151
|
An Antipersister Strategy for Treatment of Chronic Pseudomonas aeruginosa Infections. Antimicrob Agents Chemother 2017; 61:AAC.00987-17. [PMID: 28923873 DOI: 10.1128/aac.00987-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022] Open
Abstract
Bacterial persisters are a quasidormant subpopulation of cells that are tolerant to antibiotic treatment. The combination of the aminoglycoside tobramycin with fumarate as an antibacterial potentiator utilizes an antipersister strategy that is aimed at reducing recurrent Pseudomonas aeruginosa infections by enhancing the killing of P. aeruginosa persisters. Stationary-phase cultures of P. aeruginosa were used to generate persister cells. A range of tobramycin concentrations was tested with a range of metabolite concentrations to determine the potentiation effect of the metabolite under a variety of conditions, including a range of pH values and in the presence of azithromycin or cystic fibrosis (CF) patient sputum. In addition, 96-well dish biofilm and colony biofilm assays were performed, and the cytotoxicity of the tobramycin-fumarate combination was determined utilizing a lactate dehydrogenase (LDH) assay. Enhanced killing of up to 6 orders of magnitude of P. aeruginosa persisters over a range of CF isolates, including mucoid and nonmucoid strains, was observed for the tobramycin-fumarate combination compared to killing with tobramycin alone. Furthermore, significant fumarate-mediated potentiation was seen in the presence of azithromycin or CF patient sputum. Fumarate also reduced the cytotoxicity of tobramycin-treated P. aeruginosa to human epithelial airway cells. Finally, in mucoid and nonmucoid CF isolates, complete eradication of P. aeruginosa biofilm was observed in the colony biofilm assay due to fumarate potentiation. These data suggest that a combination of tobramycin with fumarate as an antibacterial potentiator may be an attractive therapeutic for eliminating recurrent P. aeruginosa infections in CF patients through the eradication of bacterial persisters.
Collapse
|
152
|
Harrison F, McNally A, da Silva AC, Heeb S, Diggle SP. Optimised chronic infection models demonstrate that siderophore 'cheating' in Pseudomonas aeruginosa is context specific. THE ISME JOURNAL 2017; 11:2492-2509. [PMID: 28696423 PMCID: PMC5649161 DOI: 10.1038/ismej.2017.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/25/2022]
Abstract
The potential for siderophore mutants of Pseudomonas aeruginosa to attenuate virulence during infection, and the possibility of exploiting this for clinical ends, have attracted much discussion. This has largely been based on the results of in vitro experiments conducted in iron-limited growth medium, in which siderophore mutants act as social 'cheats:' increasing in frequency at the expense of the wild type to result in low-productivity, low-virulence populations dominated by mutants. We show that insights from in vitro experiments cannot necessarily be transferred to infection contexts. First, most published experiments use an undefined siderophore mutant. Whole-genome sequencing of this strain revealed a range of mutations affecting phenotypes other than siderophore production. Second, iron-limited medium provides a very different environment from that encountered in chronic infections. We conducted cheating assays using defined siderophore deletion mutants, in conditions designed to model infected fluids and tissue in cystic fibrosis lung infection and non-healing wounds. Depending on the environment, siderophore loss led to cheating, simple fitness defects, or no fitness effect at all. Our results show that it is crucial to develop defined in vitro models in order to predict whether siderophores are social, cheatable and suitable for clinical exploitation in specific infection contexts.
Collapse
Affiliation(s)
- Freya Harrison
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ana C da Silva
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephan Heeb
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephen P Diggle
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
153
|
The Semi-Synthetic Peptide Lin-SB056-1 in Combination with EDTA Exerts Strong Antimicrobial and Antibiofilm Activity against Pseudomonas aeruginosa in Conditions Mimicking Cystic Fibrosis Sputum. Int J Mol Sci 2017; 18:ijms18091994. [PMID: 28926942 PMCID: PMC5618643 DOI: 10.3390/ijms18091994] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/07/2017] [Accepted: 09/13/2017] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is a major cause of chronic lung infections in cystic fibrosis (CF) patients. The ability of the bacterium to form biofilms and the presence of a thick and stagnant mucus in the airways of CF patients largely contribute to antibiotic therapy failure and demand for new antimicrobial agents able to act in the CF environment. The present study investigated the anti-P. aeruginosa activity of lin-SB056-1, a recently described semi-synthetic antimicrobial peptide, used alone and in combination with the cation chelator ethylenediaminetetraacetic acid (EDTA). Bactericidal assays were carried out in standard culture conditions and in an artificial sputum medium (ASM) closely resembling the CF environment. Peptide’s structure and interaction with large unilamellar vesicles in media with different ionic strengths were also investigated through infrared spectroscopy. Lin-SB056-1 demonstrated fast and strong bactericidal activity against both mucoid and non-mucoid strains of P. aeruginosa in planktonic form and, in combination with EDTA, caused significant reduction of the biomass of P. aeruginosa mature biofilms. In ASM, the peptide/EDTA combination exerted a strong bactericidal effect and inhibited the formation of biofilm-like structures of P. aeruginosa. Overall, the results obtained highlight the potential of the lin-SB056-1/EDTA combination for the treatment of P. aeruginosa lung infections in CF patients.
Collapse
|
154
|
A Low-Molecular-Weight Alginate Oligosaccharide Disrupts Pseudomonal Microcolony Formation and Enhances Antibiotic Effectiveness. Antimicrob Agents Chemother 2017. [PMID: 28630204 DOI: 10.1128/aac.00762-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In chronic respiratory disease, the formation of dense, 3-dimensional "microcolonies" by Pseudomonas aeruginosa within the airway plays an important role in contributing to resistance to treatment. An in vitro biofilm model of pseudomonal microcolony formation using artificial-sputum (AS) medium was established to study the effects of low-molecular-weight alginate oligomers (OligoG CF-5/20) on pseudomonal growth, microcolony formation, and the efficacy of colistin. The studies employed clinical cystic fibrosis (CF) isolates (n = 3) and reference nonmucoid and mucoid multidrug-resistant (MDR) CF isolates (n = 7). Bacterial growth and biofilm development and disruption were studied using cell viability assays and image analysis with scanning electron and confocal laser scanning microscopy. Pseudomonal growth in AS medium was associated with increased ATP production (P < 0.05) and the formation (at 48 h) of discrete (>10-μm) microcolonies. In conventional growth medium, colistin retained an ability to inhibit growth of planktonic bacteria, although the MIC was increased (0.1 to 0.4 μg/ml) in AS medium compared to Mueller-Hinton (MH) medium. In contrast, in an established-biofilm model in AS medium, the efficacy of colistin was decreased. OligoG CF-5/20 (≥2%) treatment, however, induced dose-dependent biofilm disruption (P < 0.05) and led to colistin retaining its antimicrobial activity (P < 0.05). While circular dichroism indicated that OligoG CF-5/20 did not change the orientation of the alginate carboxyl groups, mass spectrometry demonstrated that the oligomers induced dose-dependent (>0.2%; P < 0.05) reductions in pseudomonal quorum-sensing signaling. These findings reinforce the potential clinical significance of microcolony formation in the CF lung and highlight a novel approach to treat MDR pseudomonal infections.
Collapse
|
155
|
Guilbaud M, Bruzaud J, Bouffartigues E, Orange N, Guillot A, Aubert-Frambourg A, Monnet V, Herry JM, Chevalier S, Bellon-Fontaine MN. Proteomic Response of Pseudomonas aeruginosa PAO1 Adhering to Solid Surfaces. Front Microbiol 2017; 8:1465. [PMID: 28824592 PMCID: PMC5541441 DOI: 10.3389/fmicb.2017.01465] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a pathogenic micro-organism responsible for many hospital-acquired infections. It is able to adhere to solid surfaces and develop an immobilized community or so-called biofilm. Many studies have been focusing on the use of specific materials to prevent the formation of these biofilms, but the reactivity of the bacteria in contact to surfaces remains unknown. The aim of this study was to evaluate the impact of the abiotic surface on the physiology of adherent bacteria. Three different materials, stainless steel (SS), glass (G), and polystyrene (PS) that were relevant to industrial or medical environments were characterized at the physicochemical level in terms of their hydrophobicity and roughness. We showed that SS was moderately hydrophilic and rough, potentially containing crevices, G was hydrophilic and smooth while PS was hydrophobic and smooth. We further showed that P. aeruginosa cells were more likely able to adhere to SS and G rather than PS surfaces under our experimental conditions. The physiological response of P. aeruginosa when adhering to each of these materials was then evaluated by global proteomic analysis. The abundance of 70 proteins was shown to differ between the materials suggesting that their abundance was modified as a function of the material to which bacteria adhered. Our data lead to enabling the identification of abundance patterns that appeared to be specific to a given surface. Taken together, our data showed that P. aeruginosa is capable of sensing and responding to a surface probably via specific programmes to adapt its physiological response accordingly.
Collapse
Affiliation(s)
- Morgan Guilbaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Jérôme Bruzaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Emeline Bouffartigues
- Laboratoire de Microbiologie, Signaux et Microenvironnement, Normandie Université, Université de Rouen-NormandieRouen, France
| | - Nicole Orange
- Laboratoire de Microbiologie, Signaux et Microenvironnement, Normandie Université, Université de Rouen-NormandieRouen, France
| | - Alain Guillot
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Anne Aubert-Frambourg
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Véronique Monnet
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Jean-Marie Herry
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie, Signaux et Microenvironnement, Normandie Université, Université de Rouen-NormandieRouen, France
| | | |
Collapse
|
156
|
Flynn JM, Phan C, Hunter RC. Genome-Wide Survey of Pseudomonas aeruginosa PA14 Reveals a Role for the Glyoxylate Pathway and Extracellular Proteases in the Utilization of Mucin. Infect Immun 2017; 85:e00182-17. [PMID: 28507068 PMCID: PMC5520445 DOI: 10.1128/iai.00182-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023] Open
Abstract
Chronic airway infections by the opportunistic pathogen Pseudomonas aeruginosa are a major cause of mortality in cystic fibrosis (CF) patients. Although this bacterium has been extensively studied for its virulence determinants, biofilm growth, and immune evasion mechanisms, comparatively little is known about the nutrient sources that sustain its growth in vivo Respiratory mucins represent a potentially abundant bioavailable nutrient source, although we have recently shown that canonical pathogens inefficiently use these host glycoproteins as a growth substrate. However, given that P. aeruginosa, particularly in its biofilm mode of growth, is thought to grow slowly in vivo, the inefficient use of mucin glycoproteins may be relevant to its persistence within the CF airways. To this end, we used whole-genome fitness analysis, combining transposon mutagenesis with high-throughput sequencing, to identify genetic determinants required for P. aeruginosa growth using intact purified mucins as a sole carbon source. Our analysis reveals a biphasic growth phenotype, during which the glyoxylate pathway and amino acid biosynthetic machinery are required for mucin utilization. Secondary analyses confirmed the simultaneous liberation and consumption of acetate during mucin degradation and revealed a central role for the extracellular proteases LasB and AprA. Together, these studies describe a molecular basis for mucin-based nutrient acquisition by P. aeruginosa and reveal a host-pathogen dynamic that may contribute to its persistence within the CF airways.
Collapse
Affiliation(s)
- Jeffrey M Flynn
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chi Phan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan C Hunter
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
157
|
Stefani S, Campana S, Cariani L, Carnovale V, Colombo C, Lleo MM, Iula VD, Minicucci L, Morelli P, Pizzamiglio G, Taccetti G. Relevance of multidrug-resistant Pseudomonas aeruginosa infections in cystic fibrosis. Int J Med Microbiol 2017; 307:353-362. [PMID: 28754426 DOI: 10.1016/j.ijmm.2017.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa is an important issue for physicians who take care of patients with cystic fibrosis (CF). Here, we review the latest research on how P. aeruginosa infection causes lung function to decline and how several factors contribute to the emergence of antibiotic resistance in P. aeruginosa strains and influence the course of the infection course. However, many aspects of the practical management of patients with CF infected with MDR P. aeruginosa are still to be established. Less is known about the exact role of susceptibility testing in clinical strategies for dealing with resistant infections, and there is an urgent need to find a tool to assist in choosing the best therapeutic strategy for MDR P. aeruginosa infection. One current perception is that the selection of antibiotic therapy according to antibiogram results is an important component of the decision-making process, but other patient factors, such as previous infection history and antibiotic courses, also need to be evaluated. On the basis of the known issues and the best current data on respiratory infections caused by MDR P. aeruginosa, this review provides practical suggestions to optimize the diagnostic and therapeutic management of patients with CF who are infected with these pathogens.
Collapse
Affiliation(s)
- S Stefani
- Department of Biomedical and Biotechnological Sciences, Division of Microbiology, University of Catania, Catania, Italy.
| | - S Campana
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy
| | - L Cariani
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - V Carnovale
- Department of Translational Medical Sciences, Cystic Fibrosis Center, University "Federico II", Naples, Italy
| | - C Colombo
- Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - M M Lleo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - V D Iula
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - L Minicucci
- Microbiology Laboratory, Cystic Fibrosis Center, G. Gaslini Institute, Genoa, Italy
| | - P Morelli
- Department of Paediatric, Cystic Fibrosis Center, G. Gaslini Institute, Genoa, Italy
| | - G Pizzamiglio
- Respiratory Disease Department, Cystic Fibrosis Center Adult Section, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - G Taccetti
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy
| |
Collapse
|
158
|
Velmourougane K, Prasanna R, Saxena AK. Agriculturally important microbial biofilms: Present status and future prospects. J Basic Microbiol 2017; 57:548-573. [PMID: 28407275 DOI: 10.1002/jobm.201700046] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/07/2022]
Abstract
Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau Nath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
159
|
Al-Wrafy F, Brzozowska E, Górska S, Gamian A. Pathogenic factors of Pseudomonas aeruginosa – the role of biofilm in pathogenicity and as a target for phage therapy. POSTEP HIG MED DOSW 2017; 71:78-91. [DOI: 10.5604/01.3001.0010.3792] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
<i>Pseudomonas</i> aeruginosa is an opportunistic pathogen that can cause several acute and chronic infections in humans, and it has become an important cause of nosocomial infections and antibiotic resistance. Biofilm represents an important virulence factor for these bacteria, plays a role in <i>P. aeruginosa</i> infections and avoidance of immune defence mechanisms, and has the ability to protect the bacteria from antibiotics. Alginate, Psl and Pel, three exopolysaccharides, are the main components in biofilm matrix, with many biological functions attributed to them, especially with respect to the protection of the bacterial cell from antibiotics and the immune system. <i>Pseudomonas</i> infections, biofilm formation and development of resistance to antibiotics all require better understanding to achieve the best results using alternative treatment with phage therapy. This review describes the <i>P. aeruginosa</i> pathogenicity and virulence factors with a special focus on the biofilm and its role in infection and resistance to antibiotics and summarizes phage therapy as an alternative approach in treatment of <i>P. aeruginosa</i> infections.
Collapse
Affiliation(s)
- Fairoz Al-Wrafy
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland; Department of Applied Microbiology, Faculty of Sciences, Taiz University, Taiz, Yemen
| | - Ewa Brzozowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Sabina Górska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
160
|
Clamens T, Rosay T, Crépin A, Grandjean T, Kentache T, Hardouin J, Bortolotti P, Neidig A, Mooij M, Hillion M, Vieillard J, Cosette P, Overhage J, O’Gara F, Bouffartigues E, Dufour A, Chevalier S, Guery B, Cornelis P, Feuilloley MGJ, Lesouhaitier O. The aliphatic amidase AmiE is involved in regulation of Pseudomonas aeruginosa virulence. Sci Rep 2017; 7:41178. [PMID: 28117457 PMCID: PMC5259723 DOI: 10.1038/srep41178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that the eukaryotic C-type natriuretic peptide hormone (CNP) regulates Pseudomonas aeruginosa virulence and biofilm formation after binding on the AmiC sensor, triggering the amiE transcription. Herein, the involvement of the aliphatic amidase AmiE in P. aeruginosa virulence regulation has been investigated. The proteome analysis of an AmiE over-producing strain (AmiE+) revealed an expression change for 138 proteins, including some that are involved in motility, synthesis of quorum sensing compounds and virulence regulation. We observed that the AmiE+ strain produced less biofilm compared to the wild type, and over-produced rhamnolipids. In the same line, AmiE is involved in P. aeruginosa motilities (swarming and twitching) and production of the quorum sensing molecules N-acyl homoserine lactones and Pseudomonas Quinolone Signal (PQS). We observed that AmiE overproduction reduced levels of HCN and pyocyanin causing a decreased virulence in different hosts (i.e. Dictyostelium discoideum and Caenorhabditis elegans). This phenotype was further confirmed in a mouse model of acute lung infection, in which AmiE overproduction resulted in an almost fully virulence decrease. Taken together, our data suggest that, in addition to its role in bacterial secondary metabolism, AmiE is involved in P. aeruginosa virulence regulation by modulating pilus synthesis and cell-to-cell communication.
Collapse
Affiliation(s)
- Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| | - Thibaut Rosay
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| | | | - Teddy Grandjean
- Univ. Lille, CHU Lille, EA 7366 - Recherche Translationnelle: relations hôte pathogènes, Lille, France
| | - Takfarinas Kentache
- Laboratory « Polymères, Biopolymères, Surfaces » (UMR 6270 CNRS), Proteomic Platform PISSARO, Normandie Univ, UNIROUEN, Mont-Saint-Aignan, France
| | - Julie Hardouin
- Laboratory « Polymères, Biopolymères, Surfaces » (UMR 6270 CNRS), Proteomic Platform PISSARO, Normandie Univ, UNIROUEN, Mont-Saint-Aignan, France
| | - Perrine Bortolotti
- Univ. Lille, CHU Lille, EA 7366 - Recherche Translationnelle: relations hôte pathogènes, Lille, France
| | - Anke Neidig
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, PO Box 3640, Karlsruhe, Germany
| | - Marlies Mooij
- BIOMERIT Research Centre, University College Cork, Cork, Ireland
| | - Mélanie Hillion
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| | - Julien Vieillard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), Evreux, France
| | - Pascal Cosette
- Laboratory « Polymères, Biopolymères, Surfaces » (UMR 6270 CNRS), Proteomic Platform PISSARO, Normandie Univ, UNIROUEN, Mont-Saint-Aignan, France
| | - Joerg Overhage
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, PO Box 3640, Karlsruhe, Germany
| | - Fergal O’Gara
- BIOMERIT Research Centre, University College Cork, Cork, Ireland
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| | - Alain Dufour
- Univ. Bretagne-Sud, EA 3884, LBCM, IUEM, Lorient, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| | - Benoit Guery
- Univ. Lille, CHU Lille, EA 7366 - Recherche Translationnelle: relations hôte pathogènes, Lille, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| | - Marc G. J. Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| |
Collapse
|
161
|
Cephalosporin-3'-Diazeniumdiolate NO Donor Prodrug PYRRO-C3D Enhances Azithromycin Susceptibility of Nontypeable Haemophilus influenzae Biofilms. Antimicrob Agents Chemother 2017; 61:AAC.02086-16. [PMID: 27919896 DOI: 10.1128/aac.02086-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/26/2016] [Indexed: 01/12/2023] Open
Abstract
PYRRO-C3D is a cephalosporin-3-diazeniumdiolate nitric oxide (NO) donor prodrug designed to selectively deliver NO to bacterial infection sites. The objective of this study was to assess the activity of PYRRO-C3D against nontypeable Haemophilus influenzae (NTHi) biofilms and examine the role of NO in reducing biofilm-associated antibiotic tolerance. The activity of PYRRO-C3D on in vitro NTHi biofilms was assessed through CFU enumeration and confocal microscopy. NO release measurements were performed using an ISO-NO probe. NTHi biofilms grown on primary ciliated respiratory epithelia at an air-liquid interface were used to investigate the effects of PYRRO-C3D in the presence of host tissue. Label-free liquid chromatography-mass spectrometry (LC/MS) proteomic analyses were performed to identify differentially expressed proteins following NO treatment. PYRRO-C3D specifically released NO in the presence of NTHi, while no evidence of spontaneous NO release was observed when the compound was exposed to primary epithelial cells. NTHi lacking β-lactamase activity failed to trigger NO release. Treatment significantly increased the susceptibility of in vitro NTHi biofilms to azithromycin, causing a log fold reduction (10-fold reduction or 1-log-unit reduction) in viability (P < 0.05) relative to azithromycin alone. The response was more pronounced for biofilms grown on primary respiratory epithelia, where a 2-log-unit reduction was observed (P < 0.01). Label-free proteomics showed that NO increased expression of 16 proteins involved in metabolic and transcriptional/translational functions. NO release from PYRRO-C3D enhances the efficacy of azithromycin against NTHi biofilms, putatively via modulation of NTHi metabolic activity. Adjunctive therapy with NO mediated through PYRRO-C3D represents a promising approach for reducing biofilm-associated antibiotic tolerance.
Collapse
|
162
|
Quinn RA, Whiteson K, Lim YW, Zhao J, Conrad D, LiPuma JJ, Rohwer F, Widder S. Ecological networking of cystic fibrosis lung infections. NPJ Biofilms Microbiomes 2016; 2:4. [PMID: 28649398 PMCID: PMC5460249 DOI: 10.1038/s41522-016-0002-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022] Open
Abstract
In the context of a polymicrobial infection, treating a specific pathogen poses challenges because of unknown consequences on other members of the community. The presence of ecological interactions between microbes can change their physiology and response to treatment. For example, in the cystic fibrosis lung polymicrobial infection, antimicrobial susceptibility testing on clinical isolates is often not predictive of antibiotic efficacy. Novel approaches are needed to identify the interrelationships within the microbial community to better predict treatment outcomes. Here we used an ecological networking approach on the cystic fibrosis lung microbiome characterized using 16S rRNA gene sequencing and metagenomics. This analysis showed that the community is separated into three interaction groups: Gram-positive anaerobes, Pseudomonas aeruginosa, and Staphylococcus aureus. The P. aeruginosa and S. aureus groups both anti-correlate with the anaerobic group, indicating a functional antagonism. When patients are clinically stable, these major groupings were also stable, however, during exacerbation, these communities fragment. Co-occurrence networking of functional modules annotated from metagenomics data supports that the underlying taxonomic structure is driven by differences in the core metabolism of the groups. Topological analysis of the functional network identified the non-mevalonate pathway of isoprenoid biosynthesis as a keystone for the microbial community, which can be targeted with the antibiotic fosmidomycin. This study uses ecological theory to identify novel treatment approaches against a polymicrobial disease with more predictable outcomes.
Collapse
Affiliation(s)
- Robert A Quinn
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093 USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697 USA
| | - Yan Wei Lim
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
| | - Jiangchao Zhao
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109 USA
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Douglas Conrad
- Department of Medicine, University of California at San Diego, La Jolla, CA 92037 USA
| | - John J LiPuma
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
| | - Stefanie Widder
- CUBE, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstr.14 A-1090, Vienna, Austria
- CeMM - Research Center, for Molecular Medicine of the Austrian Academy of Sciences, Lazarettg, 14, A-1090 Vienna, Austria
| |
Collapse
|
163
|
Mann EE, Magin CM, Mettetal MR, May RM, Henry MM, DeLoid H, Prater J, Sullivan L, Thomas JG, Twite MD, Parker AE, Brennan AB, Reddy ST. Micropatterned Endotracheal Tubes Reduce Secretion-Related Lumen Occlusion. Ann Biomed Eng 2016; 44:3645-3654. [PMID: 27535564 PMCID: PMC11949081 DOI: 10.1007/s10439-016-1698-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/12/2016] [Indexed: 01/01/2023]
Abstract
Tracheal intubation disrupts physiological homeostasis of secretion production and clearance, resulting in secretion accumulation within endotracheal tubes (ETTs). Novel in vitro and in vivo models were developed to specifically recapitulate the clinical manifestations of ETT occlusion. The novel Sharklet™ micropatterned ETT was evaluated, using these models, for the ability to reduce the accumulation of both bacterial biofilm and airway mucus compared to a standard care ETT. Novel ETTs with micropattern on the inner and outer surfaces were placed adjacent to standard care ETTs in in vitro biofilm and airway patency (AP) models. The primary outcome for the biofilm model was to compare commercially-available ETTs (standard care and silver-coated) to micropatterned for quantity of biofilm accumulation. The AP model's primary outcome was to evaluate accumulation of artificial airway mucus. A 24-h ovine mechanical ventilation model evaluated the primary outcome of relative quantity of airway secretion accumulation in the ETTs tested. The secondary outcome was measuring the effect of secretion accumulation in the ETTs on airway resistance. Micropatterned ETTs significantly reduced biofilm by 71% (p = 0.016) compared to smooth ETTs. Moreover, micropatterned ETTs reduced lumen occlusion, in the AP model, as measured by cross-sectional area, in distal (85%, p = 0.005), middle (84%, p = 0.001) and proximal (81%, p = 0.002) sections compared to standard care ETTs. Micropatterned ETTs reduced the volume of secretion accumulation in a sheep model of occlusion by 61% (p < 0.001) after 24 h of mechanical ventilation. Importantly, micropatterned ETTs reduced the rise in ventilation peak inspiratory pressures over time by as much as 49% (p = 0.005) compared to standard care ETTs. Micropatterned ETTs, demonstrated here to reduce bacterial contamination and mucus occlusion, will have the capacity to limit complications occurring during mechanical ventilation and ultimately improve patient care.
Collapse
Affiliation(s)
- Ethan E Mann
- Sharklet Technologies, Inc., 12635 E Montview Blvd., Suite 155, Aurora, CO, 80045, USA
| | - Chelsea M Magin
- Sharklet Technologies, Inc., 12635 E Montview Blvd., Suite 155, Aurora, CO, 80045, USA
| | - M Ryan Mettetal
- Sharklet Technologies, Inc., 12635 E Montview Blvd., Suite 155, Aurora, CO, 80045, USA
| | - Rhea M May
- Sharklet Technologies, Inc., 12635 E Montview Blvd., Suite 155, Aurora, CO, 80045, USA
| | - MiKayla M Henry
- Sharklet Technologies, Inc., 12635 E Montview Blvd., Suite 155, Aurora, CO, 80045, USA
| | - Heather DeLoid
- Preclinical Translational Services, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Justin Prater
- Preclinical Translational Services, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Lauren Sullivan
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - John G Thomas
- Department of Microbiology and Laboratory Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - Mark D Twite
- Department of Anesthesiology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Albert E Parker
- Department of Mathematical Sciences, Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Anthony B Brennan
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Shravanthi T Reddy
- Sharklet Technologies, Inc., 12635 E Montview Blvd., Suite 155, Aurora, CO, 80045, USA.
| |
Collapse
|
164
|
Trivedi U, Madsen JS, Rumbaugh KP, Wolcott RD, Burmølle M, Sørensen SJ. A post-planktonic era of in vitro infectious models: issues and changes addressed by a clinically relevant wound like media. Crit Rev Microbiol 2016; 43:453-465. [PMID: 27869519 DOI: 10.1080/1040841x.2016.1252312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medical science is pitted against an ever-increasing rise in antibiotic tolerant microorganisms. Concurrently, during the past decade, biofilms have garnered much attention within research and clinical practice. Although the significance of clinical biofilms is becoming very apparent, current methods for diagnostics and direction of therapy plans in many hospitals do not reflect this knowledge; with many of the present tools proving to be inadequate for accurately mimicking the biofilm phenomenon. Based on current findings, we address some of the fundamental issues overlooked by clinical labs: the paradigm shifts that need to occur in assessing chronic wounds; better simulation of physiological conditions in vitro; and the importance of incorporating polymicrobial populations into biofilm models. In addition, this review considers using a biofilm relevant in vitro model for cultivating and determining the antibiotic tolerance and susceptibility of microorganisms associated with chronic wounds. This model presents itself as a highly rapid and functional tool that can be utilized by hospitals in an aim to improve bedside treatments.
Collapse
Affiliation(s)
- Urvish Trivedi
- a Department of Biology, Faculty of Science , Section of Microbiology, University of Copenhagen , Copenhagen , Denmark
| | - Jonas S Madsen
- a Department of Biology, Faculty of Science , Section of Microbiology, University of Copenhagen , Copenhagen , Denmark
| | - Kendra P Rumbaugh
- b Department of Surgery , Texas Tech University Health Sciences Center , Lubbock , TX , USA
| | | | - Mette Burmølle
- a Department of Biology, Faculty of Science , Section of Microbiology, University of Copenhagen , Copenhagen , Denmark
| | - Søren J Sørensen
- a Department of Biology, Faculty of Science , Section of Microbiology, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
165
|
Waryah CB, Wells K, Ulluwishewa D, Chen-Tan N, Gogoi-Tiwari J, Ravensdale J, Costantino P, Gökçen A, Vilcinskas A, Wiesner J, Mukkur T. In Vitro Antimicrobial Efficacy of Tobramycin Against Staphylococcus aureus Biofilms in Combination With or Without DNase I and/or Dispersin B: A Preliminary Investigation. Microb Drug Resist 2016; 23:384-390. [PMID: 27754780 DOI: 10.1089/mdr.2016.0100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus in biofilms is highly resistant to the treatment with antibiotics, to which the planktonic cells are susceptible. This is likely to be due to the biofilm creating a protective barrier that prevents antibiotics from accessing the live pathogens buried in the biofilm. S. aureus biofilms consist of an extracellular matrix comprising, but not limited to, extracellular bacterial DNA (eDNA) and poly-β-1, 6-N-acetyl-d-glucosamine (PNAG). Our study revealed that despite inferiority of dispersin B (an enzyme that degrades PNAG) to DNase I that cleaves eDNA, in dispersing the biofilm of S. aureus, both enzymes were equally efficient in enhancing the antibacterial efficiency of tobramycin, a relatively narrow-spectrum antibiotic against infections caused by gram-positive and gram-negative pathogens, including S. aureus, used in this investigation. However, a combination of these two biofilm-degrading enzymes was found to be significantly less effective in enhancing the antimicrobial efficacy of tobramycin than the individual application of the enzymes. These findings indicate that combinations of different biofilm-degrading enzymes may compromise the antimicrobial efficacy of antibiotics and need to be carefully assessed in vitro before being used for treating medical devices or in pharmaceutical formulations for use in the treatment of chronic ear or respiratory infections.
Collapse
Affiliation(s)
- Charlene Babra Waryah
- 1 School of Biomedical Sciences, Faculty of Health Science, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia.,2 Department of Medicine, Albert Einstein College of Medicine , Bronx, New York.,3 Department of Cell Biology, Albert Einstein College of Medicine , Bronx, New York
| | - Kelsi Wells
- 1 School of Biomedical Sciences, Faculty of Health Science, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia
| | - Dulantha Ulluwishewa
- 1 School of Biomedical Sciences, Faculty of Health Science, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia
| | - Nigel Chen-Tan
- 4 Curtin Electron Microscope Facility, John de Laeter Centre, Faculty of Science and Engineering, Curtin University , Perth, Western Australia
| | - Jully Gogoi-Tiwari
- 1 School of Biomedical Sciences, Faculty of Health Science, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia
| | - Joshua Ravensdale
- 1 School of Biomedical Sciences, Faculty of Health Science, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia
| | - Paul Costantino
- 1 School of Biomedical Sciences, Faculty of Health Science, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia
| | - Anke Gökçen
- 5 Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology , Gießen, Germany
| | - Andreas Vilcinskas
- 5 Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology , Gießen, Germany
| | - Jochen Wiesner
- 5 Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology , Gießen, Germany
| | - Trilochan Mukkur
- 1 School of Biomedical Sciences, Faculty of Health Science, Curtin Health Innovation Research Institute, Curtin University , Perth, Western Australia
| |
Collapse
|
166
|
Lopes SP, Carvalho DT, Pereira MO, Azevedo NF. Discriminating typical and atypical cystic fibrosis-related bacteria by multiplex PNA-FISH. Biotechnol Bioeng 2016; 114:355-367. [PMID: 27571488 DOI: 10.1002/bit.26085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022]
Abstract
This study aims to report the development of peptide nucleic acid (PNA) probes to specifically detect the cystic fibrosis (CF)-associated traditional and atypical species Pseudomonas aeruginosa and Inquilinus limosus, respectively. PNA probes were designed in silico, developed and tested in smears prepared in phosphate-buffer saline (PBS), and in artificial sputum medium (ASM). A multiplex fluorescent in situ hybridization (FISH) approach using the designed probes was further validated in artificially contaminated clinical sputum samples and also applied in polymicrobial 24 h-old biofilms involving P. aeruginosa, I. limosus, and other CF-related bacteria. Both probes showed high predictive and experimental specificities and sensitivities. The multiplex PNA-FISH assay, associated with non-specific staining, was successfully adapted in the clinical samples and in biofilms of CF-related bacteria, allowing differentiating the community members and inferring about microbial-microbial interactions within the consortia. This study revealed the great potential of PNA-FISH as a diagnostic tool to discriminate between classical and less common CF-associated bacteria, being suitable to further describe species-dependent prevention strategies and deliver more effective target control therapeutics. Biotechnol. Bioeng. 2017;114: 355-367. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Susana P Lopes
- Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Daniel T Carvalho
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Maria O Pereira
- Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nuno F Azevedo
- LEPABE, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
167
|
Colmer-Hamood JA, Dzvova N, Kruczek C, Hamood AN. In Vitro Analysis of Pseudomonas aeruginosa Virulence Using Conditions That Mimic the Environment at Specific Infection Sites. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:151-91. [PMID: 27571695 DOI: 10.1016/bs.pmbts.2016.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes chronic lung infection in patients with cystic fibrosis (CF) and acute systemic infections in severely burned patients and immunocompromised patients including cancer patients undergoing chemotherapy and HIV infected individuals. In response to the environmental conditions at specific infection sites, P. aeruginosa expresses certain sets of cell-associated and extracellular virulence factors that produce tissue damage. Analyzing the mechanisms that govern the production of these virulence factors in vitro requires media that closely mimic the environmental conditions within the infection sites. In this chapter, we review studies based on media that closely resemble three in vivo conditions, the thick mucus accumulated within the lung alveoli of CF patients, the serum-rich wound bed and the bloodstream. Media resembling the CF alveolar mucus include standard laboratory media supplemented with sputum obtained from CF patients as well as prepared synthetic mucus media formulated to contain the individual components of CF sputum. Media supplemented with serum or individual serum components have served as surrogates for the soluble host components of wound infections, while whole blood has been used to investigate the adaptation of pathogens to the bloodstream. Studies using these media have provided valuable information regarding P. aeruginosa gene expression in different host environments as varying sets of genes were differentially regulated during growth in each medium. The unique effects observed indicate the essential role of these in vitro media that closely mimic the in vivo conditions in providing accurate information regarding the pathogenesis of P. aeruginosa infections.
Collapse
Affiliation(s)
- J A Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| | - N Dzvova
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - C Kruczek
- Honors College, Texas Tech University, Lubbock, TX, United States
| | - A N Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
168
|
Temperate phages both mediate and drive adaptive evolution in pathogen biofilms. Proc Natl Acad Sci U S A 2016; 113:8266-71. [PMID: 27382184 DOI: 10.1073/pnas.1520056113] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Temperate phages drive genomic diversification in bacterial pathogens. Phage-derived sequences are more common in pathogenic than nonpathogenic taxa and are associated with changes in pathogen virulence. High abundance and mobilization of temperate phages within hosts suggests that temperate phages could promote within-host evolution of bacterial pathogens. However, their role in pathogen evolution has not been experimentally tested. We experimentally evolved replicate populations of Pseudomonas aeruginosa with or without a community of three temperate phages active in cystic fibrosis (CF) lung infections, including the transposable phage, ɸ4, which is closely related to phage D3112. Populations grew as free-floating biofilms in artificial sputum medium, mimicking sputum of CF lungs where P. aeruginosa is an important pathogen and undergoes evolutionary adaptation and diversification during chronic infection. Although bacterial populations adapted to the biofilm environment in both treatments, population genomic analysis revealed that phages altered both the trajectory and mode of evolution. Populations evolving with phages exhibited a greater degree of parallel evolution and faster selective sweeps than populations without phages. Phage ɸ4 integrated randomly into the bacterial chromosome, but integrations into motility-associated genes and regulators of quorum sensing systems essential for virulence were selected in parallel, strongly suggesting that these insertional inactivation mutations were adaptive. Temperate phages, and in particular transposable phages, are therefore likely to facilitate adaptive evolution of bacterial pathogens within hosts.
Collapse
|
169
|
Maldonado RF, Sá-Correia I, Valvano MA. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol Rev 2016; 40:480-93. [PMID: 27075488 PMCID: PMC4931227 DOI: 10.1093/femsre/fuw007] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/23/2015] [Accepted: 03/10/2016] [Indexed: 12/16/2022] Open
Abstract
The Gram-negative bacterial lipopolysaccharide (LPS) is a major component of the outer membrane that plays a key role in host-pathogen interactions with the innate immune system. During infection, bacteria are exposed to a host environment that is typically dominated by inflammatory cells and soluble factors, including antibiotics, which provide cues about regulation of gene expression. Bacterial adaptive changes including modulation of LPS synthesis and structure are a conserved theme in infections, irrespective of the type or bacteria or the site of infection. In general, these changes result in immune system evasion, persisting inflammation and increased antimicrobial resistance. Here, we review the modifications of LPS structure and biosynthetic pathways that occur upon adaptation of model opportunistic pathogens (Pseudomonas aeruginosa, Burkholderia cepacia complex bacteria, Helicobacter pylori and Salmonella enterica) to chronic infection in respiratory and gastrointestinal sites. We also discuss the molecular mechanisms of these variations and their role in the host-pathogen interaction.
Collapse
Affiliation(s)
- Rita F. Maldonado
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Miguel A. Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
- Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
170
|
Quinn RA, Phelan VV, Whiteson KL, Garg N, Bailey BA, Lim YW, Conrad DJ, Dorrestein PC, Rohwer FL. Microbial, host and xenobiotic diversity in the cystic fibrosis sputum metabolome. THE ISME JOURNAL 2016; 10:1483-98. [PMID: 26623545 PMCID: PMC5029181 DOI: 10.1038/ismej.2015.207] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/19/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF) lungs are filled with thick mucus that obstructs airways and facilitates chronic infections. Pseudomonas aeruginosa is a significant pathogen of this disease that produces a variety of toxic small molecules. We used molecular networking-based metabolomics to investigate the chemistry of CF sputa and assess how the microbial molecules detected reflect the microbiome and clinical culture history of the patients. Metabolites detected included xenobiotics, P. aeruginosa specialized metabolites and host sphingolipids. The clinical culture and microbiome profiles did not correspond to the detection of P. aeruginosa metabolites in the same samples. The P. aeruginosa molecules that were detected in sputum did not match those from laboratory cultures. The pseudomonas quinolone signal (PQS) was readily detectable from cultured strains, but absent from sputum, even when its precursor molecules were present. The lack of PQS production in vivo is potentially due to the chemical nature of the CF lung environment, indicating that culture-based studies of this pathogen may not explain its behavior in the lung. The most differentially abundant molecules between CF and non-CF sputum were sphingolipids, including sphingomyelins, ceramides and lactosylceramide. As these highly abundant molecules contain the inflammatory mediator ceramide, they may have a significant role in CF hyperinflammation. This study demonstrates that the chemical makeup of CF sputum is a complex milieu of microbial, host and xenobiotic molecules. Detection of a bacterium by clinical culturing and 16S rRNA gene profiling do not necessarily reflect the active production of metabolites from that bacterium in a sputum sample.
Collapse
Affiliation(s)
- Robert A Quinn
- Department of Biology, San Diego State
University, San Diego, CA, USA
- Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California at San Diego, La
Jolla, CA, USA
| | - Vanessa V Phelan
- Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California at San Diego, La
Jolla, CA, USA
| | - Katrine L Whiteson
- Department of Molecular Biology and
Biochemistry, University of California Irvine, Irvine,
CA, USA
| | - Neha Garg
- Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California at San Diego, La
Jolla, CA, USA
| | - Barbara A Bailey
- Department of Mathematics and Statistics,
San Diego State University, San Diego, CA,
USA
| | - Yan Wei Lim
- Department of Biology, San Diego State
University, San Diego, CA, USA
| | - Douglas J Conrad
- Department of Medicine, University of
California at San Diego, La Jolla, CA,
USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California at San Diego, La
Jolla, CA, USA
| | - Forest L Rohwer
- Department of Biology, San Diego State
University, San Diego, CA, USA
| |
Collapse
|
171
|
Pompilio A, Crocetta V, Verginelli F, Di Bonaventura G. In vitro activity of levofloxacin against planktonic and biofilm Stenotrophomonas maltophilia lifestyles under conditions relevant to pulmonary infection in cystic fibrosis, and relationship with SmeDEF multidrug efflux pump expression. FEMS Microbiol Lett 2016; 363:fnw145. [PMID: 27242375 DOI: 10.1093/femsle/fnw145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2016] [Indexed: 11/14/2022] Open
Abstract
The activity of levofloxacin against planktonic and biofilm Stenotrophomonas maltophilia cells and the role played by the multidrug efflux pump SmeDEF were evaluated under conditions relevant to the cystic fibrosis (CF) lung. MIC, MBC and MBEC of levofloxacin were assessed, against five CF strains, under 'standard' (CLSI-recommended) and 'CF-like' (pH 6.8, 5% CO2, in a synthetic CF sputum) conditions. Levofloxacin was tested against biofilms at concentrations (10, 50 and 100 μg mL(-1)) corresponding to achievable serum levels and sputum levels by aerosolisation. smeD expression was evaluated, under both conditions, in planktonic and biofilm cells by RT-PCR. The bactericidal effect of levofloxacin was decreased, in three out of five strains tested, under 'CF-like' conditions (MBC: 2-4 vs 8-16 μg mL(-1), under 'standard' and 'CF-like' conditions, respectively). Biofilm was intrinsically resistant to levofloxacin, regardless of conditions tested (MBECs ≥ 100 μg mL(-1) for all strains). Only under 'CF-like' conditions, smeD expression increased during planktonic-to-biofilm transition, and in biofilm cells compared to stationary planktonic cells. Our findings confirmed that S. maltophilia biofilm is intrinsically resistant to therapeutic concentrations of levofloxacin. Under conditions relevant to CF, smeD overexpression could contribute to levofloxacin resistance. Further studies are warranted to define the clinical relevance of our findings.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Via dei Vestini 31, 66100 Italy Laboratory of Clinical Microbiology, Center of Excellence on Aging and Translational Medicine (CeSI-MeT), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi, 66100 Chieti, Italy
| | - Valentina Crocetta
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Via dei Vestini 31, 66100 Italy Laboratory of Clinical Microbiology, Center of Excellence on Aging and Translational Medicine (CeSI-MeT), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi, 66100 Chieti, Italy
| | - Fabio Verginelli
- Laboratory of Clinical Microbiology, Center of Excellence on Aging and Translational Medicine (CeSI-MeT), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi, 66100 Chieti, Italy Department of Pharmacy, 'G. d'Annunzio' University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Via dei Vestini 31, 66100 Italy Laboratory of Clinical Microbiology, Center of Excellence on Aging and Translational Medicine (CeSI-MeT), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi, 66100 Chieti, Italy
| |
Collapse
|
172
|
Kim HS, Cha E, Kim Y, Jeon YH, Olson BH, Byun Y, Park HD. Raffinose, a plant galactoside, inhibits Pseudomonas aeruginosa biofilm formation via binding to LecA and decreasing cellular cyclic diguanylate levels. Sci Rep 2016; 6:25318. [PMID: 27141909 PMCID: PMC4855137 DOI: 10.1038/srep25318] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/15/2016] [Indexed: 12/16/2022] Open
Abstract
Biofilm formation on biotic or abiotic surfaces has unwanted consequences in medical, clinical, and industrial settings. Treatments with antibiotics or biocides are often ineffective in eradicating biofilms. Promising alternatives to conventional agents are biofilm-inhibiting compounds regulating biofilm development without toxicity to growth. Here, we screened a biofilm inhibitor, raffinose, derived from ginger. Raffinose, a galactotrisaccharide, showed efficient biofilm inhibition of Pseudomonas aeruginosa without impairing its growth. Raffinose also affected various phenotypes such as colony morphology, matrix formation, and swarming motility. Binding of raffinose to a carbohydrate-binding protein called LecA was the cause of biofilm inhibition and altered phenotypes. Furthermore, raffinose reduced the concentration of the second messenger, cyclic diguanylate (c-di-GMP), by increased activity of a c-di-GMP specific phosphodiesterase. The ability of raffinose to inhibit P. aeruginosa biofilm formation and its molecular mechanism opens new possibilities for pharmacological and industrial applications.
Collapse
Affiliation(s)
- Han-Shin Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, South Korea
| | - Eunji Cha
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, South Korea
| | - YunHye Kim
- College of Pharmacy, Korea University, Sejong-ro 2511, Jochiwon-eup, Sejong, 339-700, South Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, Sejong-ro 2511, Jochiwon-eup, Sejong, 339-700, South Korea
| | - Betty H. Olson
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong-ro 2511, Jochiwon-eup, Sejong, 339-700, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, South Korea
| |
Collapse
|
173
|
Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence. mSphere 2016; 1:mSphere00111-15. [PMID: 27303724 PMCID: PMC4894682 DOI: 10.1128/msphere.00111-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/03/2016] [Indexed: 11/20/2022] Open
Abstract
Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the burn wound environment and for in vitro analysis of the initial step in the development of burn wound infections.
Collapse
|
174
|
Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis. Nat Commun 2016; 7:11392. [PMID: 27109928 PMCID: PMC4848537 DOI: 10.1038/ncomms11392] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/21/2016] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) forms biofilms harbouring antibiotic-tolerant bacilli in vitro, but the factors that induce biofilm formation and the nature of the extracellular material that holds the cells together are poorly understood. Here we show that intracellular thiol reductive stress (TRS) induces formation of Mtb biofilms in vitro, which harbour drug-tolerant but metabolically active bacteria with unchanged levels of ATP/ADP, NAD(+)/NADH and NADP(+)/NADPH. The development of these biofilms requires DNA, RNA and protein synthesis. Transcriptional analysis suggests that Mtb modulates only ∼7% of its genes for survival in biofilms. In addition to proteins, lipids and DNA, the extracellular material in these biofilms is primarily composed of polysaccharides, with cellulose being a key component. Our results contribute to a better understanding of the mechanisms underlying Mtb biofilm formation, although the clinical relevance of Mtb biofilms in human tuberculosis remains unclear.
Collapse
|
175
|
Metabolism and Pathogenicity of Pseudomonas aeruginosa Infections in the Lungs of Individuals with Cystic Fibrosis. Microbiol Spectr 2016; 3. [PMID: 26350318 DOI: 10.1128/microbiolspec.mbp-0003-2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Individuals with the genetic disease cystic fibrosis (CF) accumulate mucus or sputum in their lungs. This sputum is a potent growth substrate for a range of potential pathogens, and the opportunistic bacterium Pseudomonas aeruginosa is generally most difficult of these to eradicate. As a result, P. aeruginosa infections are frequently maintained in the CF lung throughout life, and are the leading cause of death for these individuals. While great effort has been expended to better understand and treat these devastating infections, only recently have researchers begun to rigorously examine the roles played by specific nutrients in CF sputum to cue P. aeruginosa pathogenicity. This chapter summarizes the current state of knowledge regarding how P. aeruginosa metabolism in CF sputum affects initiation and maintenance of these infections. It contains an overview of CF lung disease and the mechanisms of P. aeruginosa pathogenicity. Several model systems used to study these infections are described with emphasis on the challenge of replicating the chronic infections observed in humans with CF. Nutrients present in CF sputum are surveyed, and the impacts of these nutrients on the infection are discussed. The chapter concludes by addressing the future of this line of research including the use of next-generation technologies and the potential for metabolism-based therapeutics.
Collapse
|
176
|
Effect of Media Modified To Mimic Cystic Fibrosis Sputum on the Susceptibility of Aspergillus fumigatus, and the Frequency of Resistance at One Center. Antimicrob Agents Chemother 2016; 60:2180-4. [PMID: 26810647 DOI: 10.1128/aac.02649-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/17/2016] [Indexed: 01/07/2023] Open
Abstract
Studies of cystic fibrosis (CF) patient exacerbations attributed toPseudomonas aeruginosainfection have indicated a lack of correlation of outcome within vitrosusceptibility results. One explanation is that the media used for testing do not mimic the airway milieu, resulting in incorrect conclusions. Therefore, media have been devised to mimic CF sputum.Aspergillus fumigatusis the leading fungal pathogen in CF, and susceptibility testing is also used to decide therapeutic choices. We assessed whether media designed to mimic CF sputa would give different fungal susceptibility results than those of classical methods, assaying voriconazole, the most utilized anti-Aspergillusdrug in this setting, and 30 CFAspergillusisolates. The frequency of marked resistance (defined as an MIC of >4 μg/ml) in our CF unit by classical methods is 7%. Studies performed with classical methods and with digested sputum medium, synthetic sputum medium, and artificial sputum medium revealed prominent differences inAspergillussusceptibility results, as well as growth rate, with each medium. Clinical correlative studies are required to determine which results are most useful in predicting outcome. Comparison of MICs with non-CF isolates also indicated the CF isolates were generally more resistant.
Collapse
|
177
|
Tata M, Wolfinger MT, Amman F, Roschanski N, Dötsch A, Sonnleitner E, Häussler S, Bläsi U. RNASeq Based Transcriptional Profiling of Pseudomonas aeruginosa PA14 after Short- and Long-Term Anoxic Cultivation in Synthetic Cystic Fibrosis Sputum Medium. PLoS One 2016; 11:e0147811. [PMID: 26821182 PMCID: PMC4731081 DOI: 10.1371/journal.pone.0147811] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/08/2016] [Indexed: 01/22/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa can thrive under microaerophilic to anaerobic conditions in the lungs of cystic fibrosis patients. RNASeq based comparative RNA profiling of the clinical isolate PA14 cultured in synthetic cystic fibrosis medium was performed after planktonic growth (OD600 = 2.0; P), 30 min after shift to anaerobiosis (A-30) and after anaerobic biofilm growth for 96h (B-96) with the aim to reveal differentially regulated functions impacting on sustained anoxic biofilm formation as well as on tolerance towards different antibiotics. Most notably, functions involved in sulfur metabolism were found to be up-regulated in B-96 cells when compared to A-30 cells. Based on the transcriptome studies a set of transposon mutants were screened, which revealed novel functions involved in anoxic biofilm growth.In addition, these studies revealed a decreased and an increased abundance of the oprD and the mexCD-oprJ operon transcripts, respectively, in B-96 cells, which may explain their increased tolerance towards meropenem and to antibiotics that are expelled by the MexCD-OprD efflux pump. The OprI protein has been implicated as a target for cationic antimicrobial peptides, such as SMAP-29. The transcriptome and subsequent Northern-blot analyses showed that the abundance of the oprI transcript encoding the OprI protein is strongly decreased in B-96 cells. However, follow up studies revealed that the susceptibility of a constructed PA14ΔoprI mutant towards SMAP-29 was indistinguishable from the parental wild-type strain, which questions OprI as a target for this antimicrobial peptide in strain PA14.
Collapse
Affiliation(s)
- Muralidhar Tata
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Michael T. Wolfinger
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- Institute for Theoretical Chemistry, University of Vienna Währinger Straße 17, 1090 Vienna, Austria
| | - Fabian Amman
- Department of Chromosome Biology, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- Institute for Theoretical Chemistry, University of Vienna Währinger Straße 17, 1090 Vienna, Austria
| | - Nicole Roschanski
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- Free University Berlin, Institute of Animal Hygiene and Environmental Health, Robert-von-Ostertag-Str. 7–13, 14163 Berlin, Germany
| | - Andreas Dötsch
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute of Molecular Bacteriology, Twincore, Center for Experimental and Clinical Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- * E-mail:
| |
Collapse
|
178
|
Mathee K, Silver LL, Tatke G. 70th Anniversary Collection for the Microbiology Society: Journal of Medical Microbiology. J Med Microbiol 2015; 64:1457-1461. [PMID: 26689963 DOI: 10.1099/jmm.0.000186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the last 70 years, we have seen a radical change in our perception and understanding of the microbial world. During this period, we learned from Woese and Fox there exists a third kingdom called 'Archea' based on the phylogenetic studies of the 16S rRNA that revolutionized microbiology (Woese & Fox, 1977; Woese et al., 1978). Furthermore, we were forced to reckon with the fact that Koch and Pasteur's way of growing cells in test-tubes or flasks planktonically does not necessarily translate to the real-life scenario of bacterial lifestyle, where they prefer to live and function as a closely knit microbial community called biofilm. Thanks are due to Costerton, who led the crusade on the concept of biofilms and expanded its scope of inquiry, which forced scientists and clinicians worldwide to rethink how we evaluate and apply the data. Then progressively, disbelief turned into belief, and now it is universally accepted that the micro-organisms hobnob with the members of their community to communicate and coordinate their behaviour, especially in regard to growth patterns and virulence traits via signalling molecules. Just when we thought that we were losing the battle against bacteria, antimicrobials were discovered. We then witnessed the rise and fall of antibiotics and the development of antibiotic resistance. Due to space and choice limitation, we will focus on the three areas that caused this major paradigm shift (i) antimicrobial resistance (AMR), (ii) biofilm and (iii) quorum sensing (QS), and how the Journal of Medical Microbiology played a major role in advancing the shift.
Collapse
Affiliation(s)
- Kalai Mathee
- Global Health Consortium, Florida International University, Miami, FL, USA.,Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | | | - Gorakh Tatke
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Department of Biological Sciences, College of Arts & Sciences, Florida International University, Miami, FL, USA
| |
Collapse
|
179
|
Magalhães AP, Azevedo NF, Pereira MO, Lopes SP. The cystic fibrosis microbiome in an ecological perspective and its impact in antibiotic therapy. Appl Microbiol Biotechnol 2015; 100:1163-1181. [PMID: 26637419 DOI: 10.1007/s00253-015-7177-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023]
Abstract
The recent focus on the cystic fibrosis (CF) complex microbiome has led to the recognition that the microbes can interact between them and with the host immune system, affecting the disease progression and treatment routes. Although the main focus remains on the interactions between traditional pathogens, growing evidence supports the contribution and the role of emergent species. Understanding the mechanisms and the biological effects involved in polymicrobial interactions may be the key to improve effective therapies and also to define new strategies for disease control. This review focuses on the interactions between microbe-microbe and host-microbe, from an ecological point of view, discussing their impact on CF disease progression. There are increasing indications that these interactions impact the success of antimicrobial therapy. Consequently, a new approach where therapy is personalized to patients by taking into account their individual CF microbiome is suggested.
Collapse
Affiliation(s)
- Andreia P Magalhães
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Nuno F Azevedo
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| | - Maria O Pereira
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Susana P Lopes
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
180
|
Wagemans J, Delattre AS, Uytterhoeven B, De Smet J, Cenens W, Aertsen A, Ceyssens PJ, Lavigne R. Antibacterial phage ORFans of Pseudomonas aeruginosa phage LUZ24 reveal a novel MvaT inhibiting protein. Front Microbiol 2015; 6:1242. [PMID: 26594207 PMCID: PMC4635203 DOI: 10.3389/fmicb.2015.01242] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
The functional elucidation of small unknown phage proteins (‘ORFans’) presents itself as one of the major challenges of bacteriophage molecular biology. In this work, we mined the Pseudomonas aeruginosa-infecting phage LUZ24 proteome for antibacterial and antibiofilm proteins against its host. Subsequently, their putative host target was identified. In one example, we observed an interaction between LUZ24 gp4 and the host transcriptional regulator MvaT. The polymerization of MvaT across AT-rich DNA strands permits gene silencing of foreign DNA, thereby limiting any potentially adverse effects of such DNA. Gel shift assays proved the inhibitory effect of LUZ24 gp4 on MvaT DNA binding activity. Therefore, we termed this gene product as Mip, the MvaT inhibiting protein. We hypothesize Mip prevents the AT-rich LUZ24 DNA from being physically blocked by MvaT oligomers right after its injection in the host cell, thereby allowing phage transcription and thus completion of the phage infection cycle.
Collapse
Affiliation(s)
- Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| | - Anne-Sophie Delattre
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| | - Birgit Uytterhoeven
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| | - Jeroen De Smet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| | - William Cenens
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven Leuven, Belgium
| | - Pieter-Jan Ceyssens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| |
Collapse
|
181
|
Soumpasis I, Knapp L, Pitt T. A proof-of-concept model for the identification of the key events in the infection process with specific reference to Pseudomonas aeruginosa in corneal infections. Infect Ecol Epidemiol 2015; 5:28750. [PMID: 26546946 PMCID: PMC4636861 DOI: 10.3402/iee.v5.28750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND It is a common medical practice to characterise an infection based on the causative agent and to adopt therapeutic and prevention strategies targeting the agent itself. However, from an epidemiological perspective, exposure to a microbe can be harmless to a host as a result of low-level exposure or due to host immune response, with opportunistic infection only occurring as a result of changes in the host, pathogen, or surrounding environment. METHODS We have attempted to review systematically the key host, pathogen, and environmental factors that may significantly impact clinical outcomes of exposure to a pathogen, using Pseudomonas aeruginosa eye infection as a case study. RESULTS AND DISCUSSION Extended contact lens wearing and compromised hygiene may predispose users to microbial keratitis, which can be a severe and vision-threatening infection. P. aeruginosa has a wide array of virulence-associated genes and sensing systems to initiate and maintain cell populations at the corneal surface and beyond. We have adapted the well-known concept of the epidemiological triangle in combination with the classic risk assessment framework (hazard identification, characterisation, and exposure) to develop a conceptual pathway-based model that demonstrates the overlapping relationships between the host, the pathogen, and the environment; and to illustrate the key events in P. aeruginosa eye infection. CONCLUSION This strategy differs from traditional approaches that consider potential risk factors in isolation, and hopefully will aid the identification of data and models to inform preventive and therapeutic measures in addition to risk assessment. Furthermore, this may facilitate the identification of knowledge gaps to direct research in areas of greatest impact to avert or mitigate adverse outcomes of infection.
Collapse
Affiliation(s)
- Ilias Soumpasis
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK;
| | - Laura Knapp
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| | - Tyrone Pitt
- Clinical Bacteriology Consultant, London, UK
| |
Collapse
|
182
|
Rybtke M, Hultqvist LD, Givskov M, Tolker-Nielsen T. Pseudomonas aeruginosa Biofilm Infections: Community Structure, Antimicrobial Tolerance and Immune Response. J Mol Biol 2015; 427:3628-45. [DOI: 10.1016/j.jmb.2015.08.016] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023]
|
183
|
Murphy MP, Caraher E. Residence in biofilms allows Burkholderia cepacia complex (Bcc) bacteria to evade the antimicrobial activities of neutrophil-like dHL60 cells. Pathog Dis 2015; 73:ftv069. [PMID: 26371179 DOI: 10.1093/femspd/ftv069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 12/14/2022] Open
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) persist in the airways of people with cystic fibrosis (CF) despite the continuous recruitment of neutrophils. Most members of Bcc are multidrug resistant and can form biofilms. As such, we sought to investigate whether biofilm formation plays a role in protecting Bcc bacteria from neutrophils. Using the neutrophil-like, differentiated cell line, dHL60, we have shown for the first time that Bcc biofilms are enhanced in the presence of these cells. Biofilm biomass was greater following culture in the presence of dHL60 cells than in their absence, likely the result of incorporating dHL60 cellular debris into the biofilm. Moreover, we have demonstrated that mature biofilms (cultured for up to 72 h) induced necrosis in the cells. Established biofilms also acted as a barrier to the migration of the cells and masked the bacteria from being recognized by the cells; dHL60 cells expressed less IL-8 mRNA and secreted significantly less IL-8 when cultured in the presence of biofilms, with respect to planktonic bacteria. Our findings provide evidence that biofilm formation can, at least partly, enable the persistence of Bcc bacteria in the CF airway and emphasize a requirement for anti-biofilm therapeutics.
Collapse
Affiliation(s)
- Mark P Murphy
- Centre for Microbial-Host Interactions, Institute of Technology Tallaght, Dublin 24, Ireland Centre of Applied Science for Health, Institute of Technology Tallaght, Dublin 24, Ireland
| | - Emma Caraher
- Centre for Microbial-Host Interactions, Institute of Technology Tallaght, Dublin 24, Ireland Centre of Applied Science for Health, Institute of Technology Tallaght, Dublin 24, Ireland
| |
Collapse
|
184
|
Pereira FD, Bonatto CC, Lopes CA, Pereira AL, Silva LP. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces. Microb Pathog 2015; 86:32-7. [DOI: 10.1016/j.micpath.2015.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/16/2015] [Accepted: 07/02/2015] [Indexed: 12/14/2022]
|
185
|
Mucin Binding Reduces Colistin Antimicrobial Activity. Antimicrob Agents Chemother 2015; 59:5925-31. [PMID: 26169405 DOI: 10.1128/aac.00808-15] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/04/2015] [Indexed: 11/20/2022] Open
Abstract
Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance.
Collapse
|
186
|
Lacroix M, Barraud O, Clavel M, Filiputti D, Prudent S, François B, Ploy MC, Jestin MA, Rodrigue M, Pachot A, Yugueros-Marcos J, Moucadel V. Rapid quantification of Staphylococcus aureus from endotracheal aspirates of ventilated patients: a proof-of-concept study. Diagn Microbiol Infect Dis 2015; 83:117-20. [PMID: 26227327 DOI: 10.1016/j.diagmicrobio.2015.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 06/05/2015] [Accepted: 06/07/2015] [Indexed: 11/30/2022]
Abstract
Major concern for intubated patients is ventilator-associated pneumonia (VAP). Early detection of VAP and its causative microorganism(s) is a key challenge for clinicians. Diagnosis is based on clinical, radiological, and microbiological elements, the latter being provided 24-48h after sampling. According to practices, clinicians can sample endotracheal aspirates (ETAs) so as to check for patient colonization or perform ETA in case of VAP suspicion. In this proof-of-concept study, we report the evaluation of a semiautomated molecular method to rapidly quantify Staphylococcus aureus, one of the most involved microorganisms in VAP, directly from raw ETA samples. After evaluation using artificial ETA samples, our method was applied on 40 clinical ETA samples. All S. aureus-positive samples were successfully detected and quantified. Our method can provide an efficient sample preparation protocol for all raw ETA samples, combined with an accurate quantification of the bacterial load, in less than 3h 30min.
Collapse
Affiliation(s)
- Morgane Lacroix
- Medical Diagnostic Discovery Department, bioMérieux SA, Centre Christophe Mérieux, 5 rue des berges, 38024 Grenoble cedex 1, France
| | - Olivier Barraud
- Inserm, UMR 1092, Limoges, Univ. Limoges, UMR 1092, CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, Limoges, France
| | - Marc Clavel
- Intensive Care Unit/Inserm CIC1435, CHU Limoges, 2 avenue Martin Luther King, 87042 Limoges Cedex, France
| | - Delphine Filiputti
- Medical Diagnostic Discovery Department, bioMérieux SA, Centre Christophe Mérieux, 5 rue des berges, 38024 Grenoble cedex 1, France
| | - Sandrine Prudent
- Medical Diagnostic Discovery Department, bioMérieux SA, Centre Christophe Mérieux, 5 rue des berges, 38024 Grenoble cedex 1, France
| | - Bruno François
- Intensive Care Unit/Inserm CIC1435, CHU Limoges, 2 avenue Martin Luther King, 87042 Limoges Cedex, France
| | - Marie Cécile Ploy
- Inserm, UMR 1092, Limoges, Univ. Limoges, UMR 1092, CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, Limoges, France
| | | | - Marc Rodrigue
- Medical Diagnostic Discovery Department, bioMérieux SA, Centre Christophe Mérieux, 5 rue des berges, 38024 Grenoble cedex 1, France
| | - Alexandre Pachot
- Medical Diagnostic Discovery Department, bioMérieux SA, Centre Christophe Mérieux, 5 rue des berges, 38024 Grenoble cedex 1, France
| | - Javier Yugueros-Marcos
- Medical Diagnostic Discovery Department, bioMérieux SA, Centre Christophe Mérieux, 5 rue des berges, 38024 Grenoble cedex 1, France
| | - Virginie Moucadel
- Medical Diagnostic Discovery Department, bioMérieux SA, Centre Christophe Mérieux, 5 rue des berges, 38024 Grenoble cedex 1, France.
| |
Collapse
|
187
|
Zhang W, Sun J, Ding W, Lin J, Tian R, Lu L, Liu X, Shen X, Qian PY. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development. Front Cell Infect Microbiol 2015; 5:40. [PMID: 26029669 PMCID: PMC4429628 DOI: 10.3389/fcimb.2015.00040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/27/2015] [Indexed: 12/13/2022] Open
Abstract
Though the essential role of extracellular matrix in biofilm development has been extensively documented, the function of matrix-associated proteins is elusive. Determining the dynamics of matrix-associated proteins would be a useful way to reveal their functions in biofilm development. Therefore, we applied iTRAQ-based quantitative proteomics to evaluate matrix-associated proteins isolated from different phases of Pseudomonas aeruginosa ATCC27853 biofilms. Among the identified 389 proteins, 54 changed their abundance significantly. The increased abundance of stress resistance and nutrient metabolism-related proteins over the period of biofilm development was consistent with the hypothesis that biofilm matrix forms micro-environments in which cells are optimally organized to resist stress and use available nutrients. Secreted proteins, including novel putative effectors of the type III secretion system were identified, suggesting that the dynamics of pathogenesis-related proteins in the matrix are associated with biofilm development. Interestingly, there was a good correlation between the abundance changes of matrix-associated proteins and their expression. Further analysis revealed complex interactions among these modulated proteins, and the mutation of selected proteins attenuated biofilm development. Collectively, this work presents the first dynamic picture of matrix-associated proteins during biofilm development, and provides evidences that the matrix-associated proteins may form an integral and well regulated system that contributes to stress resistance, nutrient acquisition, pathogenesis and the stability of the biofilm.
Collapse
Affiliation(s)
- Weipeng Zhang
- Division of Life Science, The Hong Kong University of Science and Technology Hong Kong, China
| | - Jin Sun
- Department of Biology, Hong Kong Baptist University Hong Kong, China
| | - Wei Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University Yangling, China
| | - Jinshui Lin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University Yangling, China
| | - Renmao Tian
- Division of Life Science, The Hong Kong University of Science and Technology Hong Kong, China
| | - Liang Lu
- Division of Life Science, The Hong Kong University of Science and Technology Hong Kong, China
| | - Xiaofen Liu
- Division of Life Science, The Hong Kong University of Science and Technology Hong Kong, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University Yangling, China
| | - Pei-Yuan Qian
- Division of Life Science, The Hong Kong University of Science and Technology Hong Kong, China
| |
Collapse
|
188
|
Hittinger M, Juntke J, Kletting S, Schneider-Daum N, de Souza Carvalho C, Lehr CM. Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models. Adv Drug Deliv Rev 2015; 85:44-56. [PMID: 25453270 DOI: 10.1016/j.addr.2014.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022]
Abstract
New pharmaceutical formulations must be proven as safe and effective before entering clinical trials. Also in the context of pulmonary drug delivery, preclinical models allow testing of novel antimicrobials, reducing risks and costs during their development. Such models allow reducing the complexity of the human lung, but still need to reflect relevant (patho-) physiological features. This review focuses on preclinical pulmonary models, mainly in vitro models, to assess drug safety and efficacy of antimicrobials. Furthermore, approaches to investigate common infectious diseases of the respiratory tract, are emphasized. Pneumonia, tuberculosis and infections occurring due to cystic fibrosis are in focus of this review. We conclude that especially in vitro models offer the chance of an efficient and detailed analysis of new antimicrobials, but also draw attention to the advantages and limitations of such currently available models and critically discuss the necessary steps for their future development.
Collapse
|
189
|
An Integrated Modeling and Experimental Approach to Study the Influence of Environmental Nutrients on Biofilm Formation of Pseudomonas aeruginosa. BIOMED RESEARCH INTERNATIONAL 2015; 2015:506782. [PMID: 25954752 PMCID: PMC4411446 DOI: 10.1155/2015/506782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
Abstract
The availability of nutrient components in the environment was identified as a critical regulator of virulence and biofilm formation in Pseudomonas aeruginosa. This work proposes the first systems-biology approach to quantify microbial biofilm formation upon the change of nutrient availability in the environment. Specifically, the change of fluxes of metabolic reactions that were positively associated with P. aeruginosa biofilm formation was used to monitor the trend for P. aeruginosa to form a biofilm. The uptake rates of nutrient components were changed according to the change of the nutrient availability. We found that adding each of the eleven amino acids (Arg, Tyr, Phe, His, Iso, Orn, Pro, Glu, Leu, Val, and Asp) to minimal medium promoted P. aeruginosa biofilm formation. Both modeling and experimental approaches were further developed to quantify P. aeruginosa biofilm formation for four different availability levels for each of the three ions that include ferrous ions, sulfate, and phosphate. The developed modeling approach correctly predicted the amount of biofilm formation. By comparing reaction flux change upon the change of nutrient concentrations, metabolic reactions used by P. aeruginosa to regulate its biofilm formation are mainly involved in arginine metabolism, glutamate production, magnesium transport, acetate metabolism, and the TCA cycle.
Collapse
|
190
|
Kamath KS, Kumar SS, Kaur J, Venkatakrishnan V, Paulsen IT, Nevalainen H, Molloy MP. Proteomics of hosts and pathogens in cystic fibrosis. Proteomics Clin Appl 2015; 9:134-46. [DOI: 10.1002/prca.201400122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/27/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sheemal Shanista Kumar
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | - Jashanpreet Kaur
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | | | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | - Helena Nevalainen
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | - Mark P. Molloy
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
- Australian Proteome Analysis Facility; Macquarie University; Sydney Australia
| |
Collapse
|
191
|
Reighard KP, Hill DB, Dixon GA, Worley B, Schoenfisch MH. Disruption and eradication of P. aeruginosa biofilms using nitric oxide-releasing chitosan oligosaccharides. BIOFOULING 2015; 31:775-87. [PMID: 26610146 PMCID: PMC4695972 DOI: 10.1080/08927014.2015.1107548] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Biofilm disruption and eradication were investigated as a function of nitric oxide- (NO) releasing chitosan oligosaccharide dose and the results compared with control (i.e., non-NO-releasing) chitosan oligosaccharides and tobramycin. Quantification of biofilm expansion/contraction and multiple-particle tracking microrheology were used to assess the structural integrity of the biofilm before and after antibacterial treatment. While tobramycin had no effect on the physical properties of the biofilm, NO-releasing chitosan oligosaccharides exhibited dose-dependent behavior with biofilm degradation. Control chitosan oligosaccharides increased biofilm elasticity, indicating that the scaffold may mitigate the biofilm disrupting power of nitric oxide somewhat. The results from this study indicate that nitric oxide-releasing chitosan oligosaccharides act as dual-action therapeutics capable of eradicating and physically disrupting P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Katelyn P. Reighard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David B. Hill
- The Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Graham A. Dixon
- The Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brittany Worley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Corresponding author.
| |
Collapse
|
192
|
Caceres SM, Malcolm KC, Taylor-Cousar JL, Nichols DP, Saavedra MT, Bratton DL, Moskowitz SM, Burns JL, Nick JA. Enhanced in vitro formation and antibiotic resistance of nonattached Pseudomonas aeruginosa aggregates through incorporation of neutrophil products. Antimicrob Agents Chemother 2014; 58:6851-60. [PMID: 25182651 PMCID: PMC4249413 DOI: 10.1128/aac.03514-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/28/2014] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a major pathogen in cystic fibrosis (CF) lung disease. Children with CF are routinely exposed to P. aeruginosa from the natural environment, and by adulthood, 80% of patients are chronically infected. P. aeruginosa in the CF airway exhibits a unique biofilm-like structure, where it grows in small clusters or aggregates of bacteria in association with abundant polymers of neutrophil-derived components F-actin and DNA, among other components. These aggregates differ substantially in size and appearance compared to surface-attached in vitro biofilm models classically utilized for studies but are believed to share properties of surface-attached biofilms, including antibiotic resistance. However, little is known about the formation and function of surface-independent modes of biofilm growth, how they might be eradicated, and quorum sensing communication. To address these issues, we developed a novel in vitro model of P. aeruginosa aggregates incorporating human neutrophil-derived products. Aggregates grown in vitro and those found in CF patients' sputum samples were morphologically similar; viable bacteria were distributed in small pockets throughout the aggregate. The lasA quorum sensing gene was differentially expressed in the presence of neutrophil products. Importantly, aggregates formed in the presence of neutrophils acquired resistance to tobramycin, which was lost when the aggregates were dispersed with DNase, and antagonism of tobramycin and azithromycin was observed. This novel yet simple in vitro system advances our ability to model infection of the CF airway and will be an important tool to study virulence and test alternative eradication strategies against P. aeruginosa.
Collapse
Affiliation(s)
- Silvia M Caceres
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, Colorado, USA Department of Medicine, University of Colorado, Denver, Aurora, Colorado, USA
| | - Jennifer L Taylor-Cousar
- Department of Medicine, National Jewish Health, Denver, Colorado, USA Department of Medicine, University of Colorado, Denver, Aurora, Colorado, USA
| | - David P Nichols
- Department of Medicine, National Jewish Health, Denver, Colorado, USA Department of Pediatrics, National Jewish Health, Denver, Colorado, USA Department of Medicine, University of Colorado, Denver, Aurora, Colorado, USA
| | - Milene T Saavedra
- Department of Medicine, National Jewish Health, Denver, Colorado, USA Department of Medicine, University of Colorado, Denver, Aurora, Colorado, USA
| | - Donna L Bratton
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Samuel M Moskowitz
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jane L Burns
- Division of Pediatric Infectious Disease, Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, Colorado, USA Department of Medicine, University of Colorado, Denver, Aurora, Colorado, USA
| |
Collapse
|
193
|
Herbst FA, Søndergaard MT, Kjeldal H, Stensballe A, Nielsen PH, Dueholm MS. Major Proteomic Changes Associated with Amyloid-Induced Biofilm Formation in Pseudomonas aeruginosa PAO1. J Proteome Res 2014; 14:72-81. [DOI: 10.1021/pr500938x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Florian-Alexander Herbst
- Center for Microbial Communities; ‡Department of Biotechnology, Chemistry, and
Environmental Engineering; and §Department of Health Science and Technology, Aalborg University, DK-9000 Aalborg, Denmark
| | - Mads T. Søndergaard
- Center for Microbial Communities; ‡Department of Biotechnology, Chemistry, and
Environmental Engineering; and §Department of Health Science and Technology, Aalborg University, DK-9000 Aalborg, Denmark
| | - Henrik Kjeldal
- Center for Microbial Communities; ‡Department of Biotechnology, Chemistry, and
Environmental Engineering; and §Department of Health Science and Technology, Aalborg University, DK-9000 Aalborg, Denmark
| | - Allan Stensballe
- Center for Microbial Communities; ‡Department of Biotechnology, Chemistry, and
Environmental Engineering; and §Department of Health Science and Technology, Aalborg University, DK-9000 Aalborg, Denmark
| | - Per H. Nielsen
- Center for Microbial Communities; ‡Department of Biotechnology, Chemistry, and
Environmental Engineering; and §Department of Health Science and Technology, Aalborg University, DK-9000 Aalborg, Denmark
| | - Morten S. Dueholm
- Center for Microbial Communities; ‡Department of Biotechnology, Chemistry, and
Environmental Engineering; and §Department of Health Science and Technology, Aalborg University, DK-9000 Aalborg, Denmark
| |
Collapse
|
194
|
Transcriptional adaptations during long-term persistence of Staphylococcus aureus in the airways of a cystic fibrosis patient. Int J Med Microbiol 2014; 305:38-46. [PMID: 25439320 DOI: 10.1016/j.ijmm.2014.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/22/2014] [Accepted: 10/20/2014] [Indexed: 12/16/2022] Open
Abstract
The lungs of Cystic fibrosis (CF) patients are often colonized and/or infected by Staphylococcus aureus for years, mostly by one predominant clone. For long-term survival in this environment, S. aureus needs to adapt during its interactions with host factors, antibiotics, and other pathogens. Here, we study long-term transcriptional as well as genomic adaptations of an isogenic pair of S. aureus isolates from a single patient using RNA sequencing (RNA-Seq) and whole genome sequencing (WGS). Mimicking in vivo conditions, we cultivated the S. aureus isolates using artificial sputum medium before harvesting RNA for subsequent analysis. We confirmed our RNA-Seq data using quantitative real-time (qRT)-PCR and additionally investigated intermediate isolates from the same patient representing in total 13.2 years of persistence in the CF airways. Comparative RNA-Seq analysis of the first and the last ("late") isolate revealed significant differences in the late isolate after 13.2 years of persistence. Of the 2545 genes expressed in both isolates that were cultivated aerobically, 256 genes were up- and 161 were down-regulated with a minimum 2-fold change (2f). Focusing on 25 highly (≥8f) up- (n=9) or down- (n=16) regulated genes, we identified several genes encoding for virulence factors involved in immune evasion, bacterial spread or secretion (e.g. spa, sak, and esxA). Moreover, these genes displayed similar expression trends under aerobic, microaerophilic and anaerobic conditions. Further qRT-PCR-experiments of highly up- or down-regulated genes within intermediate S. aureus isolates resulted in different gene expression patterns over the years. Using sequencing analysis of the differently expressed genes and their upstream regions in the late S. aureus isolate resulted in only few genomic alterations. Comparative transcriptomic analysis revealed adaptive changes affecting mainly genes involved in host-pathogen interaction. Although the underlying mechanisms were not known, our results suggest adaptive processes beyond genomic mutations triggered by local factors rather than by activation of global regulators.
Collapse
|
195
|
Sputum containing zinc enhances carbapenem resistance, biofilm formation and virulence of Pseudomonas aeruginosa. Microb Pathog 2014; 77:36-41. [PMID: 25448466 DOI: 10.1016/j.micpath.2014.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa chronic lung infections are the leading cause of mortality in cystic fibrosis patients, a serious problem which is notably due to the numerous P. aeruginosa virulence factors, to its ability to form biofilms and to resist the effects of most antibiotics. Production of virulence factors and biofilm formation by P. aeruginosa is highly coordinated through complex regulatory systems. We recently found that CzcRS, the zinc and cadmium-specific two-component system is not only involved in metal resistance, but also in virulence and carbapenem antibiotic resistance in P. aeruginosa. Interestingly, zinc has been shown to be enriched in the lung secretions of cystic fibrosis patients. In this study, we investigated whether zinc might favor P. aeruginosa pathogenicity using an artificial sputum medium to mimic the cystic fibrosis lung environment. Our results show that zinc supplementation triggers a dual P. aeruginosa response: (i) it exacerbates pathogenicity by a CzcRS two-component system-dependent mechanism and (ii) it stimulates biofilm formation by a CzcRS-independent mechanism. Furthermore, P. aeruginosa cells embedded in these biofilms exhibited increased resistance to carbapenems. We identified a novel Zn-sensitive regulatory circuit controlling the expression of the OprD porin and modifying the carbapenem resistance profile. Altogether our data demonstrated that zinc levels in the sputum of cystic fibrosis patients might aggravate P. aeruginosa infection. Targeting zinc levels in sputum would be a valuable strategy to curb the increasing burden of P. aeruginosa infections in cystic fibrosis patients.
Collapse
|
196
|
Taylor PK, Yeung ATY, Hancock REW. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. J Biotechnol 2014; 191:121-30. [PMID: 25240440 DOI: 10.1016/j.jbiotec.2014.09.003] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/23/2022]
Abstract
The growth of bacteria as structured aggregates termed biofilms leads to their protection from harsh environmental conditions such as physical and chemical stresses, shearing forces, and limited nutrient availability. Because of this highly adapted ability to survive adverse environmental conditions, bacterial biofilms are recalcitrant to antibiotic therapies and immune clearance. This is particularly problematic in hospital settings where biofilms are a frequent cause of chronic and device-related infections and constitute a significant burden on the health-care system. The major therapeutic strategy against infections is the use of antibiotics, which, due to adaptive resistance, are often insufficient to clear biofilm infections. Thus, novel biofilm-specific therapies are required. Specific features of biofilm development, such as surface adherence, extracellular matrix formation, quorum sensing, and highly regulated biofilm maturation and dispersal are currently being studied as targets to be exploited in the development of novel biofilm-specific treatments. Using Pseudomonas aeruginosa for illustrative purposes, this review highlights the antibiotic resistance mechanisms of biofilms, and discusses current research into novel biofilm-specific therapies.
Collapse
Affiliation(s)
- Patrick K Taylor
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Amy T Y Yeung
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
197
|
Fletcher MH, Jennings MC, Wuest WM. Draining the moat: disrupting bacterial biofilms with natural products. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
198
|
Wagemans J, Blasdel BG, Van den Bossche A, Uytterhoeven B, De Smet J, Paeshuyse J, Cenens W, Aertsen A, Uetz P, Delattre AS, Ceyssens PJ, Lavigne R. Functional elucidation of antibacterial phage ORFans targetingPseudomonas aeruginosa. Cell Microbiol 2014; 16:1822-35. [DOI: 10.1111/cmi.12330] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/27/2014] [Accepted: 07/03/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Jeroen Wagemans
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
| | - Bob G. Blasdel
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
| | - An Van den Bossche
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
| | - Birgit Uytterhoeven
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
| | - Jeroen De Smet
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
| | - Jan Paeshuyse
- Department of Microbiology and Immunology; Katholieke Universiteit Leuven; Minderbroedersstraat 10 - box 1030 3000 Leuven Belgium
| | - William Cenens
- Department of Microbial and Molecular Systems; Katholieke Universiteit Leuven; Kasteelpark Arenberg 22 - box 2457 3001 Leuven Belgium
| | - Abram Aertsen
- Department of Microbial and Molecular Systems; Katholieke Universiteit Leuven; Kasteelpark Arenberg 22 - box 2457 3001 Leuven Belgium
| | - Peter Uetz
- Centre for the Study of Biological Complexity; Virginia Commonwealth University; 1000 West Cary Street - room 333 Richmond VA 23284 USA
| | - Anne-Sophie Delattre
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
| | - Pieter-Jan Ceyssens
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
- Bacterial Diseases Division; Scientific Institute of Public Health (WIV-ISP); J. Wytsmanstraat 14 1050 Brussels Belgium
| | - Rob Lavigne
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
| |
Collapse
|
199
|
Localization of Burkholderia cepacia complex bacteria in cystic fibrosis lungs and interactions with Pseudomonas aeruginosa in hypoxic mucus. Infect Immun 2014; 82:4729-45. [PMID: 25156735 DOI: 10.1128/iai.01876-14] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The localization of Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) lungs, alone or during coinfection with Pseudomonas aeruginosa, is poorly understood. We performed immunohistochemistry for Bcc and P. aeruginosa bacteria on 21 coinfected or singly infected CF lungs obtained at transplantation or autopsy. Parallel in vitro experiments examined the growth of two Bcc species, Burkholderia cenocepacia and Burkholderia multivorans, in environments similar to those occupied by P. aeruginosa in the CF lung. Bcc bacteria were predominantly identified in the CF lung as single cells or small clusters within phagocytes and mucus but not as "biofilm-like structures." In contrast, P. aeruginosa was identified in biofilm-like masses, but densities appeared to be reduced during coinfection with Bcc bacteria. Based on chemical analyses of CF and non-CF respiratory secretions, a test medium was defined to study Bcc growth and interactions with P. aeruginosa in an environment mimicking the CF lung. When test medium was supplemented with alternative electron acceptors under anaerobic conditions, B. cenocepacia and B. multivorans used fermentation rather than anaerobic respiration to gain energy, consistent with the identification of fermentation products by high-performance liquid chromatography (HPLC). Both Bcc species also expressed mucinases that produced carbon sources from mucins for growth. In the presence of P. aeruginosa in vitro, both Bcc species grew anaerobically but not aerobically. We propose that Bcc bacteria (i) invade a P. aeruginosa-infected CF lung when the airway lumen is anaerobic, (ii) inhibit P. aeruginosa biofilm-like growth, and (iii) expand the host bacterial niche from mucus to also include macrophages.
Collapse
|
200
|
Sousa AM, Pereira MO. Pseudomonas aeruginosa Diversification during Infection Development in Cystic Fibrosis Lungs-A Review. Pathogens 2014; 3:680-703. [PMID: 25438018 PMCID: PMC4243435 DOI: 10.3390/pathogens3030680] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa is the most prevalent pathogen of cystic fibrosis (CF) lung disease. Its long persistence in CF airways is associated with sophisticated mechanisms of adaptation, including biofilm formation, resistance to antibiotics, hypermutability and customized pathogenicity in which virulence factors are expressed according the infection stage. CF adaptation is triggered by high selective pressure of inflamed CF lungs and by antibiotic treatments. Bacteria undergo genetic, phenotypic, and physiological variations that are fastened by the repeating interplay of mutation and selection. During CF infection development, P. aeruginosa gradually shifts from an acute virulent pathogen of early infection to a host-adapted pathogen of chronic infection. This paper reviews the most common changes undergone by P. aeruginosa at each stage of infection development in CF lungs. The comprehensive understanding of the adaptation process of P. aeruginosa may help to design more effective antimicrobial treatments and to identify new targets for future drugs to prevent the progression of infection to chronic stages.
Collapse
Affiliation(s)
- Ana Margarida Sousa
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Maria Olívia Pereira
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|