151
|
Brown CS, Rabinstein AA, Nystrom EM, Britton JW, Singh TD. Antiseizure Medication use in Gastric Bypass Patients and Other Post-Surgical Malabsorptive States. Epilepsy Behav Rep 2021; 16:100439. [PMID: 33997757 PMCID: PMC8093413 DOI: 10.1016/j.ebr.2021.100439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 11/02/2022] Open
Abstract
Healthcare professionals are encountering an increasing number of patients who have undergone bariatric surgeries. Antiseizure medications (ASM) have a narrow therapeutic window, and patients with malabsorptive states receiving ASM present a complex situation as the pharmacokinetics of these drugs have only been studied in patients with a normal functioning gastrointestinal tract. Patients with malabsorptive states may have altered pharmacokinetics, and there is limited literature to guide drug selection and dosage adjustment in patients with malabsorptive states. This review highlights pharmacokinetic parameters of common ASM, and considerations when managing patients on them. The effect of pH, lipophilicity, absorption, and metabolism should be taken into account when selecting and managing ASMs in this patient population. Based on these parameters, levetiracetam, and topiramate have fewer issues referable to absorption related to bariatric surgery while oral formulations of phenytoin, carbamazepine, oxcarbamazepine and valproic acid have reduced absorption due to effects of bariatric surgery based on the pharmacokinetic properties of these medications. Extended formulations should be avoided and ASM serum concentrations should be checked before and after surgery. The care of patients with epilepsy who are scheduled to undergo bariatric surgery should be guided by a multidisciplinary team including a pharmacist and a neurologist who should be involved in the adjustment of the ASMs throughout the pre-surgical and post-surgical periods.
Collapse
Affiliation(s)
- Caitlin S. Brown
- Department of Pharmacy, Mayo Clinic, Rochester, MN, United States
| | | | - Erin M. Nystrom
- Department of Pharmacy, Mayo Clinic, Rochester, MN, United States
| | | | - Tarun D. Singh
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
152
|
Carona A, Bicker J, Silva R, Fonseca C, Falcão A, Fortuna A. Pharmacology of lacosamide: From its molecular mechanisms and pharmacokinetics to future therapeutic applications. Life Sci 2021; 275:119342. [PMID: 33713668 DOI: 10.1016/j.lfs.2021.119342] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 01/14/2023]
Abstract
Epilepsy is one of the most common brain disorders, affecting more than 50 million people worldwide. Although its treatment is currently symptomatic, the last generation of anti-seizure drugs is characterized by better pharmacokinetic profiles, efficacy, tolerability and safety. Lacosamide is a third-generation anti-seizure drug that stands out due to its good efficacy and safety profile. It is used with effectiveness in the treatment of partial-onset seizures with or without secondary generalization, primary generalized tonic-clonic seizures and off-label in status epilepticus. Despite scarcely performed until today, therapeutic drug monitoring of lacosamide is proving to be advantageous by allowing the control of inter and intra-individual variability and promoting a successful personalized therapy, particularly in special populations. Herein, the pharmacology, pharmacokinetics, and clinical data of lacosamide were reviewed, giving special emphasis to the latest molecular investigations underlying its mechanism of action and therapeutic applications in pathologies besides epilepsy. In addition, the pharmacokinetic characteristics of lacosamide were updated, as well as current literature concerning the high pharmacokinetic variability observed in special patient populations and that must be considered during treatment individualization.
Collapse
Affiliation(s)
- Andreia Carona
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Rui Silva
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Carla Fonseca
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| |
Collapse
|
153
|
Iannaccone T, Sellitto C, Manzo V, Colucci F, Giudice V, Stefanelli B, Iuliano A, Corrivetti G, Filippelli A. Pharmacogenetics of Carbamazepine and Valproate: Focus on Polymorphisms of Drug Metabolizing Enzymes and Transporters. Pharmaceuticals (Basel) 2021; 14:204. [PMID: 33804537 PMCID: PMC8001195 DOI: 10.3390/ph14030204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
Pharmacogenomics can identify polymorphisms in genes involved in drug pharmacokinetics and pharmacodynamics determining differences in efficacy and safety and causing inter-individual variability in drug response. Therefore, pharmacogenomics can help clinicians in optimizing therapy based on patient's genotype, also in psychiatric and neurological settings. However, pharmacogenetic screenings for psychotropic drugs are not routinely employed in diagnosis and monitoring of patients treated with mood stabilizers, such as carbamazepine and valproate, because their benefit in clinical practice is still controversial. In this review, we summarize the current knowledge on pharmacogenetic biomarkers of these anticonvulsant drugs.
Collapse
Affiliation(s)
- Teresa Iannaccone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Valentina Manzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Francesca Colucci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Berenice Stefanelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Antonio Iuliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Giulio Corrivetti
- European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy;
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
154
|
Devinsky O, King L, Bluvstein J, Friedman D. Ataluren for drug-resistant epilepsy in nonsense variant-mediated Dravet syndrome and CDKL5 deficiency disorder. Ann Clin Transl Neurol 2021; 8:639-644. [PMID: 33538404 PMCID: PMC7951093 DOI: 10.1002/acn3.51306] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/03/2023] Open
Abstract
Objective Ataluren is a compound that reads through premature stop codons and increases protein expression by increasing translation without modifying transcription or mRNA stability. We investigated the safety and efficacy of ataluren in children with nonsense variants causing Dravet Syndrome (DS) and CDKL5 Deficiency Syndrome (CDD). Methods This single‐center double‐blind, placebo‐controlled crossover trial randomized subjects to receive ataluren or placebo for 12 weeks (period 1), a 4‐week washout, then another 12‐week treatment (period 2). The primary outcome was ataluren’s safety profile. The secondary outcome measures were (1) changes in convulsive and/or drop seizure frequency and (2) changes in minor seizure types during ataluren treatment compared to placebo. Exploratory objectives assessed changes in cognitive, motor, and behavioral function as well as quality of life during ataluren therapy. Results We enrolled seven subjects with DS and eight subjects with CDD. Three treatment‐related adverse events (AE) occurred during the blinded phases. Two subjects withdrew due to AE. Ataluren was not effective in reducing seizure frequency or improving cognitive, motor, or behavioral function or quality of life in subjects with either DS or CDD due to nonsense variants. Limitations included a small sample size and 12‐week treatment phase, possibly too short to identify a disease‐modifying effect. Significance There was no difference between ataluren and placebo; ataluren is not an effective therapy for seizures or other disorders in children with DS or CDD due to nonsense variants. There were no drug‐related serious AE during the double‐blind period, consistent with ataluren’s favorable safety profile in larger studies. (Funded by Epilepsy Foundation, Dravet Syndrome Foundation, Finding A Cure for Seizures and Epilepsy and PTC Therapeutics, Inc.; ClinicalTrials.gov number, NCT02758626).
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, NYU Langone Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, New York, USA
| | - LaToya King
- Department of Neurology, NYU Langone Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Judith Bluvstein
- Department of Neurology, NYU Langone Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Daniel Friedman
- Department of Neurology, NYU Langone Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
155
|
Banono NS, Gawel K, De Witte L, Esguerra CV. Zebrafish Larvae Carrying a Splice Variant Mutation in cacna1d: A New Model for Schizophrenia-Like Behaviours? Mol Neurobiol 2021; 58:877-894. [PMID: 33057948 PMCID: PMC7843589 DOI: 10.1007/s12035-020-02160-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Persons with certain single nucleotide polymorphisms (SNPs) in the CACNA1D gene (encoding voltage-gated calcium channel subunit alpha 1-D) have increased risk of developing neuropsychiatric disorders such as bipolar, schizophrenia and autism. The molecular consequences of SNPs on gene expression and protein function are not well understood. Thus, the use of animal models to determine genotype-phenotype correlations is critical to understanding disease pathogenesis. Here, we describe the behavioural changes in larval zebrafish carrying an essential splice site mutation (sa17298) in cacna1da. Heterozygous mutation resulted in 50% reduction of splice variants 201 and 202 (haploinsufficiency), while homozygosity increased transcript levels of variant 201 above wild type (WT; gain-of-function, GOF). Due to low homozygote viability, we focused primarily on performing the phenotypic analysis on heterozygotes. Indeed, cacna1dasa17298/WT larvae displayed hyperlocomotion-a behaviour characterised in zebrafish as a surrogate phenotype for epilepsy, anxiety or psychosis-like behaviour. Follow-up tests ruled out anxiety or seizures, however, as neither thigmotaxis defects nor epileptiform-like discharges in larval brains were observed. We therefore focused on testing for potential "psychosis-like" behaviour by assaying cacna1dasa17298/WT larval locomotor activity under constant light, during light-dark transition and in startle response to dark flashes. Furthermore, exposure of larvae to the antipsychotics, risperidone and haloperidol reversed cacna1da-induced hyperactivity to WT levels while valproate decreased but did not reverse hyperactivity. Together, these findings demonstrate that cacna1da haploinsufficiency induces behaviours in larval zebrafish analogous to those observed in rodent models of psychosis. Future studies on homozygous mutants will determine how cacna1d GOF alters behaviour in this context.
Collapse
Affiliation(s)
- Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
| | - Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090, Lublin, Poland
| | - Linus De Witte
- Pharmaceutical and Biological Sciences, AP Hogeschool Antwerpen, Antwerp, Belgium
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway.
- School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Sælandsvei 24, 0371, Oslo, Norway.
| |
Collapse
|
156
|
Vázquez M, García-Carnelli C, Maldonado C, Fagiolino P. Clinical Pharmacokinetics of Cannabinoids and Potential Drug-Drug Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:27-42. [PMID: 33537935 DOI: 10.1007/978-3-030-61663-2_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the past few years, considerable attention has focused on cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), the two major constituents of Cannabis sativa, mainly due to the promising potential medical uses they have shown. However, more information on the fate of these cannabinoids in human subjects is still needed and there is limited research on the pharmacokinetic drug-drug interactions that can occur in the clinical setting and their prevalence. As the use of cannabinoids is substantially increasing for many indications and they are not the first-line therapy in any treatment, health care professionals must be aware of drug-drug interactions during their use as serious adverse events can happen related with toxic or ineffective outcomes. The present chapter overview summarizes our current knowledge on the pharmacokinetics and metabolic fate of CBD and THC in humans and discusses relevant drug-drug interactions, giving a plausible explanation to facilitate further research in the area.
Collapse
Affiliation(s)
- Marta Vázquez
- Pharmaceutical Sciences Department, Faculty of Chemistry, University of the Republic, Montevideo, Uruguay.
| | - Carlos García-Carnelli
- Pharmacognosy & Natural Products Laboratory, Organic Chemistry Department, Faculty of Chemistry, University of the Republic, Montevideo, Uruguay
| | - Cecilia Maldonado
- Pharmaceutical Sciences Department, Faculty of Chemistry, University of the Republic, Montevideo, Uruguay
| | - Pietro Fagiolino
- Pharmaceutical Sciences Department, Faculty of Chemistry, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
157
|
Narumi R, Liu S, Ikeda N, Morita O, Tasaki J. Chemical-Induced Cleft Palate Is Caused and Rescued by Pharmacological Modulation of the Canonical Wnt Signaling Pathway in a Zebrafish Model. Front Cell Dev Biol 2020; 8:592967. [PMID: 33381503 PMCID: PMC7767894 DOI: 10.3389/fcell.2020.592967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Cleft palate is one of the most frequent birth defects worldwide. It causes severe problems regarding eating and speaking and requires long-term treatment. Effective prenatal treatment would contribute to reducing the risk of cleft palate. The canonical Wnt signaling pathway is critically involved in palatogenesis, and genetic or chemical disturbance of this signaling pathway leads to cleft palate. Presently, preventative treatment for cleft palate during prenatal development has limited efficacy, but we expect that zebrafish will provide a useful high-throughput chemical screening model for effective prevention. To achieve this, the zebrafish model should recapitulate cleft palate development and its rescue by chemical modulation of the Wnt pathway. Here, we provide proof of concept for a zebrafish chemical screening model. Zebrafish embryos were treated with 12 chemical reagents known to induce cleft palate in mammals, and all 12 chemicals induced cleft palate characterized by decreased proliferation and increased apoptosis of palatal cells. The cleft phenotype was enhanced by combinatorial treatment with Wnt inhibitor and teratogens. Furthermore, the expression of tcf7 and lef1 as a readout of the pathway was decreased. Conversely, cleft palate was prevented by Wnt agonist and the cellular defects were also prevented. In conclusion, we provide evidence that chemical-induced cleft palate is caused by inhibition of the canonical Wnt pathway. Our results indicate that this zebrafish model is promising for chemical screening for prevention of cleft palate as well as modulation of the Wnt pathway as a therapeutic target.
Collapse
Affiliation(s)
- Rika Narumi
- R&D, Safety Science Research, Kao Corporation, Kawasaki, Japan
| | - Shujie Liu
- R&D, Safety Science Research, Kao Corporation, Ichikai-machi, Japan
| | - Naohiro Ikeda
- R&D, Safety Science Research, Kao Corporation, Kawasaki, Japan
| | - Osamu Morita
- R&D, Safety Science Research, Kao Corporation, Ichikai-machi, Japan
| | - Junichi Tasaki
- R&D, Safety Science Research, Kao Corporation, Kawasaki, Japan
| |
Collapse
|
158
|
Carvalho Henriques B, Yang EH, Lapetina D, Carr MS, Yavorskyy V, Hague J, Aitchison KJ. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing? Front Genet 2020; 11:491895. [PMID: 33363564 PMCID: PMC7753050 DOI: 10.3389/fgene.2020.491895] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Many genetic variants in drug metabolizing enzymes and transporters have been shown to be relevant for treating psychiatric disorders. Associations are strong enough to feature on drug labels and for prescribing guidelines based on such data. A range of commercial tests are available; however, there is variability in included genetic variants, methodology, and interpretation. We herein provide relevant background for understanding clinical associations with specific variants, other factors that are relevant to consider when interpreting such data (such as age, gender, drug-drug interactions), and summarize the data relevant to clinical utility of pharmacogenetic testing in psychiatry and the available prescribing guidelines. We also highlight areas for future research focus in this field.
Collapse
Affiliation(s)
| | - Esther H. Yang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Diego Lapetina
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michael S. Carr
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Vasyl Yavorskyy
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Joshua Hague
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Katherine J. Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
159
|
Incidence, Presentation, and Risk Factors for Sodium Valproate–Associated Hyperammonemia in Neurosurgical Patients: A Prospective, Observational Study. World Neurosurg 2020; 144:e597-e604. [DOI: 10.1016/j.wneu.2020.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022]
|
160
|
Effects of SCN1A and SCN2A polymorphisms on responsiveness to valproic acid monotherapy in epileptic children. Epilepsy Res 2020; 168:106485. [DOI: 10.1016/j.eplepsyres.2020.106485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
|
161
|
Andreu S, Ripa I, Bello-Morales R, López-Guerrero JA. Valproic Acid and Its Amidic Derivatives as New Antivirals against Alphaherpesviruses. Viruses 2020; 12:v12121356. [PMID: 33256172 PMCID: PMC7760627 DOI: 10.3390/v12121356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex viruses (HSVs) are neurotropic viruses with broad host range whose infections cause considerable health problems in both animals and humans. In fact, 67% of the global population under the age of 50 are infected with HSV-1 and 13% have clinically recurrent HSV-2 infections. The most prescribed antiherpetics are nucleoside analogues such as acyclovir, but the emergence of mutants resistant to these drugs and the lack of available vaccines against human HSVs has led to an imminent need for new antivirals. Valproic acid (VPA) is a branched short-chain fatty acid clinically used as a broad-spectrum antiepileptic drug in the treatment of neurological disorders, which has shown promising antiviral activity against some herpesviruses. Moreover, its amidic derivatives valpromide and valnoctamide also share this antiherpetic activity. This review summarizes the current research on the use of VPA and its amidic derivatives as alternatives to traditional antiherpetics in the fight against HSV infections.
Collapse
Affiliation(s)
- Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (R.B.-M.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain
- Correspondence:
| | - Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (R.B.-M.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (R.B.-M.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (R.B.-M.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
162
|
Bass JS, Tuo AH, Ton LT, Jankovic MJ, Kapadia PK, Schirmer C, Krishnan V. On the Digital Psychopharmacology of Valproic Acid in Mice. Front Neurosci 2020; 14:594612. [PMID: 33240040 PMCID: PMC7677503 DOI: 10.3389/fnins.2020.594612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Antiepileptic drugs (AEDs) require daily ingestion for maximal seizure prophylaxis. Adverse psychiatric consequences of AEDs present as: (i) reversible changes in mood, anxiety, anger and/or irritability that often necessitate drug discontinuation, and (ii) autism and/or cognitive/psychomotor delays following fetal exposure. Technical advances in quantifying naturalistic rodent behaviors may provide sensitive preclinical estimates of AED psychiatric tolerability and neuropsychiatric teratogenicity. In this study, we applied instrumented home-cage monitoring to assess how valproic acid (VPA, dissolved in sweetened drinking water) alters home-cage behavior in adult C57BL/6J mice and in the adult offspring of VPA-exposed breeder pairs. Through a pup open field assay, we also examined how prenatal VPA exposure impacts early spontaneous exploratory behavior. At 500-600 mg/kg/d, chronic VPA produced hyperphagia and increased wheel-running without impacting sleep, activity and measures of risk aversion. When applied to breeder pairs of mice throughout gestation, VPA prolonged the latency to viable litters without affecting litter size. Two-weeks old VPA-exposed pups displayed open field hypoactivity without alterations in thigmotaxis. As adults, prenatal VPA-exposed mice displayed active state fragmentation, hypophagia and increased wheel running, together with subtle alterations in home-cage dyadic behavior. Together, these data illustrate how automated home-cage assessments of spontaneous behavior capture an ethologically centered psychopharmacological profile of enterally administered VPA that is aligned with human clinical experience. By characterizing the effects of pangestational VPA exposure, we discover novel murine expressions of pervasive neurodevelopment. Incorporating such rigorous assessments of psychological tolerability may inform the design of future AEDs with improved neuropsychiatric safety profiles, both for patients and their offspring.
Collapse
Affiliation(s)
- John Samuel Bass
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Anney H. Tuo
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Linh T. Ton
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Miranda J. Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Paarth K. Kapadia
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Catharina Schirmer
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Vaishnav Krishnan
- Departments of Neuroscience, Psychiatry and Behavioral Sciences, Baylor Comprehensive Epilepsy Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
163
|
Sommerfeld-Klatta K, Zielińska-Psuja B, Karaźniewcz-Łada M, Główka FK. New Methods Used in Pharmacokinetics and Therapeutic Monitoring of the First and Newer Generations of Antiepileptic Drugs (AEDs). Molecules 2020; 25:E5083. [PMID: 33147810 PMCID: PMC7663638 DOI: 10.3390/molecules25215083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022] Open
Abstract
The review presents data from the last few years on bioanalytical methods used in therapeutic drug monitoring (TDM) of the 1st-3rd generation and the newest antiepileptic drug (AEDs) cenobamate in patients with various forms of seizures. Chemical classification, structure, mechanism of action, pharmacokinetic data and therapeutic ranges for total and free fractions and interactions were collected. The primary data on bioanalytical methods for AEDs determination included biological matrices, sample preparation, dried blood spot (DBS) analysis, column resolution, detection method, validation parameters, and clinical utility. In conclusion, the most frequently described method used in AED analysis is the LC-based technique (HPLC, UHPLC, USLC) combined with highly sensitive mass detection or fluorescence detection. However, less sensitive UV is also used. Capillary electrophoresis and gas chromatography have been rarely applied. Besides the precipitation of proteins or LLE, an automatic SPE is often a sample preparation method. Derivatization was also indicated to improve sensitivity and automate the analysis. The usefulness of the methods for TDM was also highlighted.
Collapse
Affiliation(s)
- Karina Sommerfeld-Klatta
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (K.S.-K.); (B.Z.-P.)
| | - Barbara Zielińska-Psuja
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznań, Poland; (K.S.-K.); (B.Z.-P.)
| | - Marta Karaźniewcz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Poznań, Poland;
| | - Franciszek K. Główka
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Poznań, Poland;
| |
Collapse
|
164
|
Wahba A, Bergez E. Severe Pancytopenia Induced by Valproic Acid. Cureus 2020; 12:e11252. [PMID: 33269170 PMCID: PMC7707128 DOI: 10.7759/cureus.11252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Valproic acid is commonly used to treat pediatric epilepsy. This drug is usually well-tolerated; its side effects are typically mild, with hepatotoxicity being the most widely recognized one. Bone marrow suppression is a rarely seen complication in patients with valproic acid levels more than 125 mcg/mL. Reported cases indicate an increased incidence of hematologic toxicity; however, evidence for management is limited. We report a case of bone marrow suppression induced by a high dose of valproic acid in a 10-year-old male.
Collapse
Affiliation(s)
- Andrew Wahba
- Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA
| | - Emmalee Bergez
- Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA
| |
Collapse
|
165
|
Clinical Relevance of Pharmacogenetics in Serotonin Syndrome. Case Rep Psychiatry 2020; 2020:8860434. [PMID: 33101751 PMCID: PMC7568165 DOI: 10.1155/2020/8860434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023] Open
Abstract
Serotonin syndrome is a predictable life-threatening condition that is caused by serotonergic stimulation of the central and peripheral nervous systems. A patient's genetic profile can amplify exposure risk as many serotonergic drugs are metabolized by CYP450 enzymes, and these enzymes may be altered in functionality. We report a case of an elderly man who presented with serotonin syndrome after a dose change in valproic acid 5 weeks prior. His medication list consisted of low-dose serotonergic agents, which is unusual as most cases of serotonin syndrome involve higher doses. A review of his pharmacogenetic profile is presented to retrospectively evaluate the additive risk for serotonin syndrome and implications on resuming serotonergic agents.
Collapse
|
166
|
Association Between the Serum Carnitine Level and Ammonia and Valproic Acid Levels in Patients with Bipolar Disorder. Ther Drug Monit 2020; 42:766-770. [DOI: 10.1097/ftd.0000000000000778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
167
|
Methaneethorn J, Leelakanok N. Predictive ability of published population pharmacokinetic models of valproic acid in Thai manic patients. J Clin Pharm Ther 2020; 46:198-207. [PMID: 32986889 DOI: 10.1111/jcpt.13280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Population pharmacokinetic (PopPK) models of valproic acid (VPA) have been developed to aid individualized drug dosing, but most of these have been based on the treatment of epileptic patients and recent evidence shows that VPA clearance (CLVPA ) in manic patients differs from that in epileptic patients. In the light of this, the predictive ability of selected VPA PopPK models based on epileptic patients was assessed to determine whether they could be used with patients with mania. METHODS VPA PopPK models that were based on the treatment of epileptic patients and developed using a non-linear mixed-effect approach with a one-compartment structure were selected and used to predict the VPA concentrations of a validation data set. The mean absolute prediction error (MAPE) and root mean square error (RMSE) were used to assess the accuracy and precision of the model. RESULTS The validation data set consisted of 235 Thai manic patients with a mean age of 39.6 years and a mean weight of 62.8 kg. Five models were selected to predict VPA concentrations in patients suffering from mania, and these were labelled A, C, E, F and G. The results showed that all models sufficiently predicted VPA concentrations in patients with mania, and of the models studied, G provided the most accurate and precise predictions, with MAPE and RMSE of 23% and 29.75, respectively. WHAT IS NEW AND CONCLUSION VPA PopPK models developed using patients with epilepsy can also be used for individualized dosing of patients with mania, but before implementation, the accuracy of these models' predictions should be assessed in the target population.
Collapse
Affiliation(s)
- Janthima Methaneethorn
- Pharmacokinetic Research Unit, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Center of Excellence for Environmental Health and Toxicology, Naresuan University, Phitsanulok, Thailand
| | - Nattawut Leelakanok
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
168
|
Orsolini L, Pompili S, Volpe U. The ‘collateral side’ of mood stabilizers: safety and evidence-based strategies for managing side effects. Expert Opin Drug Saf 2020; 19:1461-1495. [DOI: 10.1080/14740338.2020.1820984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Laura Orsolini
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- Unit of Clinical Psychiatry, Department of Neurosciences/DIMSC, Polytechnic University of Marche, Ancona, Italy
| | - Simone Pompili
- Unit of Clinical Psychiatry, Department of Neurosciences/DIMSC, Polytechnic University of Marche, Ancona, Italy
| | - Umberto Volpe
- Unit of Clinical Psychiatry, Department of Neurosciences/DIMSC, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
169
|
Allegaert K, van den Anker J. Ontogeny of Phase I Metabolism of Drugs. J Clin Pharmacol 2020; 59 Suppl 1:S33-S41. [PMID: 31502685 DOI: 10.1002/jcph.1483] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Capturing ontogeny of enzymes involved in phase I metabolism is crucial to improve prediction of dose-concentration and concentration-effect relationships throughout infancy and childhood. Once captured, these patterns can be integrated in semiphysiologically or physiology-based pharmacokinetic models to support predictions in specific pediatric settings or to support pediatric drug development. Although these translational efforts are crucial, isoenzyme-specific ontogeny-based models should also incorporate data on variability of maturational and nonmaturational covariates (eg, disease, treatment modalities, pharmacogenetics). Therefore, this review provides a summary of the ontogeny of phase I drug-metabolizing enzymes, indicating current knowledge gaps and recent progresses. Furthermore, we tried to illustrate that straightforward translation of isoenzyme-specific ontogeny to predictions does not allow full exploration of scenarios of potential variability related to maturational (non-age-related variability, other isoenzymes or transporters) or nonmaturational (disease, pharmacogenetics) covariates, and necessitates integration in a "systems" concept.
Collapse
Affiliation(s)
- Karel Allegaert
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Health System, Washington, DC, USA
- Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
- Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
170
|
Patsalos PN, Szaflarski JP, Gidal B, VanLandingham K, Critchley D, Morrison G. Clinical implications of trials investigating drug-drug interactions between cannabidiol and enzyme inducers or inhibitors or common antiseizure drugs. Epilepsia 2020; 61:1854-1868. [PMID: 32918835 PMCID: PMC7693203 DOI: 10.1111/epi.16674] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022]
Abstract
Highly purified cannabidiol (CBD) has demonstrated efficacy with an acceptable safety profile in patients with Lennox-Gastaut syndrome or Dravet syndrome in randomized, double-blind, add-on, controlled phase 3 trials. It is important to consider the possibility of drug-drug interactions (DDIs). Here, we review six trials of CBD (Epidiolex/Epidyolex; 100 mg/mL oral solution) in healthy volunteers or patients with epilepsy, which investigated potential interactions between CBD and enzymes involved in drug metabolism of common antiseizure drugs (ASDs). CBD did not affect CYP3A4 activity. Induction of CYP3A4 and CYP2C19 led to small reductions in exposure to CBD and its major metabolites. Inhibition of CYP3A4 activity did not affect CBD exposure and caused small increases in exposure to CBD metabolites. Inhibition of CYP2C19 activity led to a small increase in exposure to CBD and small decreases in exposure to CBD metabolites. One potentially clinically important DDI was identified: combination of CBD and clobazam (CLB) did not affect CBD or CLB exposure, but increased exposure to major metabolites of both compounds. Reduction of CLB dose may be considered if adverse reactions known to occur with CLB are experienced when it is coadministered with CBD. There was a small increase of exposure to stiripentol (STP) when coadministered with CBD. STP had no effect on CBD exposure but led to minor decreases in exposure to CBD metabolites. Combination of CBD and valproate (VPA) did not cause clinically important changes in the pharmacokinetics of either drug, or 2-propyl-4-pentenoic acid. Concomitant VPA caused small increases in exposure to CBD metabolites. Dose adjustments are not likely to be necessary when CBD is combined with STP or VPA. The safety results from these trials were consistent with the known safety profile of CBD. These trials indicate an overall low potential for DDIs between CBD and other ASDs, except for CLB.
Collapse
Affiliation(s)
- Philip N Patsalos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Jerzy P Szaflarski
- Department of Neurology and University of Alabama at Birmingham Epilepsy Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Barry Gidal
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
171
|
Verhelst S, De Clerck L, Willems S, Van Puyvelde B, Daled S, Deforce D, Dhaenens M. Comprehensive histone epigenetics: A mass spectrometry based screening assay to measure epigenetic toxicity. MethodsX 2020; 7:101055. [PMID: 32995308 PMCID: PMC7508989 DOI: 10.1016/j.mex.2020.101055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 01/23/2023] Open
Abstract
Evidence of the involvement of epigenetics in pathologies such as cancer, diabetes, and neurodegeneration has increased global interest in epigenetic modifications. For nearly thirty years, it has been known that cancer cells exhibit abnormal DNA methylation patterns. In contrast, the large-scale analysis of histone post-translational modifications (hPTMs) has lagged behind because classically, histone modification analysis has relied on site specific antibody-based techniques. Mass spectrometry (MS) is a technique that holds the promise to picture the histone code comprehensively in a single experiment. Therefore, we developed an MS-based method that is capable of tracking all possible hPTMs in an untargeted approach. In this way, trends in single and combinatorial hPTMs can be reported and enable prediction of the epigenetic toxicity of compounds. Moreover, this method is based on the use of human cells to provide preliminary data, thereby omitting the need to sacrifice laboratory animals. Improving the workflow and the user-friendliness in order to become a high throughput, easily applicable, toxicological screening assay is an ongoing effort. Still, this novel toxicoepigenetic assay and the data it generates holds great potential for, among others, pharmaceutical industry, food science, clinical diagnostics and, environmental toxicity screening. •There is a growing interest in epigenetic modifications, and more specifically in histone post-translational modifications (hPTMs).•We describe an MS-based workflow that is capable of tracking all possible hPTMs in an untargeted approach that makes use of human cells.•Improving the workflow and the user-friendliness in order to become a high throughput, easily applicable, toxicological screening assay is an ongoing effort.
Collapse
Key Words
- AUC, area under the curve
- DDA, data-dependent acquisition
- DIA, data-independent acquisition
- DTT, dithiothreitol
- Drug safety
- FA, formic acid
- FDR, false discovery rate
- GABA, gamma-aminobutyric acid
- GRX, gingisrex
- HAT, histone acetyltransferase
- HDACi, histone deacetylase inhibitor
- HLB, hypotonic lysis buffer
- HPLC, high-performance liquid chromatography
- Histone post-translational modifications
- K, Lysine
- LC-MS/MS
- M, Methionine
- MS, Mass spectrometry
- MS/MS, tandem mass spectrometry
- N, asparagine
- PBS, phosphate buffered saline
- Pharmacoepigenetics
- Proteomics
- Q, glutamine
- R, arginine
- RA, relative abundance
- RP, reversed phase
- RT, room temperature
- S, serine
- SWATH, sequential window acquisition of all theoretical fragment ion spectra
- T, threonine
- TEAB, triethylammonium bicarbonate
- Toxicoepigenetics
- VPA, valproic acid
- Y, tyrosine
- hESC, human embryonic stem cell
- hPTM, histone post-translational modification
Collapse
Affiliation(s)
- Sigrid Verhelst
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Laura De Clerck
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Sander Willems
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Bart Van Puyvelde
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Simon Daled
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dieter Deforce
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Maarten Dhaenens
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
172
|
Ghasemian M, Owlia MB, Mosaddegh MH, nejad MN, Sohrevardi SM. Evaluation of sodium valproate low dose efficacy in radicular pain management and it's relation with pharmacokinetics parameters. Biomedicine (Taipei) 2020; 10:33-40. [PMID: 33854925 PMCID: PMC7721468 DOI: 10.37796/2211-8039.1039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/28/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Radiculopathy due to lumbar or cervical disc disease is the most common chronic neuropathic pain in adults. The aim of present study was evaluation of low dose of sodium valproate (VPA) on radicular pain and determining VPA pharmacokinetics. MATERIALS AND METHODS In this double blind randomized placebo control clinical study, 80 patients with established lumbar or cervical radicular pain, have been randomly allocated into two study groups: 40 have received sodium valproate 200 mg/day and Celecoxib 100 mg/day and acetaminophen 500 mg PRN as rescue medication, and second group has received placebo, Celecoxib and acetaminophen. Quantitative assessment of pain was done by visual analogue scale (VAS) prior to perform the intervention and after ten days (treatment duration). Blood sample has been taken for determining mean through concentration after five half-lives. Evaluation of plasma concentration of VPA and that of efficacy on pain score relationship by comparing VAS before and after the therapy was done. RESULTS Group A and B have demonstrated significant alleviation in mean VAS score; -21.97 ± 25.41, -14.39 ± 23.03 respectively (P < 0.001). The mean plasma concentration of VPA in group A was: 26.9 ± 13.5 mg/L. Moreover, no significant correlation was seen between pain score with age, gender, and weight (p > 0.05). CONCLUSION Low dose of sodium valproate especially together with NSAIDs demonstrated good efficacy in lumbar and cervical radicular pain management.
Collapse
Affiliation(s)
- Mona Ghasemian
- Department of Clinical Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd,
Iran
| | - Mohammad Bagher Owlia
- Department of Internal Medicine, Shahid Sadoughi University of Medical Sciences, Yazd,
Iran
| | | | - Masoud Nakhaie nejad
- Department of Pharmaceutical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd,
Iran
| | | |
Collapse
|
173
|
Song C, Li X, Mao P, Song W, Liu L, Zhang Y. Impact of CYP2C19 and CYP2C9 gene polymorphisms on sodium valproate plasma concentration in patients with epilepsy. Eur J Hosp Pharm 2020; 29:198-201. [PMID: 32868386 DOI: 10.1136/ejhpharm-2020-002367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Valproic acid (VPA) is a broad spectrum anticonvulsant drug, which could be partially metabolised by cytochrome P450 (CYP) 2C9 and 2C19 enzymes. This study was designed to investigate the relationship between CYP2C19 and CYP2C9 gene polymorphisms and the plasma concentrations of VPA in subjects with epilepsy. METHODS Eighty-three subjects with epilepsy aged 18-92 years were enrolled in this study. All were treated with sustained-release VPA monotherapy. Based on the genotypes of CYP2C19 and the ability to metabolise substrates, the subjects were divided into poor metabolisers, intermediate metabolisers and extensive metabolisers. Sanger sequencing was used to detect the genotypic and allelic frequencies of CYP2C19 (*1, *2 and *3) and CYP2C9 (*13) of the patients. Automatic immunity analysis was used to find steady-state trough plasma concentrations of VPA. By adjusting the plasma concentrations of VPA with body weight and total daily dose of VPA, the concentration-to-dose ratio of VPA (CDRV) was obtained. Data were analysed using SPSS software. RESULTS The genetic frequencies of CYP2C19*2, CYP2C19*3 and CYP2C9*13 were 33.1%, 3.0% and 5.4%, respectively, among patients with epilepsy from Yunnan province, China who used VPA therapy. The CDRV was significantly lower in the CYP2C19 extensive metabolisers (3.33±1.78) than it was in the CYP2C19 intermediate metabolisers (4.45±1.42) and the CYP2C19 poor metabolizers (6.64±1.06). The CYP2C19*2 and CYP2C19*3 alleles were correlated with the plasma VPA concentration, while the CYP2C9*13 allele had no effect on the plasma VPA concentration (p=0.809). CONCLUSIONS The genetic polymorphisms of CYP2C19 significantly affect the VPA plasma concentration, and the dosage of VPA for intermediate and poor metabolisers could be lower than for extensive metabolisers. CYP2C9*13 carrier was not closely related to plasma concentrations of VPA in patients with epilepsy.
Collapse
Affiliation(s)
- Cangsang Song
- The First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingde Li
- The First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Panpan Mao
- The First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenbing Song
- The First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lu Liu
- The First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Zhang
- The First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
174
|
Vázquez M, Guevara N, Maldonado C, Guido PC, Schaiquevich P. Potential Pharmacokinetic Drug-Drug Interactions between Cannabinoids and Drugs Used for Chronic Pain. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3902740. [PMID: 32855964 PMCID: PMC7443220 DOI: 10.1155/2020/3902740] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
Choosing an appropriate treatment for chronic pain remains problematic, and despite the available medication for its treatment, still, many patients complain about pain and appeal to the use of cannabis derivatives for pain control. However, few data have been provided to clinicians about the pharmacokinetic drug-drug interactions of cannabinoids with other concomitant administered medications. Therefore, the aim of this brief review is to assess the interactions between cannabinoids and pain medication through drug transporters (ATP-binding cassette superfamily members) and/or metabolizing enzymes (cytochromes P450 and glucuronyl transferases).
Collapse
Affiliation(s)
- Marta Vázquez
- Departamento de Ciencias Farmacéuticas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Natalia Guevara
- Departamento de Ciencias Farmacéuticas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Maldonado
- Departamento de Ciencias Farmacéuticas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Paulo Cáceres Guido
- Unidad de Farmacocinética Clínica, Farmacia, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Paula Schaiquevich
- Medicina de Precisión, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
175
|
Mazzoli V, Zhong LH, Dang VT, Shi Y, Werstuck GH. Characterization of Retinal Microvascular Complications and the Effects of Endoplasmic Reticulum Stress in Mouse Models of Diabetic Atherosclerosis. Invest Ophthalmol Vis Sci 2020; 61:49. [PMID: 32852545 PMCID: PMC7452854 DOI: 10.1167/iovs.61.10.49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/27/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Recent evidence suggests that there is a correlation between the micro- and macrovascular complications of diabetes mellitus. The aim of this study is to investigate the molecular mechanisms by which diabetes promotes the development of microvascular disease (diabetic retinopathy [DR]) through characterization of the effects of hyperglycemia in the retina of mouse models of diabetic atherosclerosis. Methods Hyperglycemia was induced in apolipoprotein E-deficient (ApoE-/-) mice, a model of accelerated atherosclerosis, either through streptozotocin (STZ) injection or introduction of the Ins2Akita mutation (ApoE-/-Ins2+/Akita). Another subset of ApoE-/- mice was supplemented with glucosamine (GlcN). To attenuate atherosclerosis, subsets of mice from each experimental group were treated with the chemical chaperone, 4-phenylbutyric acid (4PBA). Eyes from 15-week-old mice were either trypsin digested and stained with periodic acid-Schiff (PAS) or frozen for cryostat sectioning and immunostained for endoplasmic reticulum (ER) stress markers, including C/EBP homologous protein (CHOP) and 78-kDa glucose-regulated protein (GRP78). PAS-stained retinal flatmounts were analyzed for microvessel density, acellular capillaries, and pericyte ghosts. Results Features of DR, including pericyte ghosts and reduced microvessel density, were observed in hyperglycemic and GlcN-supplemented mice. Treatment with 4PBA reduced ER stress in the retinal periphery and attenuated DR in the experimental groups. Conclusions Mouse models of diabetic atherosclerosis show characteristic pathologies of DR that correlate with atherosclerosis. The increased magnitude of these changes and responses to 4PBA in the peripheral retina suggest that future studies should be aimed at assessing regional differences in mechanisms of ER stress-related pathways in these mouse models.
Collapse
Affiliation(s)
- Vienna Mazzoli
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Lexy H. Zhong
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Vi T. Dang
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Yuanyuan Shi
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Geoff H. Werstuck
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
176
|
|
177
|
Ardianto C, Wardani HA, Nurrahmi N, Rahmadi M, Khotib J. Alpha-lipoic acid ameliorates sodium valproate-induced liver injury in mice. Vet World 2020; 13:963-966. [PMID: 32636594 PMCID: PMC7311888 DOI: 10.14202/vetworld.2020.963-966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/16/2020] [Indexed: 01/05/2023] Open
Abstract
Aim: This study examines the effect of alpha-lipoic acid (ALA) on sodium valproate-induced liver injury through histological features of mice liver tissue. Materials and Methods: Mice were divided into three groups; (1) vehicle group, (2) sodium valproate group, and (3) sodium valproate-ALA group. The vehicle group was injected with saline intraperitoneal (i.p.) for 28 days. The sodium valproate group was injected with sodium valproate 300 mg/kg, i.p. daily for 2 weeks, after which the vehicle was administered daily until day 28. The sodium valproate-ALA group was injected with sodium valproate 300 mg/kg daily for 2 weeks before the administration of ALA 100 mg/kg i.p. until day 28. The mice were euthanized, and the liver was extracted for histopathological examination. Results: Histopathological examination of the liver section of the vehicle group showed a normal structure of the liver. Two weeks after the administration of sodium valproate, histopathological examination showed an abnormal structure of the liver, with necrotic appearance and inflammatory cells. Moreover, treatment with ALA after the administration of sodium valproate notably ameliorated hepatic histopathological lesions and the liver structure corresponded to a normal liver structure. Conclusion: ALA ameliorates sodium valproate-induced liver injury in mice.
Collapse
Affiliation(s)
- Chrismawan Ardianto
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Hijrawati Ayu Wardani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Nurrahmi Nurrahmi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mahardian Rahmadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Junaidi Khotib
- Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
178
|
Rodrigues DA, Pinheiro PDSM, Sagrillo FS, Bolognesi ML, Fraga CAM. Histone deacetylases as targets for the treatment of neurodegenerative disorders: Challenges and future opportunities. Med Res Rev 2020; 40:2177-2211. [DOI: 10.1002/med.21701] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel A. Rodrigues
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Química, Instituto de Química Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Pedro de S. M. Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Department of Pharmacy and Biotechnology Alma Mater Studiorum‐University of Bologna Bologna Italy
| | - Fernanda S. Sagrillo
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Maria L. Bolognesi
- Department of Pharmacy and Biotechnology Alma Mater Studiorum‐University of Bologna Bologna Italy
| | - Carlos A. M. Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Química, Instituto de Química Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Programa de Pós‐Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Department of Pharmacy and Biotechnology Alma Mater Studiorum‐University of Bologna Bologna Italy
| |
Collapse
|
179
|
Kusumastuti K, Jaeri S. The effect of long-term valproic acid treatment in the level of total cholesterol among adult. Indian J Pharmacol 2020; 52:134-137. [PMID: 32565601 PMCID: PMC7282689 DOI: 10.4103/ijp.ijp_655_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/29/2019] [Indexed: 11/26/2022] Open
Abstract
Valproic acid (VA) is the antiepileptic, antimigraine and anti-mental disturbances agent. The use of VA is correlated to metabolic rearrangements including changes of lipoproteins; however, these effects still in debate. Herewith we analyze the effect of long-term VA treatment in the level of total cholesterol among adult. Sixty (30 case groups and 30 control groups) participants were asked for venous blood collection to examine the level of total cholesterol by enzymatic cholesterol oxidase phenol 4-aminoantipyrine peroxidase. The relationship of the long-term VA treatment and the level of total cholesterol was obtained from the analysis using the logistic regression analysis. Our analysis depicts that there is a relationship between the long-term VA treatment and the level of total cholesterol (P=0.024, odds ratio 0.272, 95% confidence interval 0.088–0.844). in conclusion, the long-term VA treatment reduces the level of total cholesterol in adult.
Collapse
Affiliation(s)
- Kurnia Kusumastuti
- Department of Neurology, Faculty of Medicine, Airlangga University, Surabaya Indonesia, Indonesia
| | - Santoso Jaeri
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
180
|
Muralidharan A, Rahman J, Banerjee D, Hakim Mohammed AR, Malik BH. Parkinsonism: A Rare Adverse Effect of Valproic Acid. Cureus 2020; 12:e8782. [PMID: 32724733 PMCID: PMC7381881 DOI: 10.7759/cureus.8782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 11/05/2022] Open
Abstract
Valproic acid (VPA) is an anti-epileptic drug (AED) used as a first-choice agent for most forms of epilepsy. It is used in the treatment of manic episodes, bipolar disorder, migraine prevention, and impulse control. Hence it is one of the most commonly prescribed drugs by physicians nowadays. VPA acts by increasing gama amino butyric acid (GABA) levels, and also reduces neuronal activation by blocking voltage-gated sodium, potassium, and calcium channels. VPA has various adverse effects like thrombocytopenia, hyperammonemia, teratogenicity causing spina bifida in newborns when exposed in utero. The focus of this review is to research one such easily overlooked adverse effect of VPA, which is VPA-induced Parkinsonism. We carried out a review of literature and gathered all comprehensive peer-reviewed articles from PubMed. The data for this research were collected ethically and legally after a thorough examination of the literature. Data obtained from the studies have suggested that Parkinsonism is an adverse effect of VPA. Chronic usage of VPA causes Parkinsonism. It occurs equally in males and females, more common in older people usually above the age of 55 years and not dose-dependent. According to the data obtained, all patients who developed Parkinsonism had serum levels in the therapeutic range (50-100 mcg/mL). Thus the chronic intake of maintenance dose of VPA seems to be the leading cause. The symptoms usually improve over a few weeks and fully resolve in a few months after stopping the drug. When the patient's symptoms do not improve, it means VPA has unmasked the underlying potential for developing Parkinson's disease. Such patients benefit from levodopa therapy. However, the mechanism of how VPA causes Parkinsonism remains unknown. Based on the articles reviewed, we hypothesize that VPA's mechanism of neuronal inactivation by blocking membrane channels across the neuronal membrane, primarily when used chronically could be the mechanism by which it causes Parkinsonism. VPA causes down regulation of sodium and potassium channels on neuronal membrane in order to stop the neurons from firing. Thereby a decrease in action potential across the neurons causes a temporary physiological inactivation of the neuron. When multiple neurons are inactivated in the basal ganglia of the brain, the patient develops symptoms of Parkinsonism. As the neurons are only temporarily inactivated physiologically, when the drug is stopped the membrane receptors are reactivated on the neuronal membranes. This leads to neuronal activation and neuronal membrane potential becomes the same as before. The above mechanism clarifies why the symptoms settle down when the medication is stopped.
Collapse
Affiliation(s)
- Abilash Muralidharan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
- Internal Medicine, Kiruba Hospital, Coimbatore, IND
| | - Jawaria Rahman
- Pathology, City of Hope Comprehensive Cancer Center, Monrovia, USA
| | - Dipanjan Banerjee
- Neuroscience, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
- Geriatrics, Queen's Medical Center, Nottingham University Hospitals NHS Trust, Nottingham, GBR
| | - Abdul Rub Hakim Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Bilal Haider Malik
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
181
|
Lapetina DL, Yang EH, Henriques BC, Aitchison KJ. Pharmacogenomics and Psychopharmacology. SEMINARS IN CLINICAL PSYCHOPHARMACOLOGY 2020:151-202. [DOI: 10.1017/9781911623465.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
182
|
TGFα Promotes Chemoresistance of Malignant Pleural Mesothelioma. Cancers (Basel) 2020; 12:cancers12061484. [PMID: 32517259 PMCID: PMC7352199 DOI: 10.3390/cancers12061484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background: There is no standard chemotherapy for refractory or relapsing malignant pleural mesothelioma (MPM). Our previous reports nevertheless indicated that a combination of an anthracycline (doxorubicin) and a lysine deacetylase inhibitor (valproic acid, VPA) synergize to induce the apoptosis of MPM cells and reduce tumor growth in mouse models. A Phase I/II clinical trial indicated that this regimen is a promising therapeutic option for a proportion of MPM patients. Methods: The transcriptomes of mesothelioma cells were compared after Illumina HiSeq 4000 sequencing. The expression of differentially expressed genes was inhibited by RNA interference. Apoptosis was determined by cell cycle analysis and Annexin V/7-AAD labeling. Protein expression was assessed by immunoblotting. Preclinical efficacy was evaluated in BALB/c and NOD-SCID mice. Results: To understand the mechanisms involved in chemoresistance, the transcriptomes of two MPM cell lines displaying different responses to VPA-doxorubicin were compared. Among the differentially expressed genes, transforming growth factor alpha (TGFα) was associated with resistance to this regimen. The silencing of TGFα by RNA interference correlated with a significant increase in apoptosis, whereas the overexpression of TGFα desensitized MPM cells to the apoptosis induced by VPA and doxorubicin. The multi-targeted inhibition of histone deacetylase (HDAC), HER2 and TGFα receptor (epidermal growth factor receptor/EGFR) improved treatment efficacy in vitro and reduced tumor growth in two MPM mouse models. Finally, TGFα expression but not EGFR correlated with patient survival. Conclusions: Our data show that TGFα but not its receptor EGFR is a key factor in resistance to MPM chemotherapy. This observation may contribute to casting light on the promising but still controversial role of EGFR signaling in MPM therapy.
Collapse
|
183
|
Rodríguez-López GM, Soria-Castro R, Campillo-Navarro M, Pérez-Tapia SM, Flores-Borja F, Wong-Baeza I, Muñoz-Cruz S, López-Santiago R, Estrada-Parra S, Estrada-García I, Chávez-Blanco AD, Chacón-Salinas R. The histone deacetylase inhibitor valproic acid attenuates phospholipase Cγ2 and IgE-mediated mast cell activation. J Leukoc Biol 2020; 108:859-866. [PMID: 32480423 DOI: 10.1002/jlb.3ab0320-547rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
Mast cell activation through the high-affinity IgE receptor (FcεRI) plays a central role in allergic reactions. FcεRI-mediated activation triggers multiple signaling pathways leading to degranulation and synthesis of different inflammatory mediators. IgE-mediated mast cell activation can be modulated by different molecules, including several drugs. Herein, we investigated the immunomodulatory activity of the histone deacetylase inhibitor valproic acid (VPA) on IgE-mediated mast cell activation. To this end, bone marrow-derived mast cells (BMMC) were sensitized with IgE and treated with VPA followed by FcεRI cross-linking. The results indicated that VPA reduced mast cell IgE-dependent degranulation and cytokine release. VPA also induced a significant reduction in the cell surface expression of FcεRI and CD117, but not other mast cell surface molecules. Interestingly, VPA treatment inhibited the phosphorylation of PLCγ2, a key signaling molecule involved in IgE-mediated degranulation and cytokine secretion. However, VPA did not affect the phosphorylation of other key components of the FcεRI signaling pathway, such as Syk, Akt, ERK1/2, or p38. Altogether, our data demonstrate that VPA affects PLCγ2 phosphorylation, which in turn decreases IgE-mediated mast cell activation. These results suggest that VPA might be a key modulator of allergic reactions and might be a promising therapeutic candidate.
Collapse
Affiliation(s)
- Gloria Mariana Rodríguez-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Marcia Campillo-Navarro
- Laboratorio de Inmunología Integrativa, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Sonia Mayra Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Fabián Flores-Borja
- Centre for Immunobiology and Regenerative Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Samira Muñoz-Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rubén López-Santiago
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Iris Estrada-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | | | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| |
Collapse
|
184
|
S-Adenosine Methionine (SAMe) and Valproic Acid (VPA) as Epigenetic Modulators: Special Emphasis on their Interactions Affecting Nervous Tissue during Pregnancy. Int J Mol Sci 2020; 21:ijms21103721. [PMID: 32466248 PMCID: PMC7279375 DOI: 10.3390/ijms21103721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
S-adenosylmethionine (SAMe) is involved in many transmethylation reactions in most living organisms and is also required in the synthesis of several substances such as monoamine neurotransmitters and the N-methyl-D-aspartate (NMDA) receptor. Due to its important role as an epigenetic modulator, we discuss in some length the process of DNA methylation and demethylation and the critical periods of epigenetic modifications in the embryo, fetus, and thereafter. We also discuss the effects of SAMe deficiency and the attempts to use SAMe for therapeutic purposes such as the treatment of major depressive disorder, Alzheimer disease, and other neuropsychiatric disorders. SAMe is an approved food additive and as such is also used during pregnancy. Yet, there seems to scanty data on the possible effects of SAMe on the developing embryo and fetus. Valproic acid (VPA) is a well-tolerated and effective antiepileptic drug that is also used as a mood stabilizer. Due to its high teratogenicity, it is contraindicated in pregnancy. A major mechanism of its action is histone deacetylase inhibition, and therefore, it acts as an epigenetic modulator, mainly on the brain. This prompted clinical trials using VPA for additional indications i.e., treating degenerative brain disease such as Alzheimer disease, dementia, HIV, and even cancer. Therefore, we discuss the possible effects of VPA and SAMe on the conceptus and early postnatally, during periods of susceptibility to epigenetic modifications. VPA is also used as an inducer of autistic-like behavior in rodents and was found by us to modify gene expression when administered during the first postnatal week but not when administered to the pregnant dams on day 12 of gestation. In contrast, SAMe modified gene expression when administered on day 12 of pregnancy but not postnatally. If administered together, VPA prevented the changes in gene expression induced by prenatal SAMe administration, and SAMe prevented the gene expression changes and autistic-like behavior induced by early postnatal VPA. It is concluded that both VPA and SAMe are powerful epigenetic modifiers with antagonistic actions on the brain that will probably be used in the future more extensively for the treatment of a variety of epigenetic diseases of the nervous system.
Collapse
|
185
|
Božina N, Sporiš IŠ, Božina T, Klarica-Domjanović I, Tvrdeić A, Sporiš D. Pharmacogenetics and the treatment of epilepsy: what do we know? Pharmacogenomics 2020; 20:1093-1101. [PMID: 31588875 DOI: 10.2217/pgs-2019-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Seizure control with antiepileptic drugs (AEDs) as well as susceptibility to adverse drug reactions varies among individuals with epilepsy. This interindividual variability is partly determined by genetic factors. However, genetic testing to predict the efficacy and toxicity of AEDs is limited and genetic variability is, as yet, largely unexplainable. Accordingly, genetic testing can only be advised in a very limited number of cases in clinical routine. Currently, by applying different methodologies, many trials have been undertaken to evaluate cost benefits of preventive pharmacogenetic analysis for patients. There is significant progress in sequencing technologies, and focus is on next-generation sequencing-based methods, like exome and genome sequencing. In this review, an overview of the current scientific knowledge considering the pharmacogenetics of AEDs is given.
Collapse
Affiliation(s)
- Nada Božina
- Department of Laboratory Diagnostics, Division of Pharmacogenomics & Therapy Individualiation, University Hospital Centre Zagreb, 10000 Zagreb, Croatia.,Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Šušak Sporiš
- Department of Neurology, University Hospital Dubrava, 10000 Zagreb, Croatia.,Faculty of Dental Medicine & Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tamara Božina
- Department of Medical Chemistry, Biochemistry & Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Ante Tvrdeić
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Davor Sporiš
- Department of Neurology, University Hospital Dubrava, 10000 Zagreb, Croatia.,Faculty of Dental Medicine & Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
186
|
Song JH, Bae SM, Bae WR, Huh JS, Chen Y, Jeong IS, Jung DI. Synthesis and Antiepileptic Activity Evaluation of Valproic Acid Derivatives by Niche Chemistry. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ju Hyun Song
- Department of ChemistryDong‐A University Busan 604‐714 South Korea
| | - Song Mi Bae
- Department of ChemistryDong‐A University Busan 604‐714 South Korea
| | - Whae Ran Bae
- College of Medicine, Dong‐A University Busan 604‐714 South Korea
| | - Jin Sun Huh
- Southwest Medi‐Chem Institute Busan South Korea
| | - Yu Chen
- Department of Chemistry and BiochemistryQueens College and the Graduate Center of the City University of New York Queens NY 11367‐1597 USA
| | - Il Soo Jeong
- Sejoong CNG Co., LTD, 77, Najeon 2sandan‐gil, Saengnim‐myeon, Gimhae‐si Gyeongsangnam‐do South Korea
| | - Dai Il Jung
- Department of ChemistryDong‐A University Busan 604‐714 South Korea
| |
Collapse
|
187
|
Treatment of generalized convulsive status epilepticus: An international survey in the East Mediterranean Countries. Seizure 2020; 78:96-101. [DOI: 10.1016/j.seizure.2020.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/22/2022] Open
|
188
|
Dos Santos RG, Guimarães FS, Crippa JAS, Hallak JEC, Rossi GN, Rocha JM, Zuardi AW. Serious adverse effects of cannabidiol (CBD): a review of randomized controlled trials. Expert Opin Drug Metab Toxicol 2020; 16:517-526. [PMID: 32271618 DOI: 10.1080/17425255.2020.1754793] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Recent trials using cannabidiol (CBD) have shown that most acute and prolonged adverse effects of CBD are mild to moderate, with rare serious adverse effects (SAEs). This review focused on analyzing SAEs of CBD and their possible relation to drug-drug interactions. AREAS COVERED We systematically analyzed the SAEs reported in randomized controlled trials (RCTs) involving the administration of oral CBD for at least 1 week in both healthy volunteers and clinical samples. EXPERT OPINION SAEs related to CBD in RCT are rare and include mainly elevated transaminases, convulsion, sedation, lethargy, and upper respiratory tract infections. Elevated transaminases are related to concomitant valproate use, while sedation, lethargy, and upper respiratory tract infections are related to concomitant clobazam use. Epileptic patients should be monitored when using CBD concomitantly with these and other antiepileptic drugs for other possible drug-drug interactions.
Collapse
Affiliation(s)
- Rafael G Dos Santos
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil.,National Institute of Science and Technology - Translational Medicine , Brazil
| | - Francisco S Guimarães
- National Institute of Science and Technology - Translational Medicine , Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil
| | - José Alexandre S Crippa
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil.,National Institute of Science and Technology - Translational Medicine , Brazil
| | - Jaime E C Hallak
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil.,National Institute of Science and Technology - Translational Medicine , Brazil
| | - Giordano Novak Rossi
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil
| | - Juliana Mendes Rocha
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil
| | - Antônio W Zuardi
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil.,National Institute of Science and Technology - Translational Medicine , Brazil
| |
Collapse
|
189
|
Riva A, Guglielmo A, Balagura G, Marchese F, Amadori E, Iacomino M, Minassian BA, Zara F, Striano P. Emerging treatments for progressive myoclonus epilepsies. Expert Rev Neurother 2020; 20:341-350. [PMID: 32153206 DOI: 10.1080/14737175.2020.1741350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Progressive myoclonus epilepsies (PMEs) are a group of neurodegenerative diseases, invariably leading to severe disability or fatal outcome in a few years or decades. Nowadays, PMEs treatment remains challenging with a significant burden of disability for patients. Pharmacotherapy is primarily used to treat seizures, which impact patients' quality of life. However, new approaches have emerged in the last few years, which try to curb the neurological deterioration of PMEs through a better knowledge of the pathogenetic process. This is a review on the newest therapeutic options for the treatment of PMEs.Areas covered: Experimental and clinical results on novel therapeutic approaches for the different forms of PME are reviewed and discussed. Special attention is primarily focused on the efficacy and tolerability outcomes, trying to infer the role novel approaches may have in the future.Expert opinion: The large heterogeneity of disease-causing mechanisms prevents researchers from identifying a single approach to treat PMEs. Understanding of pathophysiologic processes is leading the way to targeted therapies, which, through enzyme replacement or underlying gene defect correction have already proved to potentially strike on neurodegeneration.
Collapse
Affiliation(s)
- Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Alberto Guglielmo
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Ganna Balagura
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Francesca Marchese
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Elisabetta Amadori
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Berge Arakel Minassian
- Pediatric Neurology, University of Texas Southwestern and Dallas Children's Medical Center, Dallas, TX, USA
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy.,Unit of Medical Genetics, IRCCS 'G.Gaslini' Institute, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G.Gaslini' Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
190
|
Reduction in N-Desmethylclozapine Level Is Determined by Daily Dose But Not Serum Concentration of Valproic Acid-Indications of a Presystemic Interaction Mechanism. Ther Drug Monit 2020; 41:503-508. [PMID: 31259880 DOI: 10.1097/ftd.0000000000000619] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Valproic acid (VPA) is frequently used together with clozapine (CLZ) as mood-stabilizer or for the prevention of seizures in patients with psychotic disorders. VPA is known to reduce levels of the pharmacologically active CLZ-metabolite N-desmethylclozapine (N-DMC), but factors determining the degree of this interaction are unknown. Here, we investigated the relationship between VPA dose and serum concentration on N-DMC levels in a large patient population adjusting for sex, age, and smoking habits as covariates. METHODS A total of 763 patients with steady-state serum concentrations of CLZ and N-DMC concurrently using VPA (cases, n = 76) or no interacting drugs (controls, n = 687) were retrospectively included from a therapeutic drug monitoring service at Diakonhjemmet Hospital, Oslo, between March 2005 and December 2016. In addition to information about prescribed doses, age, sex, smoking habits, and use of other interacting drugs were obtained. The effects of VPA dose and serum concentration on dose-adjusted N-DMC levels were evaluated by univariate correlation and multivariate linear mixed-model analyses adjusting for covariates. RESULTS The dose-adjusted N-DMC levels were approximately 38% lower in VPA users (cases) versus nonusers (controls) (P < 0.001). Within the VPA cases, a negatively correlation between VPA dose and dose-adjusted N-DMC levels was observed with an estimated reduction of 1.42% per 100-mg VPA dose (P = 0.033) after adjusting for sex, age, and smoking. By contrast, there was no correlation between VPA serum concentration and dose-adjusted N-DMC levels (P = 0.873). CONCLUSIONS The study shows that VPA dose, not concentration, is of relevance for the degree of reduction in N-DMC level in clozapine-treated patients. Presystemic induction of UGT enzymes or efflux transporters might underlie the reduction in N-DMC level during concurrent use of VPA. Our findings indicate that a VPA daily dose of 1500 mg or higher provides a further 21% reduction in N-DMC concentration. This is likely a relevant change in the exposure of this active metabolite where low levels are associated with implications of CLZ therapy.
Collapse
|
191
|
Guo HL, Jing X, Sun JY, Hu YH, Xu ZJ, Ni MM, Chen F, Lu XP, Qiu JC, Wang T. Valproic Acid and the Liver Injury in Patients with Epilepsy: An Update. Curr Pharm Des 2020; 25:343-351. [PMID: 30931853 DOI: 10.2174/1381612825666190329145428] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Valproic acid (VPA) as a widely used primary medication in the treatment of epilepsy is associated with reversible or irreversible hepatotoxicity. Long-term VPA therapy is also related to increased risk for the development of non-alcoholic fatty liver disease (NAFLD). In this review, metabolic elimination pathways of VPA in the liver and underlying mechanisms of VPA-induced hepatotoxicity are discussed. METHODS We searched in PubMed for manuscripts published in English, combining terms such as "Valproic acid", "hepatotoxicity", "liver injury", and "mechanisms". The data of screened papers were analyzed and summarized. RESULTS The formation of VPA reactive metabolites, inhibition of fatty acid β-oxidation, excessive oxidative stress and genetic variants of some enzymes, such as CPS1, POLG, GSTs, SOD2, UGTs and CYPs genes, have been reported to be associated with VPA hepatotoxicity. Furthermore, carnitine supplementation and antioxidants administration proved to be positive treatment strategies for VPA-induced hepatotoxicity. CONCLUSION Therapeutic drug monitoring (TDM) and routine liver biochemistry monitoring during VPA-therapy, as well as genotype screening for certain patients before VPA administration, could improve the safety profile of this antiepileptic drug.
Collapse
Affiliation(s)
- Hong-Li Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xia Jing
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jie-Yu Sun
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ze-Jun Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ming-Ming Ni
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Peng Lu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
192
|
Wojcicki AV, Kadapakkam M, Frymoyer A, Lacayo N, Chae HD, Sakamoto KM. Repurposing Drugs for Acute Myeloid Leukemia: A Worthy Cause or a Futile Pursuit? Cancers (Basel) 2020; 12:cancers12020441. [PMID: 32069925 PMCID: PMC7072462 DOI: 10.3390/cancers12020441] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clinically and genetically heterogenous malignancy of myeloid progenitor cells that affects patients of all ages. Despite decades of research and improvement in overall outcomes, standard therapy remains ineffective for certain subtypes of AML. Current treatment is intensive and leads to a number of secondary effects with varying results by patient population. Due to the high cost of discovery and an unmet need for new targeted therapies that are well tolerated, alternative drug development strategies have become increasingly attractive. Repurposing existing drugs is one approach to identify new therapies with fewer financial and regulatory hurdles. In this review, we provide an overview of previously U.S. Food and Drug Administration (FDA) approved non-chemotherapy drugs under investigation for the treatment of AML.
Collapse
Affiliation(s)
- Anna V. Wojcicki
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Meena Kadapakkam
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Adam Frymoyer
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Norman Lacayo
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Hee-Don Chae
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Kathleen M. Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
- Correspondence: ; Tel.: +650-725-7126
| |
Collapse
|
193
|
Cytochrome P450 2C9 polymorphism: Effect of amino acid substitutions on protein flexibility in the presence of tamoxifen. Comput Biol Chem 2020; 84:107166. [DOI: 10.1016/j.compbiolchem.2019.107166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/29/2019] [Accepted: 11/14/2019] [Indexed: 01/21/2023]
|
194
|
A Phase II Randomized Trial to Explore the Potential for Pharmacokinetic Drug-Drug Interactions with Stiripentol or Valproate when Combined with Cannabidiol in Patients with Epilepsy. CNS Drugs 2020; 34:661-672. [PMID: 32350749 PMCID: PMC7275018 DOI: 10.1007/s40263-020-00726-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND In recent randomized, placebo-controlled, phase III trials, highly purified cannabidiol demonstrated efficacy with an acceptable safety profile in patients with Lennox-Gastaut syndrome or Dravet syndrome. It is anticipated that antiepileptic drugs such as stiripentol and valproate will be administered concomitantly with cannabidiol. OBJECTIVES This trial evaluated the effect of cannabidiol on steady-state pharmacokinetics of stiripentol or valproate in patients with epilepsy, and the safety and tolerability of cannabidiol. METHODS This phase II, two-arm, parallel-group, double-blind, randomized, placebo-controlled trial recruited male and female patients with epilepsy aged 16-55 years. Patients receiving a stable dose of stiripentol or valproate were randomized 4:1 to receive concomitant double-blind cannabidiol or placebo. Patients received plant-derived, highly purified cannabidiol medicine (Epidiolex® in the USA; Epidyolex® in the EU; 100 mg/mL oral solution) at a dose of 20 mg/kg/day from day 12 to 26, following a 10-day dose-escalation period. Blood samples for pharmacokinetic evaluations were collected on days 1 and 26 before stiripentol/valproate dosing and up to 12 h postdose. Treatment-emergent adverse events (AEs) were recorded. RESULTS In total, 35 patients were recruited to the stiripentol arm (n = 14) or the valproate arm (n = 21). Both the safety and the pharmacokinetic populations of the stiripentol arm comprised 14 patients (2 placebo; 12 cannabidiol). The safety population of the valproate arm comprised 20 patients (4 placebo; 16 cannabidiol; one withdrew before receiving treatment); the pharmacokinetic population comprised 15 patients (3 placebo; 12 cannabidiol). Concomitant cannabidiol led to a small increase in stiripentol exposure (17% increase in maximum observed plasma concentration [Cmax]; 30% increase in area under the concentration-time curve over the dosing interval [AUCtau]). Concomitant cannabidiol also had little effect on valproate exposure (13% decrease in Cmax; 17% decrease in AUCtau) or its metabolite, 2-propyl-4-pentenoic acid (4-ene-VPA) (23% decrease in Cmax; 30% decrease in AUCtau). All changes in exposure are expressed as the dose-normalized geometric mean (CV%) day 26 to day 1 ratio. The most common AE was diarrhea; most AEs were mild. Two patients discontinued cannabidiol because of serious AEs (rash [n = 1] in the stiripentol arm; hypertransaminasemia [n = 1] in the valproate arm). A separate in vitro study investigated the bidirectional effect of cannabidiol, or its metabolite 7-carboxy-cannabidiol, on valproate plasma protein binding; no change in plasma protein binding was observed for either compound. CONCLUSIONS The clinical relevance of the increase in stiripentol exposure is unknown; patients receiving cannabidiol and stiripentol concomitantly should be monitored for adverse reactions as individual patient responses may vary. Coadministration of cannabidiol did not affect the pharmacokinetics of valproate or its metabolite, 4-ene-VPA, in adult patients with epilepsy. Safety results were consistent with the known safety profile of cannabidiol at a dose of 20 mg/kg/day. Clinicaltrials.gov: NCT02607891.
Collapse
|
195
|
Nasir M, Trujillo D, Levine J, Dwyer JB, Rupp ZW, Bloch MH. Glutamate Systems in DSM-5 Anxiety Disorders: Their Role and a Review of Glutamate and GABA Psychopharmacology. Front Psychiatry 2020; 11:548505. [PMID: 33329087 PMCID: PMC7710541 DOI: 10.3389/fpsyt.2020.548505] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Serotonin reuptake inhibitors and benzodiazepines are evidence-based pharmacological treatments for Anxiety Disorders targeting serotonin and GABAergic systems, respectively. Although clearly effective, these medications fail to improve anxiety symptoms in a significant proportion of patients. New insights into the glutamate system have directed attention toward drugs that modulate glutamate as potential alternative treatments for anxiety disorders. Here we summarize the current understanding of the potential role of glutamate neurotransmission in anxiety disorders and highlight specific glutamate receptors that are potential targets for novel anxiety disorder treatments. We also review clinical trials of medications targeting the glutamate system in DSM-5 anxiety disorders. Understanding the role of the glutamate system in the pathophysiology of anxiety disorder may aid in developing novel pharmacological agents that are effective in treating anxiety disorders.
Collapse
Affiliation(s)
- Madeeha Nasir
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Daniel Trujillo
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Jessica Levine
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Jennifer B Dwyer
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Yale Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Zachary W Rupp
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Frank H. Netter School of Medicine, Quinnipiac University, North Haven, CT, United States
| | - Michael H Bloch
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Yale Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
196
|
Singh P, Omer A. An integrated approach of network based system pharmacology approach and molecular docking to explore multiscale role of Pinus roxburghii and investigation into its mechanism. Pharmacogn Mag 2020. [DOI: 10.4103/0973-1296.301874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
197
|
Qiu F, Mao X, Liu P, Wu J, Zhang Y, Sun D, Zhu Y, Gong L, Shao M, Fan K, Chen J, Lu J, Jiang Y, Zhang Y, Curia G, Li A, He M. microRNA Deficiency in VIP+ Interneurons Leads to Cortical Circuit Dysfunction. Cereb Cortex 2019; 30:2229-2249. [PMID: 33676371 DOI: 10.1093/cercor/bhz236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 12/13/2022] Open
Abstract
Genetically distinct GABAergic interneuron subtypes play diverse roles in cortical circuits. Previous studies revealed that microRNAs (miRNAs) are differentially expressed in cortical interneuron subtypes, and are essential for the normal migration, maturation, and survival of medial ganglionic eminence-derived interneuron subtypes. How miRNAs function in vasoactive intestinal peptide expressing (VIP+) interneurons derived from the caudal ganglionic eminence remains elusive. Here, we conditionally removed Dicer in postmitotic VIP+ interneurons to block miRNA biogenesis. We found that the intrinsic and synaptic properties of VIP+ interneurons and pyramidal neurons were concordantly affected prior to a progressive loss of VIP+ interneurons. In vivo recording further revealed elevated cortical local field potential power. Mutant mice had a shorter life span but exhibited better spatial working memory and motor coordination. Our results demonstrate that miRNAs are indispensable for the function and survival of VIP+ interneurons, and highlight a key role of VIP+ interneurons in cortical circuits.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xingfeng Mao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jinyun Wu
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuan Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Daijing Sun
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yueyan Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ling Gong
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengmeng Shao
- Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Keyang Fan
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junjie Chen
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiangteng Lu
- Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yan Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- Department of Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Giulia Curia
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
198
|
Morrison G, Crockett J, Blakey G, Sommerville K. A Phase 1, Open-Label, Pharmacokinetic Trial to Investigate Possible Drug-Drug Interactions Between Clobazam, Stiripentol, or Valproate and Cannabidiol in Healthy Subjects. Clin Pharmacol Drug Dev 2019; 8:1009-1031. [PMID: 30791225 PMCID: PMC6899822 DOI: 10.1002/cpdd.665] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/20/2019] [Indexed: 11/06/2022]
Abstract
GW Pharmaceuticals' formulation of highly purified cannabidiol oral solution is approved in the United States for seizures associated with Lennox-Gastaut and Dravet syndromes in patients aged ≥2 years, for which clobazam, stiripentol, and valproate are commonly used antiepileptic drugs. This open-label, fixed-sequence, drug-drug interaction, healthy volunteer trial investigated the impact of cannabidiol on steady-state pharmacokinetics of clobazam (and N-desmethylclobazam), stiripentol, and valproate; the reciprocal effect of clobazam, stiripentol, and valproate on cannabidiol and its major metabolites (7-hydroxy-cannabidiol [7-OH-CBD] and 7-carboxy-cannabidiol [7-COOH-CBD]); and cannabidiol safety and tolerability when coadministered with each antiepileptic drug. Concomitant cannabidiol had little effect on clobazam exposure (maximum concentration [Cmax ] and area under the concentration-time curve [AUC], 1.2-fold), N-desmethylclobazam exposure increased (Cmax and AUC, 3.4-fold), stiripentol exposure increased slightly (Cmax , 1.3-fold; AUC, 1.6-fold), while no clinically relevant effect on valproate exposure was observed. Concomitant clobazam with cannabidiol increased 7-OH-CBD exposure (Cmax , 1.7-fold; AUC, 1.5-fold), without notable 7-COOH-CBD or cannabidiol increases. Stiripentol decreased 7-OH-CBD exposure by 29% and 7-COOH-CBD exposure by 13%. There was no effect of valproate on cannabidiol or its metabolites. Cannabidiol was moderately well tolerated, with similar incidences of adverse events reported when coadministered with clobazam, stiripentol, or valproate. There were no deaths, serious adverse events, pregnancies, or other clinically significant safety findings.
Collapse
|
199
|
Baumgartner J, Hoeflich A, Hinterbuchinger B, Fellinger M, Graf I, Friedrich F, Frey R, Mossaheb N. Fulminant Onset of Valproate-Associated Hyperammonemic Encephalopathy. Am J Psychiatry 2019; 176:900-903. [PMID: 31672038 DOI: 10.1176/appi.ajp.2019.18040363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Josef Baumgartner
- The Department of Psychiatry and Psychotherapy, Clinical Division of Social Psychiatry (Baumgartner, Hoeflich, Hinterbuchinger, Fellinger, Friedrich, Mossaheb), and the Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry (Graf, Frey), Medical University of Vienna
| | - Anna Hoeflich
- The Department of Psychiatry and Psychotherapy, Clinical Division of Social Psychiatry (Baumgartner, Hoeflich, Hinterbuchinger, Fellinger, Friedrich, Mossaheb), and the Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry (Graf, Frey), Medical University of Vienna
| | - Barbara Hinterbuchinger
- The Department of Psychiatry and Psychotherapy, Clinical Division of Social Psychiatry (Baumgartner, Hoeflich, Hinterbuchinger, Fellinger, Friedrich, Mossaheb), and the Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry (Graf, Frey), Medical University of Vienna
| | - Matthaeus Fellinger
- The Department of Psychiatry and Psychotherapy, Clinical Division of Social Psychiatry (Baumgartner, Hoeflich, Hinterbuchinger, Fellinger, Friedrich, Mossaheb), and the Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry (Graf, Frey), Medical University of Vienna
| | - Irene Graf
- The Department of Psychiatry and Psychotherapy, Clinical Division of Social Psychiatry (Baumgartner, Hoeflich, Hinterbuchinger, Fellinger, Friedrich, Mossaheb), and the Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry (Graf, Frey), Medical University of Vienna
| | - Fabian Friedrich
- The Department of Psychiatry and Psychotherapy, Clinical Division of Social Psychiatry (Baumgartner, Hoeflich, Hinterbuchinger, Fellinger, Friedrich, Mossaheb), and the Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry (Graf, Frey), Medical University of Vienna
| | - Richard Frey
- The Department of Psychiatry and Psychotherapy, Clinical Division of Social Psychiatry (Baumgartner, Hoeflich, Hinterbuchinger, Fellinger, Friedrich, Mossaheb), and the Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry (Graf, Frey), Medical University of Vienna
| | - Nilufar Mossaheb
- The Department of Psychiatry and Psychotherapy, Clinical Division of Social Psychiatry (Baumgartner, Hoeflich, Hinterbuchinger, Fellinger, Friedrich, Mossaheb), and the Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry (Graf, Frey), Medical University of Vienna
| |
Collapse
|
200
|
Abstract
Valproic acid (VPA) has been widely used more frequently as its approved indications have been expanded. More and more case reports on rare toxicities have been published in the literature (ie, hepatotoxicities, hyperammonemic encephalopathy, coagulation disorders, pancreatitis, thrombocytopenia). In spite of the long history of VPA, there is a lack of awareness of VPA toxicities among clinicians. We present two cases of a 44-year-old African American female and a 60-year-old Hispanic male taking chronic VPA therapy for psychiatric disorders admitted to the hospital with a combination of hepatotoxicities and acute kidney injury-associated rhabdomyolysis. In both cases, home VPA therapy was continued during hospitalization. Consequently, the female patient deceased and the male patient survived and discharged with continuation of his chronic VPA therapy. In cases of surviving patients, resumption of maintenance VPA upon discharge should be held and alternative therapy should be considered.
Collapse
Affiliation(s)
- Cucnhat P Walker
- College of Pharmacy, 422238Larkin University, Miami, FL, USA
- Larkin Community Hospital, South Campus, Miami, FL, USA
| | - Subrata Deb
- College of Pharmacy, 422238Larkin University, Miami, FL, USA
| |
Collapse
|