadly infections.
Collapse
|
200
|
Awonuga AO, Chatzicharalampous C, Thakur M, Rambhatla A, Qadri F, Awonuga M, Saed G, Diamond MP. Genetic and Epidemiological Similarities, and Differences Between Postoperative Intraperitoneal Adhesion Development and Other Benign Fibro-proliferative Disorders. Reprod Sci 2021; 29:3055-3077. [PMID: 34515982 DOI: 10.1007/s43032-021-00726-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
Intraperitoneal adhesions complicate over half of abdominal-pelvic surgeries with immediate, short, and long-term sequelae of major healthcare concern. The pathogenesis of adhesion development is similar to the pathogenesis of wound healing in all tissues, which if unchecked result in production of fibrotic conditions. Given the similarities, we explore the published literature to highlight the similarities in the pathogenesis of intra-abdominal adhesion development (IPAD) and other fibrotic diseases such as keloids, endometriosis, uterine fibroids, bronchopulmonary dysplasia, and pulmonary, intraperitoneal, and retroperitoneal fibrosis. Following a literature search using PubMed database for all relevant English language articles up to November 2020, we reviewed relevant articles addressing the genetic and epidemiological similarities and differences in the pathogenesis and pathobiology of fibrotic diseases. We found genetic and epidemiological similarities and differences between the pathobiology of postoperative IPAD and other diseases that involve altered fibroblast-derived cells. We also found several genes and single nucleotide polymorphisms that are up- or downregulated and whose products directly or indirectly increase the propensity for postoperative adhesion development and other fibrotic diseases. An understanding of the similarities in pathophysiology of adhesion development and other fibrotic diseases contributes to a greater understanding of IPAD and these disease processes. At a very fundamental level, blocking changes in the expression or function of genes necessary for the transformation of normal to altered fibroblasts may curtail adhesion formation and other fibrotic disease since this is a prerequisite for their development. Similarly, applying measures to induce apoptosis of altered fibroblast may do the same; however, apoptosis should be at a desired level to simultaneously ameliorate development of fibrotic diseases while allowing for normal healing. Scientists may use such information to develop pharmacologic interventions for those most at risk for developing these fibrotic conditions.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Charalampos Chatzicharalampous
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mili Thakur
- Reproductive Genomics Program, The Fertility Center, Grand Rapids, MI, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Anupama Rambhatla
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Farnoosh Qadri
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Modupe Awonuga
- Division of Neonatology, Department of Pediatrics and Human Development, Michigan State University, 1355 Bogue Street, East Lansing, MI, USA
| | - Ghassan Saed
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Augusta University, 1120 15th Street, CJ-1036, Augusta, GA, 30912, USA
| |
Collapse
|